File "SL-paper1.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Topic 10/SL-paper1html
File size: 395.72 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 1</h2><div class="question">
<p>What are possible names of a molecule with molecular formula C<sub>4</sub>H<sub>10</sub>O?</p>
<p>        I.     1-Methoxypropane</p>
<p>        II.     2-Methylpropan-2-ol</p>
<p>        III.     Butanal</p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of increasing boiling point?</p>
<p>A.     C<sub>4</sub>H<sub>10</sub> &lt; CH<sub>3</sub>COOH &lt; CH<sub>3</sub>CH<sub>2</sub>CHO &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p>B.     C<sub>4</sub>H<sub>10</sub> &lt; CH<sub>3</sub>CH<sub>2</sub>CHO &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH &lt; CH<sub>3</sub>COOH</p>
<p>C.     CH<sub>3</sub>COOH &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH&lt; CH<sub>3</sub>CH<sub>2</sub>CHO &lt; C<sub>4</sub>H<sub>10</sub></p>
<p>D.     C<sub>4</sub>H<sub>10</sub> &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH &lt; CH<sub>3</sub>CH<sub>2</sub>CHO &lt; CH<sub>3</sub>COOH</p>
</div>
<br><hr><br><div class="question">
<p>Which alcohols are oxidized by acidified potassium dichromate(VI) solution when heated?</p>
<p><img src="" alt></p>
<p>A. I and II only </p>
<p>B. I and III only </p>
<p>C. II and III only </p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which monomer is used to form the polymer with the following repeating unit?</p>
<p><img src="" alt></p>
<p>A. CH<sub>3</sub>CH=CHCH<sub>3 </sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH=CH<sub>2 </sub></p>
<p>C. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3 </sub></p>
<p>D. (CH<sub>3</sub>)<sub>2</sub>C=CH<sub>2</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which of these reactions proceeds by a free radical mechanism in the presence of UV light?</p>
<p>A.     C<sub>6</sub>H<sub>6</sub> + Cl<sub>2</sub> → C<sub>6</sub>H<sub>5</sub>Cl + HCl</p>
<p>B.     C<sub>6</sub>H<sub>6</sub> + 3H<sub>2</sub> → C<sub>6</sub>H<sub>12</sub></p>
<p>C.     CH<sub>2</sub>CH<sub>2</sub> + HBr → CH<sub>3</sub>CH<sub>2</sub>Br</p>
<p>D.     CH<sub>3</sub>CH<sub>3</sub> + Cl<sub>2</sub> → CH<sub>3</sub>CH<sub>2</sub>Cl + HCl</p>
</div>
<br><hr><br><div class="question">
<p>What is the mechanism for the reaction of propene with iodine in the dark?</p>
<p>A.     electrophilic addition</p>
<p>B.     electrophilic substitution</p>
<p>C.     free radical substitution</p>
<p>D.     nucleophilic substitution</p>
</div>
<br><hr><br><div class="question">
<p>Which reagents and conditions are best for converting propan-1-ol into propanoic acid?</p>
<p>A.  Reflux with acidified potassium dichromate (VI)</p>
<p>B.  Reflux with aqueous sodium hydroxide</p>
<p>C.  Distil with acidified potassium dichromate (VI)</p>
<p>D.  Distil with aqueous sodium hydroxide</p>
</div>
<br><hr><br><div class="question">
<p>Which compounds belong to the same homologous series?</p>
<p>A.     CHCCH<sub>2</sub>CH<sub>3</sub>, CHCCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>B.     CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub></p>
<p>C.     CH<sub>2</sub>CHCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>D.     CH<sub>3</sub>COCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which functional groups are present in serine?</p>
<p style="text-align:center;"><img src=""></p>
<p>A.  nitro, carbonyl and carboxyl</p>
<p>B.  amino, hydroxyl and carbonyl</p>
<p>C.  nitro, carboxyl and hydroxyl</p>
<p>D.  amino, carboxyl and hydroxyl</p>
</div>
<br><hr><br><div class="question">
<p>What is produced when chlorobutane is treated with aqueous sodium hydroxide solution?</p>
<p>A.  butane</p>
<p>B.  butanoic acid</p>
<p>C.  butanal</p>
<p>D.  butan-1-ol</p>
</div>
<br><hr><br><div class="question">
<p>Which reaction mechanisms are typical for alcohols and halogenoalkanes?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>How many dichlorinated butane isomers can be formed by the halogenation of CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> with excess Cl<sub>2</sub> in the presence of UV light?</p>
<p>A.  4</p>
<p>B.  6</p>
<p>C.  8</p>
<p>D.  10</p>
</div>
<br><hr><br><div class="question">
<p>Which describes the reaction between a halogen and ethane?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What type of reaction occurs when C<sub>6</sub>H<sub>13</sub>Br becomes C<sub>6</sub>H<sub>13</sub>OH?<br></span></p>
<p><span style="background-color: #ffffff;">A.  Nucleophilic substitution<br></span></p>
<p><span style="background-color: #ffffff;">B.  Electrophilic substitution<br></span></p>
<p><span style="background-color: #ffffff;">C.  Radical substitution<br></span></p>
<p><span style="background-color: #ffffff;">D.  Addition</span></p>
</div>
<br><hr><br><div class="question">
<p>What is the name of this compound, using IUPAC rules?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-10_om_07.41.06.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/25"></p>
<p>A.     1,1-dimethylpropanoic acid</p>
<p>B.     3,3-dimethylpropanoic acid</p>
<p>C.     2-methylbutanoic acid</p>
<p>D.     3-methylbutanoic acid</p>
</div>
<br><hr><br><div class="question">
<p>What is the name of the compound with this molecular structure applying IUPAC rules?</p>
<p><img src=""></p>
<p>A.     1-methylpropanoic acid</p>
<p>B.     2-methylpropanoic acid</p>
<p>C.     2-methylbutanoic acid</p>
<p>D.     3-methylbutanoic acid</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the IUPAC name of the following molecule?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="162" height="123"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. 2-bromo-3-ethylbutane</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. 3-methyl-4-bromopentane</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. 2-ethyl-3-bromobutane</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. 2-bromo-3-methylpentane</span></span></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which functional group is surrounded in the molecule?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="242" height="132"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">A. hydroxyl</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">B. carboxyl</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">C. carbonyl </span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">D. ether</span></span></p>
</div>
<br><hr><br><div class="question">
<p>Which structure represents a repeating unit of a polymer formed from propene?</p>
<p>A.  –CH<sub>2</sub>–CH(CH<sub>3</sub>)–</p>
<p>B.  –CH<sub>2</sub>–CH<sub>2</sub>–CH<sub>2</sub>–</p>
<p>C.  –CH(CH<sub>3</sub>)–CH(CH<sub>3</sub>)–</p>
<p>D.  –CH<sub>2</sub>–CH<sub>2</sub>–</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which compound has the lowest boiling point?</span></p>
<p><span style="background-color: #ffffff;">A. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">B. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">C. CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">D. CH<sub>3</sub>C(CH<sub>3</sub>)<sub>2</sub>CH<sub>3</sub></span></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">What is the mechanism of the reaction between alkenes and halogens in the absence of light?</span></p>
<p><span style="background-color: #ffffff;">A. radical substitution</span></p>
<p><span style="background-color: #ffffff;">B. electrophilic substitution</span></p>
<p><span style="background-color: #ffffff;">C. electrophilic addition</span></p>
<p><span style="background-color: #ffffff;">D. nucleophilic substitution</span></p>
</div>
<br><hr><br><div class="question">
<p>Which type of reaction occurs when methanol and propanoic acid react together in the presence of a catalyst?</p>
<p>A. Addition</p>
<p>B. Condensation</p>
<p>C. Redox</p>
<p>D. Neutralization </p>
</div>
<br><hr><br><div class="question">
<p>Which type of reaction occurs between an alcohol and a carboxylic acid?</p>
<p>A. Addition</p>
<p>B. Oxidation</p>
<p>C. Esterification</p>
<p>D. Polymerization</p>
</div>
<br><hr><br><div class="question">
<p>Which molecule has a tertiary nitrogen?</p>
<p>A.     (CH<sub>3</sub>)<sub>2</sub>NH</p>
<p>B.     (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>N<sup>+</sup>I<sup>−</sup></p>
<p>C.     C<sub>3</sub>H<sub>7</sub>N(CH<sub>3</sub>)<sub>2</sub></p>
<p>D.     C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which compound could be formed when CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH is heated with acidified potassium dichromate(VI)?</p>
<p>        I.     CH<sub>3</sub>CH<sub>2</sub>CHO</p>
<p>        II.     CH<sub>3</sub>CH<sub>2</sub>COOH</p>
<p>        III.     CH<sub>3</sub>COCH<sub>3</sub></p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What is the major product of the reaction between HCl and but-2-ene?</p>
<p>A. 1,2-dichlorobutane</p>
<p>B. 2,3-dichlorobutane</p>
<p>C. 1-chlorobutane</p>
<p>D. 2-chlorobutane</p>
</div>
<br><hr><br><div class="question">
<p>How many structural isomers of C<sub>6</sub>H<sub>14</sub> exist?</p>
<p>A. 4</p>
<p>B. 5</p>
<p>C. 6</p>
<p>D. 7</p>
</div>
<br><hr><br><div class="question">
<p>What is the general formula of alkynes?</p>
<p><br>A.  C<sub>n</sub>H<sub>2n+2</sub></p>
<p>B.  C<sub>n</sub>H<sub>2n</sub></p>
<p>C.  C<sub>n</sub>H2<sub>n−2</sub></p>
<p>D.  C<sub>n</sub>H<sub>n</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which series is in order of increasing boiling point?</p>
<p>A.  CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>OH    CH<sub>3</sub>COCH<sub>3</sub>         CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>B.  CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>         CH<sub>3</sub>COCH<sub>3</sub>          CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>OH</p>
<p>C.  CH<sub>3</sub>COCH<sub>3</sub>          CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>OH    CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>D.  CH<sub>3</sub>CH<sub>2</sub>CH<sub>3</sub>         CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>OH    CH<sub>3</sub>COCH<sub>3</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which conditions are used to convert ethanol to ethanal?</p>
<p>A.     Excess oxidizing agent and reflux</p>
<p>B.     Excess oxidizing agent and distillation</p>
<p>C.     Excess ethanol and reflux</p>
<p>D.     Excess ethanol and distillation</p>
</div>
<br><hr><br><div class="question">
<p>The structure of a drug used to treat symptoms of Alzheimer’s disease is shown below. Which functional groups are present in this molecule?</p>
<p><img src="" alt></p>
<p>A. Hydroxyl and ester </p>
<p>B. Hydroxide and ether </p>
<p>C. Hydroxyl and ether </p>
<p>D. Hydroxide and ester</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which compound <strong>cannot</strong> undergo addition polymerization?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="424" height="193"></span></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which alcohol would produce a carboxylic acid when heated with acidified potassium dichromate(VI)?</span></p>
<p><span style="background-color: #ffffff;">A. propan-2-ol</span></p>
<p><span style="background-color: #ffffff;">B. butan-1-ol</span></p>
<p><span style="background-color: #ffffff;">C. 2-methylpropan-2-ol</span></p>
<p><span style="background-color: #ffffff;">D. pentan-3-ol</span></p>
</div>
<br><hr><br><div class="question">
<p>Which compounds react to form CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>COOCH(CH<sub>3</sub>)<sub>2</sub>?</p>
<p> </p>
<p>A.   propanoic acid and propan-2-ol</p>
<p>B.   propanoic acid and butan-2-ol</p>
<p>C.   butanoic acid and propan-1-ol</p>
<p>D.   butanoic acid and propan-2-ol</p>
</div>
<br><hr><br><div class="question">
<p>Which is correct for benzene?</p>
<p> </p>
<p>A.   It readily undergoes addition reactions and decolourises bromine water.</p>
<p>B.   It contains alternate single and double carbon–carbon bonds and is planar.</p>
<p>C.   Its <sup>1</sup>H NMR spectrum shows six signals and it readily undergoes substitution reactions.</p>
<p>D.   Its <sup>1</sup>H NMR spectrum shows one signal and it forms a single C<sub>6</sub>H<sub>5</sub>Br isomer.</p>
</div>
<br><hr><br><div class="question">
<p>Which compounds cause the colour of acidified potassium manganate(VII) solution to change from purple to colourless?</p>
<p style="padding-left:90px;">I.    CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p style="padding-left:90px;">II.   (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>OH</p>
<p style="padding-left:90px;">III.  CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub></p>
<p> </p>
<p>A.   I and II only</p>
<p>B.   I and III only</p>
<p>C.   II and III only</p>
<p>D.   I, II and III</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which of the following can be both formed from bromoethane and converted directly into ethanal?</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">CH<sub>3</sub>CH<sub>2</sub>Br → <strong>X</strong><br><strong>X</strong> → CH<sub>3</sub>CHO</span></p>
<p><span style="background-color: #ffffff;">A. CH<sub>3</sub>CH<sub>2</sub>OH</span></p>
<p><span style="background-color: #ffffff;">B. CH<sub>3</sub>OCH<sub>3</sub></span></p>
<p><span style="background-color: #ffffff;">C. CH<sub>3</sub>COOH</span></p>
<p><span style="background-color: #ffffff;">D. H<sub>2</sub>C=CHBr</span></p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Methane reacts with chlorine in sunlight.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">CH<sub>4</sub> (g) + Cl<sub>2</sub> (g) → CH<sub>3</sub>Cl (g) + HCl (g)</span></p>
<p><span style="background-color: #ffffff;">Which type of reaction occurs?</span></p>
<p><span style="background-color: #ffffff;">A. free-radical substitution</span></p>
<p><span style="background-color: #ffffff;">B. electrophilic substitution</span></p>
<p><span style="background-color: #ffffff;">C. nucleophilic substitution</span></p>
<p><span style="background-color: #ffffff;">D. electrophilic addition</span></p>
</div>
<br><hr><br><div class="question">
<p>Which functional group is present in paracetamol?</p>
<p><img src=""></p>
<p>A.     Carboxyl</p>
<p>B.     Amino</p>
<p>C.     Nitrile</p>
<p>D.     Hydroxyl</p>
</div>
<br><hr><br><div class="question">
<p>What is the name of this compound, applying IUPAC rules?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="222" height="153"></p>
<p>A.  4-methylhex-2-ene</p>
<p>B.  4-ethylpent-2-ene</p>
<p>C.  2-ethylpent-3-ene</p>
<p>D.  3-methylhex-4-ene</p>
</div>
<br><hr><br><div class="question">
<p>Which compound can be oxidized when heated with an acidified solution of potassium dichromate(VI)?</p>
<p>A. CH<sub>3</sub>C(O)CH<sub>2</sub>CH<sub>3</sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub></p>
<p>C. (CH<sub>3</sub>)<sub>3</sub>COH</p>
<p>D. CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH</p>
</div>
<br><hr><br><div class="question">
<p>Which compound contains a secondary carbon atom?</p>
<p>A.     CH<sub>3</sub>CH(Cl)CH(CH<sub>3</sub>)<sub>2</sub></p>
<p>B.     (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>Cl</p>
<p>C.     (CH<sub>3</sub>)<sub>3</sub>CCl</p>
<p>D.     CH<sub>3</sub>CH<sub>2</sub>Cl</p>
</div>
<br><hr><br><div class="question">
<p>What is the IUPAC name of the molecule shown?</p>
<p style="text-align:center;"><img src=""></p>
<p>A.  2,4-dimethylhexane</p>
<p>B.  3,5-dimethylhexane</p>
<p>C.  2-methyl-4-ethylpentane</p>
<p>D.  2-ethyl-4-methylpentane</p>
</div>
<br><hr><br><div class="question">
<p>What is the product of the reaction between hex-3-ene and steam?</p>
<p>A.     Hexan-1-ol</p>
<p>B.     Hexan-2-ol</p>
<p>C.     Hexan-3-ol</p>
<p>D.     Hexan-4-ol</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which compound is <strong>not</strong> in the same homologous series as the others?</span></p>
<p>A.  C<sub>5</sub>H<sub>12</sub></p>
<p><span style="background-color: #ffffff;">B.  C<sub>6</sub>H<sub>12</sub><br></span></p>
<p><span style="background-color: #ffffff;">C.  C<sub>7</sub>H<sub>16</sub><br></span></p>
<p><span style="background-color: #ffffff;">D.  C<sub>8</sub>H<sub>18</sub></span></p>
</div>
<br><hr><br><div class="question">
<p>Which is a homologous series?</p>
<p>A.  C<sub>2</sub>H<sub>4</sub>, C<sub>3</sub>H<sub>5</sub>, C<sub>4</sub>H<sub>6</sub></p>
<p>B.  C<sub>2</sub>H<sub>2</sub>, C<sub>3</sub>H<sub>4</sub>, C<sub>4</sub>H<sub>6</sub></p>
<p>C.  C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub></p>
<p>D.  C<sub>2</sub>H<sub>2</sub>, C<sub>4</sub>H<sub>4</sub>, C<sub>6</sub>H<sub>6</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which is a propagation step in the free-radical substitution mechanism of ethane with chlorine?</p>
<p>A.&nbsp; C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math><sub>2</sub> → 2 •C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math></p>
<p>B.&nbsp; •C<sub>2</sub>H<sub>5</sub> + C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math><sub>2</sub>&nbsp;→ C<sub>2</sub>H<sub>5</sub>C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math> + •C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math></p>
<p>C.&nbsp; •C<sub>2</sub>H<sub>5</sub> + •C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math> → C<sub>2</sub>H<sub>5</sub>C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math></p>
<p>D.&nbsp; C<sub>2</sub>H<sub>6</sub> + •C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math> → C<sub>2</sub>H<sub>5</sub>C<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>l</mtext></math> + •H</p>
</div>
<br><hr><br><div class="question">
<p>Which are structural isomers?</p>
<p>       I.     CH<sub>3</sub>CH<sub>2</sub>OH and CH<sub>3</sub>OCH<sub>3</sub></p>
<p>       II.     HOCH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>OH</p>
<p>       III.     CH<sub>3</sub>COOH and HCOOCH<sub>3</sub></p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What is the name of this substance using IUPAC rules?</p>
<p style="text-align:center;"><img src=""></p>
<p>A.  2-ethyl-1-methylbutan-1-ol</p>
<p>B.  1-methyl-2-ethylbutan-1-ol</p>
<p>C.  3-ethylpentan-2-ol</p>
<p>D.  3-ethylpentan-4-ol</p>
</div>
<br><hr><br><div class="question">
<p>Which monomer would produce the polymer shown?</p>
<p><img style="display:block;margin-left:auto;margin-right:auto;" src="" width="189" height="146"></p>
<p>A.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CF</mtext><mtext>3</mtext></msub><msub><mtext>CCl</mtext><mtext>2</mtext></msub><mtext>F</mtext></math></p>
<p>B.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CF</mtext><mtext>3</mtext></msub><mtext>CClHF</mtext></math></p>
<p>C.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CF</mtext><mtext>2</mtext></msub><mtext>CClF</mtext></math></p>
<p>D.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CF</mtext><mtext>2</mtext></msub><msub><mtext>CF</mtext><mtext>2</mtext></msub></math></p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">What is the IUPAC name of this molecule?</span></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p><span class="fontstyle0">A.  1,1,2,4-tetramethylpent-1-ene<br></span></p>
<p><span class="fontstyle0">B.  2,4,5-trimethylhex-4-ene<br></span></p>
<p><span class="fontstyle0">C.  2,4,5,5-tetramethylpent-4-ene<br></span></p>
<p><span class="fontstyle0">D.  2,3,5-trimethylhex-2-ene</span></p>
</div>
<br><hr><br><div class="question">
<p>Which is in the same homologous series as CH<sub>3</sub>OCH<sub>3</sub>?</p>
<p>A.  CH<sub>3</sub>COCH<sub>3</sub></p>
<p>B.  CH<sub>3</sub>COOCH<sub>3</sub></p>
<p>C.  CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p>D.  CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OCH<sub>3</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which monomer forms the polymer shown?</p>
<p style="text-align:center;"><img src=""></p>
<p>A.&nbsp;&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CH(Cl)=CH(CH</mtext><mtext>3</mtext></msub><mtext>)</mtext></math></p>
<p>B.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CH</mtext><mtext>2</mtext></msub><msub><mtext>=C(Cl)CH</mtext><mtext>3</mtext></msub></math></p>
<p>C.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>(CH</mtext><mtext>3</mtext></msub><msub><mtext>)</mtext><mtext>2</mtext></msub><mtext>CHCl</mtext></math></p>
<p>D.&nbsp; <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>CH</mtext><mtext>2</mtext></msub><mtext>=CHCl</mtext></math></p>
</div>
<br><hr><br><div class="question">
<p>Which spectra would show the difference between propan-2-ol, CH<sub>3</sub>CH(OH)CH<sub>3</sub>, and propanal, CH<sub>3</sub>CH<sub>2</sub>CHO?</p>
<p style="padding-left:120px;">I.&nbsp; &nbsp;mass<br>II.&nbsp; infrared<br>III. <sup>1</sup>H NMR</p>
<p>A.&nbsp; I and II only</p>
<p>B.&nbsp; I and III only</p>
<p>C.&nbsp; II and III only</p>
<p>D.&nbsp; I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What are the functional groups in the aspirin molecule?</p>
<p><img src=""></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\begin{gathered} \begin{array}{*{20}{l}} {{\text{I.}}}&amp;{{\text{Ether}}} \\ {{\text{II.}}}&amp;{{\text{Carboxyl}}} \\ {{\text{III.}}}&amp;{{\text{Ester}}} \end{array} \hfill \\ \hfill \\ \end{gathered} ">
  <mtable rowspacing="3pt" columnspacing="1em" displaystyle="true">
    <mtr>
      <mtd>
        <mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
          <mtr>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>I.</mtext>
                </mrow>
              </mrow>
            </mtd>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>Ether</mtext>
                </mrow>
              </mrow>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>II.</mtext>
                </mrow>
              </mrow>
            </mtd>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>Carboxyl</mtext>
                </mrow>
              </mrow>
            </mtd>
          </mtr>
          <mtr>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>III.</mtext>
                </mrow>
              </mrow>
            </mtd>
            <mtd>
              <mrow>
                <mrow>
                  <mtext>Ester</mtext>
                </mrow>
              </mrow>
            </mtd>
          </mtr>
        </mtable>
      </mtd>
    </mtr>
    <mtr>
      <mtd></mtd>
    </mtr>
  </mtable>
</math></span></p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of increasing boiling point for the isomers of C<sub>5</sub>H<sub>12</sub>?</p>
<p> </p>
<p>A.   CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> &lt; CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub> &lt; CH<sub>3</sub>C(CH<sub>3</sub>)<sub>3</sub></p>
<p>B.   CH<sub>3</sub>C(CH<sub>3</sub>)<sub>3</sub> &lt; CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub> &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>C.   CH<sub>3</sub>C(CH<sub>3</sub>)<sub>3</sub> &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> &lt; CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub></p>
<p>D.   CH<sub>3</sub>CH(CH<sub>3</sub>)CH<sub>2</sub>CH<sub>3</sub> &lt; CH<sub>3</sub>C(CH<sub>3</sub>)<sub>3</sub> &lt; CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
</div>
<br><hr><br><div class="question">
<p>What is the name of this compound, using IUPAC rules?</p>
<p><img src=""></p>
<p>A. 3-methylbutan-3-ol</p>
<p>B. 2-ethylpropan-2-ol</p>
<p>C. 2-methylbutan-2-ol</p>
<p>D. 3-methylbutan-2-ol</p>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Which will react with a halogen by an electrophilic substitution mechanism?</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="423" height="176"></span></p>
</div>
<br><hr><br><div class="question">
<p>Which pair of compounds are structural isomers?</p>
<p><br>A.  Propane and propene</p>
<p>B.  Propanal and propanone</p>
<p>C.  Propan-1-ol and propanal</p>
<p>D.  Propyl propanoate and propanoic acid</p>
</div>
<br><hr><br><div class="question">
<p>Which combination best describes what is happening to chloromethane, CH<sub>3</sub>Cl, in the equation below?</p>
<p style="text-align:center;">CH<sub>3</sub>Cl (g) + H<sub>2 </sub>(g) <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>⇌</mo></math> CH<sub>4 </sub>(g) + HCl (g)</p>
<p>A.  Oxidation and addition</p>
<p>B.  Oxidation and substitution</p>
<p>C.  Reduction and addition</p>
<p>D.  Reduction and substitution</p>
</div>
<br><hr><br><div class="question">
<p>Which compounds are members of the same homologous series?</p>
<p>A.  propanal, propanone, propanoic acid</p>
<p>B.  propane, propene, propyne</p>
<p>C.  hexan-1-ol, hexan-2-ol, hexan-3-ol</p>
<p>D.  ethanol, propan-1-ol, butan-1-ol</p>
</div>
<br><hr><br><div class="question">
<p>What is formed in a propagation step of the substitution reaction between bromine and ethane?</p>
<p>A.  CH<sub>3</sub>CH<sub>2</sub>•</p>
<p>B.  CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>C.  H•</p>
<p>D.  Br<sup>−</sup></p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which mechanism does benzene most readily undergo?</span></p>
<p><span class="fontstyle0">A.  Nucleophilic substitution<br></span></p>
<p><span class="fontstyle0">B.  Electrophilic substitution<br></span></p>
<p><span class="fontstyle0">C.  Electrophilic addition<br></span></p>
<p><span class="fontstyle0">D.  Free radical substitution</span></p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which functional groups are present in this molecule?<br></span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="229" height="251"></span></p>
<p><span class="fontstyle0">A.  carbonyl, ether, nitrile<br></span></p>
<p><span class="fontstyle0">B.  carbonyl, ester, nitrile<br></span></p>
<p><span class="fontstyle0">C.  carboxyl, ether, amine<br></span></p>
<p><span class="fontstyle0">D.  carboxyl, ester, amine</span></p>
</div>
<br><hr><br><div class="question">
<p><span class="fontstyle0">Which molecule will decolorize bromine water in the dark?</span></p>
<p><span class="fontstyle0">A.  cyclohexane<br></span></p>
<p><span class="fontstyle0">B.  hexane<br></span></p>
<p><span class="fontstyle0">C.  hex-1-ene<br></span></p>
<p><span class="fontstyle0">D.  hexan-1-ol</span></p>
</div>
<br><hr><br>