File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Option D/markSceme-HL-paper3html
File size: 912.76 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>A polarimeter can be used to determine the optical rotation of an optically active substance.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what happens to plane-polarized light when it passes through a solution of an optically active compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of enantiomers shows optical rotation.</p>
<p>Suggest a conclusion you can draw from this data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>plane of polarization is rotated</p>
<p> </p>
<p><em>Award zero if answer refers to plane-polarized light being bent.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not a racemic mixture<br><em><strong>OR</strong></em><br>two enantiomers not equimolar<br><em><strong>OR</strong></em><br>mixture contains optically active impurity<br><em><strong>OR</strong></em><br>relative proportions of enantiomers in mixture can be determined</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Technetium-99m is the most widely used medical radioisotope. It is usually made on-site in medical facilities from isotopes of molybdenum.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce equations for the following nuclear reactions:</p>
<p>(i) Molybdenum-98 absorbs a neutron.</p>
<p>(ii) The isotope produced in (a) (i) decays into technetium-99m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Molybdenum-99 has a half-life of 66 hours, while technetium-99m has a half-life of 6 hours. Outline why technetium-99m is made on-site.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> reasons, other than its half-life, why technetium-99m is so useful in medical diagnosis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the nature of the radioactive waste that is generated by the use of technetium-99m in medical diagnosis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\rm{42}}}^{98}{\rm{Mo}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mrow>
<mrow>
<mn>42</mn>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>98</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">M</mi>
<mi mathvariant="normal">o</mi>
</mrow>
</mrow>
</math></span> + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\rm{0}}}^{1}{\rm{n}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mrow>
<mrow>
<mn>0</mn>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>1</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">n</mi>
</mrow>
</mrow>
</math></span> → <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{{\rm{42}}}^{99}{\rm{Mo}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mrow>
<mrow>
<mn>42</mn>
</mrow>
</mrow>
</mrow>
<mrow>
<mn>99</mn>
</mrow>
</msubsup>
<mrow>
<mrow>
<mi mathvariant="normal">M</mi>
<mi mathvariant="normal">o</mi>
</mrow>
</mrow>
</math></span></p>
<p><em>Accept <sup>98</sup>Mo + <sup>1</sup>n/n → <sup>99</sup>Mo.</em></p>
<p><br>ii</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{42}^{99}{\text{Mo}} \to {}_{43}^{99\,{\text{m}}}{\text{Tc}} + {}_{ - 1}^0\beta ">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>42</mn>
</mrow>
<mrow>
<mn>99</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Mo</mtext>
</mrow>
<mo stretchy="false">→</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>99</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</mrow>
</msubsup>
<mrow>
<mtext>Tc</mtext>
</mrow>
<mo>+</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mi>β</mi>
</math></span></p>
<p><em>Accept “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{ - 1}^0e">
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mi>e</mi>
</math></span>” for “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{ - 1}^0\beta ">
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mi>β</mi>
</math></span>”.</em></p>
<p><em>Accept “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}^{99}Mo \to {}_{}^{99\,{\text{m}}}Tc + \beta ">
<msup>
<mrow>
</mrow>
<mrow>
<mn>99</mn>
</mrow>
</msup>
<mi>M</mi>
<mi>o</mi>
<mo stretchy="false">→</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
</mrow>
<mrow>
<mn>99</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</mrow>
</msubsup>
<mi>T</mi>
<mi>c</mi>
<mo>+</mo>
<mi>β</mi>
</math></span>”.</em></p>
<p><em>Accept “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{ - 1}^0e/{e^ - }/e">
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mi>e</mi>
<mrow>
<mo>/</mo>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mo>−</mo>
</msup>
</mrow>
<mrow>
<mo>/</mo>
</mrow>
<mi>e</mi>
</math></span>” for “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\beta ">
<mi>β</mi>
</math></span>”.</em></p>
<p><em>Do not penalize “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{}^{99}Tc">
<msubsup>
<mrow>
</mrow>
<mrow>
</mrow>
<mrow>
<mn>99</mn>
</mrow>
</msubsup>
<mi>T</mi>
<mi>c</mi>
</math></span>” for “ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{}^{99\,{\text{m}}}Tc">
<msubsup>
<mrow>
</mrow>
<mrow>
</mrow>
<mrow>
<mn>99</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>m</mtext>
</mrow>
</mrow>
</msubsup>
<mi>T</mi>
<mi>c</mi>
</math></span>”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>molybdenum-99 can be easily transported «before it decays»/more stable<br><em><strong>OR<br></strong></em>«most of» technetium-99m will decay during transportation</p>
<p><em>Do <strong>not</strong> accept just “short half-life of Tc-99m”</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>emits gamma rays<br><em><strong>OR<br></strong></em>emissions escape from body<br><em><strong>OR<br></strong></em>emissions detected by gamma camera<br><em><strong>OR<br></strong></em>radiation dose is low</p>
<p>chemically reactive/versatile/transition metal bonds to a range of «biologically active» substances</p>
<p><em>Do <strong>not</strong> accept “short half-life of Tc-99m”.<br>Accept “energy of photons produced is «relatively» low” and “no high energy beta emission” for M1.<br>Accept “…has ability to form tracers” for “…bonds to a range of «biologically active» substances".</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>low-level «radioactive» waste/LLW<br><em><strong>OR<br></strong></em>small amounts of ionizing radiation for short time</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess stomach acid leads to medical conditions that affect many people worldwide. These conditions can be treated with several types of medical drugs.</p>
</div>
<div class="question">
<p>Omeprazole exists as a racemic mixture whereas esomeprazole is a single enantiomer. Outline how, starting from a non-chiral molecule, esomeprazole but not omeprazole, could be synthesized. Details of chemicals and conditions are not required.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two of:</em></p>
<p>chiral molecule/auxiliary/optically active species is used/added/connected «to the starting molecule to force reaction to follow a certain path»</p>
<p>chiral intermediate forms «only» one enantiomer<br><em><strong>OR<br></strong></em>auxiliary creates stereochemical condition «necessary to follow a certain pathway» / stereochemical induction<br><em><strong>OR<br></strong></em>existing chiral centre affects configuration of new chiral centres</p>
<p>«after new chiral centre created» chiral auxiliary removed «to obtain desired product»</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Ibuprofen and paracetamol are mild analgesics. One of the IR spectra below belongs to ibuprofen and the other to paracetamol. The structures of both compounds are given in section 37 of the data booklet.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both spectra show a peak at wavenumber 1700 cm<sup>–1</sup>. Identify the bond responsible for this peak.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce which spectrum belongs to paracetamol, giving two reasons for your choice. Use section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how mild analgesics function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C=O</p>
<p><em>Accept “carbonyl”.</em></p>
<p> </p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>X</strong> (must be identified) <em><strong>AND</strong></em></p>
<p><em>Any two of:</em></p>
<p>For <strong>X</strong>:</p>
<p>N–H «absorption» <em><strong>AND</strong> </em>at 3300 – 3500 «cm<sup>–1</sup>» ✔</p>
<p>O–H «absorption» in phenol <em><strong>AND</strong> </em>at 3200 – 3600 «cm<sup>–1</sup>» ✔</p>
<p>absence of OH «absorption» in carboxylic acid <em><strong>AND</strong> </em>2500 – 3000 «cm<sup>–1</sup>»</p>
<p><em>Accept any specific wavenumber in the range 3300–3380 «cm<sup>–1</sup>» for M1.</em></p>
<p><em>Accept any specific wavenumber in the range 3100–3200 «cm<sup>–1</sup>».</em></p>
<p><em>Award <strong>[1 max]</strong> if <strong>Y</strong> is incorrectly identified for paracetamol but if a correct reason/reasons is/are given for the bond absorption(s).</em></p>
<p><em><strong>[Max 2 Marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>prevents/interferes with the production of prostaglandins</p>
<p><em><strong>OR</strong></em></p>
<p>prevents/interferes with the production of substances responsible for inflammation/pain/fever at the site of injury/source of pain</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol can be detected by a variety of instruments.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Fuel cells use an electrochemical process to determine the concentration of ethanol.</p>
<p>Formulate the overall equation for this process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the chemical shifts and integration for each signal in the <sup>1</sup>H NMR spectrum for ethanol using section 27 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>2</sub>H<sub>5</sub>OH(g) + O<sub>2</sub>(g) → CH<sub>3</sub>COOH(aq) + H<sub>2</sub>O(l)</p>
<p> </p>
<p><em>Accept any correct formula for reactants </em><em>and products.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>R–O</em><strong><em>H</em></strong><em>:</em></p>
<p>1.0–6.0 <strong>«</strong>ppm<strong>» </strong><strong><em>AND </em></strong>1 H</p>
<p><em>R–O–C</em><strong><em>H</em></strong><sub><strong><em>2</em></strong></sub><em>–:</em></p>
<p>3.3–3.7 <strong>«</strong>ppm<strong>» </strong><strong><em>AND </em></strong>2 H</p>
<p><em>–C</em><strong><em>H</em></strong><sub><strong><em>3</em></strong></sub><em>:</em></p>
<p>0.9–1.0 <strong>«</strong>ppm<strong>» </strong><strong><em>AND </em></strong>3 H</p>
<p> </p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for the ratio of 1:2:3 (in any </em><em>order).</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for three correct chemical shifts </em><em>without integration.</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for two correct chemical shifts </em><em>without integration.</em></p>
<p><em>For each chemical shift accept a specific </em><em>value within the range.</em></p>
<p><em>Assignment of proton to fragment </em><em>(eg, R–O</em><strong><em>H</em></strong><em>) is </em><strong><em>not </em></strong><em>required in each case.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The use of performance-enhancing drugs presents a challenge in the world of competitive sports. New regulations have lowered the acceptable concentrations of certain drugs in athletes’ bodies.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest what may have led to these changes in acceptable concentrations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One class of performance-enhancing drugs is the anabolic steroids. Detection of these drugs in urine samples uses a combination of gas chromatography and mass spectrometry (GC/MS).</p>
<p>(i) Describe how gas chromatography enables the components of urine to be analysed.</p>
<p>(ii) The structures of two steroids, testosterone and nandrolone, are given below.</p>
<p><img src=""></p>
<p>With reference to the molar masses of the two steroids, determine, with a reason, which can be identified from the mass spectrum below.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>improvements in technology/instrumentation/analytical techniques/precision of measurements</p>
<p><em>Accept “greater awareness/knowledge of the negative effects of the drugs”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>«components have» different affinities for/partition between 2 phases/mobile and stationary phase </p>
<p>move at different rates through instrument<br><em><strong>OR<br></strong></em>have different retention times</p>
<p> </p>
<p>ii</p>
<p>nandrolone <em>M</em> = 274 «g mol<sup>–1</sup>»<br><em><strong>OR<br></strong></em>testosterone <em>M</em> = 288 «g mol<sup>–1</sup>»</p>
<p>nandrolone identified because «molecular ion peak of» <em>m/z</em> = 274 </p>
<p><em>Accept non-integer molar masses, ie, 274.44 «g mol<sup>–1</sup>» and 288.47 «g mol<sup>–1</sup>». <br></em></p>
<p><em>Accept also “m/z = 275” for “m/z = 274” in M2. <br></em></p>
<p><em>Accept “absence of peak with m/z = 288”</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Solubility plays an important role in the bioavailability of drugs in the body.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why aspirin is <strong>slightly</strong> soluble in water. Refer to section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student prepares aspirin from salicylic acid in the laboratory, extracts it from the reaction mixture, ensures the sample is dry and determines its melting point.</p>
<p><img src=""></p>
<p>Suggest why the melting point of the student’s sample is lower and not sharp compared to that of pure aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Organic molecules can be characterized using infrared (IR) spectroscopy.</p>
<p>Compare and contrast the infrared peaks above 1500 cm<sup>−1</sup> in pure samples of aspirin and salicylic acid using section 26 of the data booklet.</p>
<p><img src=""></p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some mild analgesics contain a solid mixture of acidic aspirin and a non-acidic organic chemical of similar polarity to asprin.</p>
<p>Discuss how acid-base properties and the process of solvent extraction can be used to separate aspirin from the mixture.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pharmaceutical industry is one of the largest producers of waste solvents.</p>
<p>State a green solution to the problem of organic solvent waste.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>presence of «large» benzene/arene ring <em><strong>AND</strong></em> non-polar/hydrophobic<br><em><strong>OR</strong></em><br>presence of «large» benzene/arene ring <em><strong>AND</strong></em> cannot form H-bond with water</p>
<p>contain COOH/carboxyl/–OH/hydroxyl «and ester group» <em><strong>AND</strong></em> polar/hydrophilic<br><em><strong>OR</strong></em><br>contain COOH/carboxyl/–OH/hydroxyl «and ester group» <em><strong>AND</strong></em> can form H-bonds with water</p>
<p> </p>
<p><em>Accept “phenyl” for “benzene ring”.</em></p>
<p><em>Accept "carboxylic acid" for "carboxyl".</em></p>
<p><em>Do <strong>not</strong> accept "alcohol" for "hydroxyl".</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«student’s» sample impure</p>
<p>lattice disrupted/not uniform «due to presence of impurities»<br><em><strong>OR</strong></em><br>fewer interparticle/intermolecular forces «due to presence of impurities»</p>
<p> </p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>One similarity:</em><br>peak at 2500–3000 «cm<sup>–1</sup>»/peak due to O–H/hydroxyl in carboxylic acids<br><em><strong>OR</strong></em><br>peak at 1700–1750 «cm<sup>–1</sup>»/peak due to C=O/carbonyl<br><em><strong>OR</strong></em><br>peak at 2850–3090 «cm<sup>–1</sup>»/peak due to C–H of arene</p>
<p><em>One difference:</em><br>peak at 3200–3600 «cm<sup>–1</sup>» in salicylic acid/ peak due to O–H in phenol in salicylic acid<br><em><strong>OR</strong></em><br>«two» peaks at 1700–1750 «cm<sup>–1</sup>» in aspirin <em><strong>AND</strong></em> one peak «in the same area» in salicylic acid</p>
<p> </p>
<p><em>Accept “peak at 1600 cm<sup>–1</sup> for arene/benzene ring” – not in the data booklet.</em></p>
<p><em>Accept “2500–3600 cm<sup>–1</sup> «overlapping absorptions of two O–H» in salicylic acid”.</em></p>
<p><em>Accept “stronger/broader/split peak at 1700–1750 cm<sup>–1</sup> in aspirin”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>dissolve compounds in an organic solvent</p>
<p>add NaOH(aq)/OH<sup>–</sup>(aq) «to the mixture» to convert aspirin to its water soluble salt</p>
<p>separate the two «immiscible» layers</p>
<p>convert salt «in aqueous layer» back to aspirin by reacting with acid/H<sup>+</sup></p>
<p>«evaporate solvents and dry»</p>
<p> </p>
<p><em>Accept organic solvents immiscible with water such as hexane, ethyl ethanoate, butyl acetate.</em></p>
<p><em>Accept any other base.</em></p>
<p><em>Need explanation for mark.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«use of» alternative solvents such as supercritical/liquid CO<sub>2</sub><br><em><strong>OR</strong></em><br>use of water «as solvent»<br><em><strong>OR</strong></em><br>solvent-free reactions «for example, polymerization of propene»<br><em><strong>OR</strong></em><br>solid-state chemistry<br><em><strong>OR</strong></em><br>recycle «waste» solvents<br><em><strong>OR</strong></em><br>catalysis that leads to better/higher yield<br><em><strong>OR</strong></em><br>reducing number of steps</p>
<p> </p>
<p><em>Do <strong>not</strong> accept political/regulatory solutions.</em></p>
<p><em>“catalysis” not sufficient for mark.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Technetium-99m is the most commonly used isotope for diagnostic medicine.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the type of radiation technetium-99m emits.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Discuss the properties that make a radioisotope suitable for </span><span class="fontstyle2"><strong>diagnosis</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe the proper disposal of low-level radioactive waste in hospitals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Technetium-99m has a half-life of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>03</mn></math> hours. Calculate the amount of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>11</mn></mrow></msup><mo> </mo><mi>mol</mi></math></span><span class="fontstyle0"> of technetium-99m remaining after <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>48</mn><mo>.</mo><mn>0</mn></math> hours.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gamma/<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi></math> ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>«easily» detected/traced<br><em><strong>OR</strong></em><br>«gamma-radiation of approximately» same frequency as X-rays «so can be detected using existing X-ray equipment» ✔</p>
<p>short/intermediate half-life «hence does not remain in body for long time» ✔</p>
<p>weak ionizing radiation «less harmful»<br><em><strong>OR</strong></em><br>low amount of radiation produced «so less harmful»<br><em><strong>OR</strong></em><br>energy of photons is low ✔</p>
<p>form «variety of» compounds that are absorbed by «different» organs<br><em><strong>OR</strong></em><br>«chemically» binds to many biologically active compounds ✔</p>
<p>excreted quickly «from body» ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>store until material becomes inactive/radiation levels drop ✔</p>
<p>dispose with other waste<br><em><strong>OR</strong></em><br>dispose in landfills ✔</p>
<p><br><em>Only award M2 if M1 correct.</em></p>
<p><em>Accept “dispose by incineration” for M2.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Alternative 1:</em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>N</mi><mo>=</mo><msub><mi>N</mi><mn>0</mn></msub><mo>(</mo><mn>0</mn><mo>.</mo><mn>5</mn><msup><mo>)</mo><mfrac><mi>t</mi><msub><mi>t</mi><mrow><mn mathvariant="italic">1</mn><mo mathvariant="italic">/</mo><mn mathvariant="italic">2</mn></mrow></msub></mfrac></msup><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn></mrow></mfenced><mfrac><mrow><mn>48</mn><mo>.</mo><mn>0</mn></mrow><mrow><mn>6</mn><mo>.</mo><mn>03</mn></mrow></mfrac></msup></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi mathvariant="normal">N</mi><mo>=</mo><mo>»</mo><mn>4</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p><br><em>Alternative 2:</em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi>λ</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mrow><mn>6</mn><mo>.</mo><mn>03</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>115</mn><mo>«</mo><msup><mi>hr</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>N</mi><mo>=</mo><msub><mi>N</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>t</mi></mrow></msup><mo>=</mo><mn>1</mn><mo>.</mo><mn>00</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup><mo>×</mo><msup><mi>e</mi><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>115</mn><mo>×</mo><mn>48</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>4</mn><mo>.</mo><mn>01</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo> </mo><mo>«</mo><mi>mol</mi><mo>»</mo></math> ✔</p>
<p><br><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered. Most were able to state that gamma radiation is emitted from technetium-99m. The most common incorrect answer was beta radiation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some excellent answers were seen for this question; often candidates were hitting four of the assigned marking points, though a few candidates confused diagnosis and radiotherapy. Nearly everyone got a mark for "short half-life", however. This question was much better answered than in previous sessions.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, this question caught out several candidates and the marks varied from zero to one to two. To score full marks, candidates first had to state that the proper disposal of low-level radioactive waste (LLW) in hospitals involves storing the material until such time as radiation levels drop. Then the material can be disposed of in landfills for example. A number failed to outline the first point and some also mixed up LLW with HLW.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The question on half-life was very well answered and nearly all scored full marks, often via different methods of calculation of the amount of technetium-99m remaining after a period of 48 HRS.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Consider the structures of medicinal molecules in section 37 of the data booklet.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how zanamivir works as a preventative agent against flu viruses.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Circle the side-chain in penicillin on the structure below.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="331" height="208"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain, with reference to the action of penicillin, why new penicillins with different side-chains need to be produced.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>S<span class="fontstyle0">tate and explain the relative solubility of codeine in water compared to morphine and diamorphine.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the natural source from which codeine, morphine and diamorphine are obtained. </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Circle </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">chiral carbons in the section of the Taxol structure below.</span></p>
<p style="text-align: center;"><span class="fontstyle0"><img src=""></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«drug» blocks/inhibits «viral» enzyme/neuraminidase/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>NA</mi></math> «activity» ✔</p>
<p>prevents virus from leaving/escaping host cells «thus cannot infect other cells» ✔</p>
<p><br><em>Do <strong>not</strong> accept other anti-viral methods (as question is specific to Zanamivir).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="339" height="215"> ✔</p>
<p><em>Accept a circle that does not surround the amido group.</em></p>
<p><em>Do <strong>not</strong> accept a circle that only surrounds the phenol group.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bacterial resistance «to older penicillins/antibiotics» ✔</p>
<p>prevent penicillinase/beta-lactamase/enzyme in bacterium to deactivate/open penicillin/beta-lactam ring ✔</p>
<p><br><em>Accept “antibiotic resistant bacteria” but <strong>not</strong> “antibiotic resistance” for M1.</em></p>
<p><em>Accept “reduce allergic reactions from penicillin” for M2.</em></p>
<p><em>Award <strong>[1 max]</strong> for “increased efficiency” <strong>OR</strong> “increased stability in GIT”. </em></p>
<p><em>Do <strong>not </strong>accept “bacteria develop tolerance”.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>codeine less soluble «in water» than morphine <em><strong>AND</strong></em> more soluble than diamorphine<br><em><strong>OR</strong></em><br>morphine > codeine > diamorphine «in terms of solubility in water» ✔</p>
<p>more/stronger/greater <span style="text-decoration: underline;">hydrogen/H bonding</span> «due to more hydroxyl groups leads to greater solubility» ✔</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>opium poppy/plants/seeds ✔</p>
<p><em>Accept “poppy” <strong>OR</strong> “opioid”.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="252" height="212"></p>
<p>any two chiral carbons identified ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>In this question candidates were required to describe how the mixture can be separated by fractional distillation. Only the better candidates scored both marks, though most gained at least one mark, usually for stating that the most volatile component is collected first. Many did not convey the idea that there is continuous evaporation and condensation in the process or the fact that the temperature decreases up the fractionating column.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most were able to circle the side-chain in penicillin. Common errors included circling only the phenolic group, the four-membered ring or the five-membered ring.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered though many lost M1 for stating "antibiotic resistance" instead of mentioning "bacterial resistance".</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only the better candidates were able to state and explain the relative solubility of codeine in water compared to morphine and diamorphine. The majority scored M1 for the correct order of relative solubility. Few gave a comprehensive explanation outlining that there is greater hydrogen bonding due to more hydroxyl groups, which results in greater solubility.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The natural source from which codeine, morphine and diamorphine are obtained had to be stated. Most scored the single mark here for "poppy". Common errors included "willow tree" or "opium" alone, which was not deemed sufficient to score the mark.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The idea of a chiral carbon was very well understood and nearly all scored the mark for identifying any two chiral carbons in Taxol.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Nuclear radiation is dangerous because of its ability to damage cells but it can also be used in nuclear medicine.</p>
</div>
<div class="specification">
<p>Iodine-131 is released in nuclear explosions but is used in scanners for thyroid cancer. The half-life of iodine-131 is 8.02 days.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Yttrium-90 is used in treating certain cancers.</p>
<p>Formulate a nuclear equation for the beta decay of yttrium-90.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lutetium-177 is a common isotope used for internal radiation therapy.</p>
<p>Suggest why lutetium-177 is an ideal isotope for the treatment of certain cancers based on the type of radiation emitted.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rate constant, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>, in day<sup>−1</sup>, for the decay of iodine-131 using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time, in days, for 90% of the sample to decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A breathalyser measures the blood alcohol content from a breath sample. Formulate half-equations for the reactions at the anode (negative electrode) and the cathode (positive electrode) in a fuel cell breathalyser.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><sup>90</sup>Y → <sup>90</sup>Zr + β<sup>–</sup></p>
<p> </p>
<p><em>Accept β, e or e<sup>–</sup>.</em><br><em>Accept <sup>90</sup>Y → <sup>90</sup>Zr + β<sup>– </sup>+ v</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta-radiation/emission <em><strong>AND</strong></em> targets tumour/cancer cells<br><em><strong>OR</strong></em><br>beta-radiation/emission <em><strong>AND</strong></em> limited damage to healthy cells/tissues<br><em><strong>OR</strong></em><br>beta-radiation/emission <em><strong>AND</strong></em> produces «small amount of» gamma-rays «for visualizing tumours/monitoring treatment»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda \left( { = \frac{{\ln 2}}{{{t_{\frac{1}{2}}}}} = \frac{{0.693}}{{8.02{\text{ }}day}}} \right) = 8.64 \times {10^{ - 2}}/0.0864">
<mi>λ</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mn>0.693</mn>
</mrow>
<mrow>
<mn>8.02</mn>
<mrow>
<mtext> </mtext>
</mrow>
<mi>d</mi>
<mi>a</mi>
<mi>y</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>8.64</mn>
<mo>×</mo>
<mrow>
<msup>
<mn>10</mn>
<mrow>
<mo>−</mo>
<mn>2</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mo>/</mo>
</mrow>
<mn>0.0864</mn>
</math></span> «day<sup>−1</sup>»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em><br>«<em>N</em><sub>0</sub> = initial amount = 100%»</p>
<p><em>N</em> «= 100 – 90» = 10% at time <em>t</em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ln \left( {\frac{{100}}{{10}}} \right) = 2.303 = 0.0864t">
<mi>ln</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>2.303</mn>
<mo>=</mo>
<mn>0.0864</mn>
<mi>t</mi>
</math></span>»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{2.303}}{{0.0864{\text{ da}}{{\text{y}}^{ - 1}}}} = ">
<mi>t</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mn>2.303</mn>
</mrow>
<mrow>
<mn>0.0864</mn>
<mrow>
<mtext> da</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>y</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 26.7 «days»</p>
<p> </p>
<p><em>Accept 26.6 or 27 «days»</em><br><em>Award [2] for correct final answer.</em></p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>«N<sub>t</sub> = N<sub>0</sub>(0.5)<sup>n</sup> where n = number of half-lives»</p>
<p>10 = 100(0.5)<sup>n</sup></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\log \left( {\frac{1}{{10}}} \right) = n \times \log \,0.5">
<mi>log</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mn>10</mn>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>n</mi>
<mo>×</mo>
<mi>log</mi>
<mspace width="thinmathspace"></mspace>
<mn>0.5</mn>
</math></span>»</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" - 1 = n\left( { - 0.301} \right)/n = \frac{1}{{0.301}}">
<mo>−</mo>
<mn>1</mn>
<mo>=</mo>
<mi>n</mi>
<mrow>
<mo>(</mo>
<mrow>
<mo>−</mo>
<mn>0.301</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mo>/</mo>
</mrow>
<mi>n</mi>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.301</mn>
</mrow>
</mfrac>
</math></span>»</p>
<p>«<em>t</em> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{1}{{0.301}} \times 8.02 = ">
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mrow>
<mn>0.301</mn>
</mrow>
</mfrac>
<mo>×</mo>
<mn>8.02</mn>
<mo>=</mo>
</math></span>» 26.6 «days»</p>
<p> </p>
<p><em>Accept 26.7 or 27 «days»</em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Anode (negative electrode):</em> C<sub>2</sub>H<sub>5</sub>OH + H<sub>2</sub>O → CH<sub>3</sub>COOH + 4H<sup>+</sup> + 4e<sup>–</sup></p>
<p><em>Cathode (positive electrode):</em> O<sub>2</sub> + 4H<sup>+</sup> + 4e<sup>–</sup> → 2H<sub>2</sub>O</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Targeted Alpha Therapy (TAT) is a technique that involves using alpha-radiation to treat leukemia and other dispersed cancers.</p>
</div>
<div class="specification">
<p>Yttrium-90 and lutetium-177 are used in radiotherapy.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why alpha-radiation is particularly suitable for this treatment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the alpha-radiation in TAT is directed to cancer cells.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of radiation emitted by these two radioisotopes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the one-step decay of yttrium-90.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of lutetium-177 is 6.75 days. Calculate the percentage remaining after 27 days.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>more damaging than other radiation types<br><em><strong>OR</strong></em><br>very damaging to «cancer» cells<br><em><strong>OR</strong></em><br>high ionizing density «of alpha particles»</p>
<p>absorbed within a very short range of emission<br><em><strong>OR</strong></em><br>causes little damage to surrounding tissues</p>
<p> </p>
<p><em>Accept “high ionizing power «of alpha particles»” for M1. </em></p>
<p><em>Accept “low penetrating power «of alpha particles»” for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«radioactive isotope/radionuclide/alpha-emitter» administered using carrier drug/protein/antibodies</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>beta/β «radiation»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{39}^{90}Y \to {}_{40}^{90}Zr + \beta ">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>39</mn>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
</msubsup>
<mi>Y</mi>
<mo stretchy="false">→</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>40</mn>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
</msubsup>
<mi>Z</mi>
<mi>r</mi>
<mo>+</mo>
<mi>β</mi>
</math></span></p>
<p> </p>
<p><em>Accept "</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{ - 1}^{\;\,0}e/e/{e^ - }">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thickmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mi>e</mi>
<mrow>
<mo>/</mo>
</mrow>
<mi>e</mi>
<mrow>
<mo>/</mo>
</mrow>
<mrow>
<msup>
<mi>e</mi>
<mo>−</mo>
</msup>
</mrow>
</math></span><em>" <strong>OR</strong> "</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{ - 1}^{\;\,0}\beta /{\beta ^ - }">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mspace width="thickmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
</mrow>
</msubsup>
<mi>β</mi>
<mrow>
<mo>/</mo>
</mrow>
<mrow>
<msup>
<mi>β</mi>
<mo>−</mo>
</msup>
</mrow>
</math></span><em>"</em></p>
<p><em>Accept ECF from (b) (i) if incorrect radiation identified, eg, </em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{39}^{90}Y \to _{37}^{86}Rb + _2^4He">
<msubsup>
<mi></mi>
<mrow>
<mn>39</mn>
</mrow>
<mrow>
<mn>90</mn>
</mrow>
</msubsup>
<mi>Y</mi>
<msubsup>
<mo stretchy="false">→</mo>
<mrow>
<mn>37</mn>
</mrow>
<mrow>
<mn>86</mn>
</mrow>
</msubsup>
<mi>R</mi>
<mi>b</mi>
<msubsup>
<mo>+</mo>
<mn>2</mn>
<mn>4</mn>
</msubsup>
<mi>H</mi>
<mi>e</mi>
</math></span></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>ALTERNATIVE 1:</strong><br>«4 half-lives»<br>6.25 «%»</p>
<p><strong>ALTERNATIVE 2:</strong><br>«<em>N<sub>t</sub></em> = <em>N<sub>0</sub></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {0.5} \right)^{\frac{t}{{{t_{1/2}}}}}} = 100{\left( {0.5} \right)^{\frac{{27}}{{6.75}}}} = ">
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mi>t</mi>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mn>1</mn>
<mrow>
<mo>/</mo>
</mrow>
<mn>2</mn>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
<mn>100</mn>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mn>0.5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mrow>
<mn>27</mn>
</mrow>
<mrow>
<mn>6.75</mn>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
<mo>=</mo>
</math></span>» 6.25 «%»</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Aspirin is formed by reacting salicylic acid with ethanoic anhydride. The structure of aspirin is given in section 37 of the data booklet.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="404" height="144"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the structural formula of the by-product of this reaction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Aspirin crystals are rinsed with water after recrystallization to remove impurities.<br>Suggest why </span><span class="fontstyle2"><strong>cold</strong> </span><span class="fontstyle0">water is used.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The solubility of aspirin is increased by converting it to an ionic form. Draw the structure of the ionic form of aspirin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Comment on the risk of overdose when taking aspirin as an analgesic, referring to the following values, for a person weighing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>70</mn><mo> </mo><mi>kg</mi></math>:</span></p>
<p><span class="fontstyle0">Minimum therapeutic dose <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo><mi mathvariant="normal">g</mi></math></span></p>
<p><span class="fontstyle0">Estimated minimum lethal dose <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mn>15</mn><mo> </mo><mi mathvariant="normal">g</mi></math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how IR spectroscopy can be used to distinguish aspirin from salicylic acid.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="404" height="204"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em><strong>OR</strong></em></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi>CH</mi><mn>3</mn></msub><mi>COOH</mi></math> ✔</p>
<p><br><em>Accept full <strong>OR</strong> condensed structural formula.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to avoid dissolving the crystals/aspirin ✔</p>
<p><em>Accept “to avoid loss of product” <strong>OR </strong>“aspirin is less soluble in cold water”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">✔</p>
<p><br><em>Accept a positive metal ion next to the <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mi>O</mi><msup><mi>O</mi><mo mathvariant="italic">-</mo></msup></math> such as “<math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><msup><mi>a</mi><mo>-</mo></msup><mo mathvariant="italic">/</mo><msup><mi>K</mi><mo mathvariant="italic">+</mo></msup></math>”.</em></p>
<p><em>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><mi>O</mi><mi>N</mi><mi>a</mi><mo>/</mo><mo>−</mo><mi>O</mi><mi>K</mi></math>” without showing the charges.</em></p>
<p><em>Accept notations such as “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>C</mi><mi>O</mi><msup><mi>O</mi><mo>-</mo></msup></math>” <strong>OR</strong> “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>C</mi><mi>O</mi><mi>O</mi><mi>N</mi><mi>a</mi></math>” <strong>OR</strong> “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>C</mi><mi>O</mi><mi>O</mi><mi>K</mi></math>” but not “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><msup><mi>O</mi><mo>-</mo></msup></math>” <strong>OR</strong> “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>O</mi><mi>N</mi><mi>a</mi></math>” <strong>OR</strong> “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi><mi>O</mi><mi>K</mi></math>”.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>low/medium risk «of overdosing» <em><strong>AND</strong> </em>«estimated» lethal dose is <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>30</mn></math> times/much larger than therapeutic dose <em><strong>OR</strong></em><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>30</mn></math> times the dose results in chance of dying ✔</p>
<p><em>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn mathvariant="italic">30</mn></math> and low/medium risk due to large therapeutic index”.</em><br><em>Do <strong>not</strong> accept “low/medium risk <strong>AND</strong> large therapeutic window”.</em><br><em>Do <strong>not</strong> accept “<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn mathvariant="italic">30</mn></math> times the dose” alone for the mark.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>salicylic acid contains absorption in the range <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3200</mn><mo>−</mo><mn>3600</mn><mo> </mo><mo>«</mo><msup><mi>cm</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p>due to phenol/hydroxyl/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>OH</mi></math> group not present in aspirin ✔</p>
<p><br><em>Award <strong>[2]</strong> for “additional <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>H</mi></math> «stretch» in IR for salicylic acid at higher wavenumber than corresponding <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>O</mi><mi>H</mi></math> «stretch» in aspirin” <strong>OR</strong> “aspirin has two absorption bands/one stronger absorption band in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">1700</mn><mo mathvariant="italic">–</mo><mn mathvariant="italic">1750</mn><mo mathvariant="italic"> </mo><mo mathvariant="italic">«</mo><mi>c</mi><msup><mi>m</mi><mrow><mo mathvariant="italic">–</mo><mn mathvariant="italic">1</mn></mrow></msup><mo mathvariant="italic">»</mo></math>while salicylic acid has one/weaker absorption band in that region”.</em></p>
<p><em>Award <strong>[1 max]</strong> for “fingerprint regions will be different for both”.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to deduce a correct structural formula (either full or condensed) for ethanoic acid. A minority did not read the question fully and gave the structure of aspirin instead of the by-product of the reaction. Another incorrect answer cited as the by-product was water.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many were unable to explain why aspirin should be washed with cold water, namely, to avoid dissolving crystals. Surprisingly, the incorrect term "melt" was frequently used instead of "dissolve".</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A drawing of the structure of the ionic form of aspirin was required for this question. This question was poorly answered by a significant number of candidates, and lots of basic chemical errors were seen, such as incorrect valencies, writing RCO- instead of RCOO-, showing a cationic structure instead of an anionic structure etc. A couple of candidates also lost the mark by drawing square brackets with a negative charge both inside and outside the bracket.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Few scored this mark. Most knew the overdose risk was low but referred to a large therapeutic window instead of a large therapeutic index. Many also did not quantify the therapeutic index by working out that the estimated lethal dose is actually 30 times the therapeutic dose.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question which asked for an explanation of how IR spectroscopy can be used to distinguish aspirin from salicyclic acid was generally very well answered. The majority stated that salicyclic acid contains an absorption in the IR spectrum in the 3200-3600 cm<sup>-1</sup> range due to the phenolic OH group, which is not present in aspirin. A few stated that aspirin has a methyl group and hence the CH stretch will appear in the 2850-3090 cm<sub>-1</sub> region of the IR spectrum in aspirin (using Section 26 of the Data Booklet) which will not appear in the corresponding IR spectrum for salicyclic acid. This is somewhat incorrect as in salicyclic acid the benzene ring will also have CH bonds and the CH stretch for the benzene ring will occur in a similar region of the IR spectrum (as indicated in Section 26 of the Data Booklet) and hence cannot be used to distinguish fully between the two structures per se if using the Data Booklet range. Of course, in practice the alkyl CH stretch would be at a slightly lower wavenumber (e.g. 2850-2950 cm<sup>-1</sup>) in the IR spectrum compared to the aromatic CH stretch (3030 cm<sup>-1</sup>), but virtually no candidate gave this type of precise detail.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Some drugs are extracted from natural sources and others are synthetic.</p>
</div>
<div class="question">
<p>Explain the role of the chiral auxiliary in the synthesis of Taxol.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any three of:</em></p>
<p>chiral auxiliary is optically active</p>
<p>is attached to non-optically active/non-chiral substrate</p>
<p>creates stereochemical condition necessary to follow a certain pathway</p>
<p>allows only the required enantiomer to form «so avoids need to separate a racemic mixture»</p>
<p><em><strong>[Max 3 Marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Taxol was originally obtained from the bark of the Pacific yew tree.</p>
<p>Outline how Green Chemistry has improved the process of obtaining Taxol.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two of:</em></p>
<p>stripping the bark kills Pacific yew tree</p>
<p> </p>
<p>plant cell fermentation <strong>«</strong>and extraction<strong>»</strong>/PCF technology/use of plant cell cultures/Taxol <strong>«</strong>precursors<strong>» </strong>produced by biosynthesis/fungi/yeast/e-coli/use of natural enzymes <strong>«</strong>more sustainable process<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>Taxol produced semi-synthetically/Taxol from 10-DAB/10-deacetylbaccatin </p>
<p> </p>
<p>uses renewable resources</p>
<p><strong><em>OR</em></strong></p>
<p>use <strong>«</strong>needles/leaves/twigs of<strong>» </strong>European/common yew/yew from Himalayas</p>
<p> </p>
<p><strong>«</strong>sustainable<strong>» </strong>process has eliminated <strong>«</strong>high proportion of<strong>» </strong>hazardous chemicals/waste</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>sustainable<strong>» </strong>process has eliminated several solvents/<strong>«</strong>sustainable<strong>» </strong>process uses greener solvents/<strong>«</strong>sustainable<strong>» </strong>process recycles/reuses solvents</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>sustainable<strong>» </strong>process has eliminated several <strong>«</strong>drying<strong>» </strong>steps/<strong>«</strong>sustainable<strong>»</strong> process has eliminated lots of the work-up after the synthesis</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>sustainable<strong>» </strong>process has increased energy efficiency</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>sustainable<strong>» </strong>process has no intermediates</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>sustainable<strong>» </strong>process uses more efficient catalysts</p>
<p> </p>
<p><em>Accept “Pacific yew rare/slowgrowing/</em><em>takes 100/200 years to mature” </em><em>for M1.</em></p>
<p><em>Accept “synthesis of Taxol using chiral </em><em>auxiliaries increases efficiency of process </em><em>as single enantiomer formed” for M4.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Radioisotopes can be used to treat a wide variety of diseases.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phosphorous-32 undergoes beta decay. Formulate a balanced nuclear equation for this process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of phosphorus-32 is 14.3 days. Calculate the mass, in g, of <sup>32</sup>P remaining after 57.2 days if the initial sample contains 2.63 × 10<sup>−8</sup> mol. Use table 1 of the data booklet and <em>M</em><sub>r</sub> = 31.97 g mol<sup>−1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the targeted alpha therapy (TAT) technique and why it is useful.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><sup>32</sup>P → <sup>32</sup>S + <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{-1}^0">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
</math></span>β </p>
<p> </p>
<p><em>Accept “e</em><sup><em>–</em></sup><em>/e/β” instead of “</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="_{-1}^0">
<msubsup>
<mi></mi>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
</math></span><em>β</em><em>”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><strong>«</strong>λ = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{14.3}}">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>14.3</mn>
</mrow>
</mfrac>
</math></span> =<strong>» </strong>0.04847 <strong>«</strong>day<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong><em>m</em>(<sup>32</sup>P) = 2.63 × 10<sup>–8</sup> mol × 31.97 g mol<sup>–1</sup> × <em>e</em><sup>–0.04847 × 57.2</sup> =<strong>» </strong>5.26 × 10<sup>–8</sup> <strong>«</strong>g<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{57.2}}{{14.3}}">
<mfrac>
<mrow>
<mn>57.2</mn>
</mrow>
<mrow>
<mn>14.3</mn>
</mrow>
</mfrac>
</math></span> =<strong>» </strong>4 <strong>«</strong>half-lives passed<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong><em>n</em>(<sup>32</sup>P) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.63 \times {{10}^{ - 8}}{\text{ mol}}}}{{{2^4}}}">
<mfrac>
<mrow>
<mn>2.63</mn>
<mo>×</mo>
<mrow>
<msup>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mo>−</mo>
<mn>8</mn>
</mrow>
</msup>
</mrow>
<mrow>
<mtext> mol</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<msup>
<mn>2</mn>
<mn>4</mn>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =<strong>» </strong>1.64 × 10<sup>–9</sup> <strong>«</strong>mol<strong>»</strong></p>
<p> </p>
<p><strong>«</strong><em>m</em>(<sup>32</sup>P) = 1.64 × 10<sup>–9</sup> mol × 31.97 g mol<sup>–1</sup> =<strong>» </strong>5.26 × 10<sup>–8</sup> <strong>«</strong>g<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Accept any value in the range </em><em>“5.24–5.26 ×</em><em> </em><em>10</em><sup><em>–8 </em></sup><em>«g»”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alpha-emitting isotopes/<sup>212</sup>Pb/<sup>225</sup>Ac attached to drugs/antibodies/chelating ligands/carriers</p>
<p> </p>
<p><em>Award </em><strong><em>[2 max] </em></strong><em>for any two of:</em></p>
<p>absorbed by <strong>«</strong>cancer/growing<strong>» </strong>cells</p>
<p><strong><em>OR</em></strong></p>
<p>bind to <strong>«</strong>cancer/growing<strong>» </strong>cell receptors</p>
<p> </p>
<p>alpha particles have high ionizing density/power</p>
<p> </p>
<p>short-range of emission <strong>«</strong>of alpha-particles<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>healthy tissues less affected <strong>«</strong>as slower cell growth<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>local effect <strong>«</strong>on dispersed/spread/metastasised cancers<strong>»</strong></p>
<p> </p>
<p><em>Accept “radionuclide” for “isotope”.</em></p>
<p><em>Accept “alpha particles are highly </em><em>ionizing”.</em></p>
<p><em>Accept “alpha particles have low </em><em>penetrating power”.</em></p>
<p><em>Accept “used to treat </em><em>dispersed/spread/metastasised cancers” </em><strong><em>OR </em></strong><em>“can be used to map the distribution of </em><em>cancer cells in the body”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lutetium-177 is used in radiotherapy. It emits beta radiation when it decays.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a nuclear equation to show the decay of lutetium-177.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of lutetium-177 is 6.73 days. Determine the percentage of a sample of lutetium-177 remaining after 14.0 days.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the low environmental impact of most medical nuclear waste.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{71}^{177}{\text{Lu}} \to {}_{71}^{177}{\text{Hf}} + {}_{ - 1}^0{\text{e}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
<mrow>
<mn>177</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Lu</mtext>
</mrow>
<mo stretchy="false">→</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>71</mn>
</mrow>
<mrow>
<mn>177</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Hf</mtext>
</mrow>
<mo>+</mo>
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mn>0</mn>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span> «+ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\nu ">
<mi>ν</mi>
</math></span>»</p>
<p>Hf</p>
<p>correct <em>A</em> and <em>Z</em> <em><strong>AND</strong> </em>beta product</p>
<p><em>Accept “β/ β<sup>–</sup>/e/e<sup>–</sup>” for “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{-1}^{~0}{\text{e}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
<mrow>
<mtext> </mtext>
<mn>0</mn>
</mrow>
</msubsup>
<mrow>
<mtext>e</mtext>
</mrow>
</math></span>”.</em></p>
<p><em>Accept “<sup>177</sup>Lu → <sup>177</sup>Hf + e<sup>–</sup> «+ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\nu ">
<mi>ν</mi>
</math></span>»”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of half-lives = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{t}{{{t_{^{\frac{1}{2}}}}}}">
<mfrac>
<mi>t</mi>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<msup>
<mi></mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> = 2.08</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{N\left( t \right)}}{{{N_0}}} = {0.5^{\frac{{14.0}}{{6.73}}}}">
<mfrac>
<mrow>
<mi>N</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mn>0.5</mn>
<mrow>
<mfrac>
<mrow>
<mn>14.0</mn>
</mrow>
<mrow>
<mn>6.73</mn>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = ">
<mi>λ</mi>
<mo>=</mo>
</math></span> «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{ln}}2}}{{{t_{^{\frac{1}{2}}}}}} = \frac{{{\text{ln}}2}}{{6.73}} = ">
<mfrac>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mn>2</mn>
</mrow>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<msup>
<mi></mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msup>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>ln</mtext>
</mrow>
<mn>2</mn>
</mrow>
<mrow>
<mn>6.73</mn>
</mrow>
</mfrac>
<mo>=</mo>
</math></span>» 0.103 «day<sup>–1</sup>»</p>
<p><em><strong>OR</strong></em></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{N\left( t \right)}}{{{N_0}}} = {e^{ - 0.103\, \times 14.0}}">
<mfrac>
<mrow>
<mi>N</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−</mo>
<mn>0.103</mn>
<mspace width="thinmathspace"></mspace>
<mo>×</mo>
<mn>14.0</mn>
</mrow>
</msup>
</mrow>
</math></span></p>
<p>23.6 «%»</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>emits weak ionising radiation</p>
<p><em><strong>OR</strong></em></p>
<p>low activity/radioactivity</p>
<p>can be stored until material becomes inactive <em><strong>AND</strong> </em>then disposed with normal waste</p>
<p>«isotopes» have short lives</p>
<p><em><strong>OR</strong></em></p>
<p>exist for a short period of time</p>
<p><em>Award <strong>[1 max]</strong> for “low-level waste/LLW”.</em></p>
<p><em><strong>[Max 2 Marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">A mixture of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> ethanal, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>0</mn><mo>.</mo><mn>100</mn><mo> </mo><mi>mol</mi></math> ethanol and <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>0</mn><mo>.</mo><mn>200</mn><mo> </mo><mi>mol</mi></math> ethanoic acid is fractionally distilled.</span></p>
<p><span class="fontstyle0"><img style="display: block; margin-left: auto; margin-right: auto;" src=""></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the mole fraction of ethanal in the mixture.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The vapour pressure of pure ethanal at </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>20</mn><mo>°</mo><mi mathvariant="normal">C</mi></math><span class="fontstyle0"> is <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>101</mn><mo> </mo><mi>kPa</mi></math>.</span></p>
<p><span class="fontstyle0">Calculate the vapour pressure of ethanal above the liquid mixture at <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>20</mn><mo>°</mo><mi mathvariant="normal">C</mi></math></span><span class="fontstyle0">.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Describe how this mixture is separated by fractional distillation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">χ</mi><mi>ethanal</mi></msub><mo>=</mo><mfrac><mrow><mn>0</mn><mo>.</mo><mn>100</mn></mrow><mrow><mn>0</mn><mo>.</mo><mn>100</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>100</mn><mo>+</mo><mn>0</mn><mo>.</mo><mn>200</mn></mrow></mfrac><mo>=</mo><mo>»</mo><mn>0</mn><mo>.</mo><mn>250</mn></math> ✔</p>
<p><br><em>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">25</mn><mo mathvariant="italic">%</mo></math>”.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><msub><mi mathvariant="normal">ρ</mi><mi>ethanal</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>250</mn><mo>×</mo><mn>101</mn><mo>=</mo><mo>»</mo><mn>25</mn><mo>.</mo><mn>3</mn><mo>«</mo><mi>kPa</mi><mo>»</mo></math> ✔</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>continuous evaporation and condensation<br><em><strong>OR</strong></em><br>increased surface area in column helps condensation ✔<br><em>Accept “glass «beads» aid condensation «in fractionating column»”.</em></p>
<p>temperature decreases up the fractionating column ✔</p>
<p>liquids condense at different heights<br><em><strong>OR</strong></em><br>liquid of lowest boiling point collected first<br><em><strong>OR</strong></em><br>liquid with weakest intermolecular forces collected first<br><em><strong>OR</strong></em><br>most volatile component collected first<br><em><strong>OR</strong></em><br>fractions/liquids collected in order of boiling point/volatility ✔<br><em>Accept “liquids collected in order of molar mass”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question involving Raoult's Law was very well answered and most were able to calculate the mole fraction of ethanal in the mixture (0.250) and the corresponding vapour pressure of ethanal above the liquid mixture at 20 °C (25.3 kPa). There was one G2 comment on this question. One teacher stated that the diagram shows four fractions but the stem of the question specifically states only three components and hence the fourth test tube is not required. The teacher commented that some students may have been distracted by this. </p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question involving Raoult's Law was very well answered and most were able to calculate the mole fraction of ethanal in the mixture (0.250) and the corresponding vapour pressure of ethanal above the liquid mixture at 20 °C (25.3 kPa). There was one G2 comment on this question. One teacher stated that the diagram shows four fractions but the stem of the question specifically states only three components and hence the fourth test tube is not required. The teacher commented that some students may have been distracted by this. </p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In this question candidates were required to describe how the mixture can be separated by fractional distillation. Only the better candidates scored both marks, though most gained at least one mark, usually for stating that the most volatile component is collected first. Many did not convey the idea that there is continuous evaporation and condensation in the process or the fact that the temperature decreases up the fractionating column.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Ethanol slows down the reaction time of a driver leading to traffic accidents. Explain how the concentration of ethanol in a sample of breath can be determined using a fuel cell breathalyser.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>ethanol is oxidized «to ethanoic acid»</p>
<p><em><strong>OR</strong></em></p>
<p>electrons are released</p>
<p>current/potential proportional to concentration «of ethanol»</p>
<p><em><strong>OR</strong></em></p>
<p>current compared to a reference «to determine concentration»</p>
<p><em>Accept “ethanol reacts with oxygen” for M1.</em></p>
<p><em>Accept “voltage” for “potential”.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Taxol is produced using a chiral auxiliary. Describe how the chiral auxiliary functions to produce the desired product.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>chiral molecule/auxiliary/optically active species added/connected/attached «to non-chiral starting molecule to force reaction to follow a certain path»</p>
<p>one enantiomer produced<br><em><strong>OR</strong></em><br>chiral auxiliary creates stereochemical condition «necessary to follow a certain pathway»<br><em><strong>OR</strong></em><br>stereochemical induction<br><em><strong>OR</strong></em><br>existing chiral centre affects configuration of new chiral centres</p>
<p>«after new chiral centre created» chiral auxiliary removed «to obtain desired product»</p>
<p><em><strong>[3 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Aspirin is one of the most widely used drugs in the world.</p>
</div>
<div class="specification">
<p>Aspirin was synthesized from 2.65 g of salicylic acid (2-hydroxybenzoic acid) (<em>M</em><sub>r</sub> = 138.13) and 2.51 g of ethanoic anhydride (<em>M</em><sub>r</sub> = 102.10).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two</strong> absorbances, other than the absorbances due to the ring structure and C–H bonds, that would be present in the infrared (IR) spectrum of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> techniques, other than IR spectroscopy, which could be used to confirm the identity of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>2500–3000 «cm<sup>–1</sup>» / «absorbance» due to O–H in carboxyl</p>
<p>1700–1750 «cm<sup>–1</sup>» / «absorbance» due to C=O in carboxyl/ethanoate</p>
<p>1050–1410 «cm<sup>–1</sup>» / «absorbance» due to C–O bond in carboxyl/ethanoate</p>
<p> </p>
<p><em>Accept “carboxylic acid” for “carboxyl”, “acetate/ester” for “ethanoate”.</em></p>
<p><em>Accept specific wavenumber once within indicated range.</em></p>
<p><em>Do <strong>not</strong> award mark if reference is made to an alcohol/ether.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>melting point</p>
<p>mass spectrometry/MS</p>
<p>high-performance liquid chromatography/HPLC</p>
<p>NMR/nuclear magnetic resonance</p>
<p>X-ray crystallography</p>
<p>elemental analysis</p>
<p> </p>
<p><em>Accept “spectroscopy” instead of “spectrometry” where mentioned but <strong>not</strong> “spectrum”.</em></p>
<p><em>Accept “ultraviolet «-visible» spectroscopy/UV/UV-Vis”.</em></p>
<p><em>Do <strong>not</strong> accept “gas chromatography/GC”.</em></p>
<p><em>Accept “thin-layer chromatography/TLC” as an alternative to “HPLC”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic solvents are commonly used in the pharmaceutical industry.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hexane and propanone have vapour pressures of 17 kPa and 24 kPa respectively at 20 °C.</p>
<p>Calculate the vapour pressure, in kPa, at 20 °C of a mixture containing 60% hexane and 40% propanone by mole fraction, using Raoult’s law and assuming the mixture is ideal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how hexane and propanone may be separated by fractional distillation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>vapour pressure = 0.6 × 17 + 0.4 × 24 =<strong>»</strong></p>
<p>19.8 <strong>«</strong>kPa<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>different molar masses</p>
<p><strong><em>OR</em></strong></p>
<p>different strength of intermolecular forces</p>
<p> </p>
<p>different boiling points</p>
<p>temperature in <strong>«</strong>fractionating<strong>» </strong>column decreases upwards</p>
<p> </p>
<p><strong>«</strong>components<strong>» </strong>condense at different temperatures/heights</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>component with<strong>» </strong>lower boiling point leaves column first</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about antiviral drugs.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Oseltamivir, used for the treatment of severe flu, is inactive until converted in the liver to its active carboxylate form.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a circle around the functional group that can be converted to the carboxylate by hydrolysis.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="407" height="286"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The resulting active metabolite of oseltamivir can be detected by mass spectrometry (MS) analysis.</span></p>
<p><span style="background-color: #ffffff;">Deduce the mass of the expected carboxylate ion.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">M<sub>r</sub> oseltamivir = 312</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a reason for using a phosphate salt of oseltamivir in oral tablets.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Anti-HIV drugs, such as zidovudine, often become less effective over time.</span></p>
<p><span style="background-color: #ffffff;">Explain the development of resistant virus strains in the presence of antiviral drugs.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<p> </p>
<p><em><strong><span style="background-color: #ffffff;">Note: </span></strong></em><span style="background-color: #ffffff;"><em>Accept circles that include the alkyl side</em> chain.</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">283 <strong>[✔]</strong></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">more soluble «in water» <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">viruses undergo «rapid» mutation <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">mutation causes a change in viral protein<br><em><strong>OR</strong></em><br>drug no longer binds to virus <strong>[✔]</strong></span></p>
<p> </p>
<p><em><strong>Note: </strong><span style="background-color: #ffffff;">Accept “rapid reproduction «allows resistant viruses to multiply»”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Required candidates to identify the functional group in a diagram of the structure of oseltamivir that can be converted to a carboxylate by hydrolysis. This was very challenging with many varied parts of the structure circled. Many circled the amide group. Candidates who selected the ester had to be careful to not include the ring structure as well.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The challenge continued where the expected mass of the carboxylate ion was required. Some candidates chose values that exceeded the molar mass of oseltamivir itself, and some chose 45. There were very few correct answers.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates referred correctly to increased solubility of the salt in water while some mentioned bioavailability but did not realize that a salt will also form in the stomach.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored the first marking point when explaining the development of resistant virus strains but almost no-one scored the second mark. Many candidates were confused between bacteria and viruses and gave explanations about bacterial resistance and natural selection.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Taxol is a chiral cancer drug which is synthesized using a chiral auxiliary.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows part of a Taxol molecule in skeletal form.</p>
<p><img src=""></p>
<p>Draw a circle around each chiral carbon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how chiral auxiliaries are used to synthesize the desired enantiomer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the process of solvent extraction by which Taxol is isolated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Do <strong>not </strong>penalize any other notation (eg *) used for a circle.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chiral auxiliary creates stereochemical condition necessary to follow a certain pathway</p>
<p><em><strong>OR</strong></em></p>
<p>stereochemical induction</p>
<p><em><strong>OR</strong></em></p>
<p>existing chiral centre affects configuration of new chiral centres ✔</p>
<p> </p>
<p>chiral molecule/auxiliary/optically active species is used/added/connected to the starting molecule «to force reaction to follow a certain path»</p>
<p><em><strong>OR</strong></em></p>
<p>«after new chiral centre created» chiral auxiliary removed «to obtain desired product» ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>immiscible solvents ✔</p>
<p>partitioning of Taxol between the two solvents</p>
<p>Taxol more soluble in one solvent ✔</p>
<p>extraction carried out multiple times «to improve extraction» ✔</p>
<p>shaking/stirring the mixture ✔</p>
<p>separating the two layers ✔</p>
<p>evaporation of the solvent from the final solution «to obtain pure Taxol» ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Technetium-99m, a widely used radionuclide, has a half-life of 6.0 hours and undergoes gamma decay to technetium-99.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Most of the nuclear waste generated in a hospital is low-level waste (LLW).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the percentage of technetium-99m remaining after 24.0 hours.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Technetium-99 decays further, emitting beta radiation. Formulate the equation for the decay of technetium-99.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline what is meant by low-level waste.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the disposal of LLW.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Magnetic resonance imaging (MRI) is an application of NMR technology using radiowaves.</span></p>
<p><span style="background-color: #ffffff;">Suggest why MRI is much less dangerous than imaging techniques such as X-rays and radiotracers. Use section 3 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>Alternative 1</strong></em><br>half-lives = « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{24}}{{6.0}}">
<mfrac>
<mrow>
<mn>24</mn>
</mrow>
<mrow>
<mn>6.0</mn>
</mrow>
</mfrac>
</math></span> =» 4.0 <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«N(t) (%) = 100(0.5)<sup>4</sup> =» 6.3 «%» <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “6.25 «%»”.</span></em></p>
<p><span style="background-color: #ffffff;"><br><em><strong>Alternative 2</strong></em><br><em>λ =</em>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{{t_{\frac{1}{2}}}}} = \frac{{\ln 2}}{{6.0}}">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mn>6.0</mn>
</mrow>
</mfrac>
</math></span>» 0.116 hour<sup>–1</sup> <strong><em>OR</em></strong> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{N_t}}}{{{N_0}}}">
<mfrac>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mi>t</mi>
</msub>
</mrow>
</mrow>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span>=e<sup>–0.116 × 24</sup> <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">6.3 «%» <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><sup>99</sup>Tc → <sup>99</sup>Ru + β<sup>–</sup></span></p>
<p><span style="background-color: #ffffff;"><br>Ru <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">mass number of Ru <em><strong>AND</strong> </em>beta product <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “e/e<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>/<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{0}{{ - 1}}">
<mfrac>
<mn>0</mn>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</mfrac>
</math></span> e<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">”</span> for “<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">β</span><sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</sup>”.</span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">small/low amounts of radiation <em><strong>AND</strong> </em>for a short time <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “weakly ionizing radiation” instead of “small amounts of radiation”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “short half-lives” instead of “for a short time”.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">stored in shielded containers until radiation level drops «to a safe level» <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lower frequency/longer wavelength/lower energy<br><em><strong>OR</strong></em><br>does not use ionizing radiation/radionuclides <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Do <strong>not</strong> accept “does not cause cancer”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly determined the % of technetium-99m remaining after 24.0 hours. Some candidates did not read the question properly and forgot to convert to a percentage.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A common incorrect answer was to give Tc as a product or to give an incorrect symbol for beta radiation. Most candidates scored a mark for the correct mass number of the product and beta radiation.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Low level nuclear waste was poorly outlined with many superficial responses. Many candidates only gave half the required answer.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Outlining the disposal of LLW was also challenging with many candidates saying that it should be put in a container without saying the container should be shielded.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Suggesting why MRI is less dangerous than using X-rays and radiotracers was mostly answered well, but some candidates were confused and linked longer wavelengths with higher energy.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Excess acid in the stomach can cause breakdown of the stomach lining.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how ranitidine (Zantac) inhibits stomach acid production.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> advantages of taking ranitidine instead of an antacid which neutralizes excess acid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Some antacids contain carbonates.</span></p>
<p><span style="background-color: #ffffff;">Determine the pH of a buffer solution which contains 0.160 mol dm<sup>−3</sup> CO<sub>3</sub><sup>2−</sup> and 0.200 mol dm<sup>−3</sup> HCO<sub>3</sub><sup>−</sup>, using section 1 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">p<em>K</em><sub>a</sub> (HCO<sub>3</sub><sup>−</sup>) = 10.32</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">blocks/binds H2/histamine receptors «in cells of stomach lining»<br><em><strong>OR</strong></em><br>prevents histamine molecules binding to H2/histamine receptors «and triggering acid secretion» <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>ranitidine can be effective in treating ulcers «but antacid is not» <strong>[✔]</strong><br>ranitidine can prevent long-term damage «from overproduction of acid and antacid does not» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>ranitidine has a long-term effect «and antacid has short-term effect only» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>ranitidine does not affect ionic balance in body «and antacid does» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>ranitidine does not produce bloating/flatulence <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="font-size: 14px;"><em> <span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note</strong></span><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">:</strong> Accept “ranitidine stops the over production of acid in the stomach while antacids neutralise the excess acid<br>giving temporary relief” for M2.</span></em></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«pH = p<em>K</em><sub>a</sub> <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" + \log \frac{{[{{\text{A}}^ - }]}}{{[{\text{HA]}}}} = 10.32 + \log \frac{{0.160}}{{0.200}} = 10.32 - 0.097">
<mo>+</mo>
<mi>log</mi>
<mo></mo>
<mfrac>
<mrow>
<mo stretchy="false">[</mo>
<mrow>
<msup>
<mrow>
<mtext>A</mtext>
</mrow>
<mo>−</mo>
</msup>
</mrow>
<mo stretchy="false">]</mo>
</mrow>
<mrow>
<mo stretchy="false">[</mo>
<mrow>
<mtext>HA]</mtext>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mn>10.32</mn>
<mo>+</mo>
<mi>log</mi>
<mo></mo>
<mfrac>
<mrow>
<mn>0.160</mn>
</mrow>
<mrow>
<mn>0.200</mn>
</mrow>
</mfrac>
<mo>=</mo>
<mn>10.32</mn>
<mo>−</mo>
<mn>0.097</mn>
</math></span>»<br>«pH =»10.22 <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Some candidates were not confident enough in their answers to receive a mark while others confused the action of ranitidine which blocks H2 receptors with omeprazole which is a proton pump inhibitor.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>While most candidates were awarded at least one of the two marks possible for this question some of the descriptions were too vague or incomplete to receive a mark.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was generally a well-answered question. Most candidates who did not receive the mark inverted the concentration of the conjugate base/concentration of the acid in the calculation.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The structure of penicillin is shown in section 37 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the internal bond angles in the b-lactam ring and the expected bond angles in sp<sup>2</sup> and sp<sup>3</sup> hybridised atoms.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the open β-lactam ring kills bacteria.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the structure of penicillin can be modified to combat the effect of resistance caused by over prescription.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why human cells are not affected by penicillin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept “109º”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«irreversibly» binds/bonds to enzyme/transpeptidase</p>
<p><em><strong>OR</strong></em></p>
<p>inhibits enzyme/transpeptidase «in bacteria» that produces cell walls</p>
<p><em><strong>OR</strong></em></p>
<p>prevents cross-linking of bacterial cell walls ✔</p>
<p> </p>
<p>cells absorb water <em><strong>AND</strong> </em>burst</p>
<p><em><strong>OR</strong></em></p>
<p>cells cannot reproduce ✔</p>
<p> </p>
<p><em>Accept “reacts with” for “bonds to” for M1.</em></p>
<p><em>Do <strong>not</strong> accept “cell membrane” for “cell wall” for M1.</em></p>
<p><em>Accept “cells burst due to osmotic pressure” for M2.</em></p>
<p><em>Accept “bacteria” for “cells” for M2.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«modify» side-chain ✔</p>
<p> </p>
<p><em>Accept “«modify» R”.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no cell walls</p>
<p><em><strong>OR</strong></em></p>
<p>humans do not have transpeptidase ✔</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;"><em>Staphylococcus aureus</em> (<em>S. aureus</em>) infections have been successfully treated with penicillin and penicillin derivatives.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the feature in penicillin responsible for its antibiotic activity.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The widespread use of penicillin and its derivatives has led to the appearance of resistant <em>S. aureus</em> strains.</span></p>
<p><span style="background-color: #ffffff;">Outline how these bacteria inactivate the antibiotics.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how the structure of penicillin has been modified to overcome this resistance.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«four-membered» beta-lactam ring <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept a diagram showing a structural representation of the beta-lactam ring.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">produce penicillinase/enzyme that deactivates penicillin <strong>[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">side-chain changed «preserving beta-lactam ring» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “R group changed”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the feature in penicillin responsible for its antibiotic activity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates could outline how bacteria inactivate the antibiotics.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Outlining how the structure of penicillin has been modified was less well answered, with many candidates referring to functional groups rather than the side chain or R group.</p>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Methadone is a synthetic opiate administered as a racemic mixture to treat strong pain and morphine or heroin dependence.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="246" height="205"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the chiral carbon atom using an asterisk, *.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Enantiomers can be identified using a polarimeter. Outline how this instrument differentiates the enantiomers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="221" height="177"> <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«plane-»polarized light passed through sample <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br>analyser/second polarizer determines angle of rotation of plane of plane-polarized light<br><em><strong>OR</strong></em><br>each enantiomer rotates plane «of plane-polarized light» in opposite directions «by the same angle» <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Some candidates had difficulty identifying the chiral carbon in a methadone structure, with quite a few varied answers. However, many managed to mark the correct carbon.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very poorly answered. Few scored any marks at all when outlining how a polarimeter can be used to differentiate between enantiomers. Many referred to the light or the enantiomers themselves being rotated.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Taxol is a drug that was once obtained from yew trees and is now produced using chiral auxiliaries.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Examine the synthesis of taxol in terms of green chemistry criteria.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the operation of a polarimeter used to distinguish between enantiomers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>produced by genetically engineered/modified bacteria/<em>E. coli</em><br><em><strong>OR</strong></em><br>sustainable because synthesized and not obtained from yew trees <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">chiral auxiliaries «isolated and» reused <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">one enantiomer produced <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">toxicity/recycling of solvents/materials used <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">overall yield/atom economy/waste generated <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>«plane-» polarized light<br><em><strong>OR</strong></em><br>light passes through polarizer/polarizing filter <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">enantiomers rotate plane of «plane-» polarized light «by equal angles» in opposite directions <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">measure angle/direction of rotation <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The synthesis of taxol in terms of green chemistry criteria invited varied responses. While some candidates were precise in their answers but others lost focus and wrote something about green chemistry.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The operation of a polarimeter to distinguish between enantiomers was generally well handled by the candidates while some missed stating to measure the angle/direction of rotation.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Antiviral medications have recently been developed for some viral infections.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> way in which antiviral drugs work.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss <strong>two</strong> difficulties associated with solving the AIDS problem.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>alter cell’s genetic material so that virus cannot use it to multiply <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">prevent viruses from multiplying by blocking enzyme activity within host cell<br><em><strong>OR</strong></em><br>inhibit the synthesis of viral components by blocking enzymes inside the cell <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">prevent viruses from entering «host» cell<br><em><strong>OR</strong></em><br>bind to cellular receptors targeted by viruses<br><em><strong>OR</strong></em><br>bind to virus-associated proteins/VAPs which target cellular receptors<br><em><strong>OR</strong></em><br>prevents removal of protein coat/capsid<br><em><strong>OR</strong></em><br>prevents injection of viral DNA/RNA into cell <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">prevent/hinder the release of viruses from the cell <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept “prevents synthesis of virus by host cell”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “alters RNA/DNA/genetic material of virus”. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept just “mimics nucleotides”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of</em>:<br>viruses lack cell structure so difficult to target with drugs <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">HIV is a retrovirus<br><em><strong>OR</strong></em><br>HIV genetic material is in the form of RNA instead of DNA <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">HIV affects/destroys helper/T-cells which are necessary to fight infection <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">HIV has great genetic diversity so difficult to produce «a» vaccine <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">anti-retroviral agents are expensive so not everyone/country can afford them <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">socio-cultural issues deter people from seeking treatment/prevention/diagnosis<br><em><strong>OR</strong></em><br>lack of education/conversation/stigma associated with being HIV-positive <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">mutation of virus/HIV <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">virus/HIV metabolism linked to that of host cell <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">drugs harm host cell as well as virus/HIV <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">HIV difficult to detect/remains dormant <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Candidates responded fairly well to this question. Candidates who did not receive a mark were either too vague or discussed anti-bacterial methods.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were awarded at least one of the two marks possible for this question. Some student responses were too vague or discussed the social and political issues surrounding the AIDS crisis. There were also some responses, which only talked about AIDS extensively with no mention of the virus.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Taxol is an anticancer drug.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State the feature of Taxol that is a major challenge in its synthesis. Use section 37 of the data booklet.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Describe how the challenge in (a) was resolved by pharmaceutical companies.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">numerous stereoisomers/chiral carbons/chiral centres/stereocentres/optical isomers ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept exact number of chiral carbons ie 11, but do <strong>not</strong> accept just “chiral”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">chiral auxiliaries/molecule binds to reactant blocking one reaction site «by steric hindrance»<br><em><strong>OR</strong></em><br>asymmetric synthesis / enantioselective catalysis «producing a specific enantiomer»<br><em><strong>OR</strong></em><br>biosynthesis / genetically modified bacteria/microorganisms ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “use of a chiral auxiliary leading to «the synthesis of» the desired enantiomer”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student synthesized aspirin, acetylsalicylic acid, in a school laboratory.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="209" height="272"></span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">0.300 g of crude aspirin was dissolved in ethanol and titrated with sodium hydroxide solution, NaOH (aq).</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">NaOH (aq) + C<sub>9</sub>H<sub>8</sub>O4 (in ethanol) → NaC<sub>9</sub>H<sub>7</sub>O<sub>4</sub> (aq) + H<sub>2</sub>O (l)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict <strong>one</strong> absorption band present in an infrared (IR) spectrum of aspirin, using section 26 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the mass of aspirin which reacted with 16.25 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> NaOH solution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the percentage purity of the synthesized aspirin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how aspirin can be chemically modified to increase its solubility in water.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State why aspirin should not be taken with alcohol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>1050–1410 «cm<sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>1</sup> due to C–O» <strong>[✔]</strong><br>1700<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>1750 «cm<sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>1</sup> due to C=O in acids and esters» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>2500<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>3000 «cm<sup style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>1</sup> due to O–H in acids» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>2850<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>3090 «cm<sup><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–</span>1</sup> due to C–H in alkanes and arenes» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">n(aspirin) «= n(NaOH) = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{16.25{\text{ c}}{{\text{m}}^3}}}{{{\text{1000}}}}">
<mfrac>
<mrow>
<mn>16.25</mn>
<mrow>
<mtext> c</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mn>3</mn>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>1000</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> × 0.100 mol dm<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">–3</span> »= 1.625 × 10<sup>–3</sup> «mol» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">m(aspirin) «= 1.625 × 10<sup>–3</sup> mol × 180.17 g mol<sup>–1</sup> »= 0.293 «g» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award<strong> [2] </strong>for correct final answer.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.293{\text{ g}}}}{{{\text{0}}{\text{.300 g}}}}">
<mfrac>
<mrow>
<mn>0.293</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>0</mtext>
</mrow>
<mrow>
<mtext>.300 g</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> × 100 % »= 97.7 «%» <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">convert to a salt<br><em><strong>OR</strong></em><br>react with sodium hydroxide <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept other reactions forming soluble salts.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “to ionize” but <strong>not</strong> “more polar”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">synergistic effect/increased toxicity<br><em><strong>OR</strong></em><br>increased risk of stomach/intestines bleeding/ulcers/heartburn<br><em><strong>OR</strong></em><br>increased risk of liver toxicity/damage<br><em><strong>OR</strong></em><br>increased risk of nausea/vomiting <strong>[✔]</strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was a very well answered question. Even weak candidates were able to identify one correct absorption band present in an infrared spectrum of aspirin.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates were able to calculate the mass of aspirin correctly.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates were able to calculate the percentage purity of aspirin correctly although some managed an ECF mark.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part was reasonably answered by most candidates.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part was well answered by the majority of the candidates.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Opiates are strong analgesics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why diamorphine (heroin) crosses the blood–brain barrier more easily than morphine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the meaning of the bioavailability of a drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>blood-brain barrier is hydrophobic/non-polar/made of lipids ✔</p>
<p>morphine has hydroxyl/OH «groups»/is more polar <em><strong>AND</strong> </em>diamorphine has ester/ethanoate/OCOCH<sub>3</sub>/acetate «groups»/is less polar/is lipid soluble ✔</p>
<p> </p>
<p><em>Accept “fats” for “lipid”.</em></p>
<p><em>Accept “alcohol/hydroxy” for “hydroxyl” but <strong>not </strong>“hydroxide”.</em></p>
<p><em>Accept “non-polar” for “less polar” in M2.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fraction/proportion/percentage of «administered dosage» enters blood/plasma/circulation ✔</p>
<p> </p>
<p><em>Accept “fraction/proportion/percentage of «administered dosage» that reaches target «part of human body»”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Opium and its derivatives have been used for thousands of years as strong analgesics.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how opiates act to provide pain relief.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss how the difference in structure of two opiates, codeine and morphine, affect their ability to cross the blood–brain barrier. Use section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«temporarily» bond/bind to «opioid» receptors in the brain/CNS <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">block the transmission of pain impulses <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«codeine crosses blood–brain barrier more easily» morphine has more hydroxyl/OH «groups than codeine» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">codeine/ether group is less polar<br><em><strong>OR</strong></em><br> hydroxyl/OH «groups in morphine» H-bond to water <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award<strong> [1 max] </strong>if no statement or an incorrect statement about the blood–brain barrier.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The question asked candidates to explain how opiates provide pain relief. This was difficult and was poorly answered by many. As this has been asked many times over the years, it would be an advantage to candidates to practise answering past examination questions.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The explanation that required a discussion of the difference in structure of codeine and morphine, and how this affects their ability to cross the blood-brain barrier was challenging. Many scored for saying “codeine is less polar”. Some also scored for saying that “morphine has more hydroxyl groups” but others provided less detail and could not be awarded any marks.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Nuclear isotopes are used in the treatment of cancer.</p>
</div>
<div class="specification">
<p>Gamma radiation is also used in radiotherapy.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Alpha particles are more damaging to human cells than any other nuclear radiation and yet they are used in targeted alpha therapy (TAT).</p>
<p>Explain how TAT is relatively safe to use in the treatment of dispersed cancers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Technetium-99m (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{43}^{99{\text{m}}}{\text{Tc}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>99</mn>
<mrow>
<mtext>m</mtext>
</mrow>
</mrow>
</msubsup>
<mrow>
<mtext>Tc</mtext>
</mrow>
</math></span>) has a half-life of 6.0 hours. Calculate the percentage of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{43}^{99{\text{m}}}{\text{Tc}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>43</mn>
</mrow>
<mrow>
<mn>99</mn>
<mrow>
<mtext>m</mtext>
</mrow>
</mrow>
</msubsup>
<mrow>
<mtext>Tc</mtext>
</mrow>
</math></span> remaining in a sample of the radioisotope after two days.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the percentage of technetium-99m remaining in the human body two days after injection will be lower than that calculated in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«alpha emitter» carried to/selectively absorbed by cancer cells «by antibody, carrier drug, protein» ✔</p>
<p> </p>
<p>low penetrating power</p>
<p><em><strong>OR</strong></em></p>
<p>short range ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept just “targets cancer cells and does not affect healthy cells”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{40}}{{6.0}}">
<mfrac>
<mrow>
<mn>40</mn>
</mrow>
<mrow>
<mn>6.0</mn>
</mrow>
</mfrac>
</math></span> =» 8 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{t_{\frac{1}{2}}}">
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</math></span>/8 half-lives «required» ✔</p>
<p>% remaining = «(0.5)<sup>8</sup> × 100 =» 0.39 «%» ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p><em>λ</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.693}}{{6.0}}">
<mfrac>
<mrow>
<mn>0.693</mn>
</mrow>
<mrow>
<mn>6.0</mn>
</mrow>
</mfrac>
</math></span> =» 0.1155 ✔</p>
<p>% remaining = «100 × <em>e</em><sup>–0.1155 × 48</sup> =» 0.39 «%» ✔</p>
<p> </p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Accept “0.32 «%»” in <strong>ALTERNATIVE 2</strong>.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>removed by excretion ✔</p>
<p> </p>
<p><em>Accept any method of excretion.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Many drugs, including aspirin, penicillin, codeine and taxol, have been modified from compounds that occur naturally.</p>
</div>
<div class="question">
<p>Many drugs are chiral. Explain how a polarimeter can be used to determine the relative proportion of two enantiomers.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>«</strong>pure<strong>»</strong> enantiomers rotate the plane <strong>«</strong>of plane-<strong>»</strong>polarized light <strong>«</strong>by equal angles<strong>» </strong>in opposite directions</p>
<p> </p>
<p><em>Any two of:</em></p>
<p>find angle of rotation of pure enantiomers</p>
<p>measure angle of rotation of mixture</p>
<p>mixture has angle between that of two enantiomers</p>
<p>ratio of angles gives purity</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Mild heartburn is treated with antacids such as calcium carbonate.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate an equation for the neutralization of stomach acid with calcium carbonate, CaCO<sub>3</sub> (s).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Acid secretion can be regulated by other types of drugs such as omeprazole and ranitidine. Outline how each of these drugs acts to reduce excess stomach acid.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Omeprazole:</span></span></p>
<p>Ranitidine<span style="background-color: #ffffff;"><span style="background-color: #ffffff;">:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">CaCO<sub>3</sub> (s) + 2HCl (aq) → CO<sub>2</sub> (g) + CaCl<sub>2</sub> (aq) + H<sub>2</sub>O (l) <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept balanced ionic equations involving “H<sup>+</sup>” or “H<sub>3</sub>O<sup>+</sup>”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “H<sub>2</sub>CO<sub>3</sub>”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Omeprazole</em>:<br>inhibits enzyme/«gastric» proton pump «which secretes H<sup>+</sup> ions into gastric juice» <br><em><strong>OR<br></strong> </em>inhibits the H<sup>+</sup>/K<sup>+</sup>-ATPase system <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br><em>Ranitidine</em>:<br>inhibits/blocks H2/histamine receptors «in cells of stomach lining»<br><em><strong>OR</strong></em><br>prevents histamine binding to H2/histamine receptors «and triggering acid secretion» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “H2-receptor antagonist” for M2.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Responses were mixed with some candidates easily writing an equation for the neutralization of stomach acid with CaCO<sub>3</sub>. Others failed to score for having incorrect products such as H<sub>2</sub>CO<sub>3</sub> or CaCl, or for using sulfuric acid instead of hydrochloric for stomach acid.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates correctly outlined how drugs such as omeprazole and ranitidine regulate acid secretion.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Medicines and drugs are tested for effectiveness and safety.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between therapeutic window and therapeutic index in humans.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Therapeutic window:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Therapeutic index:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why diamorphine (heroin) is more potent than morphine using section 37 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Therapeutic window:</em><br>range of dosage «over which a drug» provides the therapeutic/desired effect without causing adverse/toxic effects <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Therapeutic index</em>:<br>toxic dose of drug for 50 % of population divided by minimum effective dose for 50 % of population<br><em><strong>OR</strong></em><br><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{TD50}}}}{{{\text{ED50}}}}">
<mfrac>
<mrow>
<mrow>
<mtext>TD50</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>ED50</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> <strong>[✔]</strong></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><strong><em>Note</em>: </strong><em>M1 may be scored from a correctly labelled diagram.</em></span></p>
<p><span style="background-color: #ffffff;"><em>Do <strong>not</strong> accept reference to lethal dose used in therapeutic index in animal studies.</em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">morphine has «two» hydroxyl groups <em><strong>AND</strong> </em>diamorphine has «two» ester/ethanoate/acetate groups<br><em><strong>OR</strong></em><br>molecule of diamorphine is less polar than morphine<br><em><strong>OR</strong></em><br>groups in morphine are replaced with less polar/non-polar groups in diamorphine <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«less polar molecules» cross the blood–brain barrier faster/more easily<br><em><strong>OR</strong></em><br>diamorphine is more soluble in non-polar environment of CNS/central nervous system than morphine <strong>[✔]</strong></span></p>
<p> </p>
<p><em><strong>Note: </strong><span style="background-color: #ffffff;">Accept “alcohol/hydroxy” for “hydroxyl” but not “hydroxide”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “fats” for “lipid”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “heroin” for “diamorphine”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates receive one mark for this question, mainly for the therapeutic window. Some candidates inverted the ratio as ED50/TD50 for therapeutic index.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part was reasonably well answered with some very good answers.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A number of drugs have been developed to treat excess acidity in the stomach.</p>
</div>
<div class="question">
<p>Outline how ranitidine (Zantac) functions to reduce stomach acidity.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Blocks/binds H2-histamine receptors «in cells of stomach lining»<br><em><strong>OR</strong></em><br>prevents histamine molecules binding to H2-histamine receptors «and triggering acid secretion»</p>
<p> </p>
<p><em>Accept “H2 receptor antagonist”</em></p>
<p><strong><em>[1 mark]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Technetium-99m, Tc-99m, is a gamma-ray emitter commonly used as a medical tracer.</span></p>
<p><span style="background-color: #ffffff;">Its half-life is 6.0 hours.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Evaluate the suitability of technetium-99m for this use.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the percentage of technetium-99m remaining after 10.0 hours. Use section 1 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>can be readily “tagged” to variety of biologically active carriers «which will deliver it to specific locations for imaging uses» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">frequency of radiation is compatible with existing X-ray detection apparatus <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">product of decay has low radioactivity/relatively short half-life/low total exposure to patient <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«but small» increased risk of cancer to patient <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">must be made on site <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept other valid answers outlining advantages or limitations of Tc-99m, such as “produces only LLW”, “Tc is a transition element forming compounds in a variety of oxidation states”, “gamma-radiation «can escape the body and» be detected by external sensors”, “activity decreases quickly, so dose must be calculated prior to each injection”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{N(t)}}{{{N_0}}} = {\left( {\frac{1}{2}} \right)^{\frac{{10}}{{6.0}}}}">
<mfrac>
<mrow>
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>t</mi>
<mo stretchy="false">)</mo>
</mrow>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
<mo>=</mo>
<mrow>
<msup>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mfrac>
<mrow>
<mn>10</mn>
</mrow>
<mrow>
<mn>6.0</mn>
</mrow>
</mfrac>
</mrow>
</msup>
</mrow>
</math></span></span><em> </em><strong>[</strong><span style="background-color: #ffffff;"><strong>✔]</strong><br>31 «% remaining» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><strong>✔]</strong></span></p>
<p> </p>
<p><em><strong><span style="background-color: #ffffff;">ALTERNATIVE 2</span></strong></em></p>
<p><em><strong><span style="background-color: #ffffff;"><em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">λ <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span>= </em></span></strong></em><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{{t_{\frac{1}{2}}}}}">
<mfrac>
<mrow>
<mi>ln</mi>
<mo></mo>
<mn>2</mn>
</mrow>
<mrow>
<mrow>
<msub>
<mi>t</mi>
<mrow>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</mrow>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">»</span>= 0.1155 hours<sup>–1</sup></span><strong><span style="background-color: #ffffff;"> [</span><span style="background-color: #ffffff;">✔</span></strong><strong><span style="background-color: #ffffff;">]</span></strong></p>
<p><em><strong><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{N}{{{N_0}}}">
<mfrac>
<mi>N</mi>
<mrow>
<mrow>
<msub>
<mi>N</mi>
<mn>0</mn>
</msub>
</mrow>
</mrow>
</mfrac>
</math></span> × 100 = e<sup>–<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">λ</span>t</sup> ×100 = 0.31498 × 100»</span></span></strong></em></p>
<p><em><strong><span style="background-color: #ffffff;"><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">31 «% remaining» </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[</strong><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">✔]</strong></span></strong></em></p>
<p> </p>
<p><span style="font-size: 14px;"><em><strong><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note</strong></span></strong><strong><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">: </strong></span></strong><span style="background-color: #ffffff;">M1 is for correct substitution of values.</span></em></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;">Award</span><strong><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> [2]</strong></span></strong><span style="background-color: #ffffff;"> for correct final answer.</span></em></span></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The most frequent response was the short half-life, followed by the emission and detection of gamma radiation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to calculate the percentage of technetium-99m correctly.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Codeine, morphine and diamorphine (heroin) are derived from opium.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Explain why diamorphine has greater potency than morphine.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Experimental research on both animals and humans contributes to the development of pharmaceuticals.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State the meaning of the term therapeutic index in human studies.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>morphine has «two» hydroxyl «groups» <em><strong>AND</strong> </em>diamorphine has «two» ester/ethanoate/acetate «groups» ✔<br></span></p>
<p><em>NOTE: Accept “heroin” for “diamorphine”. </em><br><em>Accept formulas. </em><br><em>Accept “hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide”. </em><br><em>Accept “acyl” for “ester «groups»”.</em><span style="background-color: #ffffff;"><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">morphine is more polar than diamorphine<br><em><strong>OR</strong></em><br>groups in morphine are replaced with less polar/non-polar groups in diamorphine ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Do <strong>not</strong> accept just “diamorphine is non-polar” for M2.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">morphine is «more» soluble in blood «plasma»<br><em>NOTE: Accept “water” for “blood”.</em><br><em><strong>OR</strong></em><br>diamorphine is «more» soluble in lipids<br><em>NOTE: Accept “fats” for “lipid”.</em><br><em><strong>OR</strong></em><br>diamorphine is more soluble in non-polar environment of CNS/central nervous system than morphine ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">diamorphine crosses the blood–brain barrier/BBB «easily» ✔</span></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">toxic dose for 50% of population divided by «minimum» effective dose for 50 % of population ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “TD50/ED50”.<br>Reference to 50% required.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The presence of alcohol in the breath can be detected using a breathalyzer.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how a fuel cell breathalyser works.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Alcohol levels in the breath can also be determined using IR spectroscopy.</span></p>
<p><span style="background-color: #ffffff;">Suggest, giving a reason, which bond’s absorbance is most useful for detecting ethanol in breath.</span></p>
<p>Bond: </p>
<p>Reason:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of</em>:<br>ethanol «in breath» is oxidized «to ethanoic acid» <strong>[✔]</strong><br>electrons pass through external circuit/meter <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>«to cathode where» O<sub>2</sub> is reduced <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>current is proportional to alcohol concentration <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>Accept equations for oxidation of ethanol or reduction of oxygen.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Bond:</em><br>C–O<br><em><strong>OR</strong></em><br>C–H <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Reason</em>:<br>cannot use O–H bonds as in water «found in breath» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept “C–O/C–H «bonds in molecules in breath» most likely to be in ethanol”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> apply ECF here.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>While many scored the first marking point, full marks were rarely seen. Many candidates mixed up this and a dichromate breathalyser.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates incorrectly identified O-H, failing to realise it is unsuitable due to its abundant presence in the breath.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The discovery of penicillins contributed to the development of antibiotics.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the beta-lactam ring is responsible for the antibiotic properties of penicillin. Refer to section 37 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the impact of antibiotic waste on the environment.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a concern about the disposal of solvents from drug manufacturing.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss <strong>two</strong> difficulties, apart from socio-economic factors, associated with finding a cure for AIDS.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ring is «sterically» strained<br><em><strong>OR</strong></em><br>angles of 90° instead of 109.5/109/120° angles<br><em><strong>OR</strong></em><br>angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angle ✔</span></p>
<p><span style="background-color: #ffffff;">ring breaks up/opens/reacts «easily»<br><em><strong>OR</strong></em><br>amido/amide group «in ring» is «highly» reactive ✔</span></p>
<p><span style="background-color: #ffffff;">«irreversibly» binds/bonds to enzyme/transpeptidase<br><em><strong>OR</strong></em><br>inhibits enzyme/transpeptidase «in bacteria» that produces cell walls<br><em><strong>OR</strong></em><br>prevents cross-linking of «bacterial» cell walls ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept arguments using correct descriptions of hybridization for M1.<br>Do <strong>not</strong> accept "breaks/binds to cell walls" – a reference to the enzyme is needed for alternatives 1 and 2 for M3. <br>Do <strong>not</strong> accept "cell membrane" for "cell wall".</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«leads to bacterial» resistance «to antibiotics»<br><em><strong>OR</strong></em><br>destroys useful/beneficial bacteria<br><em><strong>OR</strong></em><br>useful/beneficial/less harmful bacteria replaced with «more» harmful bacteria ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “affects/disturbs micro-ecosystems”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>«most are» toxic «to living organisms»<br><em><strong>OR</strong></em><br>incomplete combustion/incineration can produce toxic products/dioxins/phosgene<br><em><strong>OR</strong></em><br>carcinogenic/can cause cancer ✔<br><em>NOTE: Do <strong>not</strong> accept “harmful to the environment”.</em><br></span></p>
<p><span style="background-color: #ffffff;">accumulate in groundwater<br><em><strong>OR</strong></em><br>have limited biodegradability ✔<br><em>NOTE: Do <strong>not</strong> accept just “pollutes water”.</em><br></span></p>
<p><span style="background-color: #ffffff;">cost of disposal ✔<br><em>NOTE: Do <strong>not</strong> accept “hazard of disposal”.</em><br></span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “ozone depletion” only if there is some reference to chlorinated solvents.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br></span></p>
<p><span style="background-color: #ffffff;">HIV difficult to detect/remains dormant ✔<br></span></p>
<p><span style="background-color: #ffffff;">HIV mutates rapidly/quickly ✔<br></span></p>
<p><span style="background-color: #ffffff;">HIV replicates rapidly/quickly ✔<br></span></p>
<p><span style="background-color: #ffffff;">HIV destroys «T-»helper cells/white blood cells/lymphocytes<br><em><strong>OR</strong></em><br>HIV attacks immune system ✔<br></span></p>
<p><span style="background-color: #ffffff;">HIV has several «significantly different» strains/subtypes ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “virus” for “HIV”.<br>Do <strong>not</strong> accept “AIDS mutates” without mention of the HIV/virus.<br>Penalize the use of “AIDS” for “HIV” once only.<br>Accept “HIV metabolism linked to that of host cell” <strong>OR</strong> “drugs harm host cell as well as HIV”.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Aspirin can be obtained from salicylic acid.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Additional information can be obtained from the <sup>1</sup>H NMR spectrum of aspirin.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="513" height="396"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Unreacted salicylic acid may be present as an impurity in aspirin and can be detected </span><span style="background-color: #ffffff;">in the infrared (IR) spectrum.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="484" height="225"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name the functional group and identify the absorption band that diff erentiates salicylic acid from aspirin. Use section 26 of the data booklet.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Name:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Absorption band:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the protons responsible for signals <strong>X</strong> and <strong>Y</strong> by marking them on the structure of aspirin in (a). Use section 27 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the splitting pattern of signals <strong>X</strong> and <strong>Y</strong>.</span></p>
<p> </p>
<p><strong><span style="background-color: #ffffff;">X:</span></strong></p>
<p><strong><span style="background-color: #ffffff;">Y:</span></strong></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Name</em>: <br>hydroxyl <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Absorption band:</em><br>3200–3600 «cm<sup>–1</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><strong>Note: </strong><span style="background-color: #ffffff;">Accept “phenol” <strong>OR</strong> “alcohol” but <strong>not</strong> “hydroxide”.</span><span style="background-color: #ffffff;"> </span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><span style="background-color: #ffffff;">correct <strong>X</strong> <strong>[✔]</strong><br>correct <strong>Y</strong> <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note: </strong>X and Y must be near the Hs.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><strong>X</strong>: singlet <em><strong>AND</strong> </em><strong>Y</strong>: singlet <strong> [✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates scored a mark for naming a functional group that differentiates salicylic acid from aspirin. Some incorrectly said ether or carboxylic acid. Many candidates also scored for identifying the absorption band although 1700-1750 was a popular incorrect answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was considerable confusion with indicating protons responsible for <sup>1</sup>H NMR signals. Often entire functional groups were circled or carbon atoms and not hydrogen atoms were circled.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There was also great difficulty in identifying the splitting pattern of the signals. It was rare to see both signals identified as singlets.</p>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Steroids are lipids with a steroidal backbone. The structure of cholesterol is shown in section 34 of the data booklet.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Infrared (IR) spectroscopy is used to identify functional groups in organic compounds.</span></p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="258" height="205"></p>
<p><span style="background-color: #ffffff;">Deduce the wavenumber, in cm<sup>−1</sup>, of an absorption peak found in the IR spectrum of testosterone but not in that of cholesterol.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe a technique for the detection of steroids in blood and urine.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how redox chemistry is used to measure the ethanol concentration in a breathalyser.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">1700−1750 «cm<sup>−1</sup>» ✔<br><em>NOTE: Accept a specific wavenumber value within range.</em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em> <br>sample/liquids vaporized «in oven/at high temperature» <br><em><strong>OR</strong> <br></em>sample injected into mobile phase/inert gas <br><em><strong>OR</strong> <br></em>nitrogen/helium/inert gas acts as mobile phase <br><em><strong>OR</strong> <br></em>sample carried by inert gas «through column» ✔<br><em>NOTE: Award <strong>[1 max]</strong> for identifying suitable technique (eg GC-MS etc.).<br>Do <strong>not</strong> accept just “gas”.<br>Accept description of HPLC using liquid mobile phase.</em><br></span></p>
<p><span style="background-color: #ffffff;">stationary phase consists of a packed column<br><strong><em>OR<br></em></strong>packing/solid support acts as stationary phase ✔<br><em>NOTE: Accept named stationary phase, such as «long-chain» hydrocarbon/polysiloxane/silica.</em><br></span></p>
<p><span style="background-color: #ffffff;">components separated by partition «between mobile phase and stationary phase» <br><em><strong>OR<br></strong></em> gases/liquids/components have different retention times/<em>R</em><sub>f</sub> <br><em><strong>OR<br></strong></em> gases/liquids/components move through tube/column at different speeds/rates ✔</span></p>
<p><span style="background-color: #ffffff;">detector/mass spectrometer/MS «at end of column» <br><em><strong>OR<br></strong></em> databases/library of known fragmentation patterns can be used ✔<br><em>NOTE: Accept “area under peak proportional to quantity/amount/concentration of component present «in mixture»”.</em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>oxidizing agent/«acidified» potassium dichromate(VI) converts ethanol to ethanoic acid ✔<br>colour change «from orange to green» is measured/analysed «using photocell» ✔</span></p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br>ethanol is oxidized to ethanoic acid «at anode and oxygen is reduced to water at cathode» ✔<br>current/voltage/potential is measured «by computer» <br><em><strong>OR</strong></em><br>current/voltage/potential is proportional to ethanol concentration ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept names or formulas for reagents.<br>Accept “«acidified» dichromate/Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup>” for “K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>”.<br>Award <strong>[1 max]</strong> for "Cr(VI) going to Cr(III) <strong>AND</strong> colour changing/colour changing from orange to green". <br>Do <strong>not</strong> penalize incorrect oxidation state notation here.<br>Accept "EMF" for "voltage".</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Scientists have developed various analytical techniques.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an analytical technique used to separate anabolic steroids from other compounds in an athlete’s urine or blood.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol in breath can be detected by a redox reaction. Outline this method of detection. An equation is not required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gas chromatography/GC</p>
<p><em><strong>OR</strong></em></p>
<p>high performance liquid chromatography/HPLC ✔ </p>
<p> </p>
<p><em>Accept “chromatography”, “TLC/thin-layer chromatography”, “paper chromatography” <strong>OR</strong> “extraction”.</em></p>
<p><em>Do <strong>not</strong> accept just “mass spectrometry/MS” but do <strong>not</strong> penalize any reference to MS with HPLC or GC (eg GC-MS).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1:</em></strong></p>
<p><em>Any two of:</em></p>
<p>«blow through tube of» acidified «orange» potassium dichromate(VI)/K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>/dichromate/Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup> ✔</p>
<p>Cr(VI)/Cr<sup>6+</sup>/Cr<sub>2</sub>O<sub>7</sub><sup>2–</sup> reduced to Cr(III)/Cr<sup>3+</sup>✔</p>
<p> </p>
<p>colour changes «from orange» to green</p>
<p><em><strong>OR</strong></em></p>
<p>colour change is monitored ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>oxygen reduced to water</p>
<p><em><strong>OR</strong></em></p>
<p>ethanol oxidized to ethanoic/acetic acid ✔</p>
<p> </p>
<p>current measured ✔</p>
<p> </p>
<p><em>Accept “ethanol oxidized to ethanal/acetaldehyde”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Viruses and bacteria both cause diseases and are frequently confused.</p>
</div>
<div class="question">
<p>Outline <strong>two</strong> different ways in which antiviral medications work.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two of:</em></p>
<p>prevents virus attaching to host cell ✔</p>
<p>alters cell’s genetic material/DNA «so that virus cannot use it to multiply» ✔</p>
<p>blocks enzyme activity in the host cell «so that virus cannot use it to multiply» ✔</p>
<p>prevents removal of protein coat/capsid ✔</p>
<p>prevents injection of viral DNA/RNA into cell ✔</p>
<p>prevents release of «replicated» viruses from host cell ✔</p>
<p> </p>
<p><em>Accept “prevents synthesis of virus by host cell”.</em></p>
<p><em>Accept “alters RNA/DNA/genetic material of virus”.</em></p>
<p><em>Do <strong>not</strong> accept just “mimics nucleotides”.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Nuclear medicine uses small amounts of radioisotopes to diagnose and treat some diseases.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>two</strong> common side effects of radiotherapy.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why technetium-99m is the most common radioisotope used in nuclear medicine.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">25.0 μg of iodine-131, with a half-life of 8.00 days, was left to decay.</span></p>
<p><span style="background-color: #ffffff;">Calculate the mass of iodine-131, in μg, remaining after 32.0 days. Use section 1 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>hair loss<br>fatigue<br>nausea<br>sterility<br>skin reaction<br>diarrhoea<br>vomiting<br>damage to lymph system<br>urinary/bladder changes<br>anxiety/emotional problems<br>joint/muscular stiffness<br>loss of appetite<br>sore/dry mouth<br>loss of weight<br><span style="text-decoration: underline;">secondary</span> cancer ✔</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>half-life is 6 hours/long enough for a scan to occur<br><em><strong>OR</strong></em><br>half-life short enough not to remain in body ✔<br><em>NOTE: Accept “short half-life so patient is not exposed to lots of ionizing radiation”.</em><br></span></p>
<p><span style="background-color: #ffffff;">decay releases «low energy» gamma rays<br><em><strong>OR</strong></em><br>gamma rays less likely to be absorbed by cells ✔</span></p>
<p><span style="background-color: #ffffff;">can form several «coordination» complexes ✔<br><em>NOTE: Accept "can exist in many oxidation states «so can form multiple complexes»" <strong>OR</strong> "chemically versatile «so can act as a tracer by bonding to several bioactive compounds»”.</em><br></span></p>
<p><span style="background-color: #ffffff;">«low-energy» radiation/gamma-rays can be detected by common X-ray equipment ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 1</strong></em><br>4 half-lives ✔<br>1.56 «μg of iodine-131 remain» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 2</strong></em><br><em>m</em> = 25.0 <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\left( {\frac{1}{2}} \right)^{\frac{{32.0}}{{8.00}}}}"><msup><mfenced><mfrac><mn>1</mn><mn>2</mn></mfrac></mfenced><mfrac><mn>32.0</mn><mn>8.00</mn></mfrac></msup></math></span> ✔<br>1.56 «μg of iodine-131 remain» ✔</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em><strong>ALTERNATIVE 3</strong></em><br><em>λ</em> = « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\ln 2}}{{8.00}}"><mfrac><mrow><mi>ln</mi><mo> </mo><mn>2</mn></mrow><mn>8.00</mn></mfrac></math></span> » = 8.66 × 10<sup>−2</sup> «da</span>y<sup>−1</sup><span style="background-color: #ffffff;">» ✔<br><em>m</em> = « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="25.0{\text{ }}{{\text{e}}^{ - 8.66 \times {{10}^{ - 2}} \times 32.0}} = "> <mn>25.0</mn> <mrow> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <mtext>e</mtext> </mrow> <mrow> <mo>−</mo> <mn>8.66</mn> <mo>×</mo> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </mrow> <mo>×</mo> <mn>32.0</mn> </mrow> </msup> </mrow> <mo>=</mo> </math></span> » 1.56 «μg of iodine-131 remain» ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Radiotherapy is one type of treatment for cancer.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how ionizing radiation destroys cancer cells.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how Targeted Alpha Therapy (TAT) is used for treating cancers that have spread throughout the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>radiation causes breaks in DNA chains</p>
<p><strong><em>OR</em></strong></p>
<p>radiation causes errors in DNA sequences</p>
<p> </p>
<p><strong>«</strong>damage accumulates and<strong>» </strong>cells cannot multiply</p>
<p>rapidly dividing/cancer cells more susceptible</p>
<p> </p>
<p><em>Accept “alters DNA”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>radiation source delivered directly to <strong>«</strong>targeted<strong>» </strong>cancer cells</p>
<p>by a carrier drug/protein/antibody</p>
<p>several sites in body can be targeted <strong>«</strong>at same time<strong>»</strong></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>