File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-SL-paper2html
File size: 1.14 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p><span style="background-color: #ffffff;">The following shows some compounds which can be made from ethene, C<sub>2</sub>H<sub>4</sub>.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">ethene (C<sub>2</sub>H<sub>4</sub>) → C<sub>2</sub>H<sub>5</sub>Cl → C<sub>2</sub>H<sub>6</sub>O → C<sub>2</sub>H<sub>4</sub>O</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the type of reaction which converts ethene into C<sub>2</sub>H<sub>5</sub>Cl.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the reaction of C<sub>2</sub>H<sub>5</sub>Cl with aqueous sodium hydroxide to produce a C<sub>2</sub>H<sub>6</sub>O compound, showing structural formulas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of the organic product in (b).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy of combustion of the organic product in (b), in kJ mol<sup>−1</sup>, using data from section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the reagents and conditions for the conversion of the compound C<sub>2</sub>H<sub>6</sub>O, produced in (b), into C<sub>2</sub>H<sub>4</sub>O.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the compound C<sub>2</sub>H<sub>6</sub>O, produced in (b), has a higher boiling point than compound C<sub>2</sub>H<sub>4</sub>O, produced in d(i).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Ethene is often polymerized. Draw a section of the resulting polymer, showing two repeating units.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrophilic» addition ✔ </span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Do <strong>not</strong> accept “nucleophilic addition” or “free radical addition”.<br>Do <strong>not</strong> accept “halogenation”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">CH<sub>3</sub>CH<sub>2</sub>Cl (g) + OH<sup>−</sup> (aq) → CH<sub>3</sub>CH<sub>2</sub>OH (aq) + Cl<sup>−</sup> (aq)<br><em><strong>OR</strong></em><br>CH<sub>3</sub>CH<sub>2</sub>Cl (g) + NaOH (aq) → CH<sub>3</sub>CH<sub>2</sub>OH (aq) + NaCl (aq) ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>6</sub>O (g) + 3O<sub>2</sub> (g) → 2CO<sub>2</sub> (g) + 3H<sub>2</sub>O (g)<br><em><strong>OR</strong></em><br>CH<sub>3</sub>CH<sub>2</sub>OH (g) + 3O<sub>2</sub> (g) → 2CO<sub>2</sub> (g) + 3H<sub>2</sub>O (g) ✔</span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>bonds broken:</em><br>5(C–H) + C–C + C–O + O–H + 3(O=O)<br><em><strong>OR</strong></em><br>5(414«kJ mol<sup>−1</sup>») + 346«kJ mol<sup>−1</sup>» + 358«kJ mol<sup>−1</sup>» + 463«kJ mol<sup>−1</sup>» + 3(498«kJ mol<sup>−1</sup>») / 4731 «kJ» ✔</span></p>
<p><span style="background-color: #ffffff;"><br><em>bonds formed:</em><br>4(C=O) + 6(O–H)<br><em><strong>OR</strong></em><br>4(804«kJ mol<sup>−1</sup>») + 6(463«kJ mol<sup>−1</sup>») / 5994 «kJ» ✔<br>«<em>ΔH</em> = bonds broken − bonds formed = 4731 − 5994 =» −1263 «kJ mol<sup>−1</sup>» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup>/«potassium» dichromate «(VI)» <em><strong>AND</strong> </em>acidified/H<sup>+</sup><br><em><strong>OR</strong></em><br>«acidified potassium» manganate(VII) / «H<sup>+</sup>» KMnO<sub>4</sub> / «H<sup>+</sup>» MnO<sub>4</sub><sup>−</sup> ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept “H<sub>2</sub>SO<sub>4</sub>” or “H<sub>3</sub>PO<sub>4</sub>” for “H<sup>+</sup>”.<br>Do <strong>not</strong> accept “HCl”.<br>Accept “permanganate” for “manganate(VII)”.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">distil ✔</span></p>
<p> </p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>6</sub>O/ethanol: hydrogen-bonding <em><strong>AND</strong> </em>C<sub>2</sub>H<sub>4</sub>O/ethanal: no hydrogen-bonding/«only» dipole–dipole forces ✔<br></span></p>
<p><span style="background-color: #ffffff;">hydrogen bonding stronger «than dipole–dipole» ✔</span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="238" height="139"></p>
<p><em>NOTE: <em><span style="background-color: #ffffff;">Continuation bonds must be shown.<br>Ignore square brackets and “n”.</span></em></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be formed according to the following reaction.</p>
<p>2CO (g) + 3H<sub>2 </sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (g)</p>
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p> </p>
<p>(ii) State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of <em>K</em><sub>c</sub>.</p>
<p>Position of equilibrium:</p>
<p><em>K</em><sub>c</sub>:</p>
<p> </p>
<p>(iii) Calculate the enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO (g) is 1077kJmol<sup>-1</sup>.</p>
<p> </p>
<p>(iv) The enthalpy change, ΔH<sup>θ</sup>, for the following similar reaction is –233.8 kJ.</p>
<p>2CO(g) + 3H<sub>2</sub>(g) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
<mo stretchy="false">⇌</mo>
</math></span> HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>Deduce why this value differs from your answer to (a)(iii).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.</p>
<p>Ethene:</p>
<p>Ethane-1,2-diol:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be oxidized first to ethanedioic acid, (COOH)<sub>2</sub>, and then to carbon dioxide and water. Suggest the reagents to oxidize ethane-1,2-diol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)<br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ll {K_{\text{C}}} = \gg \frac{{\left[ {{\text{HOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}} \right]}}{{{{\left[ {{\text{CO}}} \right]}^{\text{2}}} \times {{\left[ {{{\text{H}}_{\text{2}}}} \right]}^{\text{3}}}}}">
<mo>≪</mo>
<mrow>
<msub>
<mi>K</mi>
<mrow>
<mtext>C</mtext>
</mrow>
</msub>
</mrow>
<mo>=≫</mo>
<mfrac>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>HOC</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>C</mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
<mrow>
<mtext>OH</mtext>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<mtext>CO</mtext>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msup>
</mrow>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mrow>
<mo>[</mo>
<mrow>
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mrow>
<mtext>2</mtext>
</mrow>
</msub>
</mrow>
</mrow>
<mo>]</mo>
</mrow>
</mrow>
<mrow>
<mtext>3</mtext>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> </p>
<p> </p>
<p>(ii)<br><em>Position of equilibrium:</em> moves to right <em><strong>OR</strong></em> favours product<br><em>K</em><sub>c</sub>: no change <em><strong>OR</strong></em> is a constant at constant temperature</p>
<p> </p>
<p>(iii)<br><em>Bonds broken:</em> 2C≡O + 3(H-H) / 2(1077kJmol<sup>-1</sup>) + 3(436kJmol<sup>-1</sup>) / 3462 «kJ»</p>
<p><em>Bonds formed:</em> 2(C-O) + 2(O-H) + 4(C-H) + (C-C) / 2(358kJmol<sup>-1</sup>) + 2(463kJmol<sup>-1</sup>) + 4(414kJmol<sup>-1</sup>) + 346kJmol<sup>-1</sup> / 3644 «kJ»</p>
<p>«Enthalpy change = bonds broken - bonds formed = 3462 kJ - 3644 kJ =» -182 «kJ»</p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em><br><em>Award <strong>[2 max]</strong> for «+»182 «kJ».</em></p>
<p><br>(iv)<br>in (a)(iii) gas is formed and in (a)(iv) liquid is formed<br><em><strong>OR</strong></em><br>products are in different states<br><em><strong>OR</strong></em><br>conversion of gas to liquid is exothermic<br><em><strong>OR</strong></em><br>conversion of liquid to gas is endothermic<br><em><strong>OR</strong></em><br>enthalpy of vapourisation needs to be taken into account</p>
<p><em>Accept product is «now» a liquid.</em><br><em>Accept answers referring to bond enthalpies being means/averages.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Ethene:</em> –2</p>
<p><em>Ethane-1,2-diol:</em> –1</p>
<p><em>Do <strong>not</strong> accept 2–, 1– respectively.</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethane-1,2-diol can hydrogen bond to other molecules «and ethene cannot»</p>
<p><em><strong>OR</strong></em></p>
<p>ethane-1,2-diol has «significantly» greater van der Waals forces</p>
<p><em>Accept converse arguments.<br>Award <strong>[0]</strong> if answer implies covalent bonds are broken</em></p>
<p>hydrogen bonding is «significantly» stronger than other intermolecular forces</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acidified «potassium» dichromate«(VI)»/H<sup>+</sup> <strong><em>AND</em> </strong>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/H<sup>+</sup> <em><strong>AND </strong></em>Cr<sub>2</sub>O<sub>7</sub><sup>2- </sup></p>
<p><em><strong>OR </strong></em></p>
<p>«acidified potassium» manganate(VII)/ «H<sup>+</sup>» KMnO<sub>4</sub> /«H<sup>+</sup>» MnO<sub>4</sub><sup>-</sup></p>
<p><em>Accept Accept H<sub>2</sub>SO<sub>4</sub> or H<sub>3</sub>PO<sub>4</sub> for H<sup>+</sup>.</em><br><em>Accept “permanganate” for “manganate(VII)”.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>ϴ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p> 3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p>3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (b)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-09_om_15.01.32.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/03.c"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the characteristic reaction mechanism of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>nickel/Ni <strong>«</strong>catalyst<strong>»</strong></p>
<p> </p>
<p>high pressure</p>
<p><strong><em>OR</em></strong></p>
<p>heat</p>
<p> </p>
<p><em>Accept these other catalysts: Pt, Pd, </em><em>I</em><em>r, </em><em>Rh, Co, Ti.</em></p>
<p><em>Accept “high temperature” or a stated </em><em>temperature such as “150 °</em><em>C”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-09_om_14.47.44.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/03.a.ii/M"></p>
<p> </p>
<p><em>Ignore square brackets and “n”.</em></p>
<p><em>Connecting line at end of carbons </em><em>must be shown.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sup>ϴ</sup> = bonds broken – bonds formed</p>
<p><strong>«</strong>Δ<em>H</em><sup>ϴ</sup> = 3(C≡C) – 6(C=C)<sub>benzene</sub>/3 × 839 – 6 × 507 / 2517 – 3042 =<strong>»</strong></p>
<p>–525 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for +525 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for:</em></p>
<p><strong><em>«</em></strong>Δ<em>H</em><sup>ϴ</sup><em> =</em><em> </em><em>3(C≡</em><em>C) –</em><em> </em><em>3(C</em><em>–</em><em>C) –</em><em> </em><em>3(C</em><em>=</em><em>C) / </em><em>3 ×</em><em> </em><em>839 –</em><em> </em><em>3 ×</em><em> </em><em>346 –</em><em> </em><em>3 ×</em><em> </em><em>614 / 2517 </em><em>– </em><em>2880 =</em><strong><em>» </em></strong><em>–</em><em>363 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sup>Θ</sup> = ΣΔ<em>H</em><sub>f</sub>(products) – ΣΔ<em>H</em><sub>f</sub>(reactants)</p>
<p><strong>«</strong>Δ<em>H</em><sup>Θ</sup> = 49 kJ – 3 × 228 kJ =<strong>» –</strong>635 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for “+635 </em><strong><em>«</em></strong><em>kJ</em><strong><em>»</em></strong><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>H</em><sub>f</sub> values are specific to the compound</p>
<p><strong><em>OR</em></strong></p>
<p>bond enthalpy values are averages <strong>«</strong>from many different compounds<strong>»</strong></p>
<p> </p>
<p>condensation from gas to liquid is exothermic</p>
<p> </p>
<p><em>Accept “benzene is in two different </em><em>states </em><strong><em>«</em></strong><em>one liquid the other gas</em><strong><em>»</em></strong><em>“ </em><em>for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equal C–C bond <strong>«</strong>lengths/strengths<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>regular hexagon</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>all<strong>» </strong>C–C have<strong>» </strong>bond order of 1.5</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>all<strong>» </strong>C–C intermediate between single and double bonds</p>
<p> </p>
<p><em>Accept “all C</em><em>–</em><em>C–C bond angles are </em><em>equal”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrophilic substitution</p>
<p><strong><em>OR</em></strong></p>
<p>S<sub>E</sub></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a reactive metal often found in alloys.</p>
</div>
<div class="specification">
<p>Organomagnesium compounds can react with carbonyl compounds. One overall equation is:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Compound B can also be prepared by reacting an alkene with water.</p>
</div>
<div class="specification">
<p>Iodomethane is used to prepare CH<sub>3</sub>Mg<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math>. It can also be converted into methanol:</p>
<p style="text-align: center;">CH<sub>3</sub><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math> + HO<sup>–</sup> → CH<sub>3</sub>OH + <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext></math><sup>–</sup></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium can be produced by the electrolysis of molten magnesium chloride.</p>
<p>Write the half-equation for the formation of magnesium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest an experiment that shows that magnesium is more reactive than zinc, giving the observation that would confirm this.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of Compound A, applying International Union of Pure and Applied Chemistry (IUPAC) rules.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest force between the molecules of Compound B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of the alkene required.</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the repeating unit of the polymer formed from this alkene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what would be observed when Compound B is warmed with acidified aqueous potassium dichromate (VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the requirements for a collision between reactants to yield products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The polarity of the carbon–halogen bond, C–X, facilitates attack by HO<sup>–</sup>.</p>
<p>Outline, giving a reason, how the bond polarity changes going down group 17.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Mg<sup>2+</sup> + 2 e<sup>-</sup> → Mg ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> penalize missing charge on electron.</em></p>
<p><em>Accept equation with equilibrium arrows.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>Alternative 1</strong></em></p>
<p>put Mg in Zn<sup>2+</sup>(aq) ✔</p>
<p>Zn/«black» layer forms «on surface of Mg» ✔</p>
<p><em><br>Award <strong>[1 max]</strong> for “no reaction when Zn placed in Mg<sup>2+</sup>(aq)”.</em></p>
<p> </p>
<p><em><strong>Alternative 2</strong></em></p>
<p>place both metals in acid ✔</p>
<p>bubbles evolve more rapidly from Mg<br><em><strong>OR</strong></em><br>Mg dissolves faster ✔</p>
<p> </p>
<p><em><strong>Alternative 3</strong></em></p>
<p>construct a cell with Mg and Zn electrodes ✔</p>
<p>bulb lights up<br><em><strong>OR</strong></em><br>shows (+) voltage<br><em><strong>OR</strong></em><br>size/mass of Mg(s) decreases «over time»<br><em><strong>OR</strong></em><br>size/mass of Zn increases «over time»</p>
<p><em><br></em><em>Accept “electrons flow from Mg to Zn”. </em></p>
<p><em>Accept Mg is negative electrode/anode </em><br><em><strong>OR</strong> </em><br><em>Zn is positive electrode/cathode</em></p>
<p><em><br>Accept other correct methods.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>propanone ✔</p>
<p><em><br>Accept 2-propanone and propan-2-one.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonds ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do <strong>not</strong> penalize missing brackets or n.</em></p>
<p><em>Do <strong>not</strong> award mark if continuation bonds are not shown.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no change «in colour/appearance/solution» ✔</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution<br><em><strong>OR</strong></em><br>SN2 ✔</p>
<p><em><br>Accept “hydrolysis”.</em></p>
<p><em>Accept SN1</em></p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>energy/E ≥ activation energy/E<sub>a</sub> ✔</p>
<p>correct orientation «of reacting particles»<br><em><strong>OR</strong></em><br>correct geometry «of reacting particles» ✔</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases/less polar <em><strong>AND</strong> </em>electronegativity «of the halogen» decreases ✔</p>
<p> </p>
<p><em>Accept “decreases” <strong>AND</strong> a correct comparison of the electronegativity of two halogens.</em></p>
<p><em>Accept “decreases” <strong>AND</strong> “attraction for valence electrons decreases”.</em></p>
<div class="question_part_label">f(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Unfortunately, only 40% of the students could write this quite straightforward half equation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates gained some credit by suggesting voltaic cell or a displacement reaction, but most could not gain the second mark and the reason was often a failure to be able to differentiate between "what occurs" and "what is observed".</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even though superfluous numbers (2-propanone, propan-2-one) were overlooked, only about half of the students could correctly name this simple molecule.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Probably just over half the students correctly identified hydrogen bonding, with dipole-dipole being the most common wrong answer, though a significant number identified an intramolecular bond.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few candidates could correctly eliminate water to deduce the identity of the required reactant.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Correct answers to this were very scarce and even when candidates had an incorrect alkene for the previous part, they were unable to score an ECF mark, by deducing the formula of the polymer it would produce.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some students deduced that, as it was a tertiary alcohol, there would be no reaction, but almost all were lucky that this was accepted as well as the correct <em>observation</em> - "it would remain orange".</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a quarter of the students identified this as a substitution reaction, though quite a number then lost the mark by incorrectly stating it was either "free radical" or "electrophilic". A very common wrong answer was "displacement" or "single displacement" and this makes one wonder whether this terminology is being taught instead of substitution</p>
<div class="question_part_label">f(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well done with the vast majority of students correctly citing "correct orientation" and many only failed to gain the second mark through failing to equate the energy required to the activation energy.</p>
<div class="question_part_label">f(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question that was not well answered with probably only a quarter of candidates stating that the polarity would decrease because of decreasing electronegativity down the group.</p>
<div class="question_part_label">f(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, C<sub>2</sub>H<sub>6</sub>, reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p>carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, C<sub>2</sub>H<sub>3</sub>Cl, can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>substitution <em><strong>AND</strong> </em>«free-»radical<br><em><strong>OR</strong></em><br>substitution <em><strong>AND</strong> </em>chain</p>
<p> </p>
<p><em>Award [1] for “«free-»radical substitution” or “S<sub>R</sub>” written anywhere in the answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Two propagation steps:</em><br>C<sub>2</sub>H<sub>6</sub> + •Cl → C<sub>2</sub>H<sub>5</sub>• + HCl</p>
<p>C<sub>2</sub>H<sub>5</sub>• + Cl<sub>2</sub> → C<sub>2</sub>H<sub>5</sub>Cl + •Cl</p>
<p><em>One termination step:</em><br>C<sub>2</sub>H<sub>5</sub>• + C<sub>2</sub>H<sub>5</sub>• → C<sub>4</sub>H<sub>10</sub><br><em><strong>OR</strong></em><br>C<sub>2</sub>H<sub>5</sub>• + •Cl → C<sub>2</sub>H<sub>5</sub>Cl<br><em><strong>OR</strong></em><br>•Cl + •Cl → Cl<sub>2</sub></p>
<p> </p>
<p><em>Accept radical without • if consistent throughout.</em></p>
<p><em>Allow ECF from incorrect radicals produced in propagation step for M3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{C}} = \frac{{24.27}}{{12.01}}">
<mrow>
<mtext>C</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>24.27</mn>
</mrow>
<mrow>
<mn>12.01</mn>
</mrow>
</mfrac>
</math></span> = 2.021 <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{H}} = \frac{{4.08}}{{1.01}}">
<mrow>
<mtext>H</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>4.08</mn>
</mrow>
<mrow>
<mn>1.01</mn>
</mrow>
</mfrac>
</math></span> = 4.04 <em><strong>AND</strong></em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Cl}} = \frac{{71.65}}{{35.45}} = 2.021">
<mrow>
<mtext>Cl</mtext>
</mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mn>71.65</mn>
</mrow>
<mrow>
<mn>35.45</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2.021</mn>
</math></span></p>
<p>«hence» CH<sub>2</sub>Cl</p>
<p> </p>
<p><em>Accept <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24.27}}{{12.01}}">
<mfrac>
<mrow>
<mn>24.27</mn>
</mrow>
<mrow>
<mn>12.01</mn>
</mrow>
</mfrac>
</math></span> : <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4.08}}{{1.01}}">
<mfrac>
<mrow>
<mn>4.08</mn>
</mrow>
<mrow>
<mn>1.01</mn>
</mrow>
</mfrac>
</math></span> : <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{71.65}}{{35.45}}.">
<mfrac>
<mrow>
<mn>71.65</mn>
</mrow>
<mrow>
<mn>35.45</mn>
</mrow>
</mfrac>
<mo>.</mo>
</math></span></em></p>
<p><em>Do <strong>not</strong> accept C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>. </em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>molecular ion peak(s) «about» <em>m/z</em> 100 <em><strong>AND</strong> </em>«so» C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> «isotopes of Cl»</p>
<p>two signals «in <sup>1</sup>H<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>«signals in» 3:1 ratio «in <sup>1</sup>H<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>one doublet and one quartet «in 1H<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub></p>
<p>1,1-dichloroethane</p>
<p> </p>
<p><em>Accept “peaks” for “signals”.</em></p>
<p><em>Allow ECF for a correct name for M3 if an incorrect chlorohydrocarbon is identified</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Continuation bonds must be shown.</em></p>
<p><em>Ignore square brackets and “n”.</em></p>
<p><em>Accept <img src="images/Schermafbeelding_2017-09-25_om_08.18.53.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/05.d/M"> .</em></p>
<p><em>Accept other versions of the polymer, such as head to head and head to tail.</em></p>
<p><em>Accept condensed structure provided all C to C bonds are shown (as single).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formulas of propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both propane and propene react with bromine.</p>
<p>(i) State an equation and the condition required for the reaction of 1 mol of propane with 1 mol of bromine.</p>
<p>(ii) State an equation for the reaction of 1 mol of propene with 1 mol of bromine.</p>
<p>(iii) State the type of each reaction with bromine.</p>
<p>Propane:</p>
<p>Propene:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Propane:</em></p>
<p><img src="" alt></p>
<p><em><strong>AND</strong><br>Propene:</em></p>
<p><img src="" alt></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>C<sub>3</sub>H<sub>8</sub> + Br<sub>2</sub> → C<sub>3</sub>H<sub>7</sub>Br + HBr</p>
<p> </p>
<p>«sun»light/UV/h<em>v</em><br><em><strong>OR</strong></em><br>high temperature </p>
<p><em>Do <strong>not</strong> accept “reflux” for M2.<br></em></p>
<p> </p>
<p>ii</p>
<p>C<sub>3</sub>H<sub>6</sub> + Br<sub>2</sub> → C<sub>3</sub>H<sub>6</sub>Br<sub>2</sub></p>
<p> </p>
<p>iii</p>
<p><em>Propane:</em> «free radical» substitution / S<sub>R<br></sub><em><strong>AND <br></strong>Propene:</em> «electrophilic» addition / A<sub>E<br></sub>Award mark even if incorrect type of substitution/ addition given. </p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Propan-2-ol is a useful organic solvent.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of propan-2-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of hydrogen atoms in 1.00 g of propan-2-ol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Classify propan-2-ol as a primary, secondary or tertiary alcohol, giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable oxidizing agent for the oxidation of propan-2-ol in an acidified aqueous solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the average oxidation state of carbon in propan-2-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the product of the oxidation of propan-2-ol with the oxidizing agent in (d)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH(OH)CH<sub>3</sub></p>
<p> </p>
<p><em>Accept the full or condensed structural formula.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00\,{\text{g}}}}{{\left( {12.01 \times 3 + 1.01 \times 8 + 16.00} \right)\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = ">
<mfrac>
<mrow>
<mn>1.00</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>12.01</mn>
<mo>×</mo>
<mn>3</mn>
<mo>+</mo>
<mn>1.01</mn>
<mo>×</mo>
<mn>8</mn>
<mo>+</mo>
<mn>16.00</mn>
</mrow>
<mo>)</mo>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span><strong>»</strong> 0.0166 <strong>«</strong>mol CH<sub>3</sub>CH(OH)CH<sub>3</sub><strong>» </strong>✔</p>
<p><strong>«</strong>0.0166 mol × 6.02 × 10<sup>23</sup> molecules mol<sup>−1</sup> × 8 atoms molecule<sup>−1</sup> =<strong>»</strong> 8.01 × 10<sup>22</sup> <strong>«</strong>atoms of hydrogen<strong>»</strong> ✔ </p>
<p> </p>
<p><em>Accept answers in the range 7.99 × 10<sup>22 </sup>to 8.19 × 10<sup>22</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>secondary <em><strong>AND</strong> </em>OH/hydroxyl is attached to a carbon bonded to one hydrogen</p>
<p><em><strong>OR</strong></em></p>
<p>secondary <em><strong>AND</strong></em> OH/hydroxyl is attached to a carbon bonded to two C/R/alkyl/CH<sub>3</sub> «groups» ✔</p>
<p> </p>
<p><em>Accept “secondary <strong>AND</strong> OH is attached to the second carbon in the chain”.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«potassium/sodium» manganate(VII)/permanganate/KMnO<sub>4</sub>/NaMnO<sub>4</sub>/MnO<sub>4</sub><sup>−</sup></p>
<p><em><strong>OR</strong></em></p>
<p>«potassium/sodium» dichromate(VI)/K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> ✔</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>−2 ✔</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>propanone/propan-2-one/CH<sub>3</sub>COCH<sub>3</sub> ✔</p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Xylene is a derivative of benzene. One isomer is 1,4-dimethylbenzene.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="314" height="124"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Bromine reacts with alkanes.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of 1H NMR signals for this isomer of xylene and the ratio in which they appear.</span></p>
<p><span style="background-color: #ffffff;">Number of signals:</span><span style="background-color: #ffffff;"><br></span></p>
<p><span style="background-color: #ffffff;">Ratio:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of one other isomer of xylene which retains the benzene ring.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the initiation step of the reaction and its conditions.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">1,4-dimethylbenzene reacts as a substituted alkane. Draw the structures of the two products of the overall reaction when one molecule of bromine reacts with one molecule of 1,4-dimethylbenzene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Number of signals:<br>2 <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">Ratio:<br>3 : 2<br><em><strong>OR</strong></em><br>6 : 4 <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept any correct integer or fractional ratio. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept ratios in reverse order.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="322" height="134"> <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Br2 → 2Br• <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«sun»light/UV/hv<br><em><strong>OR</strong></em><br>high temperature <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Do <strong>not</strong> penalize missing radical symbol on Br.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “homolytic fission of bromine” for M1.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="178" height="62"> <strong>[</strong><span style="background-color: #ffffff;"><strong>✔]</strong></span></p>
<p><span style="background-color: #ffffff;">HBr <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept condensed formulae, such as CH<sub>3</sub>C<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>Br.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept skeletal structures.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most students gained M1 but very few gained M2, suggesting that the correct answer of 2 signals may have been a guess.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another isomer of xylene was generally correctly drawn, but some candidates drew the original compound.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Drawing or describing the homolytic fission of bromine was generally done well.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students gained 2 marks finding hard to apply their knowledge of free radical substitution to a benzene containing compound. Many thought that the bromine will attach to the benzene ring or would substitute the alkyl group twice and not produce HBr.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH, is another derivative of benzene.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the conjugate base of benzoic acid showing <strong>all</strong> the atoms and <strong>all</strong> the bonds.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The pH of an aqueous solution of benzoic acid at 298 K is 2.95. Determine the concentration of hydroxide ions in the solution, using section 2 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete combustion of benzoic acid in oxygen using only integer coefficients.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest how benzoic acid, <em>M<sub>r</sub></em> = 122.13, forms an apparent dimer, <em>M<sub>r</sub></em> = 244.26, when dissolved in a non-polar solvent such as hexane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p> </p>
<p><em><strong>Note:</strong> <span style="background-color: #ffffff;">Accept Kekulé structures.</span></em></p>
<p><em><span style="background-color: #ffffff;">Negative sign must be shown in correct position- on the O or delocalised over the carboxylate.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1:</strong></em><br>[H<sup>+</sup>] «= 10<sup>−2.95</sup>» = 1.122 × 10<sup>−3</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.00 \times {{10}^{ - 14}}{\text{ mo}}{{\text{l}}^2}{\text{ d}}{{\text{m}}^{ - 6}}}}{{1.22 \times {{10}^{ - 3}}{\text{ mol d}}{{\text{m}}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>1.00</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>14</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
<mrow>
<mtext> d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>6</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>1.22</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> mol d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =» 8.91 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2:</strong></em><br>pOH = «14 − 2.95 =» 11.05 <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] = 10<sup>−11.05</sup> =» 8.91 × 10<sup>−12</sup> «moldm<sup>−3</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept other methods.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2C<sub>6</sub>H<sub>5</sub>COOH(s) + 15O<sub>2</sub> (g) → 14CO<sub>2</sub> (g) + 6H<sub>2</sub>O(l)</span></p>
<p><span style="background-color: #ffffff;">correct products <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">correct balancing <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«intermolecular» hydrogen bonding <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept diagram showing hydrogen bonding.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most failed to score a mark for the conjugate base of benzoic acid as either they didn’t show all bonds and atoms in the ring and/or they did not put the minus sign in the correct place. Some didn't read the question carefully so gave the structure of the acid form.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students could correctly calculate the hydroxide concentration, but some weaker students calculated hydrogen ion concentration only.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most students earned at least one mark for writing the correct products of the combustion of benzoic acid but the balancing appeared to be difficult for some.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very few students answered this question correctly, thinking benzoic would bond with the hexane even though it was a non-polar solvent. It was very rare for a student to realize there was intermolecular hydrogen bonding.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The structure of an organic molecule can help predict the type of reaction it can undergo.</p>
</div>
<div class="specification">
<p>Improvements in instrumentation have made identification of organic compounds routine.</p>
<p>The empirical formula of an unknown compound containing a phenyl group was found to be C<sub>4</sub>H<sub>4</sub>O. The molecular ion peak in its mass spectrum appears at <em>m</em>/<em>z </em>= 136.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Kekulé structure of benzene suggests it should readily undergo addition reactions.</p>
<p> <img src="images/Schermafbeelding_2018-08-10_om_10.35.21.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.a_01"></p>
<p>Discuss two pieces of evidence, <strong>one </strong>physical and <strong>one </strong>chemical, which suggest this is not the structure of benzene.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the ionic equation for the oxidation of propan-1-ol to the corresponding aldehyde by acidified dichromate(VI) ions. Use section 24 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The aldehyde can be further oxidized to a carboxylic acid.</p>
<p>Outline how the experimental procedures differ for the synthesis of the aldehyde and the carboxylic acid.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the molecular formula of the compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bonds causing peaks <strong>A </strong>and <strong>B </strong>in the IR spectrum of the unknown compound using section 26 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.50.17.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.ii_01"></p>
<p> <img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce full structural formulas of <strong>two </strong>possible isomers of the unknown compound, both of which are esters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the formula of the unknown compound based on its <sup>1</sup>H NMR spectrum using section 27 of the data booklet.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.59.18.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.iv"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Physical evidence:</em></p>
<p>equal C–C bond «lengths/strengths»</p>
<p><strong><em>OR</em></strong></p>
<p>regular hexagon</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>all<strong>» </strong>C–C have bond order of 1.5</p>
<p><strong><em>OR</em></strong></p>
<p>«all» C–C intermediate between single and double bonds</p>
<p> </p>
<p><em>Chemical evidence:</em></p>
<p>undergoes substitution reaction <strong>«</strong>more readily than addition<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>does not discolour/react with bromine water</p>
<p><strong><em>OR</em></strong></p>
<p>substitution forms only one isomer for 1,2-disubstitution <strong>«</strong>presence of alternate double bonds would form two isomers<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>more stable than expected <strong>«</strong>compared to hypothetical molecule cyclohexa-1,3,5-triene<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>enthalpy change of hydrogenation/combustion is less exothermic than predicted <strong>«</strong>for cyclohexa-1,3,5-triene<strong>»</strong></p>
<p> </p>
<p><em>M1:</em></p>
<p><em>Accept “all C–C–C bond angles are </em><em>equal”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH(l) + Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup>(aq) + 8H<sup>+</sup>(aq) → 3CH<sub>3</sub>CH<sub>2</sub>CHO(aq) + 2Cr<sup>3+</sup>(aq) + 7H<sub>2</sub>O(l)</p>
<p>correct reactants and products</p>
<p>balanced equation</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Aldehyde:</em></p>
<p>by distillation <strong>«</strong>removed from reaction mixture as soon as formed<strong>»</strong></p>
<p><em>Carboxylic acid:</em></p>
<p><strong>«</strong>heat mixture under<strong>» </strong>reflux <strong>«</strong>to achieve complete oxidation to –COOH<strong>»</strong></p>
<p> </p>
<p><em>Accept clear diagrams or descriptions of </em><em>the processes.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{136}}{{48 + 4 + 16}} = 2">
<mfrac>
<mrow>
<mn>136</mn>
</mrow>
<mrow>
<mn>48</mn>
<mo>+</mo>
<mn>4</mn>
<mo>+</mo>
<mn>16</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>2</mn>
</math></span><strong>»</strong></p>
<p>C<sub>8</sub>H<sub>8</sub>O<sub>2</sub></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A: C–H <strong>«</strong>in alkanes, alkenes, arenes<strong>»</strong></p>
<p><strong><em>AND</em></strong></p>
<p>B: C=O <strong>«</strong>in aldehydes, ketones, carboxylic acids and esters<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p><em><img src=""> <strong>OR</strong> </em>C<sub>6</sub>H<sub>5</sub>COOCH<sub>3</sub></p>
<p><img src=""><em><strong>OR</strong> </em>CH<sub>3</sub>COOC<sub>6</sub>H<sub>5</sub></p>
<p><img src=""> <em><strong>OR</strong> </em>HCOOCH<sub>2</sub>C<sub>6</sub>H<sub>5</sub></p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>penalize use of Kekule </em><em>structures for the phenyl group.</em></p>
<p><em>Accept the following structures:</em></p>
<p><img src="images/Schermafbeelding_2018-08-10_om_10.55.29.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/07.c.iii_02/M"></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for two correct </em><em>aliphatic/linear esters with the molecular </em><em>formula C</em><sub><em>8</em></sub><em>H</em><sub><em>8</em></sub><em>O</em><sub><em>2</em></sub><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C<sub>6</sub>H<sub>5</sub>COOCH<sub>3</sub> <strong>«</strong>signal at 4 ppm (3.7 – 4.8 range in data table) due to alkyl group on ester</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Chlorine undergoes many reactions.</p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></math> of manganese(IV) oxide was added to </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>200</mn><mo>.</mo><mn>0</mn><mo> </mo><msup><mi>cm</mi><mn>3</mn></msup></math> <span class="fontstyle0">of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo> </mo><mi>HCl</mi></math>.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>MnO</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>+</mo><mn>4</mn><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><mn>2</mn><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msub><mi>MnCl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p>Chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.</p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Cl</mi><mn>2</mn></msub><mo> </mo><mo>(</mo><mi mathvariant="normal">g</mi><mo>)</mo><mo>+</mo><msub><mi mathvariant="normal">H</mi><mn>2</mn></msub><mi mathvariant="normal">O</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>⇌</mo><mi>HClO</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>HCl</mi><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math></p>
</div>
<div class="specification">
<p><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math> </span><span class="fontstyle0">is a common chlorofluorocarbon, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the full electron configuration of the chlorine atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State, giving a reason, whether the chlorine atom or the chloride ion has a larger radius</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline why the chlorine atom has a smaller atomic radius than the sulfur atom</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The mass spectrum of chlorine is shown.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"><em> NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce on behalf of </em><em>the United States of America. All rights reserved.</em><br> </span></p>
<p><span class="fontstyle0"> Outline the reason for the two peaks at <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>.<br> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the presence and relative abundance of the peak at </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>/</mo><mi>z</mi><mo>=</mo><mn>74</mn></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of manganese(IV) oxide added.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the limiting reactant, showing your calculations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the excess amount, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>mol</mi></math>, of the other reactant.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the volume of chlorine, in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>dm</mi><mn>3</mn></msup></math><span class="fontstyle0">, produced if the reaction is conducted at standard temperature and pressure (STP). Use section 2 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the oxidation state of manganese in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math></span><span class="fontstyle0"> </span><span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<p><img src="" width="699" height="180"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce, referring to oxidation states, whether </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> <span class="fontstyle0">is an oxidizing or reducing agent.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Hypochlorous acid is considered a weak acid. Outline what is meant by the term weak acid.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the formula of the conjugate base of hypochlorous acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the concentration of </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo></math><span class="fontstyle0"> in a </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>HClO</mi><mo> </mo><mfenced><mi>aq</mi></mfenced></math><span class="fontstyle0"> solution with a </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>61</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of reaction occurring when ethane reacts with chlorine to produce chloroethane.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict, giving a reason, whether ethane or chloroethane is more reactive.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Write the equation for the reaction of chloroethane with a dilute aqueous solution of sodium hydroxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the nucleophile for the reaction in d(iii).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Ethoxyethane (diethyl ether) can be used as a solvent for this conversion. Draw the structural formula of ethoxyethane</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the number of signals and their chemical shifts in the </span><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi mathvariant="normal">H</mi><mprescripts></mprescripts><mn>1</mn></mmultiscripts><mo> </mo><mi>NMR</mi></math> <span class="fontstyle0">spectrum of ethoxyethane. Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the percentage by mass of chlorine in </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub></math><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on how international cooperation has contributed to the lowering of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math> emissions responsible for ozone depletion.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>2</mn><msup><mi mathvariant="normal">p</mi><mn>6</mn></msup><mn>3</mn><msup><mi mathvariant="normal">s</mi><mn>2</mn></msup><mn>3</mn><msup><mi mathvariant="normal">p</mi><mn>5</mn></msup></math> ✔</p>
<p><em>Do <strong>not</strong> accept condensed electron configuration.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>Cl</mi><mo>-</mo></msup></math> <em><strong>AND</strong> </em>more «electron–electron» repulsion ✔</p>
<p><em><br>Accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msup><mi>l</mi><mo mathvariant="italic">-</mo></msup></math> <strong>AND</strong> has an extra electron.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Cl</mi></math> has a greater nuclear charge/number of protons/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">Z</mi><mi>eff</mi></msub></math> «causing a stronger pull on the outer electrons» ✔</p>
<p>same number of shells<br><strong><em>OR</em></strong><br>same «outer» energy level<br><em><strong>OR</strong></em><br>similar shielding ✔</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«two major» isotopes «of atomic mass <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>35</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>37</mn></math>» ✔</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«diatomic» molecule composed of «two» chlorine-37 atoms ✔</p>
<p>chlorine-37 is the least abundant «isotope»<br><em><strong>OR</strong></em><br>low probability of two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mmultiscripts><mi>Cl</mi><mprescripts></mprescripts><mn>37</mn></mmultiscripts></math> «isotopes» occurring in a molecule ✔</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>2</mn><mo>.</mo><mn>67</mn><mo> </mo><mi mathvariant="normal">g</mi></mrow><mrow><mn>86</mn><mo>.</mo><mn>94</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">n</mi><mi>HCl</mi></msub><mo>=</mo><mn>2</mn><mo>.</mo><mn>00</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>0</mn><mo>.</mo><mn>2000</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo><mo>=</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo> </mo></math>✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>400</mn></mrow><mn>4</mn></mfrac><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub></math> is the limiting reactant ✔</p>
<p><em>Accept other valid methods of determining the limiting reactant in M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>4</mn><mo>=</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>»</mo></math></p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>400</mn><mo> </mo><mi>mol</mi><mo>–</mo><mn>0</mn><mo>.</mo><mn>123</mn><mo> </mo><mi>mol</mi><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>277</mn><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mn>0</mn><mo>.</mo><mn>0307</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>22</mn><mo>.</mo><mn>7</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mo> </mo><mn>0</mn><mo>.</mo><mn>697</mn><mo> </mo><mo>«</mo><msup><mi>dm</mi><mn>3</mn></msup><mo>»</mo></math> ✔</p>
<p><em><br>Accept methods employing <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mi>V</mi><mo>=</mo><mi>n</mi><mi>R</mi><mi>T</mi></math></em>.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnO</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>4</mn></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>MnCl</mi><mn>2</mn></msub><mo>:</mo><mo> </mo><mo>+</mo><mn>2</mn></math> ✔</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>oxidizing agent <em><strong>AND</strong></em> oxidation state of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Mn</mi></math> changes from <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>4</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>+</mo><mn>2</mn></math>/decreases ✔</p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>partially dissociates/ionizes «in water» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>ClO</mi><mo>-</mo></msup></math> ✔</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mo>[</mo><msup><mi mathvariant="normal">H</mi><mo>+</mo></msup><mo>]</mo><mo>=</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn><mo>.</mo><mn>61</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>2</mn><mo>.</mo><mn>5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«free radical» substitution/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">S</mi><mi mathvariant="normal">R</mi></msub></math> ✔</p>
<p><em><br>Do not accept electrophilic or nucleophilic substitution.</em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chloroethane <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi>Cl</mi></math> bond is weaker/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>324</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math> than <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>–</mo><mi mathvariant="normal">H</mi></math> bond/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>414</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></math><br><em><strong>OR</strong></em><br>chloroethane <strong><em>AND</em> </strong>contains a polar bond ✔</p>
<p><em><br>Accept “chloroethane <strong>AND</strong> polar”.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><msup><mi>OH</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><msup><mi>Cl</mi><mo>-</mo></msup><mo>(</mo><mi>aq</mi><mo>)</mo></math><br><em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>Cl</mi><mo>(</mo><mi mathvariant="normal">l</mi><mo>)</mo><mo>+</mo><mi>NaOH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><mi>OH</mi><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>NaCl</mi><mo>(</mo><mi>aq</mi><mo>)</mo></math> ✔</p>
<p><em>Accept use of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>C</mi><mi>l</mi></math> and <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">5</mn></msub><mi>O</mi><mi>H</mi><mi mathvariant="normal">/</mi><msub><mi>C</mi><mn mathvariant="italic">2</mn></msub><msub><mi>H</mi><mn mathvariant="italic">6</mn></msub><mi>O</mi></math> in the equation.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydroxide «ion»/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>OH</mi><mo>-</mo></msup></math> ✔</p>
<p><em><br>Do <strong>not</strong> accept <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mi>a</mi><mi>O</mi><mi>H</mi></math>.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> / <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><msub><mi>CH</mi><mn>2</mn></msub><msub><mi>OCH</mi><mn>2</mn></msub><msub><mi>CH</mi><mn>3</mn></msub></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo mathvariant="italic">(</mo><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">3</mn></msub><mi>C</mi><msub><mi>H</mi><mn mathvariant="italic">2</mn></msub><msub><mo mathvariant="italic">)</mo><mn mathvariant="italic">2</mn></msub><mi>O</mi></math>.</em></p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> «signals» ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo>–</mo><mn>1</mn><mo>.</mo><mn>0</mn><mo> </mo><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo></math> <em><strong>AND</strong> </em><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>3</mn><mo>–</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo> </mo><mo>«</mo><mi>ppm</mi><mo>»</mo><mo> </mo></math>✔</p>
<p><em><br>Accept any values in the ranges.</em></p>
<p><em>Award <strong>[1 max]</strong> for two incorrect chemical shifts.</em></p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>M</mi><mo>(</mo><msub><mi>CCl</mi><mn>2</mn></msub><msub><mi mathvariant="normal">F</mi><mn>2</mn></msub><mo>)</mo><mo> </mo><mo>=</mo><mo>»</mo><mo> </mo><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mo>«</mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo><mo> </mo></math> ✔</p>
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>×</mo><mn>35</mn><mo>.</mo><mn>45</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>120</mn><mo>.</mo><mn>91</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>×</mo><mn>100</mn><mo>%</mo><mo>=</mo><mo>»</mo><mo> </mo><mn>58</mn><mo>.</mo><mn>64</mn><mo> </mo><mo>«</mo><mo>%</mo><mo>»</mo></math> ✔</p>
<p><em><br>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>research «collaboration» for alternative technologies «to replace <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CFC</mi></math>s»<br><em><strong>OR</strong></em><br>technologies «developed»/data could be shared<br><em><strong>OR</strong></em><br>political pressure/Montreal Protocol/governments passing legislations ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “collaboration”.</em></p>
<p><em>Do <strong>not</strong> accept any reference to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math> as greenhouse gas or product of fossil fuel combustion.</em></p>
<p><em>Accept reference to specific measures, such as agreement on banning use/manufacture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>C</mi><mi>F</mi><mi>C</mi></math>s.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates wrote the electron configuration of chlorine correctly.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only half of the candidates deduced that the chloride ion has a larger radius than the chlorine atom with a valid reason. Many candidates struggled with this question and decided that the extra electron in the chloride ion caused a greater attraction between the nucleus and the outer electrons.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only about a third of the candidates identified the extra proton in the chlorine nucleus as the cause of the smaller atomic radius when compared to the sulfur atom, and only the stronger candidates also compared the shielding or the number of shells in the two atoms. Many candidates had a poor understanding of factors affecting atomic radius and could not explain the difference.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60% of the candidates recognized that the peaks at m/z 35 and 37 in the mass spectrum of chlorine are due to its isotopes. A few students wrote 'isomers' instead of 'isotopes'.</p>
<div class="question_part_label">a(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the lowest scoring question on the paper, that was also left blank by 10% of the candidates. About 20% of the candidates identified the peak at m/z = 74 to be due to a molecule made up of two 37Cl atoms. And only very few candidates commented that the low abundance of the peak was due to the low abundance of the 37Cl isotope. A common incorrect answer was that chlorine has an isotope of mass number 74.</p>
<div class="question_part_label">a(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to determine the number of moles of MnO<sub>2</sub> using the mass.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was pleasing that the majority of the candidates were able to determine the limiting reactant by using the stoichiometric ratio.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to determine the amount of excess reactant. Some candidates who determined the limiting reactant in the previous part correctly, forgot to use the stoichiometric ratio in this part, and ended up with incorrect answers.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates determined the volume of chlorine produced correctly. Some candidates made mistakes in the units when using PV = nRT and had a power of 10 error.</p>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates were able to determine the oxidation states of Mn in the two compounds correctly.</p>
<div class="question_part_label">b(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Less than half of the candidates were awarded the mark. Some did identify MnO2 as the oxidizing agent but did not give the explanation in terms of oxidation state as required in the question. Other candidates did not have an understanding of oxidizing and reducing agents. </p>
<div class="question_part_label">b(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question - 80% of candidates understood what is meant by the term weak acid. Incorrect answers included 'acids that have high pH'.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates deduced the formula of the conjugate base of hypochlorous acid. Incorrect answers included H<sub>2</sub>O and HCl.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. It was pleasing to see that 70% of the candidates were able to calculate [H<sup>+</sup>] from the given pH.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>More than half of the candidates identified the type of reaction between ethane and chlorine as a substitution reaction. A few candidates lost the marks for writing 'electrophilic substitution' or 'nucleophilic substitutions'.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question that was answered correctly by only 30% of the candidates. A variety of incorrect answers were seen such as 'chlorine is a halogen and hence it is reactive', and 'ethane is more reactive because it is an alkane'. For students who answered correctly, the polarity was the most frequently given reason.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates wrote the correct equation for the hydrolysis of chloroethane. Incorrect answers often included carbon dioxide and water as the products.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a highly discriminating question. Only 30% of the candidates were able to identify the hydroxide ion as the nucleophile in the hydrolysis of chloroethane. Incorrect answers included NaOH where the ion was not specified. 14% of the candidates left this question blank.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates were able to give the structural formula of ethoxyethane. Incorrect answers included methoxymethane, ketones and esters.</p>
<div class="question_part_label">d(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half of the candidates were able to identify the number of signals obtained in the 1H NMR spectrum of ethoxyethane, obtaining the first mark of this question. Many candidates were awarded the mark as 'error carried forward' from an incorrect structure of ethoxyethane. The second mark for this question required candidates to look up values of chemical shift from the data booklet. Nearly a third of the candidates were able to match the chemical environments of the hydrogen atoms in ethoxyethane to those listed in the data booklet successfully. </p>
<div class="question_part_label">d(vi).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the highest scoring question in the paper. The majority of candidates were able to calculate the percentage by mass of chlorine in CCl<sub>2</sub>F<sub>2</sub>. Mistakes included incorrect rounding and arithmetic errors.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This nature of science question was well answered by half of the candidates. Some teachers commented that the wording was rather vague. Incorrect answers were mainly assuming that CFCs were related to the combustion of fuels and greenhouse gas emissions.</p>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>The reactivity of organic compounds depends on the nature and positions of their functional groups.</p>
</div>
<div class="specification">
<p>The structural formulas of two organic compounds are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the type of chemical reaction and the reagents used to distinguish between these compounds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the observation expected for each reaction giving your reasons.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of signals and the ratio of areas under the signals in the <sup>1</sup>H NMR spectra of the two compounds.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with the help of equations, the mechanism of the free-radical substitution reaction of ethane with bromine in presence of sunlight.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>oxidation/redox AND acidified «potassium» dichromate(VI)</p>
<p><em><strong>OR</strong></em></p>
<p>oxidation/redox AND «acidified potassium» manganate(VII)</p>
<p><em>Accept “acidified «potassium» dichromate” <strong>OR</strong> “«acidified potassium» permanganate”.</em></p>
<p><em>Accept name or formula of the reagent(s).</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em> using K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>:</p>
<p><em>Compound A:</em> orange to green <strong><em>AND</em></strong> secondary hydroxyl</p>
<p><em><strong>OR</strong></em></p>
<p><em>Compound A:</em> orange to green <em><strong>AND</strong></em> hydroxyl oxidized «by chromium(VI) ions»</p>
<p><em>Compound B:</em> no change <em><strong>AND</strong></em> tertiary hydroxyl «not oxidized by chromium(VI) ions»</p>
<p><em>Award <strong>[1]</strong> for “A: orange to green <strong>AND</strong> B: no change”.</em></p>
<p><em>Award <strong>[1]</strong> for “A: secondary hydroxyl <strong>AND</strong> B: tertiary hydroxyl”.</em></p>
<p><em><strong>ALTERNATIVE 2</strong></em> using KMnO<sub>4</sub>:</p>
<p><em>Compound A:</em> purple to colourless <em><strong>AND</strong></em> secondary hydroxyl</p>
<p><em><strong>OR</strong></em></p>
<p><em>Compound A:</em> purple to colourless <em><strong>AND</strong></em> hydroxyl oxidized «by manganese(VII) ions»</p>
<p><em>Compound B:</em> no change <em><strong>AND</strong></em> tertiary hydroxyl «not oxidized by manganese(VII) ions»</p>
<p><em>Accept “alcohol” for “hydroxyl”.</em></p>
<p><em>Award <strong>[1]</strong> for “A: purple to colourless <strong>AND</strong> B: no change”</em></p>
<p><em>Award <strong>[1]</strong> for “A: secondary hydroxyl <strong>AND</strong> B: tertiary hydroxyl”.</em></p>
<p><em>Accept “purple to brown” for A.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept ratio of areas in any order.</em></p>
<p><em>Do <strong>not</strong> apply ECF for ratios.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Initiation:</em><br>Br<sub>2</sub> <img src=""> 2Br•</p>
<p><em>Propagation:</em><br>Br• + C<sub>2</sub>H<sub>6</sub> → C<sub>2</sub>H<sub>5</sub>• + HBr</p>
<p>C<sub>2</sub>H<sub>5</sub>• + Br<sub>2</sub> → C<sub>2</sub>H<sub>5</sub>Br + Br•</p>
<p><em>Termination:</em><br>Br• + Br• → Br<sub>2</sub></p>
<p><em><strong>OR</strong></em></p>
<p>C<sub>2</sub>H<sub>5</sub>• + Br• → C<sub>2</sub>H<sub>5</sub>Br</p>
<p><em><strong>OR</strong></em></p>
<p>C<sub>2</sub>H<sub>5</sub>• + C<sub>2</sub>H<sub>5</sub>• → C<sub>4</sub>H<sub>10</sub></p>
<p><em>Reference to UV/hν/heat not required.</em></p>
<p><em>Accept representation of radical without • (eg, Br, C<sub>2</sub>H<sub>5</sub>) if consistent throughout mechanism.</em></p>
<p><em>Accept further bromination.</em></p>
<p><em>Award <strong>[3 max]</strong> if initiation, propagation and termination are not stated or are incorrectly labelled for equations.</em></p>
<p><em>Award <strong>[3 max]</strong> if methane is used instead of ethane, and/or chlorine is used instead of bromine.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Nickel catalyses the conversion of propanone to propan-2-ol.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline how a catalyst increases the rate of reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why an increase in temperature increases the rate of reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss, referring to intermolecular forces present, the relative volatility of propanone and propan-2-ol.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diagram shows an unlabelled voltaic cell for the reaction</span></p>
<p style="text-align: center;"><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>Pb</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Ni</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo><mo>→</mo><msup><mi>Ni</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo> </mo><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mi>Pb</mi><mo> </mo><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math></p>
<p>Label the diagram with the species in the equation.</p>
<p><span class="fontstyle0"><img src=""></span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a metal that could replace nickel in a new half-cell and reverse the electron flow. Use section 25 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the bonding in metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Nickel alloys are used in aircraft gas turbines. Suggest a physical property altered by the addition of another metal to nickel.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>provides an alternative pathway/mechanism <em><strong>AND</strong></em> lower <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p><em>Accept description of how catalyst lowers <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> (e.g. “reactants adsorb on surface «of catalyst»”, “reactant bonds weaken «when adsorbed»”).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>more/greater proportion of molecules with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi><mo>≥</mo><msub><mi>E</mi><mi mathvariant="normal">a</mi></msub></math> ✔</p>
<p>greater frequency/probability/chance of collisions «between the molecules»<br><em><strong>OR</strong></em><br>more collision per unit of time/second ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding/bonds «and dipole–dipole and London/dispersion forces are present in» propan-2-ol ✔</p>
<p>dipole–dipole «and London/dispersion are present in» propanone ✔</p>
<p>propan-2-ol less volatile <em><strong>AND</strong></em> hydrogen bonding/bonds stronger «than dipole–dipole »<br><em><strong>OR</strong></em><br>propan-2-ol less volatile <em><strong>AND</strong></em> «sum of all» intermolecular forces stronger ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>Bi</mi><mo>/</mo><mi>Cu</mi><mo>/</mo><mi>Ag</mi><mo>/</mo><mi>Pd</mi><mo>/</mo><mi>Hg</mi><mo>/</mo><mi>Pt</mi><mo>/</mo><mi>Au</mi><mo> </mo></math> ✔</p>
<p><em>Accept <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi><mi>b</mi></math> <strong>OR</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi><mi>s</mi></math>.</em></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electrostatic attraction ✔</p>
<p>between «a lattice of» metal/positive ions/cations <em><strong>AND</strong></em> «a sea of» delocalized electrons ✔</p>
<p><em><br>Accept “mobile/free electrons”.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em></p>
<p>malleability/hardness<br><em><strong>OR</strong></em><br>«tensile» strength/ductility<br><em><strong>OR</strong></em><br>density<br><em><strong>OR</strong></em><br>thermal/electrical conductivity<br><em><strong>OR</strong></em><br>melting point<br><em><strong>OR</strong></em><br>thermal expansion ✔</p>
<p><em><br>Do not accept corrosion/reactivity or any chemical property.</em></p>
<p><em>Accept other specific physical properties.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A straight-forward question, however, half of the candidates only mentioned the lower activation energy and did not mention that this is through an alternative mechanism, so did not score the mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates gained the mark about the increased frequency of collision. Fewer candidates also clarified that a larger proportion of molecules have the activation energy.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had the correct structure in their answers identifying the type of intermolecular forces in each compound and then comparing the strength of the two and reaching a conclusion. Some candidates did not know what was meant by volatile. Some candidates stated London dispersion forces in propanone instead of dipole-dipole.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60% of the candidates obtained the mark. Some candidates labelled the electrodes as ions indicating they do not understand the structure of a voltaic cell.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>70% of the candidates answered correctly. The common mistake was to select a more reactive metal instead.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The mean mark on the question was 1.0 out of 2 marks. Mistakes included not mentioning the 'electrostatic attraction' and talking about 'nuclei attracting the delocalised electrons'. The weakest candidates discussed aspects of ionic and/or covalent bonding.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>80% obtained the mark. Many candidates wrote more than one property, which should be discouraged. Incorrect answers included chemical properties such as reactivity.</p>
<div class="question_part_label">d(iv).</div>
</div>
<br><hr><br><div class="specification">
<p>Benzene is an aromatic hydrocarbon.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the physical evidence for the structure of benzene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the typical reactions that benzene and cyclohexene undergo with bromine.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>planar «X-ray»</p>
<p>C to C bond lengths all equal<br><em><strong>OR</strong></em><br>C to C bonds intermediate in length between C–C and C=C</p>
<p>all C–C–C bond angles equal</p>
<p> </p>
<p><em>Accept all C to C bonds have same bond strength/bond energy.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>benzene:</em> «electrophilic» substitution/S<sub>E</sub><br><em><strong>AND</strong></em><br><em>cyclohexene:</em> «electrophilic» addition/A<sub>E</sub></p>
<p> </p>
<p><em>Accept correct equations.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Ethyne, C<sub>2</sub>H<sub>2</sub>, reacts with oxygen in welding torches.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Ethyne reacts with steam.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>2</sub> (g) + H<sub>2</sub>O (g) → C<sub>2</sub>H<sub>4</sub>O (g)</span></p>
<p><span style="background-color: #ffffff;">Two possible products are:</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="317" height="189"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Product <strong>B</strong>, CH<sub>3</sub>CHO, can also be synthesized from ethanol.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write an equation for the complete combustion of ethyne.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the Lewis (electron dot) structure of ethyne.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare, giving a reason, the length of the bond between the carbon atoms in ethyne with that in ethane, C<sub>2</sub>H<sub>6</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of interaction that must be overcome when liquid ethyne vaporizes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Product<strong> A</strong> contains a carbon–carbon double bond. State the type of reactions that compounds containing this bond are likely to undergo.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of product <strong>B</strong>, applying IUPAC rules.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the enthalpy change for the reaction, in kJ, to produce<strong> A</strong> using section 11 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The enthalpy change for the reaction to produce <strong>B</strong> is −213 kJ. Predict, giving a reason, which product is the most stable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The IR spectrum and low resolution <sup>1</sup>H NMR spectrum of the actual product formed are shown.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="639" height="621"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Deduce whether the product is <strong>A</strong> or <strong>B</strong>, using evidence from these spectra together with sections 26 and 27 of the data booklet. </span></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Identity of product:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">One piece of evidence from IR:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">One piece of evidence from <sup>1</sup>H NMR:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest the reagents and conditions required to ensure a good yield of product <strong>B</strong>.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Reagents:</span></p>
<p><span style="background-color: #ffffff;">Conditions:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the average oxidation state of carbon in product <strong>B</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why product <strong>B</strong> is water soluble.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">C<sub>2</sub>H<sub>2</sub> (g) + 2.5O<sub>2</sub> (g) → 2CO<sub>2</sub> (g) + H<sub>2</sub>O (l)<br><em><strong>OR</strong></em><br>2C<sub>2</sub>H<sub>2</sub> (g) + 5O<sub>2</sub> (g) → 4CO<sub>2</sub> (g) + 2H<sub>2</sub>O (l) <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="282" height="30"> <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<p> </p>
<p><em><strong><span style="background-color: #ffffff;">Note:</span></strong><span style="background-color: #ffffff;"> Accept any valid combination of lines, dots and crosses.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«ethyne» shorter <em><strong>AND</strong> </em>a greater number of shared/bonding electrons<br><em><strong>OR</strong></em><br>«ethyne» shorter <em><strong>AND</strong> </em>stronger bond <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">London/dispersion/instantaneous dipole-induced dipole forces <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Do <strong>not</strong> accept just “intermolecular forces” or “van der Waals’ forces”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«electrophilic» addition/A<sub>«E»</sub> <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “polymerization”.</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ethanal <strong>[✔]</strong></span></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«sum of bond enthalpies of reactants =» 2(C–H) + C≡C + 2(O–H)<br><em><strong>OR</strong></em><br>2 × 414 «kJ mol<sup>–1</sup>» + 839 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>» + 2 × 463 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>»<br><em><strong>OR</strong></em><br>2593 «kJ» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«sum of bond enthalpies of A =» 3(C–H) + C=C + C–O + O–H<br><em><strong>OR</strong></em><br>3 × 414 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>» + 614 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>» + 358 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>» + 463 «kJ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">mol</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–1</sup>»<br><em><strong>OR</strong></em><br>2677 «kJ» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«enthalpy of reaction = 2593 kJ – 2677 kJ» = –84 «kJ» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">B <em><strong>AND</strong> </em>it has a more negative/lower enthalpy/«potential» energy<br><em><strong>OR</strong></em><br>B <em><strong>AND</strong></em> more exothermic «enthalpy of reaction from same starting point» <strong>[✔]</strong></span></p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Identity of product</em>: <strong>«B»</strong></span></p>
<p><span style="background-color: #ffffff;"><em>IR spectrum</em>:<br>1700–1750 «cm<sup>–1</sup> band» <em><strong>AND</strong> </em>carbonyl/CO group present<br><em><strong>OR</strong></em><br>no «band at» 1620–1680 «cm<sup>–1</sup>» <em><strong>AND</strong> </em>absence of double bond/C=C<br><em><strong>OR</strong></em><br>no «broad band at» 3200–3600 «cm<sup>–1</sup>» <em><strong>AND</strong> </em>absence of hydroxyl/OH group <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept a specific value or range of wavenumbers and chemical shifts.</span></em></p>
<p><span style="background-color: #ffffff;"><em><sup>1</sup>H NMR spectrum</em>:<br>«only» two signals <em><strong>AND</strong> </em>A would have three<br><em><strong>OR</strong></em><br>«signal at» 9.4–10.0 «ppm» <em><strong>AND</strong> </em>«H atom/proton of» aldehyde/<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>CHO present<br><em><strong>OR</strong></em><br>«signal at» 2.2<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>2.7 «ppm» <em><strong>AND</strong> </em>«H atom/proton of alkyl/CH next to» aldehyde/CHO present<br><em><strong>OR</strong></em><br>«signal at» 2.2<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>2.7 «ppm» <em><strong>AND</strong> </em>«H atom/proton of» RCOCH<sub>2-</sub> present<br><em><strong>OR</strong></em><br>no «signal at» 4.5<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>6.0 «ppm» AND absence of «H-atom/proton next to» double bond/C=C <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “two signals with areas 1:3”.</span></em></p>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Reagents</em>:<br>acidified/H<sup>+</sup> <em><strong>AND</strong></em> «potassium» dichromate«(VI)»/K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup> <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">Conditions:<br>distil «the product before further oxidation» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “«acidified potassium» manganate(VII)/KMnO<sub>4</sub>/MnO<sub>4</sub><sup>–</sup>/permanganate”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “H<sub>2</sub>SO<sub>4</sub>” or “H<sub>3</sub>PO<sub>4</sub>” for “H<sup>+</sup>”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “more dilute dichromate(VI)/manganate(VII)” or “excess ethanol”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award M1 if correct reagents given under “Conditions”.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>–<span style="background-color: #ffffff;">1 <strong>[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>has an oxygen/O atom with a lone pair <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">that can form hydrogen bonds/H-bonds «with water molecules» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">hydrocarbon chain is short «so does not disrupt many H-bonds with water molecules» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">«large permanent» dipole-dipole interactions with water <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">d(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates recognized the products of the complete combustion of ethyne, and over two thirds managed to balance the equation. It was good to see candidates using integers for the balancing.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates drew the Lewis structure of ethyne. A few teachers commented that they did not cover alkynes assuming they are not included in the syllabus. Please check the current syllabus carefully when preparing students.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A very well answered question. The vast majority of candidates understood that triple bonds are stronger than single bonds and result in a shorter bond length. It was disappointing, however, to see a considerable number of candidates stating that ethane has a double bond.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates could not relate evaporation of a liquid to the breaking of its intermolecular forces and gave irrelevant answers such as “evaporation”. Other candidates gave general answers such as “the intermolecular forces” or used the term “van der Waals’ forces” which did not gain credit as too vague. The current guide is clear that “London/dispersion forces” is the appropriate term to use for instantaneous dipole-induced dipole forces. Less than 40 % of the candidates scored the mark. It was disappointing to see some candidates state “covalent bonding” as the type of interaction that must be overcome when liquid ethyne vaporizes. Some teachers thought the wording of the question may have been vague and candidates may have been confused about what was meant by the “type of interaction”.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60 % of the candidates stated “addition” as the type of reactions that compounds containing carbon-carbon double bonds underwent. It was disappointing to see a variety of answers including substitution, condensation and combustion showing a total lack of understanding. Some candidates gave specific types such as "bromination" or “hydration” which did not receive the mark.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60 % of the candidates were able to name compound B as ethanal. Some candidates did not recognize it as an aldehyde and gave names related to carboxylic acids or other homologous series. Other candidates called it methanal.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates were confident in using average bond enthalpies for calculating the enthalpy change for the reaction. Mistakes included forgetting to include the breaking of the O-H bonds in water and reversing the signs.</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Reasonably well answered. About half of the candidates showed understanding of the relation between stability and the enthalpy change from the same starting materials. ECF was applied in this question based on the answer in part (iii).</p>
<div class="question_part_label">c(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates handled this question competently and nearly half of the candidates obtained both marks. They obtained the value of the absorption from the spectra provided and compared it to the values in the data booklet to deduce the identity of the product. Common mistakes included not identifying the peaks and signals precisely (for example C=O instead of CHO for <sup>1</sup>H NMR signal at 9.4-10.0 ppm). Some teachers commented that the TMS signal should not have been included as the SL do not know about it. Other teachers commented that using the 'actual' rather than an ‘idealized’ IR spectrum may have caused confusion due to the peak at around 3400 cm<sup>-1</sup> which could be confused for O-H in alcohols. Thankfully both of these answers were hardly seen in the scripts. The peak at 3400 cm<sup>-1</sup> was not at all broad and did not confuse the majority of students. Please note that real spectra are usually used in examination papers, and it is worth encouraging students to check more than one peak to confirm their deductions.<br><br></p>
<div class="question_part_label">c(v).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, this question was not answered well by the majority of the candidates. However, it did discriminate well between high-scoring and low-scoring candidates. Common mistakes included incorrect formulas (such as K<sub>2</sub>CrO<sub>7</sub>), missing the acidic conditions and stating “reflux” instead of “distillation”. Many candidates gave completely irrelevant reagents and conditions such as “oxygen, pressure and a nickel catalyst”. It is possible that some candidates did not think of “distillation” as a “condition”.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 60 % of the candidates determined the average oxidation state of carbon in ethanal. A couple of teachers commented that asking SL students to determine an “average oxidation state” seems a little difficult. Please note that this term has been used in recent papers whenever there are two or more atoms of the element in different parts of the compound. There was no evidence of confusion on the part of the candidates and most answered the question well.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question with a demanding markscheme. Most students missed the fact that ethanal can form hydrogen bonds with water. And students who did state this often achieved only 1 out of the 3 marks because they did not offer a full explanation. Some candidates stating "hydrogen bonding" showed confusion by mentioning the hydrogen of the aldehyde group. Few identified the lone pairs on oxygen as the reason for the ability to hydrogen bond. Most candidates just stated that ethanal is polar and dissolves in polar water achieving no marks. However, one mark was awarded for “dipole-dipole interactions with water”.</p>
<div class="question_part_label">d(iii).</div>
</div>
<br><hr><br><div class="specification">
<p>The photochemical chlorination of methane can occur at low temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using relevant equations, show the initiation and the propagation steps for this reaction.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Polyvinyl chloride (PVC) is a polymer with the following structure.</p>
<p><img src=""></p>
<p>State the structural formula for the monomer of PVC.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Initiation:</em></p>
<p>Cl–Cl → Cl• + Cl•</p>
<p> </p>
<p><em>Propagation:</em></p>
<p>Cl• + CH<sub>4</sub> → Cl–H + •CH<sub>3</sub></p>
<p>Cl–Cl + •CH<sub>3</sub> → Cl–CH<sub>3</sub> + Cl•</p>
<p> </p>
<p><em>Do not penalize missing electron dot on radicals if consistent throughout.</em></p>
<p><em>Accept Cl<sub>2</sub>, HCl and CH<sub>3</sub>Cl without showing bonds.</em></p>
<p><em>Do <strong>not</strong> accept hydrogen radical, H• or H, but apply ECF to other propagation steps.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hexane <em><strong>AND</strong> </em>hex-1-ene</p>
<p> </p>
<p><em>Accept “benzene <strong>AND</strong> hexane <strong>AND</strong> hex-1-ene”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>OR</strong></em></p>
<p><img src=""></p>
<p> </p>
<p><em>Accept “CH<sub>2</sub>CHCl” or “CHClCH<sub>2</sub>”.</em></p>
<p><em>Do <strong>not</strong> accept “C<sub>2</sub>H<sub>3</sub>Cl”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbon forms many compounds.</p>
</div>
<div class="specification">
<p>C<sub>60</sub> and diamond are allotropes of carbon.</p>
</div>
<div class="specification">
<p>But-2-ene reacts with hydrogen bromide.</p>
</div>
<div class="specification">
<p>Chlorine reacts with methane.</p>
<p style="text-align: center;">CH<sub>4</sub> (g) + Cl<sub>2 </sub>(g) → CH<sub>3</sub>Cl (g) + HCl (g)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> difference between the bonding of carbon atoms in C<sub>60</sub> and diamond.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two features showing that propane and butane are members of the same homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe a test and the expected result to indicate the presence of carbon–carbon double bonds.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the full structural formula of but-2-ene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation for the reaction between but-2-ene and hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> differences in the <sup>1</sup>H NMR of but-2-ene and the organic product from (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change of the reaction, Δ<em>H</em>, using section 11 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw and label an enthalpy level diagram for this reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>60</sub> fullerene: «each carbon is» bonded to 3 C <em><strong>AND</strong> </em>diamond: bonded to 4 C<br><em><strong>OR</strong></em><br>C<sub>60</sub> fullerene: delocalized/resonance <em><strong>AND</strong> </em>diamond: not delocalized/no resonance<br><em><strong>OR</strong></em><br>C<sub>60</sub> fullerene: single and double bonds <em><strong>AND</strong> </em>diamond: single bonds ✔</p>
<p> </p>
<p><em>Accept “C<sub>60</sub> fullerene: sp<sup>2</sup> <strong>AND</strong> diamond: sp<sup>3</sup>”.</em></p>
<p><em>Accept “C<sub>60</sub> fullerene: trigonal planar geometry / bond angles between 109.5°/109°/108°–120° <strong>AND</strong> diamond: tetrahedral geometry / bond angle 109.5°/109°”.</em></p>
<p><em>Accept "bonds in fullerene are shorter/stronger/have higher bond order".</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>same general formula / C<sub>n</sub>H<sub>2n+2</sub> ✔</p>
<p>differ by CH<sub>2</sub>/common structural unit ✔</p>
<p> </p>
<p><em>Accept "similar chemical properties".</em></p>
<p><em>Accept “gradation/gradual change in physical properties”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1:</strong></p>
<p><em>Test:</em></p>
<p>add bromine «water»/Br<sub>2</sub> (aq) ✔</p>
<p><em>Result:</em></p>
<p>«orange/brown/yellow» to colourless/decolourised ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “clear” for M2.</em></p>
<p> </p>
<p><strong>ALTERNATIVE 2:</strong></p>
<p><em>Test:</em></p>
<p>add «acidified» KMnO<sub>4</sub> ✔</p>
<p><em>Result:</em></p>
<p>«purple» to colourless/decolourised/brown ✔</p>
<p> </p>
<p><em>Accept “colour change” for M2.</em></p>
<p> </p>
<p><strong>ALTERNATIVE 3:</strong></p>
<p><em>Test:</em></p>
<p>add iodine /<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>I</mtext><mn>2</mn></msub></math> ✔</p>
<p><em>Result:</em></p>
<p>«brown» to colourless/decolourised ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Accept</em></p>
<p><img src=""></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH=CHCH<sub>3</sub> (g) + HBr (g) → CH<sub>3</sub>CH<sub>2</sub>CHBrCH<sub>3</sub> (l)</p>
<p><em><strong>OR</strong></em></p>
<p>C<sub>4</sub>H<sub>8</sub> (g) + HBr (g) → C<sub>4</sub>H<sub>9</sub>Br (l) ✔</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition/E<sub>A</sub> ✔</p>
<p><em><br>Do <strong>not</strong> accept nucleophilic or free radical addition.</em></p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong> Any two of:</em></p>
<p>but-2-ene: 2 signals <em><strong>AND</strong> </em>product: 4 signals ✔</p>
<p>but-2-ene: «area ratio» 3:1/6:2 <em><strong>AND</strong> </em>product: «area ratio» 3:3:2:1 ✔</p>
<p>product: «has signal at» 3.5-4.4 ppm «and but-2-ene: does not» ✔</p>
<p>but-2-ene: «has signal at» 4.5-6.0 ppm «and product: does not» ✔</p>
<p> </p>
<p><strong>ALTERNATIVE 2:</strong></p>
<p>but-2-ene: doublet <em><strong>AND</strong> </em>quartet/multiplet/4 ✔</p>
<p>product: doublet <em><strong>AND</strong> </em>triplet <em><strong>AND</strong> </em>quintet/5/multiplet <em><strong>AND</strong> </em>sextet/6/multiplet ✔</p>
<p> </p>
<p><em>Accept “product «has signal at» 1.3–1.4 ppm «and but-2-ene: does not»”.</em></p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond breaking: C–H + Cl–Cl / 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>»/656 «kJ»<br><em><strong>OR</strong></em><br>bond breaking: 4C–H + Cl–Cl / 4 × 414 «kJ mol<sup>–1</sup>» + 242 «kJ mol<sup>–1</sup>» / 1898 «kJ» ✔</p>
<p><br>bond forming: «C–Cl + H–Cl / 324 kJ mol<sup>–1</sup> + 431 kJ mol<sup>–1</sup>» / 755 «kJ»<br><em><strong>OR</strong></em><br>bond forming: «3C–H + C–Cl + H–Cl / 3 × 414 «kJ mol<sup>–1</sup>» + 324 «kJ mol<sup>–1</sup>» + 431 kJ mol<sup>–1</sup>» / 1997 «kJ» ✔</p>
<p><br>«ΔH = bond breaking – bond forming = 656 kJ – 755 kJ» = –99 «kJ» ✔</p>
<p><em><br>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[2 max]</strong> for 99 «kJ».</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>reactants at higher enthalpy than products ✔</p>
<p><br>ΔH/-99 «kJ» labelled on arrow from reactants to products<br><em><strong>OR</strong></em><br>activation energy/<em>E</em><sub>a</sub> labelled on arrow from reactant to top of energy profile ✔</p>
<p> </p>
<p><em>Accept a double headed arrow between reactants and products labelled as ΔH for M2.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was a challenging question that asked about the difference between the bonding of carbon atoms in C<sub>60</sub> and diamond. 20% of the candidates gained the mark. The majority of the candidates did not have a specific enough answer for C<sub>60</sub> and mentioned the pentagons and hexagons but not the number of bonds or the geometry or the bond order or the electron delocalisation. Diamond was better known to candidates as expected.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About two-thirds of the candidates scored one of the two marks and stronger candidates scored both. The most common answers were the same general formula/C<sub>n</sub>H<sub>2n+2</sub>, the difference between the compounds was CH<sub>2</sub> and similar chemical properties. The same functional group was not accepted since alkanes do not have a functional group. Some candidates only stated that they are saturated hydrocarbons not gaining any marks.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About half of the candidates gave the bromine water test with the correct results. Iodine and KMnO4 were rarely seen in the scripts. There were candidates who used the term “clear” to mean “colourless” which was not accepted. Some candidates referred to the presence of UV light in a correct way and others in an incorrect way which was not penalized in this case. 10% of the candidates left the question blank. The most common incorrect answer was in terms of the IR absorptions. Other candidates referred to enthalpies of combustion and formation.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question. 70% of the candidates gave the correct structural formula for but-2-ene. Mistakes included too many hydrogens in the structure and an incorrect position of the C=C. Candidates should be reminded that the full structural formula requires all covalent bonds to be shown.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates wrote the correct equation for the reaction of but-2-ene with hydrogen bromide. Incorrect answers included hydrogen as a product. As expected, the question correlated well with highly achieving candidates.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered. 60% of candidates identified the type of reaction between but-2-ene and HBr, some of them including the term “electrophilic”. ECF was generously awarded when substitution was stated based on the equation where H<sub>2</sub> was produced in part (ii). Candidates lost the mark if they only stated “hydrobromination” without mentioning addition. Some candidates lost the mark for stating “nucleophilic” or “free radical” addition.</p>
<div class="question_part_label">d(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The comparison of the <sup>1</sup>H NMR spectra of the two organic compounds was more challenging and 10% of the candidates left this question blank. The average mark was 0.7 out of 2 marks. Mistakes included non-specific answers that just stated “more signals” or “higher chemical shift”, and stating 3 signals in 2-bromobutane instead of 4 signals. Standard level candidates were expected to use the number of signals and the ratio of the areas under the signals to answer the question since they do not cover chemical shift, however, many of them did use the <sup>1</sup>H NMR section in the data booklet to obtain correct answers in terms of chemical shift.</p>
<div class="question_part_label">d(iv).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was the best answered question on the paper. Candidates identified the bonds and used bond enthalpies to calculate the enthalpy of reaction accurately. The most common mistakes were reversing the signs of bonds broken and bonds formed, assuming two Cl-Cl bonds were broken and using an incorrect value of bond enthalpy for one of the bonds.</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates drew the enthalpy level diagram and labelled it correctly based on their answer to part (i). Some candidates reversed the products and reactants. A few candidates did not add any labels which prevented the awarding of the second mark. With 2 marks allocated to the question the second mark was awarded for correct labeling of either ΔH or E<sub>a</sub>.</p>
<div class="question_part_label">e(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol is obtained by the hydration of ethene, C<sub>2</sub>H<sub>4</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of compound to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the molecular formula of the next member of the homologous series to which ethene belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why ethene has only a single signal in its <sup>1</sup>H NMR spectrum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> possible products of the incomplete combustion of ethene that would not be formed by complete combustion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A white solid was formed when ethene was subjected to high pressure.</p>
<p>Deduce the type of reaction that occurred.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>alkene ✔</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C<sub>3</sub>H<sub>6</sub> ✔</p>
<p><em>Accept structural formula.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen atoms/protons in same chemical environment ✔</p>
<p><em>Accept “all H atoms/protons are equivalent”.</em><br><em>Accept “symmetrical”</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon monoxide/CO <em><strong>AND</strong> </em>carbon/C/soot ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«addition» polymerization ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic chemistry can be used to synthesize a variety of products.</p>
</div>
<div class="specification">
<p>Combustion analysis of an unknown organic compound indicated that it contained only carbon, hydrogen and oxygen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Several compounds can be synthesized from but-2-ene. Draw the structure of the final product for each of the following chemical reactions.</p>
<p><img src="" width="651" height="241"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in enthalpy, Δ<em>H</em>, for the combustion of but-2-ene, using section 11 of the data booklet. </p>
<p style="text-align:center;">CH<sub>3</sub>CH=CHCH<sub>3 </sub>(g) + 6O<sub>2</sub> (g) → 4CO<sub>2 </sub>(g) + 4H<sub>2</sub>O (g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the equation and name the organic product when ethanol reacts with methanoic acid.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oxidation of ethanol with potassium dichromate, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, can form two different organic products. Determine the names of the organic products and the methods used to isolate them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce two features of this molecule that can be obtained from the mass spectrum. Use section 28 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="660" height="270"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the bond responsible for the absorption at <strong>A</strong> in the infrared spectrum. Use section 26 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="692" height="321"></p>
<p style="text-align:center;">NIST Mass Spectrometry Data Center Collection © 2014 copyright by the U.S. Secretary of Commerce <br>on behalf of the United States of America. All rights reserved. </p>
<div class="marks">[1]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the identity of the unknown compound using the previous information, the <sup>1</sup>H NMR spectrum and section 27 of the data booklet.</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="387" height="329"></p>
<p style="text-align:center;">SDBS, National Institute of Advanced Industrial Science and Technology (AIST).</p>
<p style="text-align:left;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="197" height="194"></p>
<p><em>Penalize missing hydrogens in displayed structural formulas once only.</em></p>
<p><em>Accept condensed structural formulas: CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>3</sub> / CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> or skeletal structures.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Bonds broken:</em><br>2(C–C) + 1(C=C) + 8(C–H) + 6O=O / 2(346) + 1(614) + 8(414) + 6(498) / 7606 «kJ» ✓</p>
<p><em>Bonds formed:</em><br>8(C=O) + 8(O–H) / 8(804) + 8(463) / 10 136 «kJ» ✓</p>
<p><em>Enthalpy change:</em><br>«Bonds broken – Bonds formed = 7606 kJ – 10 136 kJ =» –2530 «kJ» ✓</p>
<p><em><br>Award<strong> [2 max]</strong> for «+» 2530 «kJ».</em></p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Equation:</em><br>CH<sub>3</sub>CH<sub>2</sub>OH + HCOOH <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> HCOOCH<sub>2</sub>CH<sub>3</sub> + H<sub>2</sub>O ✓</p>
<p><em>Product name:</em><br>ethyl methanoate ✓</p>
<p><em>Accept equation without equilibrium arrows.</em></p>
<p><em>Accept equation with molecular formulas (C<sub>2</sub>H<sub>6</sub>O + CH<sub>2</sub>O<sub>2</sub> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> + H<sub>2</sub>O) only if product name is correct.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethanal <em><strong>AND</strong> </em>distillation ✓</p>
<p>ethanoic acid <em><strong>AND</strong> </em>reflux «followed by distillation» ✓</p>
<p> </p>
<p><em>Award <strong>[1 max]</strong> for both products <strong>OR</strong> both methods.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m/z 58:</em><br>molar/«relative» molecular mass/weight/Mr «is 58 g mol<sup>−1</sup>/58» ✓</p>
<p><em><br>m/z 43:</em><br>«loses» methyl/CH<sub>3</sub> «fragment»<br><em><strong>OR</strong></em><br>COCH<sub>3</sub><sup>+</sup> «fragment» ✓</p>
<p><em><br>Do <strong>not</strong> penalize missing charge on the fragments.</em></p>
<p><em>Accept molecular ion «peak»/ CH<sub>3</sub>COCH<sub>3</sub><sup>+</sup>/C<sub>3</sub>H<sub>6</sub>O<sup>+</sup>.</em></p>
<p><em>Accept any C<sub>2</sub>H<sub>3</sub>O<sup>+</sup> fragment/ CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>/C<sub>3</sub>H<sub>7</sub><sup>+</sup>.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>C=O ✓</p>
<p><em><br>Accept carbonyl/C=C.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Information deduced from <sup>1</sup>H NMR:</em></p>
<p>«one signal indicates» one hydrogen environment/symmetrical structure<br><em><strong>OR</strong></em><br>«chemical shift of 2.2 indicates» H on C next to carbonyl ✓</p>
<p><em><br>Compound:</em></p>
<p>propanone/CH<sub>3</sub>COCH<sub>3</sub> ✓</p>
<p><em><br>Accept “one type of hydrogen”.</em></p>
<p><em>Accept <img src="" width="88" height="60">.</em></p>
<div class="question_part_label">e(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">is in equilibrium with compound </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="247" height="82"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Predict the electron domain and molecular geometries around the </span><span class="fontstyle2"><strong>oxygen</strong> </span><span class="fontstyle0">atom of molecule </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">using VSEPR.</span></p>
<p><span class="fontstyle0"><img src="" width="734" height="185"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The IR spectrum of one of the compounds is shown:</span></p>
<p><img src="" width="687" height="247"></p>
<p style="text-align: center;"><em><span class="fontstyle0">COBLENTZ SOCIETY. Collection © 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.</span></em></p>
<p><span class="fontstyle0"><br>Deduce, giving a reason, the compound producing this spectrum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Compound </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><strong><span class="fontstyle2">B </span></strong><span class="fontstyle0">are isomers. Draw two other structural isomers with the formula <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">C</mi><mn>3</mn></msub><msub><mi mathvariant="normal">H</mi><mn>6</mn></msub><mi mathvariant="normal">O</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The equilibrium constant, </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math><span class="fontstyle0">, for the conversion of </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">to </span><strong><span class="fontstyle3">B </span></strong><span class="fontstyle0">is </span><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>0</mn><mo>×</mo><msup><mn>10</mn><mn>8</mn></msup></math> <span class="fontstyle0">in water at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>298</mn><mo> </mo><mi mathvariant="normal">K</mi></math>.</span></p>
<p><span class="fontstyle0">Deduce, giving a reason, which compound, </span><strong><span class="fontstyle3">A </span></strong><span class="fontstyle0">or </span><strong><span class="fontstyle3">B</span></strong><span class="fontstyle0">, is present in greater concentration when equilibrium is reached.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Electron domain geometry: </em>tetrahedral<em> ✔</em></p>
<p><em>Molecular geometry: </em>bent/V-shaped<em> ✔</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>B <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">C</mi><mo>=</mo><mi mathvariant="normal">O</mi></math> absorption/<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mn>1750</mn><mo> </mo><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> <br><em><strong>OR</strong></em> <br>B <em><strong>AND</strong></em> absence of <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">O</mi><mo>–</mo><mi mathvariant="normal">H</mi><mo> </mo><mo>/</mo><mn>3200</mn><mo>−</mo><mn>3600</mn><mo> </mo><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo> </mo><mi>absorption</mi><mo>»</mo></math> ✔</p>
<p><em><br>Accept any value between <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn mathvariant="italic">1700</mn><mo mathvariant="italic">−</mo><mn mathvariant="italic">1750</mn><mo mathvariant="italic"> </mo><mi>c</mi><msup><mi>m</mi><mrow><mo mathvariant="italic">−</mo><mn mathvariant="italic">1</mn></mrow></msup></math></em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Accept any two <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>C</mi><mn>3</mn></msub><msub><mi>H</mi><mn>6</mn></msub><mi>O</mi></math> isomers except for propanone and propen-2-ol:</em></p>
<p><img src="">✔✔</p>
<p> </p>
<p><em>Penalize missing hydrogens in displayed structural formulas once only.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">B</mi></math> <em><strong>AND</strong> </em><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>K</mi><mi mathvariant="normal">c</mi></msub></math> is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>/large ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates answered correctly. The rest of the candidates often answered the question in terms of the carbon atom indicating that they did not read the question carefully.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About 50% of the candidates answered correctly. Quite a few, however, gave compounds other than A or B, indicating not reading the question properly or being confused by the skeletal formulas given in the question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half of the candidates gave two correct isomers. Propanal was often given as one of the isomers. Some candidates repeated the compounds given in the question and a few gave structures with 5 bonds on a carbon atom.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Half of the candidates answered correctly. A common mistake was K > 0 instead of K > 1.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>1-chloropentane reacts with aqueous sodium hydroxide.</p>
</div>
<div class="specification">
<p>The reaction was repeated at a lower temperature.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the role of the hydroxide ion in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with a reason, why 1-iodopentane reacts faster than 1-chloropentane under the same conditions. Use section 11 of the data booklet for consistency.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch labelled Maxwell–Boltzmann energy distribution curves at the original temperature (T<sub>1</sub>) and the new lower temperature (T<sub>2</sub>).</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="449" height="297"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of lowering the temperature on the rate of the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«nucleophilic» substitution/S<sub>N</sub>2 ✔</p>
<p><em><br>Do not accept if “electrophilic” or “free radical” substitution is stated.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«acts as a» nucleophile/Lewis base<br><em><strong>OR</strong></em><br>donates/provides lone pair «of electrons»<br><em><strong>OR</strong></em><br>attacks the «partially» positive carbon ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bond enthalpy C–I lower than C–Cl<br><em><strong>OR</strong></em><br>C–I bond weaker than C–Cl ✔</p>
<p><br>«weaker bond» broken more easily/with less energy<br><em><strong>OR</strong></em><br>lower Ea «for weaker bonds» ✔</p>
<p><em><br>Accept the bond enthalpy values for C–I and C–Cl for <strong>M1</strong>.</em></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="437" height="284"></p>
<p>peak at T<sub>1</sub> to right of <em><strong>AND</strong> </em>lower than T<sub>2</sub> ✔</p>
<p>lines begin at origin <em><strong>AND</strong> </em>T<sub>1</sub> must finish above T<sub>2</sub> ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«rate is» lower <em><strong>AND</strong> </em>«average» kinetic energy of molecules is lower<br><em><strong>OR</strong></em><br>«rate is» lower <em><strong>AND</strong> </em>less frequent collisions<br><em><strong>OR</strong></em><br>«rate is» lower <em><strong>AND</strong> </em>fewer collisions per unit time ✔</p>
<p>«rate is» lower <em><strong>AND</strong> </em>fewer/smaller fraction of molecules/collisions have the E ≥ <em>E</em><sub>a</sub> ✔</p>
<p><em><br></em><em>Lower «rate» needs to be mentioned once only.</em></p>
<p><em>Do <strong>not</strong> accept “fewer collisions” without reference to time/frequency/probability for <strong>M1</strong>.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p>Alkanes undergo combustion and substitution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the molar enthalpy of combustion of an alkane if 8.75 × 10<sup>−4</sup> moles are burned, raising the temperature of 20.0 g of water by 57.3 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<em>q</em> = <em>mc</em>Δ<em>T</em> = 20.0 g × 4.18 J g<sup>−1 </sup>°C<sup>−1</sup> × 57.3 °C =» 4790 «J» ✔</p>
<p>«<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>∆</mo><msub><mi>H</mi><mtext>c</mtext></msub><mfrac><mrow><mn>4790</mn><mo> </mo><mi mathvariant="normal">J</mi></mrow><mstyle displaystyle="true"><mfrac><mn>1000</mn><mrow><mn>8</mn><mo>.</mo><mn>75</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup><mo> </mo><mi>mol</mi></mrow></mfrac></mstyle></mfrac><mo>=</mo></math>» –5470 «kJ mol<sup>–1</sup>» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer. </em></p>
<p><em>Accept answers in the range –5470 to –5480 «kJ mol<sup>−1</sup>». </em></p>
<p><em>Accept correct answer in any units, e.g. –5.47 «MJ mol<sup>−1</sup>» or 5.47 x 10<sup>6 </sup>«J mol<sup>−1</sup>».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Cl<strong>·</strong> + C<sub>2</sub>H<sub>6</sub> → <strong>·</strong>C<sub>2</sub>H<sub>5</sub> + HCl ✔</p>
<p><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + Cl<sub>2</sub> → Cl<strong>·</strong> + C<sub>2</sub>H<sub>5</sub>Cl ✔</p>
<p><br><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + Cl<strong>·</strong> → C<sub>2</sub>H<sub>5</sub>Cl<br><em><strong>OR</strong></em><br>Cl<strong>·</strong> + Cl<strong>·</strong> → Cl<sub>2</sub><br><em><strong>OR</strong></em><br><strong>·</strong>C<sub>2</sub>H<sub>5</sub> + <strong>·</strong>C<sub>2</sub>H<sub>5</sub> → C<sub>4</sub>H<sub>10</sub> ✔</p>
<p><em><br>Do not penalize incorrectly placed radical sign, eg </em>C<sub>2</sub>H<sub>5</sub><em><strong>·</strong>.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Hess’s law cycle:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction in step 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard enthalpy change, Δ<em>H</em><sup>Θ</sup>, of step 2 using section 13 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup>, of step 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why the calculated value of Δ<em>H</em><sup>Θ</sup> using Hess’s Law in part (c) can be considered accurate and one reason why it can be considered approximate.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition/A<sub>E</sub><br><em><strong>OR</strong></em><br>reduction ✔</p>
<p><em>Accept “hydrogenation”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«(−286 kJ) + (−1411 kJ) =» −1697 «kJ» ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«−1697 kJ + 1561 kJ =» −136 «kJ»</p>
<p><strong>OR</strong></p>
<p>«Δ<em>H</em><sup>Θ</sup> = Δ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H_{\text{f}}^\theta ">
<msubsup>
<mi>H</mi>
<mrow>
<mtext>f</mtext>
</mrow>
<mi>θ</mi>
</msubsup>
</math></span> (products) − Δ<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H_{\text{f}}^\theta ">
<msubsup>
<mi>H</mi>
<mrow>
<mtext>f</mtext>
</mrow>
<mi>θ</mi>
</msubsup>
</math></span> (reactants) = −84 kJ − 52 kJ =» −136 «kJ» ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Accurate:</em><br>no approximations were made in the cycle<br><em><strong>OR</strong></em><br>values are specific to the compounds<br><em><strong>OR</strong></em><br>Hess’s law is a statement of conservation of energy<br><em><strong>OR</strong></em><br>method is based on a law<br><em><strong>OR</strong></em><br>data in table has small uncertainties ✔</p>
<p> </p>
<p><em>Approximate:</em><br>values were experimentally determined/had uncertainties<br><em><strong>OR</strong></em><br>each value has been determined to only three/four significant figures<br><em><strong>OR</strong></em><br>different sources have «slightly» different values for enthalpy of combustion<br><em><strong>OR</strong></em><br>law is valid until disproved<br><em><strong>OR</strong></em><br>law of conservation of energy is now conservation of mass–energy<br><em><strong>OR</strong></em><br>small difference between two quite large terms «leads to high percentage uncertainty» ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>