File "markSceme-SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Option B/markSceme-SL-paper3html
File size: 1.16 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>Amino acids are usually identified by their common names. Use section 33 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the IUPAC name for leucine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of amino acids is separated by gel electrophoresis at pH 6.0. The amino acids are then stained with ninhydrin.</p>
<p>(i) On the diagram below draw the relative positions of the following amino acids at the end of the process: Val, Asp, Lys and Thr.</p>
<p><img src=""></p>
<p>(ii) Suggest why glycine and isoleucine separate slightly at pH 6.5.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of different tripeptides that can be made from twenty different amino acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fibrous protein keratin has a secondary structure with a helical arrangement.</p>
<p>(i) State the type of interaction responsible for holding the protein in this arrangement.</p>
<p>(ii) Identify the functional groups responsible for these interactions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2-amino-4-methylpentanoic acid</p>
<p><em>Accept 4-methyl-2-aminopentanoic acid.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>Lys on cathode side <em><strong>AND</strong></em> Asp on anode side<br>Val at origin <em><strong>AND</strong></em> Thr on anode side but closer to origin than Asp</p>
<p><em>Val and Thr need not overlap.</em><br><em>Accept any (reasonable) size and demarcation of position so long as position relative to origin is correct.</em><br><em>Accept crosses for spots.</em><br><em>Award <strong>[1 max]</strong> for any two correct.</em><br><em>Award <strong>[1 max]</strong> if net direction of spots is reversed.</em><br><em>Award <strong>[1 max]</strong> if the four points are in the correct order but not in a straight line.</em></p>
<p> </p>
<p>ii</p>
<p>different sizes/molar masses/chain lengths «so move with different speeds»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«20<sup>3</sup> =» 8000</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>hydrogen bonds</p>
<p> </p>
<p>ii</p>
<p>carboxamide/amide/amido<br><em><strong>OR<br></strong></em>C=O <em><strong>AND</strong></em> N–H</p>
<p><em>Accept peptide.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbohydrates are energy-rich molecules which can be synthesized in some plant cells from inorganic compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the raw materials and source of energy used in the process described above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structures of two molecules, <strong>X</strong> and <strong>Y</strong>, are shown below.</p>
<p><img src=""></p>
<p>(i) Justify why both these molecules are carbohydrates.</p>
<p>(ii) Distinguish between these molecules in terms of their functional groups.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Amylose is an unbranched polysaccharide composed of repeating units of glucose.</p>
<p>(i) Draw the structure of the repeating unit of amylose. Use section 34 of the data booklet.</p>
<p>(ii) Amylose is a major component of starch. Corn starch can be used to make replacements for plastics derived from oil, especially for packaging. Discuss <strong>one</strong> potential advantage and <strong>one</strong> disadvantage of this use of starch.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CO<sub>2</sub> <em><strong>AND</strong></em> H<sub>2</sub>O <em><strong>AND</strong></em> sun</p>
<p><em>Accept names.</em><br><em>Accept “sunlight/light/photons” instead of “sun”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>both have formula C<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub><br><em><strong>OR</strong></em><br>both contain several OH/hydroxyl «groups» <em><strong>AND</strong></em> a C=O/carbonyl «group»</p>
<p><em>Accept “both have the formula C<sub>n</sub>H<sub>2n</sub>O<sub>n</sub> /empirical formula CH<sub>2</sub>O” but do <strong>not</strong> accept “both have same molecular formula/have formula C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>”.</em></p>
<p><em>Accept “aldehyde or ketone” for “carbonyl”.</em></p>
<p> </p>
<p>ii</p>
<p><img src=""></p>
<p><em>Accept “alkyl” for “R”.</em><br><em>Accept “<strong>X</strong>: aldose/aldehyde <strong>AND Y</strong>: ketose/ketone”.</em><br><em>Accept “CO” for “C=O”.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>continuation bonds <em><strong>AND</strong></em> open O on either but not both ends</p>
<p><em>Brackets are not necessary for the mark.</em><br><em>Do <strong>not</strong> accept β-isomer.</em><br><em>Mark may be awarded if a polymer is shown but with the repeating unit clearly identified.</em><br><em>3-D representation is <strong>not</strong> required.</em></p>
<p> </p>
<p>ii</p>
<p><em>Advantage:<br>Any one of:</em></p>
<p>biodegradable / break down naturally/by bacteria</p>
<p><em>Do <strong>not</strong> accept just “decompose easily”.</em></p>
<p>compostable</p>
<p>does not contribute to land-fill</p>
<p>renewable/sustainable resource</p>
<p>starch grains swell <em><strong>AND</strong></em> help break up plastic</p>
<p>lower greenhouse gas emissions</p>
<p>uses less fossil fuels than traditional plastics</p>
<p>less energy needed for production</p>
<p> </p>
<p><em>Disadvantage:<br>Any one of:</em></p>
<p>land use «affects biodiversity/loss of habitat»</p>
<p>growing corn for plastics instead of food</p>
<p>«starch» breakdown can increase acidity of soil/compost</p>
<p>«starch» breakdown can produce methane «especially when buried»</p>
<p>sensitive to moisture/bacteria/acidic foods</p>
<p>«bioplastics sometimes» degrade quickly/before end of use</p>
<p>cannot be reused</p>
<p>poor mechanical strength</p>
<p>eutrophication</p>
<p>increased use of fertilizers/pesticides/phosphorus/nitrogen «has negative environmental effects»</p>
<p><em>Ignore any reference to cost.<br><br>Accept “prone to site explosions/fires” or “low heat resistance” for disadvantage.</em></p>
<p><em>Only award<strong> [1 max]</strong> if the same example is used for the advantage and disadvantage.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lipids are an important part of the human diet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Fatty acids react with glycerol to form fats and oils. State the name of the chemical link formed in this reaction and the name of the other product.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The table below shows average figures for the percentage fatty acid composition of some common fats and oils.</p>
<p><img src=""></p>
<p>(i) Deduce, with a reason, which fat or oil from the table above has the lowest iodine number.</p>
<p>(ii) Deduce, with a reason, which fat or oil from the table above is most likely to become rancid when exposed to the air.</p>
<p>(iii) The <strong>P/S index</strong> of a fat or oil is the ratio of polyunsaturated fat to saturated fat present. It is sometimes used to compare the relative health benefits of different lipids in the diet. Calculate the P/S index of beef fat and soybean oil.</p>
<p><img src=""></p>
<p>(iv) Suggest why a P/S index of greater than 1 is considered beneficial to health.</p>
<p>(v) Cotton seed oil and corn oil have similar iodine numbers but the melting point of cotton seed oil is higher than that of corn oil. Suggest an explanation in terms of the structure and bonding in these two oils.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Name of the chemical link:</em> ester/ethoxycarbonyl<br><em><strong>AND<br></strong>Name of the other product:</em> water</p>
<p><em>Do <strong>not</strong> accept formulas. <br>Do <strong>not</strong> accept “esterification”</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>coconut oil <em><strong>AND</strong></em> lowest «percentage of» unsaturated fatty acids<br><em><strong>OR</strong></em><br>coconut oil<em><strong> AND</strong></em> smallest number of C=C bonds<br><em><strong>OR</strong></em><br>coconut oil <em><strong>AND</strong></em> highest «percentage of» saturated fatty acids<br><em>Accept “fats” for “fatty acids”.</em></p>
<p><br><br>ii<br>soybean oil <em><strong>AND</strong></em> highest «percentage of» polyunsaturated fatty acids<br><em><strong>OR</strong></em><br>soybean oil <em><strong>AND</strong></em> greatest number of C=C bonds<br><em><strong>OR</strong></em><br>soybean oil <em><strong>AND</strong></em> lowest «percentage of» saturated fatty acids<br><em>Accept “fats” for “fatty acids”.</em></p>
<p><br><br>iii<br><em>Beef fat:</em> «P/S = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{{59}}">
<mfrac>
<mn>3</mn>
<mrow>
<mn>59</mn>
</mrow>
</mfrac>
</math></span> = » 0.05<br><em><strong>AND</strong></em><br><em>Soybean oil:</em> «P/S = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50 + 8}}{{14}}">
<mfrac>
<mrow>
<mn>50</mn>
<mo>+</mo>
<mn>8</mn>
</mrow>
<mrow>
<mn>14</mn>
</mrow>
</mfrac>
</math></span> =» 4.1</p>
<p> </p>
<p>iv<br>«higher proportion of» polyunsaturated fatty acids decrease risk of atherosclerosis/heart disease/cardiovascular disease/CVD<br><em><strong>OR</strong></em><br>«higher proportion of» polyunsaturated fatty acids which are less likely to be deposited on the walls of arteries «than saturated fatty acids»</p>
<p><em>Accept converse arguments.</em></p>
<p><em>Accept correct arguments in terms of HDL and LDL but not in terms of “good” and “bad” cholesterol.</em></p>
<p><em>Accept “fats” for “fatty acids”.</em></p>
<p> </p>
<p>v</p>
<p><em>Any two of:</em><br>cotton seed oil has «a higher proportion of» longer chain/greater molar mass fatty acids</p>
<p>molecules of cotton seed oil have greater surface area/have higher electron density</p>
<p><em>Accept “molecules of cotton seed oil are packed more closely/have more regular structure” for M2.</em></p>
<p>stronger London/dispersion/instantaneous induced dipole-induced dipole forces between chains in cotton seed oil</p>
<p><em>Accept converse arguments.</em></p>
<p><em>Accept “fats” for “fatty acids”.</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">Biomagnification factor, BMF, can be defined as the concentration of a chemical, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">X</mi></math>, in a predator, relative to the concentration found in its prey.</span></p>
<p><span class="fontstyle0">BMF<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>=</mo><mfrac><msub><mfenced open="[" close="]"><mi mathvariant="normal">X</mi></mfenced><mi>predator</mi></msub><msub><mfenced open="[" close="]"><mi mathvariant="normal">X</mi></mfenced><mi>prey</mi></msub></mfrac></math>, where <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mi mathvariant="normal">X</mi></mfenced><mo>=</mo></math>(<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>μg</mi><mo> </mo><mi mathvariant="normal">X</mi></math> per <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>kg</mi></math> body weight)</span></p>
<table class="NormalTable" style="width: 837px;">
<tbody>
<tr>
<td style="width: 827px;"><span class="fontstyle0">[Franklin, J., 2015. </span><em><span class="fontstyle2">How reliable are field-derived biomagnification factors and trophic magnification factors as<br>indicators of bioaccumulation potential? Conclusions from a case study on per- and polyfluoroalkyl substances</span></em><span class="fontstyle0"><em>.</em><br>Available at: https://setac.onlinelibrary.wiley.com/doi/full/10.1002/ieam.1642.]</span></td>
</tr>
</tbody>
</table>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the BMF if a <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>120</mn><mo> </mo><mi>kg</mi></math> shark consumes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> mackerel in </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">year. Each mackerel weighs <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>1</mn><mo> </mo><mi>kg</mi></math> on average. The <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mfenced open="[" close="]"><mi mathvariant="normal">X</mi></mfenced><mi>mackerel</mi></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>μg</mi><mo> </mo><mi mathvariant="normal">X</mi></math></span><span class="fontstyle0"> per <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>kg</mi></math> body weight. Assume chemical <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">X</mi></math> remains in the shark’s body for </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">years.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest, with a reason, if fat-soluble or water-soluble xenobiotics would have a larger BMF.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>μg</mi><mo>×</mo><mn>2000</mn><mo>=</mo><mo>»</mo><mn>600</mn><mo>«</mo><mi>μg</mi><mo> </mo><mi mathvariant="normal">X</mi><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mfrac><mstyle displaystyle="true"><mfrac><mrow><mn>600</mn><mo> </mo><mi>μg</mi></mrow><mrow><mn>120</mn><mo> </mo><mi>kg</mi></mrow></mfrac></mstyle><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mo> </mo><mi>μg</mi><mo> </mo><msup><mi>kg</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>17</mn></math> ✔</p>
<p><br><em>Award <strong>[2]</strong> for correct final answer. </em></p>
<p><em>M2 may also be correctly expressed to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> SF.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fat-soluble <em><strong>AND</strong> </em>pass through lipid membranes/accumulate in cells/fatty tissues<br><em><strong>OR</strong></em><br>fat-soluble <em><strong>AND</strong></em> less easily excreted/metabolized ✔</p>
<p><em>Accept “water-soluble” only if an organometallic–protein interaction is mentioned.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates produced the correct answer for M1 but not as many fully scored. Students did not appear to understand the concept, and many missed the idea of 2 years in the calculation. Students should always clearly show their calculations so examiners can award marks throughout the question and potentially award ECF if possible. It is very difficult to do this when students do not show work clearly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question although some did not give a reason.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Proteins are polymers of amino acids.</span> <span class="fontstyle0">A paper chromatogram of two amino acids, A1 and A2, is obtained using a non-polar solvent.</span></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="222" height="432"></p>
<p style="text-align: center;"><span class="fontstyle0">© International Baccalaureate Organization 2020.</span></p>
<p><span class="fontstyle0">Determine the </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">R</mi><mi mathvariant="normal">f</mi></msub></math> <span class="fontstyle0">value of A1.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Proteins are polymers of amino acids.</span></p>
<p><span class="fontstyle0">The mixture is composed of glycine, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Gly</mi></math>, and isoleucine, <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Ile</mi></math>. Their structures can be found in section 33 of the data booklet.</span></p>
<p><span class="fontstyle0">Deduce, referring to relative affinities and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msub><mi mathvariant="normal">R</mi><mi mathvariant="normal">f</mi></msub></math><span class="fontstyle0">, the identity of A1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Proteins are polymers of amino acids.</span></p>
<p><span class="fontstyle0">Glycine is one of the amino acids in the primary structure of hemoglobin.</span></p>
<p><span class="fontstyle0">State the type of bonding responsible for the </span><span class="fontstyle2">α</span><span class="fontstyle0">-helix in the secondary structure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Proteins are polymers of amino acids.</span></p>
<p><span class="fontstyle0">Describe how the tertiary structure differs from the quaternary structure in hemoglobin.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>70</mn></math> ✔</p>
<p><em>Accept any value within the range “<math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="italic">0</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">67</mn><mo mathvariant="italic">−</mo><mn mathvariant="italic">0</mn><mo mathvariant="italic">.</mo><mn mathvariant="italic">73</mn></math>”.</em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ile <em><strong>AND</strong></em> larger R<sub>f</sub> ✔</p>
<p>more soluble in non-polar solvent «mobile phase»<br><em><strong>OR</strong></em><br>not as attracted to polar «stationary» phase ✔</p>
<p><br><em>Only award M2 if Ile is identified in M1.</em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">H</mi></math> bonding «between amido hydrogen and carboxyl oxygen atoms» ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>tertiary: folding/shape of a single «polypeptide/protein» chain ✔</p>
<p>quaternary: arrangement/folding of four/several chains/proteins/polypeptides «held together by <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>IMF</mi></math>» ✔</p>
<p><br><em>Accept “two or more polypeptides” for M2.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students scored this mark. The students who missed this mark that were close either measured from the top or bottom of the spot rather than the middle. A few students had answers that were greater than 1 which indicated a clear lack of understanding of this concept.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not well answered. Many candidates referred to glycine even when they had obtained the correct R<sub>f </sub>value in 5a. Answers referring to Molar mass and isoelectric point were quite common. Some candidates that identified Ile correctly lost the first mark as didn't make any reference to the R<sub>f</sub>. There was a clear lack of understanding that the Rf value was related to polarity not molar mass.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A well answered question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates didn't understand the question and provided long answers referring to the interactions but failing to identify those took place within the same/one chain. More candidates were able to score the second mark referring to multiple chains.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diverse functions of biological molecules depend on their structure and shape.</span></p>
<p><span class="fontstyle0">Classify vitamins A, C and D as either mainly fat- or water-soluble, using section 35 of the data booklet.</span></p>
<p><img src="" width="650" height="199"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diverse functions of biological molecules depend on their structure and shape.</span></p>
<p><span class="fontstyle0">Deduce the straight chain structure of deoxyribose from its ring structure drawn in section 34 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">The diverse functions of biological molecules depend on their structure and shape.</span></p>
<p><span class="fontstyle0"> Sucrose is a disaccharide formed in the reaction of glucose with fructose.<br>Identify the reaction type and the newly formed functional group that joins the monosaccharide units in the product.<br> </span></p>
<p><img src="" width="720" height="184"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="201" height="107"></p>
<p>all three correct ✔</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="89" height="144"></p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>–</mo><mi>CH</mi><mn>2</mn><mo>–</mo></math> must be placed next to <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>CHO</mi></math> <em><strong>AND</strong></em> <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>2</mn><mi>OH</mi></math>s on central carbons must be on same side (LHS or RHS) ✔</p>
<p><em>Accept crosses in place of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> on three middle carbons.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Reaction type:</em><br>condensation ✔</p>
<p><em>Accept “nucleophilic substitution/<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mi>N</mi></msub></math>” for M1.</em></p>
<p><em>Functional group:</em><br>acetal/ether/glycosidic «linkage» ✔</p>
<p><em>Accept “glycoside” for M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Only a few very weak candidates answered this one wrongly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Very disappointing. I had only a few correct answers and the wrong ones very often showed no understanding at all. Some candidates drew ring structures even though a straight chain was requested.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many candidates scored both marks here. Ether was the most common answer for M2 with some responding glycosidic.</p>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<table class="NormalTable">
<tbody>
<tr>
<td width="550"><span class="fontstyle0">Phospholipids are a main component of cell membranes.</span></td>
</tr>
</tbody>
</table>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Deduce the products of the hydrolysis of a non-substituted phospholipid, where </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">R</mi><mn>1</mn></msup></math> <span class="fontstyle0">and </span><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi mathvariant="normal">R</mi><mn>2</mn></msup></math> <span class="fontstyle0">represent long alkyl chains.</span></p>
<p><img src="" width="300" height="242"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">A representation of a phospholipid bilayer cell membrane is shown:</span></p>
<p><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="334" height="235"></p>
<p style="text-align: center;"><span class="fontstyle0">© International Baccalaureate Organization 2020.</span></p>
<p><span class="fontstyle0">Identify the components of the phospholipid labelled </span><strong><span class="fontstyle2">A </span></strong><span class="fontstyle0">and </span><span class="fontstyle2"><strong>B</strong>.</span></p>
<p><span class="fontstyle2"><img src="" width="700" height="176"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">State the most significant intermolecular forces in the phospholipid in b(i).</span></p>
<p><span class="fontstyle0"><img src="" width="678" height="223"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Phospholipids help maintain cellular environments while fatty acid lipids have important roles in energy storage and electrical insulation. Discuss the structural properties of saturated fats needed for these roles.</span></p>
<p><img src="" width="710" height="289"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="185" height="172"></p>
<p>glycerol ✔</p>
<p>both fatty acids <em><strong>AND</strong> </em>phosphoric acid ✔</p>
<p><em>Accept either names <strong>OR</strong> structures.</em><br><em>Accept “long chain carboxylic acid” for “fatty acid”.</em></p>
<p><em>Penalize once only if an incorrect name is given for a correct structure or vice-versa.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>A:</em> phosphate/ionic group<br><em><strong>AND</strong></em><br><em>B:</em> alkyl/hydrocarbon «chain» ✔</p>
<p><br><em>Accept "glycerol «fragment»" <strong>OR </strong>"glycerophosphate" <strong>OR</strong> “ester” for <strong>A</strong>.</em></p>
<p><em>Accept “fatty acid «tail»” for <strong>B</strong>.</em></p>
<p><em>Do not accept terms such as “polar head”, “non-polar tail”, “hydrophilic” <strong>OR </strong>“hydrophobic” for components alone.</em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Forces occurring between components labelled <strong>A</strong>:</em><br>hydrogen/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">H</mi></math> bonding<br><em><strong>OR</strong></em><br>ion–dipole<br><em><strong>OR</strong></em><br>ionic/electrostatic «repulsion and/or attraction» ✔</p>
<p><em>Accept “dipole-dipole” for M1.</em><br><em>Do <strong>not</strong> accept “van der Waals/vdW” for M1.</em></p>
<p><em>Forces occurring between components labelled <strong>B</strong>:</em><br>dispersion/London/instantaneous dipoles/temporary dipoles ✔</p>
<p><em>Accept “van der Waals/vdW” for M2.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Energy storage:</em> <br>not water-soluble/no hydrogen/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi mathvariant="normal">H</mi></math> bonding <br><em><strong>OR<br></strong> </em>less oxidized/more reduced<br><em><strong>OR<br></strong></em> high energy stored in bonds <br><em><strong>OR<br></strong></em> high «negative» enthalpy of combustion/oxidation ✔</p>
<p><em>Accept “potential energy” for “stored energy”.</em></p>
<p><em>Electrical insulator</em>: <br>no delocalized electrons/conjugation ✔<br><br></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Not as well answered as expected. However, many candidates managed to score at least one point. Quite a few lost the only mark due to wrong linkage. Some students drew fatty acid structures with aldehydes or phosphoric acid with incorrect bond linkages in the structure (OH<sup>-</sup>).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Mostly well answered. Weaker candidates used the terms hydrophobic (non-polar) tail and/or hydrophilic (polar) head and therefore lost the mark. Students are expected to know the names of these structures.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many good answers. Those that failed to score often provided the inverted answer. Dipole-dipole was fairly common for M1 but VdW forces less so for M2.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not well answered. In particular the first mark seemed particularly challenging for students. Even when at times wording wasn't enough to allow BOD for M2 it was evident the candidate had some idea but none for the first one. Non-polar allowed many students to score the second mark.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Sugars exist in both straight chain and ring forms.</p>
</div>
<div class="specification">
<p>Biodegradable plastics produced from starch present one solution to the environmental problem created by the use of large quantities of plastics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the straight chain structure of ribose from its ring structure drawn in section 34 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the <strong>partial</strong> structure given, complete the structural formula of the molecule formed from the condensation of two cyclic <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span>-glucose molecules.</p>
<p><img src="images/Schermafbeelding_2017-09-25_om_11.45.47.png" alt="M17/4/CHEMI/SP3/ENG/TZ1/12.a.ii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Constructing models that allow visualizations of the stereochemistry of carbohydrates is essential to understand their structural roles in cells.</p>
<p>Describe how Haworth projections help focus on the position of attached groups.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> advantage of starch based polymers besides being biodegradable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Biodegradable boxes made from polylactic acid, PLA, disintegrate when exposed to water.</p>
<p><img src=""></p>
<p>State the formula of the product formed when water reacts with PLA.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>All OH groups must be on the same side.</em></p>
<p><em>Accept structures with chiral carbon atoms shown as C or C* instead of crosses.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-25_om_11.47.34.png" alt="M17/4/CHEMI/SP3/ENG/TZ1/12.a.ii/M"></p>
<p> </p>
<p><em>Accept –O– in a straight line provided both H’s are above the plane.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«allow» 3-D perspective of structures «of cyclic monosaccharide molecules»<br><em><strong>OR</strong></em><br>«show» <em>cis</em>/same side arrangement of «attached» groups<br><em><strong>OR</strong></em><br>«show» <em>trans</em>/opposite side arrangement of «attached» groups<br><em><strong>OR</strong></em><br>«make» carbon and hydrogen implicit</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>abundant/renewable/allows use of «local» vegetation<br><em><strong>OR</strong></em><br>less use of fossil fuel/oil based plastics<br><em><strong>OR</strong></em><br>air permeable/better breathing of products<br><em><strong>OR</strong></em><br>«can be» mixed/blended with synthetic polymers</p>
<p> </p>
<p><em>Do <strong>not</strong> accept answers related to biodegradable examples.</em></p>
<p><em>Ignore any reference to cost.</em></p>
<p><em>Accept “carbon neutral/do not contribute to global warming”.</em></p>
<p><em>Accept “require less energy to produce”.</em></p>
<p><em>Accept “do not produce toxic products”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HO–CH(CH<sub>3</sub>)–COOH/CH<sub>3</sub>CH(OH)COOH</p>
<p> </p>
<p><em>Do <strong>not</strong> accept C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>.</em></p>
<p><em>Do <strong>not</strong> accept OH–CH(CH<sub>3</sub>)–COOH.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Lipids and carbohydrates contain the same elements but have different properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List the building blocks of triglycerides and carbohydrates.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The drain pipe of a kitchen sink can become clogged by fatty acids, such as linoleic acid, C<sub>18</sub>H<sub>32</sub>O<sub>2</sub>, but not by the trisaccharide, raffinose, C<sub>18</sub>H<sub>32</sub>O<sub>16</sub>, containing the same number of carbon atoms.</p>
<p>Explain why raffinose is far more water soluble than linoleic acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solid fat triglycerides can also clog kitchen sink drains.</p>
<p>Explain how sodium hydroxide unblocks the drain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The amount of proteins, fats and carbohydrates determine the energy content of foods.</p>
<p><br>Explain why linoleic acid, C<sub>18</sub>H<sub>32</sub>O<sub>2</sub>, is a more efficient energy storage molecule than raffinose, C<sub>18</sub>H<sub>32</sub>O<sub>16</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Triglycerides:</em><br>organic acid/fatty acid and glycerol/propane-1,2,3-triol</p>
<p><em><strong>AND</strong></em></p>
<p><em>Carbohydrates:</em><br>monosaccharides</p>
<p> </p>
<p><em>Accept simple sugars.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«water/aqueous solubility depends on forming many» H-bonds with water</p>
<p>raffinose has many hydroxyl/O–H/oxygen atoms/O «and forms many H-bonds» <em><strong>AND</strong> </em>linoleic acid has few/one hydroxyl/O–H/oxygen atom/O/carboxyl group/ COOH/is largely non-polar «and cannot form many H-bonds»</p>
<p> </p>
<p><em>Accept statement which implies comparison.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«base» hydrolysis/saponification<br><em><strong>OR</strong></em><br>«produces glycerol and» soap/salt of the «fatty» acid</p>
<p><img src=""></p>
<p>«products are» water soluble «and drain away»</p>
<p> </p>
<p><em>Accept condensed formulas.</em></p>
<p><em>Accept non-balanced equation.</em></p>
<p><em>Accept “RCOONa”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>linoleic acid/C<sub>18</sub>H<sub>32</sub>O<sub>2</sub> combustion/oxidation more exothermic «per mol»</p>
<p>linoleic acid/C<sub>18</sub>H<sub>32</sub>O<sub>2</sub> has lower proportion/number of O atoms<br><em><strong>OR</strong></em><br>linoleic acid/C<sub>18</sub>H<sub>32</sub>O<sub>2</sub> is less oxidized</p>
<p> </p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Peptidase enzyme in the digestive system hydrolyses peptide bonds.</p>
</div>
<div class="specification">
<p>A tripeptide Ala-Asp-Lys was hydrolysed and electrophoresis of the mixture of the amino acids was carried out at a pH of 6.0. Refer to section 33 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of metabolic process that occurs in the hydrolysis of the peptide during digestion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the <strong>name</strong> of the amino acid that does not move under the influence of the applied voltage.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which amino acid will develop closest to the negative electrode.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The breakdown of a dipeptide in the presence of peptidase was investigated between 18 °C and 43 °C. The results are shown below.</p>
<p><img src=""></p>
<p>Comment on the rate of reaction at temperature <strong>X</strong> in terms of the enzyme’s active site.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solubility of a vitamin depends on its structure.</p>
<p>Identify the vitamin given in section 35 of the data booklet that is the most soluble in water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Pollution from heavy metal ions has become a health concern.</p>
<p>Outline how the presence of heavy metal ions decreases the action of enzymes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how lead ions could be removed from an individual suffering from lead poisoning.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>catabolism/catabolic</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>alanine</p>
<p> </p>
<p><em>Do <strong>not</strong> accept ala.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Lys/lysine</p>
<p>pH «buffer» < p<em>I</em> «<em>Lys</em>»<br><em><strong>OR</strong></em><br>buffer more acidic than Lys «at isoelectric point»<br><em><strong>OR</strong></em><br>«Lys» exists as <img src=""></p>
<p><em><strong>OR</strong></em></p>
<p>«Lys» charged positively/has +1/1+ «overall» charge «and moves to negative electrode»</p>
<p> </p>
<p><em>Do <strong>not</strong> apply ECF from M1.</em></p>
<p><em>Accept converse argument.</em></p>
<p><em>Do <strong>not</strong> accept just “has H<sub>3</sub>N<sup>+</sup> group” for M2 (as H<sub>3</sub>N<sup>+</sup> is also present in zwitterion).</em></p>
<p><em>Do <strong>not</strong> penalize if COOH is given in the structure of lysine at pH 6 instead of COO<sup>–</sup>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>highest frequency of successful collisions between active site and substrate<br><em><strong>OR</strong></em><br>highest frequency of collisions between active site and substrate with sufficient energy/<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E \geqslant {E_{\text{a}}}">
<mi>E</mi>
<mo>⩾</mo>
<mrow>
<msub>
<mi>E</mi>
<mrow>
<mtext>a</mtext>
</mrow>
</msub>
</mrow>
</math></span> <em><strong>AND</strong> </em>correct orientation/conformation<br><em><strong>OR</strong></em><br>optimal shape/conformation of the active site «that matches the substrate»<br><em><strong>OR</strong></em><br>best ability of the active site to bind «to the substrate»</p>
<p> </p>
<p><em>Accept “number of collisions per unit time” for “frequency”.</em></p>
<p><em>Do <strong>not</strong> accept “all active sites are occupied”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ascorbic acid/vitamin C</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>react/bind/chelate with enzyme<br><em><strong>OR</strong></em><br>disrupt ionic salt bridges<br><em><strong>OR</strong></em><br>affect shape of tertiary/quaternary structures<br><em><strong>OR</strong></em><br>precipitate enzymes<br><em><strong>OR</strong></em><br>break/disrupt disulfide bridges/bonds</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “changes shape of active site” by itself.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«use of» host-guest chemistry<br><em><strong>OR</strong></em><br>chelation «therapy»</p>
<p> </p>
<p><em>Accept specific medication/chelating agent such as EDTA, CaNa<sub>2</sub> EDTA, succimer, D-penicillamine, dimercaprol.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The structures of the amino acids cysteine, glutamine and lysine are given in section 33 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the dipeptide Cys-Lys.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of bond between two cysteine residues in the tertiary structure of a protein.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the predominant form of cysteine at pH 1.0.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of the three amino acids, cysteine, glutamine and lysine, was placed in the centre of a square plate covered in polyacrylamide gel. The gel was saturated with a buffer solution of pH 6.0. Electrodes were connected to opposite sides of the gel and a potential difference was applied.</p>
<p>Sketch lines on the diagram to show the relative positions of the three amino acids after electrophoresis.</p>
<p><img src="images/Schermafbeelding_2017-09-25_om_18.00.55.png" alt="M17/4/CHEMI/SP3/ENG/TZ2/02.d"></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct order </p>
<p>amide link</p>
<p> </p>
<p><em>Accept CO–NH but <strong>not</strong> CO–HN for amide link.</em></p>
<p><em>Penalize incorrect bond linkages or missing hydrogens once only in 7 (a) and 7 (c).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>covalent</p>
<p> </p>
<p><em>Accept “S-S/disulfide”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Penalize incorrect bond linkages or missing hydrogens once only in 7 (a) and 7 (c).</em></p>
<p><strong><em> [1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>Cys and Gln move to positive electrode <em><strong>AND</strong> </em>Lys to negative electrode</p>
<p>Cys further to positive electrode than Gln</p>
<p> </p>
<p><em>Do <strong>not</strong> penalize if lines are omitted or if different markings are given (eg, spots etc.), as long as relative positions are correctly indicated.</em></p>
<p><em>Accept Gln on original position indicated.</em></p>
<p><em>Award <strong>[1 max]</strong> for reverse order of amino acids.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A chemical reaction occurs when a phospholipid is heated with excess sodium hydroxide.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Glycerol is one product of the reaction. Identify the two other organic products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of reaction which occurs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>17</sub>H<sub>31</sub>COONa </p>
<p>[(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>CH<sub>2</sub>OH]OH</p>
<p> </p>
<p><em>Accept “NaC<sub>17</sub>H<sub>31</sub>COO”.</em></p>
<p><em>Accept “(CH<sub>3</sub>)<sub>3</sub>N<sup>+</sup>CH<sub>2</sub>CH<sub>2</sub>OH <strong>OR </strong>[(CH<sub>3</sub>)<sub>3</sub>NCH<sub>2</sub>CH<sub>2</sub>OH]<sup>+</sup>” if positive charge is shown.</em></p>
<p><em>Accept suitable names (eg, sodium linoleate, choline hydroxide etc.) <strong>OR </strong>correct molecular formulas.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrolysis</p>
<p> </p>
<p><em>Accept “nucleophilic substitution/displacement / S<sub>N</sub>/S<sub>N</sub>2 /saponification”.</em></p>
<p><em>Do <strong>not</strong> accept “acid hydrolysis”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sunflower oil contains stearic, oleic and linoleic fatty acids. The structural formulas of these acids are given in section 34 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which one of these fatty acids has the highest boiling point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>10.0 g of sunflower oil reacts completely with 123 cm<sup>3</sup> of 0.500 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>–3</sup> iodine solution. Calculate the iodine number of sunflower oil to the nearest whole number.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stearic acid <em><strong>AND</strong> </em>chain has no kinks/more regular structure<br><em><strong>OR</strong></em><br>stearic acid <em><strong>AND</strong> </em>it has straight chain<br><em><strong>OR</strong></em><br>stearic acid <em><strong>AND</strong> </em>no C=C/carbon to carbon double bonds<br><em><strong>OR</strong></em><br>stearic acid <em><strong>AND</strong> </em>saturated<br><em><strong>OR</strong></em><br>stearic acid <em><strong>AND</strong> </em>chains pack more closely together</p>
<p>stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules»</p>
<p> </p>
<p><em>Accept “stearic acid <strong>AND</strong> greater surface area/electron density”.</em></p>
<p><em>M2 can only be scored if stearic acid is correctly identified.</em></p>
<p><em>Accept “stronger intermolecular/van der Waals’/vdW forces”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«n(I<sub>2</sub>) = 0.123 dm<sup>3</sup> x 0.500 mol<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>dm<sup>–3</sup> =» 0.0615 «mol»</p>
<p>«m(I<sub>2</sub>) = 0.0615 mol x 253.8 g<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\,">
<mspace width="thinmathspace"></mspace>
</math></span>mol<sup>–1</sup> =» 15.6 «g»</p>
<p>«iodine number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{15.6{\text{ g}} \times 100}}{{10.0{\text{ g}}}}">
<mo>=</mo>
<mfrac>
<mrow>
<mn>15.6</mn>
<mrow>
<mtext> g</mtext>
</mrow>
<mo>×</mo>
<mn>100</mn>
</mrow>
<mrow>
<mn>10.0</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
</mfrac>
</math></span>» = 156</p>
<p> </p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Iodine number must be a whole number.</em></p>
<p><em>Award <strong>[2 max]</strong> for 78.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Monosaccharides can combine to form disaccharides and polysaccharides.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional groups which are present in only one structure of glucose.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sucrose is a disaccharide formed from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\alpha ">
<mi>α</mi>
</math></span>-glucose and β-fructose.</p>
<p>Deduce the structural formula of sucrose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starch is a constituent of many plastics. Suggest <strong>one</strong> reason for including starch in plastics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> of the challenges scientists face when scaling up the synthesis of a new compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Only in straight chain form:<br></em>carbonyl<br><em><strong>OR</strong></em><br>aldehyde</p>
<p><em>Only in ring structure:</em><br>hemiacetal</p>
<p> </p>
<p><em>Accept functional group abbreviations (eg, CHO etc.). </em></p>
<p><em>Accept “ether”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct link between the two monosaccharides</p>
<p> </p>
<p><em>Correct 1,4 beta link <strong>AND</strong> all bonds on the 2 carbons in the link required for mark.</em></p>
<p><em>Ignore any errors in the rest of the structure.</em></p>
<p><em>Penalize extra atoms on carbons in link.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>plastic «more» biodegradable/degrades into nontoxic products<br><em><strong>OR</strong></em><br>plastic can be produced using green technology/renewable resource<br><em><strong>OR</strong></em><br>reduces fossil fuel use/petrochemicals<br><em><strong>OR</strong></em><br>easily plasticized<br><em><strong>OR</strong></em><br>used to form thermoplasts</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimize «negative» impact on environment<br><em><strong>OR</strong></em><br>minimize waste produced<br><em><strong>OR</strong></em><br>consider atom economy<br><em><strong>OR</strong></em><br>efficiency of synthetic process<br><em><strong>OR</strong></em><br>problems of side reactions/lower yields<br><em><strong>OR</strong></em><br>control temperature «inside large reactors»<br><em><strong>OR</strong></em><br>availability of starting/raw materials<br><em><strong>OR</strong></em><br>minimize energy costs<br><em><strong>OR</strong></em><br>value for money/cost effectiveness/cost of production</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following lipid and carbohydrate.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>In order to determine the number of carbon-carbon double bonds in a molecule of linoleic acid, 1.24 g of the lipid were dissolved in 10.0 cm<sup>3</sup> of non-polar solvent.</p>
<p>The solution was titrated with a 0.300 mol dm<sup>–3</sup> solution of iodine, I<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the empirical formula of linoleic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empirical formula of fructose is CH<sub>2</sub>O. Suggest why linoleic acid releases more energy per gram than fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction occurring during the titration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of iodine solution used to reach the end-point. </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the importance of linoleic acid for human health.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>9</sub>H<sub>16</sub>O</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of oxygen to carbon in linoleic acid lower</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid less oxidized</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid more reduced</p>
<p><em>Accept “«average» oxidation state of carbon in linoleic acid is lower”.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«electrophilic» addition/A<sub>E</sub></p>
<p><em><strong>OR</strong></em></p>
<p>oxidation–reduction/redox</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.24\,{\text{g}}}}{{280.50\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}">
<mfrac>
<mrow>
<mn>1.24</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mn>280.50</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =» 0.00442 «mol»</p>
<p>0.00884 mol of C=C</p>
<p><em><strong>OR</strong></em></p>
<p>ratio of linoleic acid : iodine = 1:2</p>
<p>«volume of I<sub>2</sub> solution = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.00884\,{\text{mol}}}}{{0.300\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}">
<mfrac>
<mrow>
<mn>0.00884</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
</mrow>
<mrow>
<mn>0.300</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mol</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>d</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>m</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>3</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =» 0.0295 «dm<sup>3</sup>» / 29.5 «cm<sup>3</sup>»</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>increases «ratio of» HDL «to LDL» cholesterol</p>
<p><em><strong>OR</strong></em></p>
<p>decreases LDL cholesterol «level»</p>
<p>removes plaque from/unblocks arteries</p>
<p><em><strong>OR</strong></em></p>
<p>decreases risk of heart disease</p>
<p>decreases risk of stroke «in the brain»</p>
<p><em>Accept "essential fatty acid".</em></p>
<p><em>Do <strong>not</strong> accept “bad cholesterol” for “LDL cholesterol” <strong>OR</strong> “good cholesterol” for “HDL cholesterol”.</em></p>
<p><em>Do <strong>not</strong> accept general answers such as “source of energy” <strong>OR</strong> “forms triglycerides” <strong>OR</strong> “regulates permeability of cell membranes” etc.</em></p>
<p><strong><em>[Max 2 Marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lactose is a disaccharide formed by the condensation reaction of the monosaccharides galactose and glucose.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by a condensation reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of galactose on the skeleton provided.</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the inclusion of carbohydrates in plastics makes them biodegradable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«reaction in which» two reactants/molecules/functional groups bond/react «to form a larger molecule/single main product»</p>
<p>small/tiny molecule</p>
<p><em><strong>OR</strong></em></p>
<p>H<sub>2</sub>O formed</p>
<p><em>Accept formula or name of a specified small molecule other than water such as ammonia, ethanoic/acetic acid,</em><br><em>ethanol, hydrogen sulfide etc. for M2.</em></p>
<p><em>Do <strong>not</strong> accept just “molecule formed”.</em></p>
<p><em>Award <strong>[1 max]</strong> for an example giving an equation of a condensation reaction such as the formation of a disaccharide.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept “alpha” or “beta” form of galactose.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>makes the plastic more hydrophilic/water soluble</p>
<p>carbohydrates are broken down/hydrolysed by bacteria/microorganisms</p>
<p>makes plastic more accessible to bacteria as holes/channels are created</p>
<p><em><strong>OR</strong></em></p>
<p>plastic of lower density is more permeable/susceptible to water/oxygen/heat/pressure</p>
<p>weakens intermolecular/London/dispersion/instantaneous induced dipole-induced dipole forces «between polymer chains in the plastic»</p>
<p><em>Accept “van der Waals/vdW” for “London” forces.</em></p>
<p><strong><em>[Max 2 Marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Vitamins can be water-soluble or fat-soluble.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, at the molecular level, why vitamin D is soluble in fats. Use section 35 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> function of vitamin D in the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«mainly» hydrocarbon/non-polar «structure»</p>
<p>forms London/dispersion/instantaneous induced dipole-induced dipole forces «with fats»</p>
<p><em>Accept “forms van der Waals’/vdW forces”.</em></p>
<p><em>Award <strong>[1 max]</strong> for “contains only one OH/hydroxyl <strong>AND</strong> cannot form «enough» H-bonds”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>helps absorb calcium<br><em><strong>OR</strong></em><br>helps build bones<br><em><strong>OR</strong></em><br>helps keep bones healthy<br><em><strong>OR</strong></em><br>helps block the release of parathyroid hormone<br><em><strong>OR</strong></em><br>helps in muscle function<br><em><strong>OR</strong></em><br>helps immune system function<br><em><strong>OR</strong></em><br>cell growth<br><em><strong>OR</strong></em><br>reduction of inflammation<br><em><strong>OR</strong></em><br>protection from osteoporosis<br><em><strong>OR</strong></em><br>prevents rickets</p>
<p><em>Accept helps prevent colon/breast/prostate cancer.</em></p>
<p><em>Accept treat/prevent diabetes/heart disease/high blood pressure/multiple sclerosis.</em></p>
<p><em>Accept other correct answers.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymers of α-glucose include the disaccharide maltose and the polysaccharide amylose, a type of starch. The cyclic structure of α-glucose is shown in section 34 of the data booklet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the specific type of linkage formed between α-glucose fragments in both maltose and amylose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A person with diabetes suffering very low blood sugar (hypoglycaemia) may be advised to consume glucose immediately and then eat a small amount of starchy food such as a sandwich. Explain this advice in terms of the properties of glucose and starch.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>α-1,4-<strong>»</strong>glycosidic</p>
<p> </p>
<p><em>Accept </em><strong><em>«</em></strong><em>α-1,4-</em><strong><em>»</em></strong><em>glycoside.</em></p>
<p><em>Accept “ether”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Glucose:</em></p>
<p>readily passes through intestine wall/dissolves in blood</p>
<p><strong><em>OR</em></strong></p>
<p>is immediately available for energy/respiration</p>
<p><strong><em>OR</em></strong></p>
<p>transported rapidly around body</p>
<p> </p>
<p><em>Starch:</em></p>
<p>must be hydrolysed/broken down <strong>«</strong>into smaller molecules<strong>» </strong>first</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Explain the solubility of vitamins A and C using section 35 of the data booklet.</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Vitamin A:</em></p>
<p>fat soluble/soluble in non-polar solvents <strong><em>AND </em></strong>non-polar/long hydrocarbon backbone/chain</p>
<p> </p>
<p><em>Vitamin C:</em></p>
<p>water soluble <strong><em>AND </em></strong>contains 4 hydroxyl groups/contains many hydroxyl groups/forms <strong>«</strong>many<strong>» </strong>H-bonds with water</p>
<p> </p>
<p><em>Accept “Vitamin A: fat soluble/soluble in </em><em>non-polar solvents as it contains only </em><em>one hydroxyl group whose H-bonds with </em><em>water are not strong enough to </em><em>overcome London/dispersion/vdW </em><em>forces between Vitamin A molecules”.</em></p>
<p><em>Accept “lipid” for “fats”.</em></p>
<p><em>Accept “alcohol” </em><strong><em>OR </em></strong><em>“hydroxy” </em><strong><em>OR </em></strong><em>“OH </em><em>groups” for “hydroxyl” but </em><strong><em>not</em></strong><em> “hydroxide”.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for “Vitamin A: fat </em><em>soluble </em><strong><em>AND </em></strong><em>Vitamin C: water soluble” </em><em>with no or incomplete explanation.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Lipids provide energy and are an important part of a balanced diet.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of chemical reaction that occurs between fatty acids and glycerol to form lipids and the by-product of the reaction.</p>
<p> </p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Arachidonic acid is a polyunsaturated omega-6 fatty acid found in peanut oil.</p>
<p>Determine the number of carbon–carbon double bonds present if the iodine number for the compound is 334. (Arachidonic acid <em>M</em><sub>r</sub> = 304.5)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structure of the lipid formed by the reaction between lauric acid and glycerol (propane-1,2,3-triol) using section 34 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one </strong>impact food labelling has had on the consumption of foods containing different types of lipids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, to the correct number of significant figures, the energy produced by the respiration of 29.9 g of C<sub>5</sub>H<sub>10</sub>O<sub>5</sub>.</p>
<p>Δ<em>H</em><sub><em>c </em></sub>(C<sub>5</sub>H<sub>10</sub>O<sub>5</sub>) = 205.9 kJ mol<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why lipids provide more energy than carbohydrates and proteins.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Type of reaction:</em></p>
<p>condensation</p>
<p><strong><em>OR</em></strong></p>
<p>esterification/triesterification</p>
<p><strong><em>OR</em></strong></p>
<p>nucleophilic substitution/nucleophilic displacement/S<sub>N</sub>2</p>
<p> </p>
<p><em>By-product:</em></p>
<p>water/H<sub>2</sub>O</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept just </em><em>“substitution/displacement”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{334}}{{253.8}}">
<mfrac>
<mrow>
<mn>334</mn>
</mrow>
<mrow>
<mn>253.8</mn>
</mrow>
</mfrac>
</math></span> =<strong>»</strong> 1.32 <strong><em>AND </em></strong><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100}}{{304.5}}">
<mfrac>
<mrow>
<mn>100</mn>
</mrow>
<mrow>
<mn>304.5</mn>
</mrow>
</mfrac>
</math></span> =<strong>» </strong>0.328</p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.32}}{{0.328}}">
<mfrac>
<mrow>
<mn>1.32</mn>
</mrow>
<mrow>
<mn>0.328</mn>
</mrow>
</mfrac>
</math></span> ≈<strong>» </strong>4</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><strong>«</strong>334 × <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{304.5}}{{100}}">
<mfrac>
<mrow>
<mn>304.5</mn>
</mrow>
<mrow>
<mn>100</mn>
</mrow>
</mfrac>
</math></span> ≈<strong>» </strong>1017</p>
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1017}}{{253.8}}">
<mfrac>
<mrow>
<mn>1017</mn>
</mrow>
<mrow>
<mn>253.8</mn>
</mrow>
</mfrac>
</math></span> ≈<strong>» </strong>4</p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_13.46.59.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/06.c/M"></p>
<p>glycerol backbone</p>
<p>ester formula <strong><em>AND </em></strong>linkage</p>
<p> </p>
<p><em>Accept a skeletal structure.</em></p>
<p><em>Penalize missing hydrogens or </em><em>incorrect bond connectivities once </em><em>only in Option B.</em></p>
<p><em>Accept condensed formula for ester.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>has affected consumption of <em>trans</em>-fats/<em>cis</em>-fats/saturated fats/unsaturated fats/hydrogenated/artificially altered fats</p>
<p><strong><em>OR</em></strong></p>
<p>reduce/eliminate <em>trans</em>-fats/increase in <em>cis</em>-fats</p>
<p><strong><em>OR</em></strong></p>
<p>reduce/eliminate saturated fats</p>
<p><strong><em>OR</em></strong></p>
<p>increase unsaturated fats</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “decrease in fat” alone.</em></p>
<p><em>Accept “lipid” for “fats”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{29.9{\text{ g}}}}{{150.15{\text{ g mo}}{{\text{l}}^{ - 1}}}}">
<mfrac>
<mrow>
<mn>29.9</mn>
<mrow>
<mtext> g</mtext>
</mrow>
</mrow>
<mrow>
<mn>150.15</mn>
<mrow>
<mtext> g mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> =<strong>» </strong>0.199 <strong>«</strong>mol<strong>»</strong></p>
<p><strong>«</strong>0.199 mol × 205.9 kJ mol<sup>–1</sup> =<strong>» </strong>41.0 <strong>«</strong>kJ<strong>»</strong></p>
<p> </p>
<p><em>Ignore significant figures in M1.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for incorrect significant </em><em>figures in final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of oxygen to carbon in lipids lower</p>
<p><strong><em>OR</em></strong></p>
<p>lipids less oxidized</p>
<p><strong><em>OR</em></strong></p>
<p>lipids more reduced</p>
<p> </p>
<p>more energy per mass/g released when lipids are oxidized</p>
<p> </p>
<p><em>Accept “</em><strong><em>«</em></strong><em>average</em><strong><em>» </em></strong><em>oxidation number of </em><em>carbon in linoleic acid is lower” for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Saturated lipids found in butter and unsaturated lipids found in fish oil readily become rancid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of rancidity occurring in saturated lipids and the structural feature that causes it.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one factor that increases the rate at which saturated lipids become rancid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Butter contains varying proportions of oleic, myristic, palmitic and stearic acids. Explain in terms of their structures why stearic acid has a higher melting point than oleic acid, using section 34 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Fish oil is an excellent dietary source of omega-3 fatty acids. Outline <strong>one </strong>impact on health of consuming omega-3 fatty acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the solubility of retinol (vitamin A) in body fat, giving a reason. Use section 35 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why sharks and swordfish sometimes contain high concentrations of mercury and polychlorinated biphenyls (PCBs).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plastics are another source of marine pollution. Outline one way in which plastics can be made more biodegradable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>hydrolytic <strong>«</strong>rancidity<strong>»</strong></p>
<p>ester group</p>
<p> </p>
<p><em>Accept a formula for ester group.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>presence of<strong>» </strong>moisture/water</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>increase in<strong>» </strong>temperature</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>presence of<strong>» </strong>enzymes/bacteria/fungi/mould</p>
<p><strong><em>OR</em></strong></p>
<p>low pH/<strong>«</strong>presence of<strong>» </strong>acid</p>
<p> </p>
<p><em>Accept “heat”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>stearic acid<strong>» </strong>straight chain/chain has no kinks/more regular structure</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>stearic acid<strong>» </strong>saturated/no <strong>«</strong>carbon–carbon<strong>» </strong>double bonds</p>
<p> </p>
<p><strong>«</strong>stearic acid<strong>» </strong>chains pack more closely together</p>
<p>stronger London/dispersion/instantaneous induced dipole-induced dipole forces <strong>«</strong>between molecules<strong>»</strong></p>
<p> </p>
<p><em>Accept “</em><strong><em>«</em></strong><em>stearic acid</em><strong><em>» </em></strong><em>greater surface </em><em>area/electron density”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lowers risk of heart disease/atherosclerosis</p>
<p><strong><em>OR</em></strong></p>
<p>lowers LDL cholesterol</p>
<p><strong><em>OR</em></strong></p>
<p>increases HDL cholesterol</p>
<p><strong><em>OR</em></strong></p>
<p>aids brain/neurological development <strong>«</strong>in children<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>relieves rheumatoid arthritis</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>soluble <strong><em>AND </em></strong>non-polar hydrocarbon chain</p>
<p> </p>
<p><em>Accept as reasons “</em><strong><em>«</em></strong><em>predominantly</em><strong><em>»</em></strong><em> non-polar” </em><strong><em>OR </em></strong><em>“long hydrocarbon </em><em>chain”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not biodegradable</p>
<p><strong><em>OR</em></strong></p>
<p>stored/accumulate in fat</p>
<p> </p>
<p>biomagnification occurs</p>
<p><strong><em>OR</em></strong></p>
<p>concentration increases along food chain</p>
<p> </p>
<p><em>Accept “stored/accumulate in bodies of </em><em>prey/animals eaten”.</em></p>
<p><em>Accept “not excreted”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>add starch/cellulose/carbohydrates/additives/catalysts <strong>«</strong>to plastic during manufacture to allow digestion by micro-organisms<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>replace traditional plastics with polylactic acid/PLA-based ones</p>
<p><strong><em>OR</em></strong></p>
<p>blend traditional and polylactic acid/PLA-based plastics</p>
<p> </p>
<p><em>Accept reference to biodegradable </em><em>plastics other than PLA; for example </em><em>polyhydroxyalkanoates (PHA), </em><em>poly(butylene succinate) (PBS), </em><em>polybutylene adipate terephthalate </em><em>(PBAT) and polycaprolactone (PCL).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Insulin was the first protein to be sequenced. It was determined that the end of one chain had the primary structure Phe–Val–Asn–Gln.</p>
</div>
<div class="specification">
<p>Paper chromatography can be used to identify the amino acids in insulin.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structural formula of a dipeptide containing the residues of valine, Val, and asparagine, Asn, using section 33 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the strongest intermolecular forces that would occur between the following amino acid residues in a protein chain.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of the process used to break down the insulin protein into its constituent amino acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the amino acids may be identified from a paper chromatogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-09_om_18.08.31.png" alt="M18/4/CHEMI/SP3/ENG/TZ1/06.a/M"></p>
<p>correct structures of Val <strong><em>AND </em></strong>Asn</p>
<p>correct amide link</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Phenylalanine and valine:</em></p>
<p>London/dispersion/instantaneous induced dipole-induced dipole forces</p>
<p><strong><em>OR</em></strong></p>
<p>permanent dipole-induced dipole <strong>«</strong>interactions<strong>»</strong></p>
<p> </p>
<p><em>Glutamine and asparagine:</em></p>
<p>hydrogen bonds</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept dipole-dipole interactions.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrolysis</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>compare R<sub>f</sub> with known amino acids</p>
<p><strong><em>OR</em></strong></p>
<p>compare distance moved with known amino acids</p>
<p> </p>
<p><em>Accept “from R</em><sub><em>f</em></sub><em>”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Lipids play several roles in our bodies.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A phospholipid generally consists of two hydrophobic fatty acids and a hydrophilic group.</p>
<p style="text-align: center;"><img src=""></p>
<p>Fatty acids are products of the acidic hydrolysis of phospholipids. Deduce the names of the other two products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The iodine number is the maximum mass of iodine that reacts with 100 g of an unsaturated compound.</p>
<p>Determine the iodine number of stearidonic acid, C<sub>17</sub>H<sub>27</sub>COOH.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> functions of lipids in the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline one effect of increased levels of low-density lipoproteins in the blood.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>phosphoric acid ✔</p>
<p>glycerol/propane-1,2,3-triol ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept formulas.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>4 C=C bonds/4 carbon to carbon double bonds ✔</p>
<p>mass of iodine per mole of acid = «4 × 253.80 g mol<sup>–1</sup> =» 1015.2 «g mol<sup>–1</sup>» ✔</p>
<p>iodine number «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1015.2\,{\text{g}}\,{\text{mo}}{{\text{l}}^{-1}}}}{{276.46\,{\text{g}}\,{\text{mo}}{{\text{l}}^{-1}}}} \times 100">
<mfrac>
<mrow>
<mn>1015.2</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mn>276.46</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mn>100</mn>
</math></span>» = 367 ✔</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>4 C=C bonds/4 carbon to carbon double bonds ✔</p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100\,{\text{g}}}}{{276.46\,{\text{g}}\,{\text{mo}}{{\text{l}}^{-1}}}} \times 4">
<mfrac>
<mrow>
<mn>100</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
</mrow>
<mrow>
<mn>276.46</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>g</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>mo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
<mo>×</mo>
<mn>4</mn>
</math></span> =» 1.447 mol of <strong>I</strong><sub>2</sub> «reacts with 100 g» ✔</p>
<p>iodine number «= 1.447 mol × 253.80 g mol<sup>–1</sup>» = 367 ✔<br><br></p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>«structural» components of cell membranes ✔</p>
<p>energy storage/utilization ✔</p>
<p>«thermal/electrical» insulation ✔</p>
<p>transport «of lipid-soluble molecules» ✔</p>
<p>hormones/chemical messengers ✔</p>
<p> </p>
<p><em>Accept other specific functions, such as “prostaglandin/cytokine/bile acid synthesis”, “cell differentiation/growth”, “myelination”, “storage of vitamins/biomolecules”, “signal transmission”, “protection/padding of organs”, “precursors/starting materials for the biosynthesis of other lipid”.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>atherosclerosis/cholesterol deposition «in artery walls» ✔</p>
<p>heart/cardiovascular disease ✔</p>
<p>stroke ✔</p>
<p> </p>
<p><em>Accept “arteries become blocked/walls become thicker”.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Dietary recommendations are made by scientists.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The formation of proteins from amino acids is an example of an anabolic reaction in the human body.</p>
<p>State the source of energy for such a synthetic reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is advisable for those living in northerly or southerly latitudes (that is away from the equator) to take vitamin D supplements during the winter.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how a xenobiotic is biomagnified.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>catabolism «of food/nutrients»</p>
<p><em><strong>OR</strong></em></p>
<p>«cellular» respiration ✔</p>
<p> </p>
<p><em>Accept “ATP” but <strong>not</strong> “burning of food/nutrients”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not enough sunlight/UV light «for synthesis of vitamin D in the skin» ✔</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>cannot be metabolized/broken down</p>
<p><em><strong>OR</strong></em></p>
<p>not biodegradable</p>
<p><em><strong>OR</strong></em></p>
<p>accumulates in lipid/fat tissues ✔</p>
<p> </p>
<p>increased concentration as one species feeds on another «in the food chain» ✔</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lactose, found in milk and dairy products, is a disaccharide formed from two different monosaccharides. The structure of lactose is shown with numbered carbon atoms.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Name the type of link between the two monosaccharide residues.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the two monomer structures, galactose and glucose, differ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«1,4-»glycosidic ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “glucosidic”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>H and OH are reversed/in different positions on C-4 ✔</p>
<p> </p>
<p><em>C-4 must be specified.</em></p>
<p><em>Do <strong>not</strong> penalize if reference is made to H and OH above and below ring/in alpha and beta positions on C-4 incorrectly.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Suggest, in terms of its structure, why vitamin D is fat-soluble using section 35 of the data booklet.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>«mostly» non-polar<br><em><strong>OR</strong></em><br>hydrocarbon backbone<br><em><strong>OR</strong></em><br>only 1 hydroxyl «group so mostly non-polar»</p>
<p> </p>
<p><em>Accept “alcohol/hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Enzyme activity depends on many factors. Explain how pH change causes loss of activity of an enzyme.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>conformation/shape altered</p>
<p><em><strong>OR</strong></em></p>
<p>active site altered</p>
<p><em><strong>OR</strong></em></p>
<p>tertiary structure altered</p>
<p>acidic/basic/ionizable/COOH/carboxyl/NH<sub>2</sub>/amino groups in the R groups/side chains «react»</p>
<p>exchange/lose/gain protons/H<sup>+</sup></p>
<p>ionic/H-bonds altered</p>
<p><em>Accept “substrate doesn't fit/fits poorly into active site” <strong>OR</strong> “enzyme denatures” for M1 but <strong>not</strong> “affects potential of</em><br><em>enzyme to form complex with substrate”.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Amino acids are the building blocks of proteins.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the dipeptide represented by the formula Ala-Gly using section 33 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of <sup>1</sup>H NMR signals produced by the zwitterion form of alanine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why amino acids have high melting points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-10_om_13.57.39.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/07.a/M"></p>
<p>peptide bond</p>
<p>order of amino acids</p>
<p> </p>
<p><em>Accept zwitterion form of dipeptide.</em></p>
<p><em>Accept a condensed structural formula </em><em>or a skeletal structure.</em></p>
<p><em>Penalize missing hydrogens or incorrect </em><em>bond connectivities once only in Option </em><em>B.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>form zwitterions</p>
<p> </p>
<p><strong>«</strong>strong<strong>» </strong>ionic bonding</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>strong<strong>» </strong>ionic lattice</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>strong<strong>» </strong>electrostatic attraction/forces</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept hydrogen bonding or </em><em>IMFs for M2.</em></p>
<p><strong><em>[2 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Starch is a natural polymer of glucose.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the repeating unit of starch and state the type of linkage formed between these units.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><img src="" width="188" height="124"></span></p>
<p style="text-align: left;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Type of linkage:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Formulate the equation for the complete hydrolysis of a starch molecule, (C<sub>6</sub>H<sub>10</sub>O<sub>5</sub>)<sub>n</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the energy released, in kJ g<sup>−1</sup>, when 3.49 g of starch are completely combusted in a calorimeter, increasing the temperature of 975 g of water from 21.0 °C to 36.0 °C. Use section 1 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how the inclusion of starch in plastics makes them biodegradable.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="154" height="154"></p>
<p><span style="background-color: #ffffff;">continuation bonds <em><strong>AND</strong> </em>-O- attached to just one end <em><strong>AND</strong> </em>both H-atoms on end carbons must be on the same side <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Square brackets not required. <br></span></em><em><span style="background-color: #ffffff;">Ignore “n” if given. <br></span></em><em><span style="background-color: #ffffff;">Mark may be awarded if a polymer is </span></em><em><span style="background-color: #ffffff;">shown but with the repeating unit clearly </span></em><em><span style="background-color: #ffffff;">identified.</span></em></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Type of linkage</em>:<br>glycosidic <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “ether”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">(C</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">6</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">H</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">10</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">O</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">5</sub><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">)</span><sub style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 11.6px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">n</sub><span style="background-color: #ffffff;">(s) + <em>n</em>H<sub>2</sub>O (l) → <em>n</em>C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (aq) <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “(n-1)H<sub>2</sub>O”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> award mark if “n” not included.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>q</em> = «<em>mcΔT</em> = 975 g × 4.18 J g<sup>–1</sup> K<sup>–1</sup> × 15.0 K =» 61 100 «J» / 61.1 «kJ» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«heat per gram= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{61.1{\text{ kJ}}}}{{{\text{3}}{\text{.49 g}}}}">
<mfrac>
<mrow>
<mn>61.1</mn>
<mrow>
<mtext> kJ</mtext>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>3</mtext>
</mrow>
<mrow>
<mtext>.49 g</mtext>
</mrow>
</mrow>
</mfrac>
</math></span> =» 17.5 «kJ g<sup>–1</sup>» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>carbohydrate grains swell/break plastic into smaller pieces <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">inclusion of carbohydrate makes the plastic more hydrophilic/water soluble <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">carbohydrates are broken down/hydrolysed/digested by bacteria/micro-organisms <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">plastic becomes more accessible to bacteria as holes/channels are created in it <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«presence of» carbohydrate weakens intermolecular/London/dispersion forces between polymer chains in the plastic <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept “starch” for “carbohydrate” throughout. Do <strong>not</strong> accept carbohydrates are broken down/hydrolyzed.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Hardly any students were able to draw the required repeating unit, but in contrast almost all knew that the monomers were joined by a glycosidic linkage.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>It was very unusual to find a candidate who could give a correct equation for starch hydrolysis.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Nearly half the students correctly calculated the enthalpy change and some of these went on to find the value in kJ g<sup>-1</sup>. The most common mistakes were to use the mass of starch rather than the mass of water and adding 273 to the temperature change.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Whilst many could quote from 7b, that starch undergoes hydrolysis, very few linked this to a biochemical mechanism. Other factors, relating to the reduction of intermolecular forces between the polymer chains were also rarely encountered.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The main fatty acid composition of cocoa butter and coconut oil is detailed below.</span></p>
<p> </p>
<p><img src="" width="798" height="290"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The melting points of cocoa butter and coconut oil are 34 °C and 25 °C respectively.</span></p>
<p><span style="background-color: #ffffff;">Explain this in terms of their saturated fatty acid composition.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Fats contain triglycerides that are esters of glycerol and fatty acids. Deduce an equation for the acid hydrolysis of the following triglyceride.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="237" height="185"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The addition of partially hydrogenated cocoa butter to chocolate increases its melting point and the content of <em>trans</em>-fatty acids (<em>trans</em>-fats).</span></p>
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> effects of <em>trans</em>-fatty acids on health.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">coconut oil has higher content of lauric/short-chain «saturated» fatty acids <br><em><strong>OR</strong></em><br> cocoa butter has higher content of stearic/palmitic/longer chain «saturated» fatty acids <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> longer chain fatty acids have greater surface area/larger electron cloud <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> stronger London/dispersion/instantaneous dipole-induced dipole forces «between triglycerides of longer chain saturated fatty acids» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Do <strong>not</strong> accept arguments that relate to the melting points of saturated and unsaturated fats.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="465" height="239"></p>
<p> </p>
<p><span style="background-color: #ffffff;">correct products <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">correctly balanced <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of</em>:<br>«increased risk of» coronary/heart disease <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> «increased risk of» stroke <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">«increased risk of» atherosclerosis <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"> «increased risk of type-2» diabetes <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">increase in LDL cholesterol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"> decrease in HDL cholesterol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">«increased risk of» obesity <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A classic instance of candidates answering the question they thought (or hoped?) they had been asked rather than the one that was asked. Almost all answers referred to the differing amounts of saturated and unsaturated fatty acids present, totally ignoring the fact that the question clearly stated “<em>their saturated fatty acid composition</em>”, where the relative lengths of the chains was the key point. Nevertheless some who went on to discuss the nature of the intermolecular forces between the chains gained some credit.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A disappointingly small number of candidates gained any marks for deducing the equation for the hydrolysis of the given lipid.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all students were aware of negative health effects of <em>trans</em>-fats, though quite a few lost marks by just stating “<em>cholesterol</em>” without specifying HDL or LDL.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Aspartame is a derivative of a dipeptide formed between two amino acids, phenylalanine (Phe) and aspartic acid (Asp).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a circle around the functional group formed between the amino acids and state its name.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="327" height="171"></span></p>
<p><span style="background-color: #ffffff;">Name: </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">A mixture of phenylalanine and aspartic acid is separated by gel electrophoresis with a buffer of pH = 5.5.</span></p>
<p><span style="background-color: #ffffff;">Deduce their relative positions after electrophoresis, annotating them on the diagram. Use section 33 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="585" height="206"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="322" height="178"></p>
<p><span style="background-color: #ffffff;"><em>Name</em>:<br>amide/amido/carboxamide <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “peptide bond/linkage”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="538" height="181"></p>
<p><span style="background-color: #ffffff;"><em>Phe</em>: must be on the origin <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Asp</em>: any position on the left/anode/+ side <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates correctly circled the bond between the amino acid residues, though in some cases their circle missed out key atoms. Many correctly identified it as a peptide or amide linkage.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates seemed to realise that phenylalanine would be neutral and hence unaffected by the field, but many failed to realise that the negative charge of the aspartic acid anion would cause it to move to the left, not the right.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Proteins have structural or enzyme functions.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Oil spills are a major environmental problem.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Some proteins form an α-helix. State the name of another secondary protein structure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare and contrast the bonding responsible for the two secondary structures.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">One similarity:</span></p>
<p><span style="background-color: #ffffff;">One difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why an increase in temperature reduces the rate of an enzyme-catalyzed reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>two</strong> reasons why oil decomposes faster at the surface of the ocean than at greater depth.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Oil spills can be treated with an enzyme mixture to speed up decomposition.</span></p>
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> factor to be considered when assessing the greenness of an enzyme mixture.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>β<span style="background-color: #ffffff;">/beta pleated/sheet <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>One similarity</em>: <br>hydrogen bonding <br><strong>OR</strong> <br>attractions between C=O and N–H <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>One difference</em>:<br>α-helix has hydrogen bonds between amino acid residues that are closer than β-pleated sheet<br><em><strong>OR</strong></em><br>H-bonds in α-helix parallel to helix axis <em><strong>AND</strong> </em>perpendicular to sheet in β-pleated sheet<br><em><strong>OR</strong></em><br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">α</span>-helix has one strand <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">β</span></em>-pleated sheet has two «or more» strands<br><em><strong>OR</strong></em><br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">α</span>-helix is more elastic «since H-bonds can be broken easily» <em><strong>AND</strong> </em><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">β</span>-pleated sheet is less elastic «since H-bonds are difficult to break» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept a diagram which shows hydrogen bonding between O of C=O and H of NH groups for M1. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “between carbonyl/amido/amide/carboxamide” but not “between amino/amine” for M1.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enzyme denatured/loss of 3-D structure/conformational change<br><em><strong>OR</strong></em><br>«interactions responsible for» tertiary/quaternary structures altered <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">shape of active site changes<br><em><strong>OR</strong></em><br>fewer substrate molecules fit into active sites <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>surface water is warmer «so faster reaction rate»/more light/energy from the sun <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">more oxygen «for aerobic bacteria/oxidation of oil» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">greater surface area <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>non-hazardous/toxic to the environment/living organisms <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">energy requirements «during production» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">quantity/type of waste produced «during production»<br><em><strong>OR</strong></em><br>atom economy <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">safety of process <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “use of solvents/toxic materials «during production»”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “more steps involved”.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was quite well answered with many scoring the mark although there were quite a few incorrect responses that answered “beta-helix” rather than “beta-pleated sheet”.</p>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The similarity in bonding between the 2 types of secondary structures was answered well but the difference was not. Most students were not descriptive enough to receive the second mark or simply repeated the idea of proteins containing an alpha-helix and beta-pleated sheets rather than describing something different about them.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another question where most candidates received one mark for identifying that the enzyme will denature with an increase in temperature. However, many candidates did not continue with the explanation of the active site shape changing or substrate molecules not longer fitting into the active site.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>While many candidates did receive two marks for this question some candidates only suggested one reason or repeated the same reason (for example - heat and energy from the sun) even though the question clearly asked for two reasons.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Students tend to struggle with these questions and end up giving journalistic or vague answers that cannot be awarded marks. It is important for teachers to instruct students to give more specific answers directly related to the topics presented.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Phosphatidylcholine is an example of a phospholipid found in lecithin.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Phosphatidylcholine may be formed from propane-1,2,3-triol, two lauric acid molecules, phosphoric acid and the choline cation.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="698" height="97"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Deduce the structural formula of phosphatidylcholine.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="77" height="162"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of reaction in (a).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lecithin is a major component of cell membranes. Describe the structure of a cell membrane.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, the relative energy density of a carbohydrate and a lipid of similar molar mass.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lecithin aids the body’s absorption of vitamin E.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="492" height="153"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest why vitamin E is fat-soluble.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Phospholipids are also found in lipoprotein structures.</span></p>
<p><span style="background-color: #ffffff;">Describe <strong>two</strong> effects of increased levels of low-density lipoprotein (LDL) on health.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="398" height="259"></p>
<p><span style="background-color: #ffffff;">phosphodiester correctly drawn <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">both ester groups correctly drawn <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept protonated phosphate. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept phosphodiester in centre position.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">condensation <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>: Accept “esterification”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “nucleophilic substitution/S<sub>N</sub>”.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">phospholipid bilayer/double layer<br><em><strong>OR</strong></em><br>two layers of phospholipids <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> polar/hydrophilic heads facing aqueous environment <em><strong>AND</strong> </em>non-polar/hydrophobic tails facing away from aqueous environment <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Award <strong>[2]</strong> for a suitably labelled diagram.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[1 max]</strong> for a correct but unlabelled diagram. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “polar/hydrophilic heads on outside <strong>AND</strong> non-polar/hydrophobic tails on inside for M2.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">carbohydrates less energy dense <em><strong>AND</strong> </em>carbohydrates higher ratio of oxygen to carbon/more oxidized/less reduced <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">long non-polar/hydrocarbon chain «and only one hydroxyl group»<br><em><strong>OR</strong></em><br>forms London/dispersion/van der Waals/vdW interactions with fat <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “alcohol/hydroxy/OH” for “hydroxyl” but <strong>not</strong> “hydroxide”.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">atherosclerosis/cholesterol deposition «in artery walls» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">increases risk of heart attack/stroke/cardiovascular disease/CHD <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “arteries become blocked/walls become thicker”, “increases blood pressure”, or “blood clots”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “high cholesterol”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was very poorly answered. Although the phosphodiester was a challenging mark it could be awarded in both the protonated and deprotonated form. The two esters should have been much more straight forward mark, and both were required to receive the second mark. Students struggled with proper structural drawings for both marks and many students simply left this question blank. The functional groups did need to be drawn out in their full structural form to receive the mark as indicated in the question.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was another one where the first mark was fairly well answered but the explanation or second mark was often not correct or complete.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was not well answered even though it has appeared on previous tests. In any cases the students did not give the relative energy density or the reason. It is important that candidates read question carefully and responds completely to each question as asked.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was also not answered well even though it has appeared on previous tests. Many students missed the idea of a long or large non-polar chain when describing the structure.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Students were required to state two effects of increased LDL. High cholesterol is not an accepted answer but still frequently seen. Many students also repeated similar answers that could not receive the same mark.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Sucrose is a disaccharide.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="444" height="180"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of the functional group forming part of the ring structure of each monosaccharide unit.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Sketch the cyclic structures of the two monosaccharides which combine to form sucrose.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="519" height="148"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">acetal<br><em><strong>OR</strong></em><br>ether <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “glycosidic bond/linkage” but <strong>not</strong> “glucosidic”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “hemiacetal”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p><img src=""> <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was reasonably answered although there were some students who responded with ester or hemiacetal which is incorrect.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was very poorly answered. Many students lost marks due to sloppy drawing and incorrect bond linkages. Some students did not separate the two saccharides as instructed.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Enzymes are biological catalysts.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph shows the relationship between the temperature and the rate of an enzyme-catalysed reaction.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="560" height="373"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State <strong>one</strong> reason for the decrease in rate above the optimum temperature.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why a change in pH affects the tertiary structure of an enzyme in solution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> use of enzymes in reducing environmental problems.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enzyme denatures<br><em><strong>OR</strong></em><br>change of conformation/shape of active site<br><em><strong>OR</strong></em><br>substrate cannot bind to active site/binds less efficiently ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “change in structure” or “substrate doesn't fit/fits poorly into active site”</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>acidic/basic/ionizable/COOH/carboxyl/NH<sub>2</sub>/amino groups in the R groups/side chains «react» ✔<br>exchange/lose/gain protons/H<sup>+</sup> ✔<br>change in H-bonds/ionic interactions/intermolecular forces/London dispersion forces ✔</span></p>
<p><span style="background-color: #ffffff;"><br><em>NOTE: Do <strong>not</strong> accept “enzyme denatures” <strong>OR</strong> “change of conformation/tertiary structure” <strong>OR</strong> “substrate cannot bind to active site/binds less efficiently” as this was the answer to 8(a).</em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">breakdown of oil spills/industrial/sewage waste/plastics<br><em><strong>OR</strong></em><br>production of alternate sources of energy «such as bio diesel»<br><em><strong>OR</strong></em><br>involve less toxic chemical pathway «in industry» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “«enzymes in» biological detergents can improve energy efficiency”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Vitamins are organic compounds essential in small amounts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of <strong>one</strong> functional group common to all three vitamins shown in section 35 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the biomagnification of the pesticide DDT.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why maltose, C<sub>12</sub>H<sub>22</sub>O<sub>11</sub>, is soluble in water.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">hydroxyl ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “hydroxy” but <strong>not</strong> “hydroxide”. <br>Accept “alkenyl”. <br>Do <strong>not</strong> accept formula.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">accumulates in fat/tissues/living organisms<br><em><strong>OR</strong></em><br>cannot be metabolized/does not break down «in living organisms»<br><em><strong>OR</strong></em><br>not excreted / excreted «very» slowly ✔</span></p>
<p><span style="background-color: #ffffff;">passes «unchanged» up the food chain<br><em><strong>OR</strong></em><br>increased concentration as one species feeds on another «up the food chain» ✔<br></span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “lipids” for “fat”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«solubility depends on forming many» H-bonds with water ✔<br>maltose has many hydroxyl/OH/oxygen atom/O «and forms many H-bonds» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Reference to “with water” required. <br>Accept “hydroxy” for “hydroxyl” but <strong>not</strong> “hydroxide/OH<sup>–</sup>”. <br>Reference to many/several OH groups/O atoms required for M2.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Aspartame is formed from the two amino acids aspartic acid (Asp) and phenylalanine (Phe).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the dipeptide Asp–Phe using section 33 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The isoelectric point of amino acids is the intermediate pH at which an amino acid is electrically neutral.</span></p>
<p><span style="background-color: #ffffff;">Suggest why Asp and Phe have different isoelectric points.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="298" height="167"></p>
<p><span style="background-color: #ffffff;">amide link (<em>eg,</em> CONH) ✔</span></p>
<p><span style="background-color: #ffffff;">correct order and structures of amino acids ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept a skeletal formula or a full or condensed structural formula.<br>Accept zwitterion form of dipeptide.<br>Accept CO–NH but <strong>not</strong> CO–HN for amide link.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«Asp isoelectric point lower than Phe and » Phe has a neutral/hydrocarbon side chain ✔<br>Asp side chain contains −COOH/carboxyl ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award<strong> [1 max]</strong> for “Asp has two carboxyl/−COOH groups and Phe has one carboxyl/−COOH group”.<br>Accept “Asp has an acidic side chain” for M2</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Stearic acid (<em>M</em><sub>r</sub> = 284.47) and oleic acid (<em>M</em><sub>r</sub> = 282.46) have the same number of carbon atoms. The structures of both lipids are shown in section 34 of the data booklet.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The iodine number is the number of grams of iodine which reacts with 100 g of fat. Calculate the iodine number of oleic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> impact on health of the increase in LDL cholesterol concentration in blood.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why stearic acid has a higher melting point than oleic acid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> similarity and <strong>one</strong> difference in composition between phospholipids and triglycerides.</span></p>
<p><span style="background-color: #ffffff;">Similarity:</span></p>
<p><span style="background-color: #ffffff;">Difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a reagent that hydrolyses triglycerides.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«one C=C bond»<br>«1 mole iodine : 1 mole oleic acid»</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{100 \times 253.80}}{{282.46}}"> <mfrac> <mrow> <mn>100</mn> <mo>×</mo> <mn>253.80</mn> </mrow> <mrow> <mn>282.46</mn> </mrow> </mfrac> </math></span> =» 89.85 «g of I<sub>2</sub>» ✔</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> NOTE: Accept “90 «g of I<sub>2</sub>»”.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">atherosclerosis/cholesterol deposition «in artery walls»/increases risk of heart attack/stroke/cardiovascular disease/CHD ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “arteries become blocked/walls become thicker”, “increases blood pressure”, <strong>OR</strong> “blood clots”.<br>Do <strong>not</strong> accept “high cholesterol” <strong>OR</strong> "obesity"</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">no kinks in chain/more regular structure<br><em><strong>OR</strong></em><br>straight chain<br><em><strong>OR</strong></em><br>no C=C/carbon to carbon double bonds<br><em><strong>OR</strong></em><br>saturated<br><em><strong>OR</strong></em><br>chains pack more closely together ✔<br></span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept “greater surface area/electron density” for M1.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;">stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between molecules» ✔<br> </span></p>
<p><span style="background-color: #ffffff;"><em>NOTE: Accept “stronger intermolecular/van der Waals’/vdW forces” for M2.</em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Similarity:<br></em></span></p>
<p><span style="background-color: #ffffff;">«derived from» propane-1,2,3-triol/glycerol/glycerin/glycerine<br></span></p>
<p><span style="background-color: #ffffff;"> <em><strong>OR</strong> <br></em>«derived from» at least two fatty acids<br> <strong><em>OR<br></em></strong> contains ester linkages <br><em><strong>OR</strong></em> <br>long carbon chains ✔</span></p>
<p><span style="background-color: #ffffff;"><em>NOTE:</em> <em>Do <strong>not</strong> accept “two fatty acids as both a similarity and a difference”.</em><br><em>Do <strong>not</strong> accept just “hydrocarbon/carbon chains”.</em><br></span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Difference</em>: <br></span></p>
<p><span style="background-color: #ffffff;">phospholipids contain two fatty acids «condensed onto glycerol» <em><strong>AND</strong> </em>triglycerides three<br></span><span style="background-color: #ffffff;"><em><strong>OR<br></strong></em> phospholipids contain phosphate/phosphato «group»/residue of phosphoric acid <em><strong>AND</strong> </em>triglycerides do not ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “phospholipids contain phosphorus <strong>AND</strong> triglycerides do not". <br>Accept “phospholipids are amphiphilic <strong>AND</strong> triglycerides are not” <strong>OR</strong> “phospholipids have hydrophobic tails and hydrophilic heads <strong>AND</strong> triglycerides do not”.</span></em></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«concentrated» NaOH (aq)/sodium hydroxide<br><em><strong>OR</strong></em><br>«concentrated» HCl (aq)/hydrochloric acid<br><em><strong>OR</strong></em><br>enzymes/lipases ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept other strong acids or bases.</span></em></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Ascorbic acid and retinol are two important vitamins.</span></p>
<p><span style="background-color: #ffffff;">Explain why ascorbic acid is soluble in water and retinol is not. Use section 35 of the data booklet.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="background-color: #ffffff;"><em>ascorbic acid:</em> many hydroxyl/OH groups <em><strong>AND</strong> retinol</em>: few/one hydroxyl/OH group<br><em><strong>OR</strong></em><br><em>ascorbic acid</em>: many hydroxyl/OH groups <em><strong>AND</strong> retinol</em>: long hydrocarbon chain <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>ascorbic acid</em>: «many» H-bond with water<br><em><strong>OR</strong></em><br><em>retinol</em>: cannot «sufficiently» H-bond with water <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Do <strong>not</strong> accept “OH<sup>−</sup>/hydroxide”.</span></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Another instance where candidates insist on discussing water solubility in terms of polarity or hydrophilicity rather than its fundamental dependence on the presence of sufficient groups that can form hydrogen bonds to water. A few however gained a mark through pointing out the significance of the –OH groups in ascorbic acid and the long hydrocarbon chain in retinol.</p>
</div>
<br><hr><br><div class="specification">
<p>Enzymes are mainly globular proteins.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the interaction responsible for the secondary structure of a protein.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the action of an enzyme and state one of its limitations.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Enzymes are widely used in washing detergents. Outline how they improve the efficiency of the process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonding ✔</p>
<p>between C=O and H–N «groups» ✔</p>
<p> </p>
<p><em>Accept a diagram which shows hydrogen bonding for M1 and which shows the interaction between O of C=O and H of NH groups for M2.</em></p>
<p><em>Accept “between amido/amide/carboxamide” but <strong>not</strong> “between amino/amine” for M2.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Enzyme action:</em></p>
<p><em>Any two of:</em></p>
<p>substrate binds to active site ✔</p>
<p>weakens bonds in substrate ✔</p>
<p> </p>
<p>lowers activation energy</p>
<p><em><strong>OR</strong></em></p>
<p>provides alternate pathway ✔</p>
<p> </p>
<p>increases rate of reaction</p>
<p><em><strong>OR</strong></em></p>
<p>acts as catalyst ✔</p>
<p> </p>
<p>substrate specific ✔</p>
<p> </p>
<p><em>Limitation:</em></p>
<p><em>Any one of:</em></p>
<p>temperature dependent ✔</p>
<p>pH dependent ✔</p>
<p>can be sensitive to heavy metal ions ✔</p>
<p>sensitive to denaturation ✔</p>
<p>can be inhibited ✔</p>
<p>substrate specific ✔</p>
<p> </p>
<p><em>Accept “favourable orientation/conformation of the substrate «enforced by enzyme»” for M1.</em></p>
<p><em>Do <strong>not</strong> accept “substrate specific” as both an enzyme action and a limitation.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>«increase rate of» hydrolyse/break down lipids/oils/fats/proteins ✔</p>
<p>«wash at» lower temperature/consume less energy ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Green Chemistry reduces the production of hazardous materials and chemical waste.</p>
<p>Outline <strong>two </strong>specific examples or technological processes of how Green Chemistry has accomplished this environmental impact.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two of:</em></p>
<p>replaces plastics with biodegradable/starch/cellulose based plastics</p>
<p> </p>
<p>use enzymes instead of polluting detergents/phosphates</p>
<p><strong><em>OR</em></strong></p>
<p>use of enzymes means lower temperatures can be used</p>
<p><strong><em>OR</em></strong></p>
<p>use enzymes instead of emulsifiers to treat oil spills</p>
<p><strong><em>OR</em></strong></p>
<p>use enzymes to produce esters at lower temperatures/without sulfuric acid</p>
<p> </p>
<p>replace organic/toxic solvents with carbon dioxide</p>
<p>replace polymers from fossil fuel with bamboo/renewable resources</p>
<p>develop paint resins reducing production of volatile compounds <strong>«</strong>when paint is applied<strong>»</strong></p>
<p>industrial synthesis of ethanoic/acetic acid from methanol and carbon monoxide has 100% atom economy</p>
<p>energy recovery</p>
<p> </p>
<p><em>Accept formulas for names.</em></p>
<p><em>Award mark for any other reasonable </em><strong><em>specific </em></strong><em>green chemistry example that </em><em>prevents the release of pollutants/toxic </em><em>chemicals into the environment by </em><em>changing the method or the materials </em><em>used.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>award mark for methods that </em><em>involve clean-up of pollutants from the </em><em>environment such as host-guest </em><em>chemistry or alternative energy sources.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>