File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-HL-paper3html
File size: 413.98 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the function of chlorophyll in photosynthesis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare and contrast the structures of starch and cellulose. </span></p>
<p><em><span style="background-color: #ffffff;"><strong>One</strong> similarity:</span></em></p>
<p><em><span style="background-color: #ffffff;"><strong>One</strong> difference:</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why maltose, C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>, is soluble in water.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">absorbs/traps light «energy» ✔</span></p>
<p><span style="background-color: #ffffff;">initiates redox reactions<br><em><strong>OR</strong></em><br>transfers electrons ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>One similarity:<br></em></span><span style="background-color: #ffffff;">1−4/glycosidic linkage<br> <em><strong>OR</strong> <br></em>glucose monomers/residues ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “both are polysaccharides”.</span></em></p>
<p><span style="background-color: #ffffff;"><em>One difference</em>:<br> starch has α-glucose <em><strong>AND</strong> </em>cellulose has β-glucose «monomers» <br><em><strong>OR</strong> <br></em>starch can form coiled/spiral/helical chains «and straight chains» <em><strong>AND</strong> </em>cellulose cannot/can only form straight chains/can only form a linear structure <br><em><strong>OR</strong> <br></em>starch «in amylopectin» also has 1−6 glycosidic links <em><strong>AND</strong> </em>cellulose does not ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept "cellulose has alternate glucose monomers upside down with respect to each other <strong>AND</strong> starch does not".</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«solubility depends on forming many» H-bonds with water ✔<br>maltose has many hydroxyl/OH/oxygen atom/O «and forms many H-bonds» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Reference to “with water” required. <br>Accept “hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide/OH<sup>–</sup>”. <br>Reference to many/several OH groups/O atoms required for M2.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymer nanocomposites often have better structural performance than conventional&nbsp;materials. Lithographic etching and metal coordination are two methods of assembling&nbsp;these nanocomposites.</p>
</div>

<div class="specification">
<p>Dendrimers are highly branched nanoparticles with a wide range of usage. One such&nbsp;dendrimer is PAMAM, or polyamidoamine.</p>
<p style="text-align: center;"><img src=""></p>
<p>The first step in the synthesis is to make the core by reacting ethane-1,2-diamine&nbsp;with methylpropenoate.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the atom economy of this first step.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving one reason, whether this is an addition or condensation reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent steps proceed under differing conditions, forming the dendrimer&nbsp;polymer with the following repeating unit.</p>
<p><img src=""></p>
<p>State the name of <strong>one</strong> functional group in this repeating unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>100%</p>
<p>&nbsp;</p>
<p><em>Accept “almost 100%” if a catalyst is&nbsp;referred to.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>addition <em><strong>AND</strong> </em>no atoms removed/all atoms accounted for/no loss of&nbsp;water/ammonia/inorganic by-product/small molecules<br><em><strong>OR</strong></em><br>addition <em><strong>AND</strong>&nbsp;</em>there is only one «reaction» product</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amido<br><em><strong>OR</strong></em><br>amino</p>
<p>&nbsp;</p>
<p><em>Accept “amide/carboxamide/carbamoyl”&nbsp;for “amido”.</em></p>
<p><em>Accept “amine“ for “amino”.</em></p>
<p><em>Accept “carbonyl”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Aspartame is formed from the two amino acids aspartic acid (Asp) and phenylalanine (Phe).</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">Chromatography is used in the analysis of proteins in the food and pharmaceutical industry.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the dipeptide Asp–Phe using section 33 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe, using another method, how a mixture of four amino acids, alanine, arginine, glutamic acid and glycine, could be separated when placed in a buffer solution of pH 6.0.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why alanine and glycine separate slightly at pH 6.5.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the ratio of [A<sup>−</sup>] : [HA] in a buffer of pH 6.0 given that p<em>K</em><sub>a</sub> for the acid is 4.83, using section 1 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="298" height="167"></p>
<p><span style="background-color: #ffffff;">amide link (<em>eg,</em> CONH) ✔</span></p>
<p><span style="background-color: #ffffff;">correct order and structures of amino acids ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept a skeletal formula or a full or condensed structural formula.<br>Accept zwitterion form of dipeptide.<br>Accept CO–NH but <strong>not</strong> CO–HN for amide link.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>«gel» electrophoresis «technique»<br><em><strong>OR</strong></em><br>mixture «in buffer solution» placed on gel/paper ✔</span></p>
<p><span style="background-color: #ffffff;">voltage/potential «difference» applied ✔</span></p>
<p><span style="background-color: #ffffff;">amino acids move differently «depending on pH/isoelectric point» ✔</span></p>
<p><span style="background-color: #ffffff;">compare/measure distances travelled/<em>R</em><sub>f</sub> values ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept “mixture placed on plate covered with polyacrylamide «gel» <strong>OR</strong> “mixture put in a gel «medium»”.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">different sizes/molar masses/chain lengths «so move with different speeds» ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Do <strong>not</strong> accept “different side-chains/R-groups/number of carbons”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«6.0 = 4.83 + log <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{{\text{A}}^ - }} \right]}}{{\left[ {{\text{HA}}} \right]}}"> <mfrac> <mrow> <mrow> <mo>[</mo> <mrow> <mrow> <msup> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mrow> <mo>[</mo> <mrow> <mrow> <mtext>HA</mtext> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </math></span>»</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«log<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\left[ {{{\text{A}}^ - }} \right]}}{{\left[ {{\text{HA}}} \right]}}"> <mfrac> <mrow> <mrow> <mo>[</mo> <mrow> <mrow> <msup> <mrow> <mtext>A</mtext> </mrow> <mo>−</mo> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mrow> <mo>[</mo> <mrow> <mrow> <mtext>HA</mtext> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </math></span></span>= 1.17»</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«[A<sup>−</sup>] : [HA] =» 14.8 : 1 ✔</span></span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> NOTE: Accept “15:1”.<br>Do <strong>not</strong> accept 1:14.8.</span></span></span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Changes in physiology can impact living creatures.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph shows the change in oxygen partial pressure in blood, measured at different pH values.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="431" height="336"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain the effect of changing pH on the percentage saturation of hemoglobin at a given partial pressure of oxygen.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the biomagnification of the pesticide DDT.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vitamins are organic compounds essential in small amounts.</p>
<p>State the name of <strong>one</strong> functional group common to all three vitamins shown in section 35 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">as pH decreases, protons/CO<sub>2</sub> bind to allosteric sites<br><em><strong>OR</strong></em><br>as pH decreases, protons/CO<sub>2</sub> act as non-competitive inhibitor<br><em><strong>OR</strong></em><br>active/binding site changes shape ✔</span></p>
<p><span style="background-color: #ffffff;">saturation decreases<br><em><strong>OR</strong></em><br>more oxygen released<br><em><strong>OR</strong></em><br>affinity to oxygen decreases ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">accumulates in fat/tissues/living organisms<br><em><strong>OR</strong></em><br>cannot be metabolized/does not break down «in living organisms»<br><em><strong>OR</strong></em><br>not excreted / excreted «very» slowly ✔</span></p>
<p><span style="background-color: #ffffff;">passes «unchanged» up the food chain<br><em><strong>OR</strong></em><br>increased concentration as one species feeds on another «up the food chain» ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “lipids” for “fat”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">hydroxyl ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “hydroxy” but <strong>not</strong> “hydroxide”. <br>Accept “alkenyl”. <br></span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept formula.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Gasoline (petrol), biodiesel and ethanol are fuels.</span></p>
<p><span class="fontstyle0"><img src="" width="602" height="122"></span></p>
<p style="text-align: left;"><span class="fontstyle0">[U.S. Department of Energy. https://afdc.energy.gov/]&nbsp;<br> </span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the energy released, in <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>kJ</mi></math>, from the complete combustion of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>5</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup></math></span><span class="fontstyle0">&nbsp;</span><span class="fontstyle0">of ethanol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State a class of organic compounds found in gasoline.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline the advantages and disadvantages of using biodiesel instead of gasoline as fuel for a car. Exclude any discussion of cost.</span></p>
<p><span class="fontstyle0"><img src="" width="694" height="392"></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">A mixture of gasoline and ethanol is often used as a fuel. Suggest an advantage of such a mixture over the use of pure gasoline. Exclude any discussion of cost.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">When combusted, all three fuels can release carbon dioxide, a greenhouse gas, as well as particulates. Contrast how carbon dioxide and particulates interact with sunlight.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Methane is another greenhouse gas. Contrast the reasons why methane and carbon dioxide are considered significant greenhouse gases.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a wavenumber absorbed by methane gas.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Determine the relative rate of effusion of methane (<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi mathvariant="normal">r</mi></msub><mo>=</mo><mn>16</mn><mo>.</mo><mn>05</mn></math></span><span class="fontstyle0">) to carbon dioxide (</span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi mathvariant="normal">r</mi></msub><mo>=</mo><mn>44</mn><mo>.</mo><mn>01</mn></math><span class="fontstyle0">), under the same conditions of temperature and pressure. Use section 1 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>21</mn><mo> </mo><mn>200</mn><mo> </mo><mi>kJ</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>×</mo><mn>5</mn><mo>.</mo><mn>00</mn><mo> </mo><msup><mi>dm</mi><mn>3</mn></msup><mo>=</mo><mo>»</mo><mn>106000</mn><mo>/</mo><mn>1</mn><mo>.</mo><mn>06</mn><mo>×</mo><msup><mn>10</mn><mn>5</mn></msup><mo>«</mo><mi>kJ</mi><mo>»</mo></math>&nbsp;✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alkane<br><em><strong>OR</strong></em><br>cycloalkane<br><em><strong>OR</strong></em><br>arene ✔</p>
<p><br><em>Accept “alkene”.</em><br><em>Do <strong>not</strong> accept just “hydrocarbon”, since given in stem.</em><br><em>Do <strong>not</strong> accept “benzene/aromatic” for “arene”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Advantages: <strong>[2 max]</strong></em></p>
<p>renewable ✔</p>
<p>uses up waste «such as used cooking oil» ✔</p>
<p>lower carbon footprint/carbon neutral ✔</p>
<p>higher flashpoint ✔</p>
<p>produces less <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>SO</mi><mi mathvariant="normal">x</mi></msub></math>/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>SO</mi><mn>2</mn></msub></math><br><em><strong>OR</strong></em><br>less polluting emissions ✔</p>
<p>has lubricating properties<br><em><strong>OR</strong></em><br>preserves/increases lifespan of engine ✔</p>
<p>increases the life of the catalytic converter ✔</p>
<p>eliminates dependence on foreign suppliers ✔</p>
<p>does not require pipelines/infrastructure «to produce» ✔</p>
<p>relatively less destruction of habitat compared to obtaining petrochemicals ✔</p>
<p>&nbsp;</p>
<p><em>Accept “higher energy density” OR “biodegradable” for advantage.</em></p>
<p><br><em>Disadvantages: <strong>[2 max]</strong></em></p>
<p>needs conversion/transesterification ✔</p>
<p>takes time to produce/grow plants ✔</p>
<p>takes up land<br><em><strong>OR</strong></em><br>deforestation ✔</p>
<p>fertilizers/pesticides/phosphates/nitrates «used in production of crops» have negative environmental effects ✔</p>
<p>biodiversity affected<br><em><strong>OR</strong></em><br>loss of habitats «due to energy crop plantations» ✔</p>
<p>cannot be used at low temperatures ✔</p>
<p>variable quality «in production» ✔</p>
<p>high viscosity/can clog/damage engines ✔</p>
<p><br><em>Accept “lower specific energy” as disadvantage.</em></p>
<p><em>Do <strong>not</strong> accept “lower octane number” as disadvantage”.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one:</em></p>
<p>uses up fossil fuels more slowly ✔</p>
<p>lower carbon footprint/CO2 emissions ✔</p>
<p>undergoes more complete combustion ✔</p>
<p>produces fewer particulates ✔</p>
<p>higher octane number/rating<br><em><strong>OR</strong></em><br>less knocking ✔</p>
<p>prevents fuel injection system build up<br><em><strong>OR</strong></em><br>helps keep engine clean ✔</p>
<p><br><em>Accept an example of a suitable advantage even if repeated from 11c.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon dioxide allows sunlight/short wavelength radiation to pass through <em><strong>AND</strong> </em>particulates reflect/scatter/absorb sunlight ✔</p>
<p><em>Accept “particulates reflect/scatter/absorb sunlight <strong>AND</strong> carbon dioxide does not”. </em><br><em>Accept “<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><msub><mi>O</mi><mn mathvariant="italic">2</mn></msub></math> absorbs <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>I</mi><mi>R</mi></math> «radiation» <strong>AND</strong> particulates reflect/scatter/absorb sunlight”. </em></p>
<p><em>Do <strong>not</strong> accept “traps” for “absorbs”.</em></p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbon dioxide is highly/more abundant «in the atmosphere» ✔</p>
<p>methane is more effective/potent «as a greenhouse gas»<br><em><strong>OR</strong></em><br>methane/better/more effective at absorbing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>IR</mi></math>&nbsp;«radiation»<br><em><strong>OR</strong></em><br>methane has greater greenhouse factor<br><em><strong>OR</strong></em><br>methane has greater global warming potential/GWP✔</p>
<p><br><em>Accept “carbon dioxide contributes more to global warming” for M1.</em></p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any value or range within&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2850</mn><mo>–</mo><mn>3090</mn><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«rate of effusion of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfrac><msub><mi>CH</mi><mn>4</mn></msub><msub><mi>CO</mi><mn>2</mn></msub></mfrac><mo>=</mo><msqrt><mfrac><mrow><mn>44</mn><mo>.</mo><mn>01</mn></mrow><mrow><mn>16</mn><mo>.</mo><mn>05</mn></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>656</mn></math>&nbsp;✔</p>
<div class="question_part_label">e(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Almost all were able to calculate the energy released from the complete combustion of ethanol.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority cited correctly that alkanes are a class of organic compounds found in gasoline.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most gained at least one mark for an advantage of using biodiesel instead of gasoline as fuel for a car&nbsp;and most scored one mark at least for a disadvantage of biodiesel. Many conveyed solid understanding,&nbsp;though the disadvantages were not as well articulated as the advantages. Some incorrectly based their&nbsp;responses on cost factors which were excluded as outlined in the stem of the question.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most scored the one mark for this question, with "less knocking or higher octane number/rating" the most common correct answer seen.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The wording of this question was critical which involved contrasting how carbon dioxide and particulates interact with sunlight. Some missed the "Contrast" command term as the action verb. Loose, non-scientific syntax was often seen such as stating "traps" instead of "absorbs".</p>
<div class="question_part_label">e(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another "Contrast-type" question, which was better answered compared to (e)(i). Many scored both marks by stating that carbon dioxide is more abundant in the atmosphere whereas methane&nbsp;is more effective at absorbing IR radiation.</p>
<div class="question_part_label">e(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The main issue with this question was that a high percentage of candidates did not realise that&nbsp;wavenumber is the reciprocal of wavelength and hence wavenumber has typical units of cm<sup>-1</sup>. Many&nbsp;incorrectly gave wavelength values, in nm, which did not answer the question posed.</p>
<div class="question_part_label">e(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The determination of the relative rate of effusion of methane to carbon dioxide was almost&nbsp;universally correctly computed as 1.656.</p>
<div class="question_part_label">e(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Stearic acid (<em>M</em><sub>r</sub> = 284.47) and oleic acid (<em>M</em><sub>r</sub> = 282.46) have the same number of carbon atoms. The structures of both lipids are shown in section 34 of the data booklet.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The iodine number is the number of grams of iodine which reacts with 100 g of fat. Calculate the iodine number of oleic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The chemical change in stored fats causes rancidity characterized by an unpleasant smell or taste.</span></p>
<p><span style="background-color: #ffffff;">Compare hydrolytic and oxidative rancidity.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="799" height="257"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> similarity and <strong>one</strong> difference in composition between phospholipids and triglycerides.</span></p>
<p><span style="background-color: #ffffff;">Similarity:</span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«one C=C bond»<br>«1 mole iodine : 1 mole oleic acid»</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100 \times 253.80}}{{282.46}}"> <mfrac> <mrow> <mn>100</mn> <mo>×</mo> <mn>253.80</mn> </mrow> <mrow> <mn>282.46</mn> </mrow> </mfrac> </math></span> =» 89.85 «g of I<sub>2</sub>» ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> NOTE: Accept “90 «g of I<sub>2</sub>»”.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="610" height="198"></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Award <strong>[1]</strong> for any two sites or conditions from any of the four listed. <br>Accept “high temperature” for “heat”. Accept "lipase" for "enzyme". <br>Do <strong>not</strong> accept just “double bond”. <br></span></em><em><span style="background-color: #ffffff;">Accept “air” for “oxygen” and “UV/sun” for “light”. <br>Ignore any reference to heat/high temperature as a condition for oxidative.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Similarity:<br></em></span></p>
<p><span style="background-color: #ffffff;">«derived from» propane-1,2,3-triol/glycerol/glycerin/glycerine<br></span></p>
<p><span style="background-color: #ffffff;"> <em><strong>OR</strong> <br></em>«derived from» at least two fatty acids<br> <strong><em>OR<br></em></strong> contains ester linkages <br><em><strong>OR</strong></em> <br>long carbon chains ✔</span></p>
<p><span style="background-color: #ffffff;"><em>NOTE:</em> <em>Do <strong>not</strong> accept “two fatty acids as both a similarity and a difference”.</em><br><em>Do <strong>not</strong> accept just “hydrocarbon/carbon chains”.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Difference</em>: <br></span></p>
<p><span style="background-color: #ffffff;">phospholipids contain two fatty acids «condensed onto glycerol» <em><strong>AND</strong> </em>triglycerides three<br></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em> phospholipids contain phosphate/phosphato «group»/residue of phosphoric acid <em><strong>AND</strong> </em>triglycerides do not ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “phospholipids contain phosphorus <strong>AND</strong> triglycerides do not". <br>Accept “phospholipids are amphiphilic <strong>AND</strong> triglycerides are not” <strong>OR</strong> “phospholipids have hydrophobic tails and hydrophilic heads <strong>AND</strong> triglycerides do not”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Kevlar<sup>®</sup> is used to make racing tires.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="420" height="124"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the monomers of Kevlar<sup>®</sup> if the by-product of the condensation polymerization is hydrogen chloride.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State and explain why plasticizers are added to polymers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss why the recycling of plastics is an energy intensive process.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="184" height="97"></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>NH<sub>2</sub> ✔</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="197" height="149"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>Cl(O)CC<sub>6</sub>H<sub>4</sub>C(O)Cl ✔</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increases flexibility/softness/plasticity ✔<br>break/weaken intermolecular forces/IMF/H-bonds «between chains» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>collection/transportation of plastic waste ✔</span></p>
<p><span style="background-color: #ffffff;">separation/sorting of different types «of plastic»<br><em><strong>OR</strong></em><br>separation/sorting of plastic from other materials ✔</span></p>
<p><span style="background-color: #ffffff;">melting plastic ✔</span></p>
<p><span style="background-color: #ffffff;">processing/washing/cleaning/drying/manufacture of recycled plastic ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Steroids are lipids with a steroidal backbone. The structure of cholesterol is shown in section 34 of the data booklet.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Infrared (IR) spectroscopy is used to identify functional groups in organic compounds.</span></p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="258" height="205"></p>
<p><span style="background-color: #ffffff;">Deduce the wavenumber, in cm<sup>−1</sup>, of an absorption peak found in the IR spectrum of testosterone but not in that of cholesterol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe a technique for the detection of steroids in blood and urine.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how redox chemistry is used to measure the ethanol concentration in a breathalyser.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1700−1750 «cm<sup>−1</sup>» ✔<br><em>NOTE: Accept a specific wavenumber value within range.</em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em> <br>sample/liquids vaporized «in oven/at high temperature» <br><em><strong>OR</strong> <br></em>sample injected into mobile phase/inert gas <br><em><strong>OR</strong> <br></em>nitrogen/helium/inert gas acts as mobile phase <br><em><strong>OR</strong> <br></em>sample carried by inert gas «through column» ✔<br><em>NOTE:&nbsp;Award <strong>[1 max]</strong> for identifying suitable technique (eg GC-MS etc.).<br>Do <strong>not</strong> accept just “gas”.<br>Accept description of HPLC using liquid mobile phase.</em><br></span></p>
<p><span style="background-color: #ffffff;">stationary phase consists of a packed column<br><strong><em>OR<br></em></strong>packing/solid support acts as stationary phase ✔<br><em>NOTE:&nbsp;Accept named stationary phase, such as «long-chain» hydrocarbon/polysiloxane/silica.</em><br></span></p>
<p><span style="background-color: #ffffff;">components separated by partition «between mobile phase and stationary phase» <br><em><strong>OR<br></strong></em> gases/liquids/components have different retention times/<em>R</em><sub>f</sub> <br><em><strong>OR<br></strong></em> gases/liquids/components move through tube/column at different speeds/rates ✔</span></p>
<p><span style="background-color: #ffffff;">detector/mass spectrometer/MS «at end of column» <br><em><strong>OR<br></strong></em> databases/library of known fragmentation patterns can be used ✔<br><em>NOTE:&nbsp;Accept “area under peak proportional to quantity/amount/concentration of component present «in mixture»”.</em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>oxidizing agent/«acidified» potassium dichromate(VI) converts ethanol to ethanoic acid ✔<br>colour change «from orange to green» is measured/analysed «using photocell» ✔</span></p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br>ethanol is oxidized to ethanoic acid «at anode and oxygen is reduced to water at cathode» ✔<br>current/voltage/potential is measured «by computer» <br><em><strong>OR</strong></em><br>current/voltage/potential is proportional to ethanol concentration ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE:&nbsp;Accept names or formulas for reagents.<br>Accept “«acidified» dichromate/Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup>” for “K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>”.<br>Award <strong>[1 max]</strong> for "Cr(VI) going to Cr(III) <strong>AND</strong> colour changing/colour changing from orange to green". <br>Do <strong>not</strong> penalize incorrect oxidation state notation here.<br>Accept "EMF" for "voltage".</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony oxide is widely used as a homogeneous catalyst for the reaction of&nbsp;benzene-1,4-dicarboxylic acid with ethane-1,2-diol in the production of polyethylene&nbsp;terephthalate (PETE).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the repeating unit of the polymer and the other product of the reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of polymer to which PETE belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Repeating unit:</em></p>
<p><img src=""></p>
<p><em>Other product:</em> water/H<sub>2</sub>O</p>
<p>&nbsp;</p>
<p><em>Continuation bonds necessary for the&nbsp;mark.</em></p>
<p><em>Accept alternative repeating unit with O&nbsp;at other end.</em></p>
<p><em>Do <strong>not</strong> penalize square brackets or n.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>condensation</p>
<p>&nbsp;</p>
<p><em>Accept polyester or thermoplastic.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aspirin is one of the most widely used drugs in the world.</p>
</div>

<div class="specification">
<p>Aspirin was synthesized from 2.65 g of salicylic acid (2-hydroxybenzoic acid) (<em>M</em><sub>r</sub> = 138.13)&nbsp;and 2.51 g of ethanoic anhydride (<em>M</em><sub>r</sub> = 102.10).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> absorbances, other than the absorbances due to the ring structure&nbsp;and C–H bonds, that would be present in the infrared (IR) spectrum of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> techniques, other than IR spectroscopy, which could be used to&nbsp;confirm the identity of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>2500–3000 «cm<sup>–1</sup>» / «absorbance» due to O–H in carboxyl</p>
<p>1700–1750 «cm<sup>–1</sup>» / «absorbance» due to C=O in carboxyl/ethanoate</p>
<p>1050–1410 «cm<sup>–1</sup>» / «absorbance» due to C–O bond in carboxyl/ethanoate</p>
<p>&nbsp;</p>
<p><em>Accept “carboxylic acid” for “carboxyl”,&nbsp;“acetate/ester” for “ethanoate”.</em></p>
<p><em>Accept specific wavenumber once&nbsp;within indicated range.</em></p>
<p><em>Do <strong>not</strong> award mark if reference is made&nbsp;to an alcohol/ether.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>melting point</p>
<p>mass spectrometry/MS</p>
<p>high-performance liquid chromatography/HPLC</p>
<p>NMR/nuclear magnetic resonance</p>
<p>X-ray crystallography</p>
<p>elemental analysis</p>
<p>&nbsp;</p>
<p><em>Accept “spectroscopy” instead of&nbsp;“spectrometry” where mentioned but&nbsp;<strong>not</strong> “spectrum”.</em></p>
<p><em>Accept “ultraviolet «-visible»&nbsp;spectroscopy/UV/UV-Vis”.</em></p>
<p><em>Do <strong>not</strong> accept “gas&nbsp;chromatography/GC”.</em></p>
<p><em>Accept “thin-layer chromatography/TLC”&nbsp;as an alternative to “HPLC”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<br><hr><br>