File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Option A/markSceme-HL-paper3html
File size: 1.37 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p>Chromium forms coloured compounds and is used to make stainless and hard steel. The distance between layers of chromium atoms in the metal can be obtained using X-ray crystallography.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The diagram below shows the diffraction of two X-ray beams, <strong>y</strong> and <strong>z</strong> of wavelength <strong>λ</strong>, shining on a chromium crystal whose planes are a distance <strong>d</strong> nm apart.</p>
<p><img src=""></p>
<p>Deduce the extra distance travelled by the second beam,<strong> z</strong>, compared to the first one, <strong>y</strong>.</p>
<p>(ii) State the Bragg’s condition for the observed diffraction to be at its strongest (constructive interference).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The mass of one unit cell of chromium metal is 17.28 × 10<sup>−23 </sup>g. Calculate the number of unit cells in one mole of chromium. <em>A</em><sub>r</sub>(Cr) = 52.00.</p>
<p>(ii) Deduce the number of atoms of chromium per unit cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>2d sin θ<br><em><strong>OR<br></strong></em>2|AB| / 2|BC| / |AB| + |BC| / |AB| <em><strong>AND</strong></em> |BC|</p>
<p><em>Vertical lines indicating lengths not required. Answer may be conveyed in words also. <br>Do <strong>not</strong> accept |AC| – reference must be made to B.</em></p>
<p> </p>
<p>ii</p>
<p>extra distance travelled/|AB| + |BC| = <em>n</em>λ/a whole number of wavelengths</p>
<p><em>Accept notations of extra distance as in (a)(i).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{52.00\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - {\text{1}}}}}}{{17.28 \times {{10}^{ - 23}}{\text{g}}\,{\text{unit}}\,{\text{cel}}{{\text{l}}^{ - {\text{1}}}}}} = ">
  <mfrac>
    <mrow>
      <mn>52.00</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>17.28</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>unit</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>cel</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 3.009 × 10<sup>23</sup> «unit cells mol<sup>−1</sup>»<br><br>ii<br>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{6.02 \times {{10}^{23}}{\text{atoms}}\,{\text{mo}}{{\text{l}}^{ - {\text{1}}}}}}{{3.01 \times {{10}^{23}}{\text{unit}}\,{\text{cells}}\,{\text{mo}}{{\text{l}}^{ - {\text{1}}}}}} = ">
  <mfrac>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>atoms</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>3.01</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>unit</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>cells</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mrow>
              <mtext>1</mtext>
            </mrow>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 2 «atoms per unit cell»</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Fenton and Haber–Weiss reactions convert organic matter in waste water to carbon dioxide and water.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the Fenton and Haber–Weiss reaction mechanisms.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adsorption and chelation are two methods of removing heavy metal ion pollution from the environment.</p>
<p>(i) Describe the process of adsorption.</p>
<p>(ii) Deduce the structure of the complex ion formed by the reaction of three H<sub>2</sub>N−CH<sub>2</sub>−CH<sub>2</sub>−NH<sub>2</sub> chelating molecules with a mercury(II) ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>One similarity:</em><br>both involve hydroxyl/•OH «radicals»</p>
<p><em>One difference:</em></p>
<p><em><img src=""></em></p>
<p><em>Accept “hydroxy” for “hydroxyl”.<br>Do not penalize missing radical symbols if consistent throughout.<br>Accept “H<sub>2</sub>O<sub>2</sub> → 2•OH” for the Fenton mechanism.</em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>molecules/ions/substances are attracted to/form «non-covalent» interactions with the surface of the adsorbent</p>
<p> </p>
<p>ii</p>
<p><img src=""></p>
<p><em>Do <strong>not</strong> penalize missing charge or square brackets.</em><br><em>Bonds to Hg must be shown (in any format).</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Superconductors are materials that conduct electric current with practically zero resistance.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the Meissner effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline one difference between type 1 and type 2 superconductors.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>creation of a mirror image magnetic field of an external field «below the critical temperature/<em>T</em><sub>c</sub> of the superconductor»<br><em><strong>OR<br></strong></em>expulsion of a magnetic field from a superconductor «below its critical temperature/<em>T</em><sub>c</sub>»</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept “Type 1: «most» metals <strong>AND</strong> Type 2: alloys/metal oxide ceramics/perovskites”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymers are made up of repeating monomer units which can be manipulated in various ways to give structures with desired properties.</p>
</div>

<div class="question">
<p>Fermentation of sugars from corn starch produces propane-1,3-diol, which can be polymerized with benzene-1,4-dicarboxylic acid to produce the PTT polymer (polytrimethylene terephthalate).</p>
<p>(i) Draw the molecular structure of each monomer.</p>
<p>(ii) Deduce the name of the linkage formed on polymerization between the two monomers and the name of the inorganic product.</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>i</p>
<p>HO–CH<sub>2</sub>–CH<sub>2</sub>–CH<sub>2</sub>–OH <em><strong>AND</strong></em> HOOC–C<sub>6</sub>H<sub>4</sub>–COOH</p>
<p><em>Accept full or condensed structural formulas. Labelling of monomers not required but penalize incorrect labels.</em></p>
<p> </p>
<p>ii</p>
<p><em>Name of linkage:</em> ester<br><em><strong>AND<br></strong>Name of inorganic product:</em> water  </p>
<p><em>Do not accept “esterification”.<br>Do not accept formulas.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Precipitation is one method used to treat waste water.</span></p>
<p><span class="fontstyle0">Phosphates, <math class="wrs_chemistry" xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>PO</mi><mn>4</mn><mrow><mn>3</mn><mo>-</mo></mrow></msubsup></math>, in waste water can be removed by precipitation with magnesium ions. </span><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>K</mi><mrow><mi>s</mi><mi>p</mi></mrow></msub></math> <span class="fontstyle0">of magnesium phosphate is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>04</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>24</mn></mrow></msup></math></span><span class="fontstyle0">.</span></p>
<p style="text-align: center;"><span class="fontstyle0"><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>+</mo><mn>2</mn><msup><msub><mi>PO</mi><mn>4</mn></msub><mrow><mn>3</mn><mo>-</mo></mrow></msup><mo>(</mo><mi>aq</mi><mo>)</mo><mo>→</mo><msub><mi>Mg</mi><mn>3</mn></msub><mo>(</mo><msub><mi>PO</mi><mn>4</mn></msub><msub><mo>)</mo><mn>2</mn></msub><mo>(</mo><mi mathvariant="normal">s</mi><mo>)</mo></math><br> </span></p>
<p><span class="fontstyle0"> Calculate the maximum solubility of phosphate ions in a solution containing <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>0</mn><mo>.</mo><mn>0100</mn><mo> </mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>-</mo><mn>3</mn></mrow></msup></math> magnesium ions.<br> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Precipitation is one method used to treat waste water.</span></p>
<p><span class="fontstyle0">Zinc, cadmium, nickel, and lead are metal ions which can be removed by precipitation. Explain why waste water is adjusted to a pH of 9−10</span><span class="fontstyle0"> to remove these ions by referring to section 32 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfenced open="[" close="]"><msup><msub><mi>PO</mi><mn>4</mn></msub><mrow><mn>3</mn><mo>-</mo></mrow></msup></mfenced><mo>=</mo><msqrt><mfrac><msub><mi>K</mi><mrow><mi mathvariant="italic">s</mi><mi mathvariant="italic">p</mi></mrow></msub><msup><mfenced open="[" close="]"><msup><mi>Mg</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mfenced><mn>3</mn></msup></mfrac></msqrt></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mfenced open="[" close="]"><msup><msub><mi>PO</mi><mn>4</mn></msub><mrow><mn>3</mn><mo>−</mo></mrow></msup></mfenced><mo>=</mo><mo>«</mo><msqrt><mfrac><mrow><mn>1</mn><mo>.</mo><mn>04</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>24</mn></mrow></msup></mrow><mrow><mn>0</mn><mo>.</mo><msup><mn>0100</mn><mn>3</mn></msup></mrow></mfrac></msqrt><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>02</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>9</mn></mrow></msup><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi>dm</mi><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>»</mo></math> ✔</p>
<p><br><em>Accept “<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mi>s</mi><mi>p</mi><mo mathvariant="italic">=</mo><msup><mfenced open="[" close="]"><mrow><mi mathvariant="italic">M</mi><msup><mi mathvariant="italic">g</mi><mrow><mn mathvariant="italic">2</mn><mo mathvariant="italic">+</mo></mrow></msup></mrow></mfenced><mn mathvariant="italic">3</mn></msup><msup><mfenced open="[" close="]"><mrow><mi mathvariant="italic">P</mi><msup><msub><mi mathvariant="italic">O</mi><mn mathvariant="italic">4</mn></msub><mrow><mn mathvariant="italic">3</mn><mo mathvariant="italic">-</mo></mrow></msup></mrow></mfenced><mn mathvariant="italic">2</mn></msup></math>” for M1.</em><br><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>precipitation occurs with a base/carbonate/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><msub><mi>CO</mi><mn>3</mn></msub><mrow><mn>2</mn><mo>−</mo></mrow></msup></math>/hydroxide/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><msup><mi>OH</mi><mo>−</mo></msup></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mfenced open="[" close="]"><msup><mi>OH</mi><mo>−</mo></msup></mfenced></math> is high enough to cause metal hydroxide precipitation at that <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi></math> ✔</p>
<p>these ions are slightly acidic/more soluble in acidic conditions ✔</p>
<p>only small amounts of carbonate/hydroxides/anion needed at that <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>pH</mi></math> ✔</p>
<p>solubility products of the hydroxides are very small ✔</p>
<p><em>Do <strong>not</strong> accept “hydroxyl” for “hydroxide”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The Ksp problem was very well answered by the stronger candidates, who had no difficulty working&nbsp;out the maximum solubility of phosphate ions in solution as 1.02 x 10<sup>-9</sup> mol dm<sup>-3</sup>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question although somewhat challenging was well answered by the stronger candidates.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">There has been significant growth in the use of carbon nanotubes, CNT.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain these properties of carbon nanotubes.</span></p>
<p><span class="fontstyle0"><img src="" width="671" height="222"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">CNT can act as Type 2 superconductors. </span><span class="fontstyle0">Outline why Type 2 superconductors are generally more useful than Type 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain the role of electrons in superconducting materials in terms of the Bardeen–Cooper–Schrieffer (BCS) theory.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Alloying metals changes their properties. Suggest </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">property of magnesium that could be improved by making a magnesium–CNT alloy.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0"> Pure magnesium needed for making alloys can be obtained by electrolysis of molten magnesium chloride. <br> </span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="575" height="305"></span></p>
<p style="text-align: center;"><span class="fontstyle0">© International Baccalaureate Organization 2020</span></p>
<p><span class="fontstyle0">Calculate the theoretical mass of magnesium obtained if a current of 3.00 A is used for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>0</mn></math> hours. Use charge :(<em>Q</em>) = <em>current</em> (<em>I</em>) × <em>time</em> (<em>t</em>) </span><span class="fontstyle0"> and section 2 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a gas which should be continuously passed over the molten magnesium in the electrolytic cell.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Zeolites can be used as catalysts in the manufacture of CNT. Explain, with reference to their structure, the high selectivity of zeolites.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Experiments have been done to explore the nematic liquid crystal behaviour of CNT. Justify how CNT molecules could be classified as <strong>nematic</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Excellent strength:</em> defect-free <em><strong>AND</strong> </em>rigid/regular 2D/3D ✔</p>
<p><em>Excellent conductivity:</em> delocalized electrons ✔</p>
<p><em>Accept “carbons/atoms are all covalently bonded to each other” for M1.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>have higher critical temperatures/<em>T</em><sub>c</sub> «than Type 1»<br><em><strong>OR</strong></em><br>can act at higher temperatures ✔</p>
<p>have higher critical magnetic fields/<em>B</em><sub>c</sub> «than Type 1» ✔</p>
<p>less time needed to cool to operating temperature ✔</p>
<p>less energy required to cool down/maintain low temperature ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>passing electrons «slightly» deform lattice/displace positive ions/cations ✔</p>
<p>electrons couple/form Cooper pairs/condense with other electrons ✔</p>
<p>energy propagates along the lattice in wave-like manner/as phonons ✔</p>
<p>Cooper pair/electron condensate/pair of electrons moves through lattice freely<br><em><strong>OR</strong></em><br>phonons are «perfectly» elastic/cause no energy loss ✔</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any of:</em><br>ductility ✔<br>strength/resistance to deformation ✔<br>malleability ✔<br>hardness ✔<br>resistance to corrosion/chemical resistance ✔<br>range of working temperatures ✔<br>density ✔</p>
<p><em>Do <strong>not</strong> accept “conductivity”.</em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mi>Q</mi><mo>=</mo><mi>I</mi><mo>×</mo><mi>t</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>00</mn><mo>×</mo><mn>10</mn><mo>.</mo><mn>0</mn><mo>×</mo><mn>3600</mn><mo>=</mo><mo>»</mo><mn>108</mn><mo> </mo><mn>000</mn><mo> </mo><mi mathvariant="normal">C</mi></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>«</mo><mfrac><mi>Q</mi><mi>F</mi></mfrac><mo>=</mo><mfrac><mrow><mn>108</mn><mo> </mo><mn>000</mn><mo> </mo><mi>C</mi></mrow><mrow><mn>96</mn><mo> </mo><mn>500</mn><mo> </mo><mi>C</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>=</mo><mo>»</mo><mn>1</mn><mo>.</mo><mn>12</mn><mo>«</mo><mi>mol</mi><mo> </mo><msup><mi mathvariant="normal">e</mi><mo>−</mo></msup><mo>»</mo></math> ✔</p>
<p><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mfrac><mrow><mn>1</mn><mo>.</mo><mn>12</mn><mo> </mo><mi>mol</mi></mrow><mn>2</mn></mfrac><mo>=</mo><mn>0</mn><mo>.</mo><mn>560</mn><mo> </mo><mi>mol</mi><mo> </mo><mi>Mg</mi><mo>»</mo></math><br><math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mo>«</mo><mi>m</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>560</mn><mo> </mo><mi>mol</mi><mo>×</mo><mn>24</mn><mo>.</mo><mn>31</mn><mo> </mo><mi mathvariant="normal">g</mi><mo> </mo><msup><mi>mol</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>=</mo><mo>»</mo><mn>13</mn><mo>.</mo><mn>6</mn><mo>«</mo><mi mathvariant="normal">g</mi><mo>»</mo></math> ✔</p>
<p><br><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>argon/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>Ar</mi></math>/helium/<math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mi>He</mi></math> ✔</p>
<p><em>Accept any identified noble/inert gas.</em><br><em>Accept name <strong>OR</strong> formula.</em></p>
<p><em>Do <strong>not</strong> accept “nitrogen/<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>N</mi><mn>2</mn></msub></math>“.</em></p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pores/cavities/channels/holes/cage-like structures ✔</p>
<p>«only» reactants with appropriate/specific size/geometry/structure fit inside/go through/are activated/can react ✔</p>
<p><em>Accept “molecules/ions” for “reactants” in M2.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rod-shaped molecules<br><strong><em>OR</em></strong><br>«randomly distributed but» generally align<br><strong><em>OR</em></strong><br>no positional order AND have «some» directional order/pattern ✔</p>
<p><em>Accept “linear” for “rod-shaped”.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The stronger candidates knew that the excellent conductivity associated with CNTs is associated with&nbsp;delocalised electrons but few scored the mark for citing the property associated with excellent strength,&nbsp;which can be attributed to being defect-free and having a rigid/regular 2D/3D structure.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most gained at least one mark here for stating that Type 2 superconductors have higher critical&nbsp;temperatures than Type 1.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The role of electrons in superconducting materials in terms of the Bardeen-Cooper-Schrieffer (BCS)&nbsp;theory was very well understood and many scored all three marks.&nbsp;</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question proved to be difficult and few could suggest a suitable property (such as ductility) of&nbsp;magnesium that could be improved by making a magnesium-CNT alloy.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The better candidates scored all three marks for the electrolysis calculation. Even the weaker&nbsp;candidates managed to score at least one mark for calculating Q = 108,000 C.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The most common error here was "nitrogen" as the gas that should be continuously passed over the&nbsp;molten magnesium in the electrolytic cell. Magnesium can react with nitrogen forming magnesium&nbsp;nitride, which makes this choice of gas unsuitable (unlike argon for example).</p>
<div class="question_part_label">c(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The explanation of the high selectivity of zeolites, in terms of their structure, was very well answered&nbsp;and many scored both marks. A thorough understanding of zeolites was much better conveyed in N20&nbsp;compared to previous sessions.<br><br></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most gained the one mark here, justifying how CNT molecules can be classified as nematic, by stating that they are "rod-shaped molecules".</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<table class="NormalTable" style="width: 835px;">
<tbody>
<tr>
<td style="width: 825px;"><span class="fontstyle0">Carbon fibre reinforced plastic (CFRP) is a useful composite. Epoxy is a thermoset polymer that is used as a binding polymer when making CFRP.</span></td>
</tr>
</tbody>
</table>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline the </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">distinct phases of this composite.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Thermoplastic composites are increasingly replacing thermosets.</span></p>
<p><span class="fontstyle0">Suggest </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">advantage of thermoplastic polymers over thermosets.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how thermoplastics, such as polyvinylchloride, PVC, can be made more flexible by the addition of phthalate ester plasticizers.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why phthalates are replaced by other plasticizers in the production of plastics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Classify PVC and polyethene terephthalate, PET, as addition or condensation polymers and deduce the structural formulas.</span></p>
<p><span class="fontstyle0"><img src="" width="668" height="400"></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>carbon fibre reinforcing phase ✔</p>
<p>«in a» <span style="text-decoration: underline;">matrix</span> phase of epoxy ✔</p>
<p><br><em>Award<strong> [1 max]</strong> for “reinforcing phase «embedded» in a <span style="text-decoration: underline;">matrix</span>”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>can be recycled<br><em><strong>OR</strong></em><br>can be reformed when hot<br><em><strong>OR</strong></em><br>high impact/chemical/abrasion resistance ✔</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>plasticizers embed/fit between «polymer» chains ✔</p>
<p>keep polymer strands/chains/molecules separated/apart ✔</p>
<p>weaken intermolecular/London/dispersion/attractive/forces/instantaneous induced dipole-induced dipole/forces «between chains» ✔</p>
<p>prevent chains from packing closely/forming regular packing/structure ✔</p>
<p><em><br>Accept “van der Waals/vdW” for “London”.</em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em><br>readily released into environment<br><em><strong>OR</strong></em><br>have weak intermolecular forces «rather than covalent bonds between chains» ✔</p>
<p>get into biological systems by ingestion/inhalation ✔</p>
<p>interrupt endocrine systems<br><em><strong>OR</strong></em><br>affect release of hormones<br><em><strong>OR</strong></em><br>effect development of male reproductive system ✔</p>
<p>considered carcinogenic<br><em><strong>OR</strong></em><br>can cause cellular damage ✔</p>
<p>can cause early puberty in females ✔</p>
<p>can cause thyroid effects ✔</p>
<p>can cause asthma ✔</p>
<p><br><em>Do not accept just “are a health concern”.</em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="553" height="232"></p>
<p><em>PVC</em>: addition <em><strong>AND</strong> PET</em>: condensation ✔</p>
<p>structure of PVC monomer ✔</p>
<p>structure of PET monomers ✔</p>
<p><br><em>Accept full <strong>OR</strong> condensed structural formulas.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most had some idea of a composite and tended to gain at least one mark for stating "reinforcing phase embedded in a matrix".</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was well answered and most stated that one advantage of thermoplastic polymers over&nbsp;thermosets is that they can be recycled.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This also was well done and some managed to score all three marks.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question required an explanation of why phthalates are replaced by other plasticizers in the production of plastics. This question was found to be very challenging and even the better candidates&nbsp;failed to score both marks. The weaker candidates typically stated that they are just a health concern,&nbsp;which was deemed insufficient to warrant even a salvage mark.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question on PVC and PET was very well answered. All three marks for their correct classification&nbsp;and the corresponding structures of their monomers was frequently scored.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Lithium has many uses.</span></p>
</div>

<div class="specification">
<p><span style="background-color: #ffffff;">The emission spectra obtained by ICP-OES for a mixture containing the isotope <sup>6</sup>Li (Li-6) and naturally occurring lithium (Li (N)) is shown.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="688" height="464"></span></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in lithium hydride, using sections 8 and 29 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the colour of the emission spectrum of lithium using section 17 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why ICP-OES does not give good quantitative results for distinguishing <sup>6</sup>Li from naturally occurring lithium.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a better method.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium is obtained by electrolysis of molten lithium chloride. Calculate the time, in seconds, taken to deposit 0.694 g Li using a current of 2.00 A.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>Q</em> (charge) = <em>I</em> (current) × <em>t</em> (time)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium has shown some superconductive properties when doped into graphene or when under high pressure. Under high pressure, however, the Meissner effect is absent.</span></p>
<p><span style="background-color: #ffffff;">Describe the Meissner effect.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">At very low temperatures, lithium atoms enhance the phonon binding of electrons in graphene suggesting the formation of Cooper pairs.</span></p>
<p><span style="background-color: #ffffff;">Explain how Cooper pairs are formed.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium forms a crystalline lattice with the unit cell structure shown below.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="215" height="208"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">X-ray diffraction shows that the length of the edge of the unit cell is 3.51 × 10<sup>−8</sup> cm.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Determine the density of lithium, in g cm<sup>−3</sup>, using sections 2 and 6 of the data booklet.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ionic   <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">red   <strong>[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">emission spectra of both «<sup>6</sup>Li and natural Li» give same colour/produce same «range of» wavelengths<br><em><strong>OR</strong></em><br>they have same electron transitions/same nuclear charge    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “the spectra are almost identical”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ICP-MS   <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept “MS/mass spectrometry”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">n <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">«</span>=  <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{\text{m}}}{{{{\text{M}}_{\text{r}}}}} = \frac{{0.694}}{{6.94}}">
  <mfrac>
    <mrow>
      <mtext>m</mtext>
    </mrow>
    <mrow>
      <mrow>
        <msub>
          <mrow>
            <mtext>M</mtext>
          </mrow>
          <mrow>
            <mtext>r</mtext>
          </mrow>
        </msub>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.694</mn>
    </mrow>
    <mrow>
      <mn>6.94</mn>
    </mrow>
  </mfrac>
</math></span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">»</span> =0.100«mol» </span></p>
<p><span style="background-color: #ffffff;"> « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t = \frac{{0.100{\text{mol}} \times {\text{96 500 C mo}}{{\text{l}}^{ - 1}}}}{{2.00{\text{ C }}{{\text{s}}^{ - 1}}}}">
  <mi>t</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.100</mn>
      <mrow>
        <mtext>mol</mtext>
      </mrow>
      <mo>×</mo>
      <mrow>
        <mtext>96 500 C mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>2.00</mn>
      <mrow>
        <mtext> C </mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> »<br></span></p>
<p><span style="background-color: #ffffff;">4830 «s»   <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">creation of mirror image/opposing magnetic field of external field «below critical temperature/T of superconductor»<br><em><strong>OR</strong></em><br>expulsion of magnetic field from superconductor «below critical temperature/T»    <strong>[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any three of:</em><br>positive ions/cations in lattice are attracted to passing electron    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">lattice is distorted «by this passing electron» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">creates «local» regions of increased positive charge <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">second electron is attracted to deformation <em><strong>AND</strong> </em>a coupling occurs <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">    </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">mass of Li in unit cell = « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times \frac{{6.94{\text{ g mo}}{{\text{l}}^{ - 1}}}}{{6.02 \times {{10}^{23}}{\text{ mo}}{{\text{l}}^{ - 1}}}}">
  <mn>2</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>6.94</mn>
      <mrow>
        <mtext> g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> » 2.31 × 10<sup>–23</sup> g    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">volume of unit cell = «(3.51 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–8</sup> cm)<sup>3</sup> =» 4.32 <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">×</span> 10<sup>–23</sup> cm<sup>3</sup>    <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«density = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.31 \times {{10}^{ - 23}}{\text{ g}}}}{{4.32 \times {{10}^{ - 23}}{\text{ c}}{{\text{m}}^3}}}">
  <mfrac>
    <mrow>
      <mn>2.31</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>4.32</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext> c</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 0.535 «g cm<sup>–3</sup>»    <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly identified the type of bonding and the colour of the emission spectrum of lithium, but frequently referred to the ICP-OES spectra of 6Li and naturally occurring lithium as being the same, rather than similar and thus failed to score the mark in (b)(ii).&nbsp;</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A better method was selected by most candidates.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The calculation in was done well.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates had some difficulty describing the Meissner effect, with several responses using the terms repelling or repulsion instead of opposing and expulsion. Correct terminology is required.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Poor expression was also evident in responses explaining the formation of Cooper pairs, with very few candidates scoring full marks.</p>
<div class="question_part_label">d(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates had difficulty determining the number of atoms in lithium in a unit cell, even with a diagram provided. However, ECF marks were frequently scored.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony and its compounds are toxic, so it is important to check that the catalyst is removed&nbsp;from the final product. One technique to detect antimony is Inductively Coupled Plasma&nbsp;Mass Spectroscopy (ICP-MS).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the nature of the plasma state and how it is produced in ICP-MS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen sulfide could be used to remove antimony(III) ions from a solution.</p>
<p>Determine the concentration of antimony(III) ions that would be required to precipitate&nbsp;antimony(III) sulfide in a solution saturated with hydrogen sulfide.</p>
<p>[S<sup>2−</sup>] in water saturated with hydrogen sulfide = 1.0 × 10<sup>−14</sup> mol dm<sup>−3</sup>&nbsp;</p>
<p><em>K</em><sub>sp</sub> (Sb<sub>2</sub>S<sub>3</sub>) = 1.6 × 10<sup>−93</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a ligand that could be used to chelate antimony(III) ions in solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>electrons <em><strong>AND</strong> </em>positive ions «in gaseous state»</p>
<p>high frequency/alternating current passed through argon<br><em><strong>OR</strong></em><br>«oscillating» electromagnetic/magnetic field<br><em><strong>OR</strong></em><br>high frequency radio waves</p>
<p>&nbsp;</p>
<p><em>Accept “gas” instead of “argon”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>sp</sub> =&nbsp;[Sb<sup>3+</sup>]<sup>2</sup>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
  <mo>∙</mo>
</math></span> [S<sup>2−</sup>]<sup>3</sup></p>
<p>[Sb<sup>3+</sup>]<sup>2</sup>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \bullet ">
  <mo>∙</mo>
</math></span> (10<sup>−14</sup>)<sup>3</sup>&nbsp;= 1.6 x 10<sup>−93</sup></p>
<p>[Sb<sup>3+</sup>] «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {1.6 \times {{10}^{ - 51}}} ">
  <mo>=</mo>
  <msqrt>
    <mn>1.6</mn>
    <mo>×</mo>
    <mrow>
      <msup>
        <mrow>
          <mn>10</mn>
        </mrow>
        <mrow>
          <mo>−</mo>
          <mn>51</mn>
        </mrow>
      </msup>
    </mrow>
  </msqrt>
</math></span>» =&nbsp;4.0 x&nbsp;10<sup>−26</sup>&nbsp;«mol dm<sup>−3</sup>»</p>
<p>&nbsp;</p>
<p><em>Award [3] for correct final answer.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>EDTA/ethylenediaminetetraacetic aci<br><em><strong>OR</strong></em><br>H<sub>2</sub>N–CH<sub>2</sub>–CH<sub>2</sub>–HN<sub>2</sub>/ethane-1,2-diamine</p>
<p>&nbsp;</p>
<p><em>Accept “EDTA<sup>4–</sup>”.</em></p>
<p><em>Accept other chelating agents.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony oxide is widely used as a homogeneous catalyst for the reaction of&nbsp;benzene-1,4-dicarboxylic acid with ethane-1,2-diol in the production of polyethylene&nbsp;terephthalate (PETE).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the repeating unit of the polymer and the other product of the reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of polymer to which PETE belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Repeating unit:</em></p>
<p><img src=""></p>
<p><em>Other product:</em> water/H<sub>2</sub>O</p>
<p>&nbsp;</p>
<p><em>Continuation bonds necessary for the&nbsp;mark.</em></p>
<p><em>Accept alternative repeating unit with O&nbsp;at other end.</em></p>
<p><em>Do <strong>not</strong> penalize square brackets or n.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>condensation</p>
<p>&nbsp;</p>
<p><em>Accept polyester or thermoplastic.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum has a hexagonal close packed (hcp) crystal structure. State the coordination&nbsp;number of each lanthanum atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum becomes superconducting below 5 K. Explain, in terms of&nbsp;Bardeen–Cooper–Schrieffer (BCS) theory, how superconductivity occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why superconductivity only occurs at low temperatures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>twelve/12</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«moving» electron attracts «nearby» positive charges/ions/cations</p>
<p>creates «local» regions of increased positive charge</p>
<p>positive charge/field attracts second electron «with opposite spin»</p>
<p>two electrons form a Cooper pair</p>
<p>«all» Cooper pairs «in sample» interact/form «electron» condensate</p>
<p>«electron»&nbsp;condensate/Cooper pairs move/flow «through sample» freely/without&nbsp;resistance</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reduces the band gap to zero<br><em><strong>OR</strong></em><br>«at high temperatures» thermal motion disrupts the formation of Cooper pairs</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>EDTA is produced by reacting ethane-1,2-diamine with chloroethanoic acid, ClCH<sub>2</sub>COOH.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the other product formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why EDTA, a chelating agent, is more effective in removing heavy metal ions&nbsp;from solution than monodentate ligands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>HCl/hydrogen chloride</p>
<p>&nbsp;</p>
<p><em>Accept “hydrochloric acid”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>forms four/six/several/multiple coordinate/coordination bonds «to a central metal&nbsp;ion»<br><em><strong>OR</strong></em><br>is a polydentate/tetradentate/hexadentate ligand</p>
<p>forms more stable complex/stronger bonds with central metal ion<br><em><strong>OR</strong></em><br>increases entropy/<em>S</em> by releasing smaller «monodentate ligand» molecules&nbsp;previously complexed</p>
<p>complex ions are much larger «and can be removed easily due to large size of&nbsp;chelate complexes»<br><em><strong>OR</strong></em><br>heavy metal ions trapped inside the ligand/become «biologically» inactive/nontoxic/harmless</p>
<p>&nbsp;</p>
<p><em>Accept “dative «covalent»” for&nbsp;“coordinate/coordination”.</em></p>
<p><em>Do <strong>not</strong> accept just “chelates”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Liquid-crystal displays (LCDs) have many uses.</span></p>
<p><span style="background-color: #ffffff;">A molecule which acts as a chiral nematic thermotropic liquid-crystal is given.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="446" height="134"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Label with an asterisk, *, the chiral carbon atom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the effects of very low and high temperatures on the liquid-crystal behaviour of this molecule.</span></p>
<p>&nbsp;</p>
<p><span style="background-color: #ffffff;">Low temperature:</span></p>
<p><span style="background-color: #ffffff;">High temperature:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="441" height="131">   <strong>[<span style="background-color: #ffffff;">✔]</span></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Low temperature:</em><br>intermolecular forces prevent molecules moving <em><strong>AND</strong> </em>solid/«normal» crystal formation &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>High temperature:</em><br>«above a critical temperature» disrupts alignment of molecules <em><strong>AND</strong> </em>behaves as fluid/liquid &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept “weak intermolecular forces break AND behaves as fluid/liquid”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Identifying a chiral carbon atom was answered reasonably well.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Explaining effects of very low and very high temperatures on liquid-crystal behaviour proved difficult for most candidates. Responses lacked the required detail about intermolecular forces between molecules.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Metals have various crystal structures. Cobalt forms a face-centred cubic (FCC) lattice.&nbsp;Two representations of FCC are shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total number of cobalt atoms within its unit cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atomic radius, <em>r</em>, of cobalt is 1.18 × 10<sup>–8</sup> cm. Determine the edge length, in cm, of the unit cell, <em>a</em>, using the second diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine a value for the density of cobalt, in g cm<sup>–3</sup>, using data from sections 2 and 6 of the data booklet and your answers from (a) and (b) (i).</p>
<p>If you did not obtain an answer to (b) (i), use 3.00 × 10<sup>–8</sup> cm but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 \times \frac{1}{8} + 6 \times \frac{1}{2} = ">
  <mn>8</mn>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>8</mn>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
</math></span>» 4</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>face diagonal&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \sqrt {2a}&nbsp; = 4r">
  <mo>=</mo>
  <msqrt>
    <mn>2</mn>
    <mi>a</mi>
  </msqrt>
  <mo>=</mo>
  <mn>4</mn>
  <mi>r</mi>
</math></span></p>
<p>«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a = \frac{{\left( {4 \times 1.18 \times {{10}^{ - 8}}\,{\text{cm}}} \right)}}{{\sqrt 2 }} = ">
  <mi>a</mi>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <mo>(</mo>
        <mrow>
          <mn>4</mn>
          <mo>×</mo>
          <mn>1.18</mn>
          <mo>×</mo>
          <mrow>
            <msup>
              <mrow>
                <mn>10</mn>
              </mrow>
              <mrow>
                <mo>−</mo>
                <mn>8</mn>
              </mrow>
            </msup>
          </mrow>
          <mspace width="thinmathspace"></mspace>
          <mrow>
            <mtext>cm</mtext>
          </mrow>
        </mrow>
        <mo>)</mo>
      </mrow>
    </mrow>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 3.34&nbsp;x 10<sup>–8</sup> «cm»</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>mass of 4 atoms = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 58.93\,g\,mo{l^{ - 1}}}}{{6.02 \times {{10}^{23}}\,mo{l^{ - 1}}}} = 3.916 \times {10^{ - 22}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>58.93</mn>
      <mspace width="thinmathspace"></mspace>
      <mi>g</mi>
      <mspace width="thinmathspace"></mspace>
      <mi>m</mi>
      <mi>o</mi>
      <mrow>
        <msup>
          <mi>l</mi>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>m</mi>
      <mi>o</mi>
      <mrow>
        <msup>
          <mi>l</mi>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>3.916</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>22</mn>
      </mrow>
    </msup>
  </mrow>
</math></span> «g»</p>
<p>«density&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3.916 \times {{10}^{ - 22}}\,g}}{{{{\left( {3.34 \times {{10}^{ - 8}}\,cm} \right)}^3}}} = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.916</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>22</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>3.34</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>8</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mspace width="thinmathspace"></mspace>
                <mi>c</mi>
                <mi>m</mi>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 10.5 «g cm<sup>–3</sup>»</p>
<p><em>Answer using 3.00&nbsp;x 10<sup>–8</sup> cm:</em></p>
<p>mass of 4 atoms =&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4 \times 58.93\,g\,mo{l^{ - 1}}}}{{6.02 \times {{10}^{23}}\,mo{l^{ - 1}}}} = 3.916 \times {10^{ - 22}}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>58.93</mn>
      <mspace width="thinmathspace"></mspace>
      <mi>g</mi>
      <mspace width="thinmathspace"></mspace>
      <mi>m</mi>
      <mi>o</mi>
      <mrow>
        <msup>
          <mi>l</mi>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>m</mi>
      <mi>o</mi>
      <mrow>
        <msup>
          <mi>l</mi>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mn>3.916</mn>
  <mo>×</mo>
  <mrow>
    <msup>
      <mn>10</mn>
      <mrow>
        <mo>−</mo>
        <mn>22</mn>
      </mrow>
    </msup>
  </mrow>
</math></span>&nbsp;«g»</p>
<p>«density&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{3.916 \times {{10}^{ - 22}}\,g}}{{{{\left( {3.00 \times {{10}^{ - 8}}\,cm} \right)}^3}}} = ">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>3.916</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>22</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mi>g</mi>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>3.00</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>8</mn>
                    </mrow>
                  </msup>
                </mrow>
                <mspace width="thinmathspace"></mspace>
                <mi>c</mi>
                <mi>m</mi>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 14.5&nbsp;«g cm<sup>–3</sup>»</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Low density polyethene (LDPE) and high density polyethene (HDPE) are both addition&nbsp;polymers.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the monomers of addition polymers and of condensation polymers differ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of intermolecular bonding that is responsible for Kevlar<sup>®</sup>’s strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>addition:</em> C=C</p>
<p><em><strong>AND</strong></em></p>
<p><em>condensation:</em> two functional groups needed on each monomer</p>
<p>Accept "alkene/alkenyl" <em><strong>OR</strong> </em>"double bond" <em><strong>OR</strong> </em>"multiple bond".</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hydrogen bonds</p>
<p><em>Accept “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\pi&nbsp; - \pi ">
  <mi>π</mi>
  <mo>−</mo>
  <mi>π</mi>
</math></span> stacking/interactions”.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium is produced by the electrolysis of a molten electrolyte containing bauxite.</p>
</div>

<div class="specification">
<p>The graph of the resistance of aluminium with temperature is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-08_om_08.38.12.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/05.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram illustrates the crystal structure of aluminium metal with the unit cell&nbsp;indicated. Outline the significance of the unit cell.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_09.07.28.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/05.b"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When X-rays of wavelength 0.154 nm are directed at a crystal of aluminium, the first&nbsp;order diffraction pattern is observed at 18°. Determine the separation of layers of&nbsp;aluminium atoms in the crystal, in m, using section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what the shape of the graph indicates about aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the resistance of aluminium increases above 1.2 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of aluminium in drinking water can be reduced by precipitating&nbsp;aluminium hydroxide. Calculate the maximum concentration of aluminium ions in water&nbsp;of pH 7 at 298 K. Solubility product of aluminium hydroxide = 3.3 × 10<sup>−34</sup> at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the smallest repeating unit <strong>«</strong>from which the crystal structure can be derived<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept “building block that the structure&nbsp;</em><em>is made from”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>nλ</em>&nbsp;=&nbsp;2<em>d </em>sin <em>θ</em><strong>»</strong></p>
<p>1 × 1.54 × 10<sup>–10</sup> =&nbsp;2 × <em>d ×</em>&nbsp;sin 18</p>
<p><em>d </em><strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.54 \times {{10}^{ - 10}}{\text{ m}}}}{{2 \times 0.309}}">
  <mfrac>
    <mrow>
      <mn>1.54</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>10</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>&nbsp;m</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>2</mn>
      <mo>×</mo>
      <mn>0.309</mn>
    </mrow>
  </mfrac>
</math></span><strong>»</strong>&nbsp;= 2.49 <em>×</em> 10<sup>–10</sup> <strong>«</strong>m<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>type 1</p>
<p>superconductor</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>collisions between electrons and <strong>«</strong>lattice of metal<strong>» </strong>ions become more frequent</p>
<p><strong><em>OR</em></strong></p>
<p>thermal oscillations/vibrations disrupt the Cooper electron pairs</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>sp</sub>&nbsp;= [Al<sup>3+</sup>][OH<sup>–</sup>]<sup>3</sup> <strong>«</strong>=&nbsp;3.3 × 10<sup>–34</sup><strong>»</strong></p>
<p>[Al<sup>3</sup>] = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{3.3 \times {{10}^{ - 34}}}}{{{{(1 \times {{10}^{ - 7}})}^3}}} = ">
  <mfrac>
    <mrow>
      <mn>3.3</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>34</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>1</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>7</mn>
                </mrow>
              </msup>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>» </strong>3.3 × 10<sup>–13</sup> <strong>«</strong>mol dm<sup>–3</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Heavy metal ions are an important environmental concern.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of one method, other than precipitation, of removing heavy metal ions from solution in water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solubility product, <em>K</em><sub>sp</sub> , of cadmium sulfide, CdS, is 8.0 × 10<sup>–27</sup>. Determine the concentration of cadmium ions in 1.0 dm<sup>3</sup> of a saturated solution of cadmium sulfide to which 0.10 mol of solid sodium sulfide has been added, stating any assumption you make.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>adsorption</p>
<p><em><strong>OR</strong></em></p>
<p>chelation</p>
<p><em><strong>OR</strong></em></p>
<p>ion exchange</p>
<p><em>Accept other valid methods such as “phytoremediation” <strong>OR</strong> “Fenton reaction” <strong>OR</strong> “electrolysis”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Calculation:</em></p>
<p><em>K</em><sub>sp</sub> = [Cd<sup>2+</sup>]&nbsp;x [S<sup>2–</sup>] ✔</p>
<p>[Cd<sup>2+</sup>]&nbsp;= 8.0&nbsp;x 10<sup>–26</sup> «mol dm<sup>–3</sup>» ✔</p>
<p><em>Assumption:</em></p>
<p>volume of solution remains 1.0 dm<sup>3</sup></p>
<p><em><strong>OR</strong></em></p>
<p>concentration of sulfide ions in original solution is negligible</p>
<p><em><strong>OR</strong></em></p>
<p>hydrolysis of sulfide ions is negligible</p>
<p><em>Award <strong>[2]</strong> for correct numerical answer&nbsp;of [Cd<sup>2+</sup>] for M1 and M2.</em></p>
<p><em>Accept “0.10 + x ∼ 0.10 «mol dm<sup>–3</sup>»”.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium and palladium are often used together in catalytic converters. Rhodium is a good&nbsp;reduction catalyst whereas palladium is a good oxidation catalyst.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nickel(II) ions are least soluble at pH 10.5. Calculate the molar solubility of&nbsp;nickel(II) hydroxide at this pH.&nbsp;<em>K</em><sub>sp</sub>Ni(OH)<sub>2</sub> = 5.48 × 10<sup>–16</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rhodium is paramagnetic with an electron configuration of [Kr] 5s<sup>1</sup>4d<sup>8</sup>.</p>
<p>Explain, in terms of electron spin pairing, why paramagnetic substances are&nbsp;attracted to a magnetic field and diamagnetic substances are not.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rhodium is a type 1 superconductor.</p>
<p>Sketch graphs of resistance against temperature for a conductor and&nbsp;superconductor.</p>
<p><img src="images/Schermafbeelding_2017-09-21_om_13.24.04.png" alt="M17/4/CHEMI/HP3/ENG/TZ2/05.c.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Contrast type 1 and type 2 superconductors by referring to <strong>three</strong> differences&nbsp;between them.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>K</em><sub>sp</sub>=&nbsp;[Ni<sup>2+</sup>][OH<sup>−</sup>]<sup>2</sup><br><em><strong>OR</strong></em><br>5.48 x 10<sup>−16</sup>&nbsp;= [Ni<sup>2+</sup>][10<sup>−3.5</sup>]<sup>2</sup></p>
<p>«[Ni<sup>2+</sup>] =» 5.48 x&nbsp;10<sup>−9</sup> «mol dm<sup>−3</sup>»</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>paramagnetic materials have unpaired electrons<br><em><strong>OR</strong></em><br>diamagnetic materials have all electrons «spin-»paired</p>
<p>unpaired electrons align with an external magnetic field<br><em><strong>OR</strong></em><br>paired electrons are not influenced by magnetic field</p>
<p>&nbsp;</p>
<p><em>Accept “diamagnetic materials have no&nbsp;unpaired electrons" for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-21_om_13.25.44.png" alt="M17/4/CHEMI/HP3/ENG/TZ2/05.c.ii_01/M">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<img src="images/Schermafbeelding_2017-09-21_om_13.27.18.png" alt="M17/4/CHEMI/HP3/ENG/TZ2/05.c.ii_02/M"></p>
<p>&nbsp;</p>
<p><em>Conductor:</em><br><em>Accept any concave upwards curve or&nbsp;line showing resistance increasing with&nbsp;temperature. There should be a </em><br><em>y-axis&nbsp;intercept. Do <strong>not</strong> accept x-axis&nbsp;intercept for conductor.</em></p>
<p><em>Superconductor:</em><br><em>Sharp transition with vertical line to&nbsp;x-axis. Greater than T<sub>c</sub>, accept any&nbsp;concave upwards curve or line showing&nbsp;resistance increasing with temperature.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any three of:</em></p>
<p>type 1 have lower critical temperature/<em>T</em><sub>c</sub> «than type 2»<br><em><strong>OR<br></strong></em>type 2 can superconduct at higher temperatures «than type 1»</p>
<p>type 1 are «elemental» metals <em><strong>AND</strong>&nbsp;</em>type 2 can be alloys/composites/metal oxide&nbsp;ceramics/perovskites</p>
<p>type 1 have sharp transition to superconductivity <em><strong>AND</strong>&nbsp;</em>type 2 have more gradual&nbsp;transition</p>
<p>type 1 have all «magnetic» flux expelled to normal state <em><strong>AND</strong>&nbsp;</em>type 2 have partial&nbsp;penetration of flux in mixed state</p>
<p>type 1 typically work via Cooper pairs <em><strong>AND</strong>&nbsp;</em>type 2 may not necessarily use this&nbsp;mechanism</p>
<p>magnetic fields can penetrate type 2 in the mixed state «in a type of Vortex» <em><strong>AND</strong>&nbsp;</em>type 1 has no mixed state</p>
<p>type 1 have one critical magnetic field/B<sub>c</sub> <em><strong>AND</strong> </em>type 2 have two/B<sub>c1</sub> and B<sub>c2</sub></p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if three correct pieces of&nbsp;information are given for one type only&nbsp;without contrasting with the other type.</em></p>
<p><em>Marks may also be awarded from&nbsp;suitable sketch(es).</em></p>
<p><em>Accept “H” for “B”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium forms a body centred cubic (BCC) crystal structure with an edge length of&nbsp;303 pm, (303 × 10<sup>−12</sup> m).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of atoms per unit cell in vanadium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected first order diffraction pattern angle, in degrees, if x-rays&nbsp;of wavelength 150 pm are directed at a crystal of vanadium. Assume the edge&nbsp;length of the crystal to be the same as separation of layers of vanadium atoms&nbsp;found by x-ray diffraction. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the average mass, in g, of a vanadium atom by using sections 2 and 6&nbsp;of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in cm<sup>3</sup>, of a vanadium unit cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the density, in g cm<sup>−3</sup>, of vanadium by using your answers to (a)(i),&nbsp;(a)(iii) and (a)(iv).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium and other transition metals can interfere with cell metabolism.</p>
<p>State and explain <strong>one </strong>process, other than by creating free radicals, by which&nbsp;transition metals interfere with cell metabolism.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium(IV) ions can create free radicals by a Fenton reaction.</p>
<p>Deduce the equation for the reaction of V<sup>4+</sup> with hydrogen peroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>n</em><em>λ =</em>&nbsp;2<em>d</em>sin<em>θ</em></p>
<p><strong><em>OR</em></strong></p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\theta &nbsp;= {\sin ^{ - 1}}\left( {\frac{{n\lambda }}{{2d}}} \right)">
  <mi>θ</mi>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>sin</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mi>n</mi>
          <mi>λ</mi>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mi>d</mi>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span></p>
<p>&nbsp;</p>
<p><em>θ</em> = <strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sin ^{ - 1}}\left( {\frac{{150}}{{2 \times 303}}} \right) = ">
  <mrow>
    <msup>
      <mi>sin</mi>
      <mrow>
        <mo>−</mo>
        <mn>1</mn>
      </mrow>
    </msup>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mfrac>
        <mrow>
          <mn>150</mn>
        </mrow>
        <mrow>
          <mn>2</mn>
          <mo>×</mo>
          <mn>303</mn>
        </mrow>
      </mfrac>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
</math></span><strong>» </strong>14.3&nbsp;<strong>«</strong>°<strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m =</em><em>&nbsp;</em><strong><em>«</em></strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{50.94}}{{6.02 \times {{10}^{23}}}} = ">
  <mfrac>
    <mrow>
      <mn>50.94</mn>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>&nbsp;<strong><em>»</em> </strong>8.46 ×&nbsp;10<sup>–23</sup> <strong>«</strong>g<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>303 pm =&nbsp;303 × 10<sup>–10</sup> cm<strong>»</strong></p>
<p>V =&nbsp;<strong>«</strong>(303 × 10<sup>–10</sup>)<sup>3</sup> =<strong>» </strong>2.78 × 10<sup>–23</sup> <strong>«</strong>cm<sup>3</sup> <strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>8.46 × 10<sup>–23</sup> g × 2 =<strong>» </strong>1.69 × 10<sup>–22</sup> <strong>«</strong>g<strong>»</strong></p>
<p><em>d =</em>&nbsp;<strong>«</strong><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.69 \times {{10}^{ - 22}}{\text{ g}}}}{{2.78 \times {{10}^{ - 23}}{\text{ c}}{{\text{m}}^3}}} = ">
  <mfrac>
    <mrow>
      <mn>1.69</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>22</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>&nbsp;g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>2.78</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>&nbsp;c</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span><strong>» </strong>6.08 <strong>«</strong>g cm<sup>–3</sup><strong>»</strong></p>
<p>&nbsp;</p>
<p><em>Accept any value in the range&nbsp;</em><em>6.07</em><em>–</em><em>6.09 </em><strong><em>«</em></strong><em>g cm</em><sup><em>–</em><em>3</em></sup><strong><em>»</em></strong><em>.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of these alternatives:</em></p>
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>disrupt enzyme binding sites</p>
<p>which can inhibit/over-stimulate enzymes</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>disrupt endocrine system</p>
<p>because they compete for active sites of enzymes/cellular receptors</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 3</em></strong></p>
<p>form complexes/coordination compounds</p>
<p>which can bind to enzymes</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 4</em></strong></p>
<p>act as oxidizing/reducing agents</p>
<p><strong><em>OR</em></strong></p>
<p>act as catalysts</p>
<p>&nbsp;</p>
<p>which can initiate unwanted reactions</p>
<p>&nbsp;</p>
<p><em>Accept “can undergo oxidation–</em><em>reduction reactions” for M1 in&nbsp;</em><em>Alternative 4.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>V<sup>4+</sup>(aq) +&nbsp;H<sub>2</sub>O<sub>2</sub>(aq) → V<sup>5+</sup>(aq) +&nbsp;OH<sup>–</sup>(aq) +&nbsp;•OH(aq)</p>
<p>&nbsp;</p>
<p><em>Do </em><strong><em>not </em></strong><em>accept • on H.</em></p>
<p><em>Accept answer without •</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Propene can polymerize to form polypropene.</p>
<p>Propene monomer:&nbsp;<img src="images/Schermafbeelding_2018-08-08_om_17.53.44.png" alt="M18/4/CHEMI/HP3/ENG/TZ2/05"></p>
</div>

<div class="question">
<p>Distinguish between the manufacture of polyester and polyethene.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any one of these alternatives:</em></p>
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>Polyester:</em> produced by condensation/esterification polymerization</p>
<p><em>Polyethene:</em> produced by addition polymerization</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><em>Polyester:</em> reaction between monomers/molecules containing two functional&nbsp;groups per molecule</p>
<p><em>Polyethene:</em> reaction between monomers/molecules containing a carbon–carbon&nbsp;double bond/C=C</p>
<p>&nbsp;</p>
<p><strong><em>ALTERNATIVE 3</em></strong></p>
<p>polyester polymerization forms a by-product/H<sub>2</sub>O</p>
<p>polyethene has no by-products/100% atom economy</p>
<p>&nbsp;</p>
<p><em>Accept the names of different catalysts&nbsp;</em><em>used for each polymerization as an&nbsp;</em><em>alternative answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Polymer nanocomposites often have better structural performance than conventional&nbsp;materials. Lithographic etching and metal coordination are two methods of assembling&nbsp;these nanocomposites.</p>
</div>

<div class="specification">
<p>Dendrimers are highly branched nanoparticles with a wide range of usage. One such&nbsp;dendrimer is PAMAM, or polyamidoamine.</p>
<p style="text-align: center;"><img src=""></p>
<p>The first step in the synthesis is to make the core by reacting ethane-1,2-diamine&nbsp;with methylpropenoate.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the atom economy of this first step.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving one reason, whether this is an addition or condensation reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent steps proceed under differing conditions, forming the dendrimer&nbsp;polymer with the following repeating unit.</p>
<p><img src=""></p>
<p>State the name of <strong>one</strong> functional group in this repeating unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>100%</p>
<p>&nbsp;</p>
<p><em>Accept “almost 100%” if a catalyst is&nbsp;referred to.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>addition <em><strong>AND</strong> </em>no atoms removed/all atoms accounted for/no loss of&nbsp;water/ammonia/inorganic by-product/small molecules<br><em><strong>OR</strong></em><br>addition <em><strong>AND</strong>&nbsp;</em>there is only one «reaction» product</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amido<br><em><strong>OR</strong></em><br>amino</p>
<p>&nbsp;</p>
<p><em>Accept “amide/carboxamide/carbamoyl”&nbsp;for “amido”.</em></p>
<p><em>Accept “amine“ for “amino”.</em></p>
<p><em>Accept “carbonyl”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The presence of very small amounts of lead in calcium-based antacids can be determined&nbsp;using inductively coupled plasma-mass spectroscopy (ICP-MS).</p>
</div>

<div class="specification">
<p>An unknown antacid sample has a lead ion concentration of 0.50 μg dm<sup>‒3</sup>.</p>
</div>

<div class="specification">
<p>Chelating agents can be used to treat heavy metal poisoning.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of particle present in the plasma formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of lead ions in the sample in mol dm<sup>‒3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lead ions are toxic and can be precipitated using hydroxide ions.</p>
<p style="text-align: center;">Pb<sup>2+</sup> (aq) + 2OH<sup>‒</sup> (aq) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌</mo>
</math></span> Pb(OH)<sub>2</sub> (s)</p>
<p>Sufficient sodium hydroxide solid is added to the antacid sample to produce a 1.0 × 10<sup>‒2</sup> mol dm<sup>‒3</sup> hydroxide ion solution at 298 K.</p>
<p>Deduce if a precipitate will be formed, using section 32 of the data booklet.</p>
<p>If you did not calculate the concentration of lead ions in (b)(i), use the value of 2.4 × 10<sup>−4</sup> mol dm<sup>‒3</sup>, but this is not the correct value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Electrolysis is used to obtain lead from Pb<sup>2+</sup> (aq) solution.</p>
<p>Determine the time, in hours, required to produce 0.0500 mol lead using a current (<em>I</em>) of&nbsp;1.34 A. Use section 2 of the data booklet and the equation,&nbsp;charge (<em>Q</em>) = current (<em>I</em>) × time (<em>t</em>, in seconds).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> feature of a chelating agent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An aqueous lead(II) ion reacts with three ethane-1,2-diamine molecules to form an octahedral chelate ion.</p>
<p>Outline why the chelate ion is more stable than the reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>positive ions/cations/Pb<sup>2+</sup></p>
<p><em><strong>OR</strong></em></p>
<p>free electrons ✔</p>
<p> </p>
<p><em>Accept “ions” <strong>OR</strong> “charged species/particle”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>[Pb<sup>2+</sup>]&nbsp;= 0.50 × 10<sup>‒6</sup>/5.0 × 10<sup>–7</sup> «g dm<sup>–3</sup>» ✔</p>
<p>[Pb<sup>2+</sup>] «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{0.50 \times {{10}^{ - 6}}\,{\text{g}}\,{\text{d}}{{\text{m}}^{-3}}}}{{207.20\,{\text{g}}\,{\text{mo}}{{\text{l}}^{-1}}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>0.50</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>6</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>d</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>3</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>207.20</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>»&nbsp;= 2.4 × 10<sup>‒9</sup> «mol dm<sup>‒3</sup>» ✔</p>
<p>&nbsp;</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«<em>K</em><sub>sp</sub>&nbsp;= 1.43 × 10<sup>–20</sup>»</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 1:</strong></em></p>
<p>«<em>Q</em>&nbsp;= [Pb<sup>2+</sup>] [OH<sup>–</sup>]<sup>2</sup>&nbsp;= 2.4 × 10<sup>–9</sup> × (1.0 × 10<sup>–2</sup>)<sup>2</sup>»&nbsp;= 2.4 × 10<sup>–13</sup> ✔</p>
<p>&nbsp;</p>
<p><em>Q</em> &gt; <em>K</em><sub>sp</sub> <em><strong>AND</strong> </em>precipitate will form</p>
<p><em><strong>OR</strong></em></p>
<p>2.4 × 10<sup>–13</sup> &gt; 1.43 × 10<sup>–20</sup> <em><strong>AND</strong> </em>precipitate will form ✔</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2:</strong></em></p>
<p>critical [Pb<sup>2+</sup>] for hydroxide solution «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{{{K_{sp}}}}{{{{\left[ {{\text{O}}{{\text{H}}^ - }} \right]}^2}}} = \frac{{1.43 \times {{10}^{ - 20}}}}{{{{\left( {1.0 \times {{10}^{ - 2}}} \right)}^2}}}">
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mrow>
        <msub>
          <mi>K</mi>
          <mrow>
            <mi>s</mi>
            <mi>p</mi>
          </mrow>
        </msub>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>[</mo>
              <mrow>
                <mrow>
                  <mtext>O</mtext>
                </mrow>
                <mrow>
                  <msup>
                    <mrow>
                      <mtext>H</mtext>
                    </mrow>
                    <mo>−</mo>
                  </msup>
                </mrow>
              </mrow>
              <mo>]</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>1.43</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>20</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mrow>
              <mo>(</mo>
              <mrow>
                <mn>1.0</mn>
                <mo>×</mo>
                <mrow>
                  <msup>
                    <mrow>
                      <mn>10</mn>
                    </mrow>
                    <mrow>
                      <mo>−</mo>
                      <mn>2</mn>
                    </mrow>
                  </msup>
                </mrow>
              </mrow>
              <mo>)</mo>
            </mrow>
          </mrow>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 1.4 × 10<sup>–16</sup> ✔</p>
<p>&nbsp;</p>
<p>initial concentration &gt; critical concentration <em><strong>AND</strong> </em>precipitate will form</p>
<p><em><strong>OR</strong></em></p>
<p>2.4 × 10<sup>–9</sup> &gt; 1.4 × 10<sup>–16</sup> <em><strong>AND</strong> </em>precipitate will form ✔</p>
<p>&nbsp;</p>
<p>If value given is used:</p>
<p><em><strong>ALTERNATIVE 3:</strong></em></p>
<p>«<em>Q</em>&nbsp;=&nbsp;[Pb<sup>2+</sup>] [OH<sup>–</sup>]<sup>2</sup>&nbsp;=&nbsp;2.4&nbsp;× 10<sup>–4</sup>&nbsp;× (1.0&nbsp;× 10<sup>–2</sup>)<sup>2</sup>»&nbsp;=&nbsp;2.4&nbsp;× 10<sup>–8</sup>&nbsp;✔</p>
<p>&nbsp;</p>
<p><em>Q</em>&nbsp;&gt;&nbsp;<em>K</em><sub>sp</sub>&nbsp;<em><strong>AND</strong>&nbsp;</em>precipitate will form</p>
<p><em><strong>OR</strong></em></p>
<p>2.4&nbsp;× 10<sup>–8</sup>&nbsp;&gt; 1.43&nbsp;× 10<sup>–20</sup>&nbsp;<em><strong>AND</strong>&nbsp;</em>precipitate will form ✔</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«Faraday’s constant, <em>F</em>&nbsp;= 9.65 × 10<sup>4</sup> C mol<sup>‒1</sup> and 1 A&nbsp;= 1 C s<sup>–1</sup>»<br>Q «= 0.0500 mol × 2 × 96500 C mol<sup>‒1</sup>»&nbsp;= 9650 «C» ✔</p>
<p>t «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \frac{Q}{I} = \frac{{9650\,{\text{C}}}}{{1.34\,{\text{C}}\,{{\text{s}}^{-1}}}} \approx 7200\,{\text{s}}">
  <mo>=</mo>
  <mfrac>
    <mi>Q</mi>
    <mi>I</mi>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>9650</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>C</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.34</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>C</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mrow>
            <mtext>s</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>≈</mo>
  <mn>7200</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>s</mtext>
  </mrow>
</math></span>&nbsp;so&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7200\,{\text{s}}}}{{60 \times 60\,{\text{s}}\,{{\text{h}}^{-1}}}}">
  <mfrac>
    <mrow>
      <mn>7200</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>s</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>60</mn>
      <mo>×</mo>
      <mn>60</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>s</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <msup>
          <mrow>
            <mtext>h</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>»&nbsp;= 2.00 «hours» ✔</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>two «or more» lone/non-bonding pairs on different atoms</p>
<p><em><strong>OR</strong></em></p>
<p>two «or more» atoms/centres that act as Lewis bases ✔</p>
<p> </p>
<p>form «at least» two coordination/coordinate bonds</p>
<p><em><strong>OR</strong></em></p>
<p>«at least» two atoms can form coordination/coordinate bonds ✔</p>
<p> </p>
<p><em>Reference to “on <strong>DIFFERENT</strong> atoms” required.</em></p>
<p><em>Accept “dative «covalent» bond” for “coordination/coordinate bond”.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increase in entropy</p>
<p><em><strong>OR</strong></em></p>
<p>Δ<em>S</em> &gt; 0/Δ<em>S</em> positive ✔</p>
<p>&nbsp;</p>
<p><em>Accept “ΔG &lt; 0” but <strong>not</strong> “ΔH &lt; 0”.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>One way of classifying materials is based on the type of bonding present.</p>
</div>

<div class="specification">
<p>Caprolactam reacts with water to form compound <strong>X</strong>, a monomer.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>One way of classifying materials is based on the type of bonding present.</p>
</div>

<div class="specification">
<p>One reaction to convert cyclohexanone to caprolactam using concentrated sulfuric acid&nbsp;as a catalyst is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this type of classification is not entirely satisfactory by using magnesium&nbsp;diboride, MgB<sub>2</sub>,&nbsp;as an example. Refer to sections 8 and 29 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Structures of poly(methyl acrylate), PMA, and Bakelite<sup>®</sup> are shown.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Suggest, giving reasons, which is the thermoplastic polymer and which is the&nbsp;thermosetting polymer.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A zeolite is an alternative catalyst for this reaction.</p>
<p>Explain how zeolites act as selective catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of the two terminal functional groups in <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the repeating unit of the polymer of <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeating units of several polymers are listed.</p>
<p style="text-align: center;"><img src=""></p>
<p>The infrared (IR) spectrum of one of these polymers is shown.</p>
<p><img src=""></p>
<p>Deduce, giving a reason, the name of this polymer and its Resin Identification Code&nbsp;(RIC), using sections 26 and 30 in the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta \chi ">
  <mi mathvariant="normal">Δ</mi>
  <mi>χ</mi>
</math></span>&nbsp;=&nbsp;0.7 <em><strong>AND</strong> </em>average <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\Delta \chi ">
  <mi mathvariant="normal">Δ</mi>
  <mi>χ</mi>
</math></span> = 1.7 ✔</p>
<p>&nbsp;</p>
<p>bonding between metallic and ionic</p>
<p><em><strong>OR</strong></em></p>
<p>more than one type of bonding present</p>
<p><em><strong>OR</strong></em></p>
<p>bond type difficult to determine as close to several regions/several types/named&nbsp;bonding types «<em>eg</em> ionic and covalent <em>etc</em>.»</p>
<p><em><strong>OR</strong></em></p>
<p>bond is mostly covalent «based on % covalent scale on diagram»</p>
<p><em><strong>OR</strong></em></p>
<p>bond has « <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.7}}{{3.2}} \times 100 = ">
  <mfrac>
    <mrow>
      <mn>0.7</mn>
    </mrow>
    <mrow>
      <mn>3.2</mn>
    </mrow>
  </mfrac>
  <mo>×</mo>
  <mn>100</mn>
  <mo>=</mo>
</math></span>» 22% ionic character ✔</p>
<p>&nbsp;</p>
<p><em>Accept “EN” for “<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\chi ">
  <mi>χ</mi>
</math></span>".</em></p>
<p><em>Accept “bond is ionic but close to&nbsp;several regions/several types/other&nbsp;named bonding type(s) (eg covalent,&nbsp;metallic and covalent etc.)”.</em></p>
<p><em>Do <strong>not</strong> accept just “bond is ionic”.</em></p>
<p><em>Accept any value for % ionic character&nbsp;in range 15–24% or % covalent&nbsp;character in range 76–85%.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Thermoplastic polymer:</em></p>
<p>PMA <em><strong>AND</strong> </em>«weak» intermolecular/IMFs/London/dispersion/van der Walls/vdW/dipole-dipole&nbsp;forces «between layers/chains»</p>
<p><em><strong>OR</strong></em></p>
<p>PMA <em><strong>AND</strong> </em>no/few cross-links «between layers/chains» ✔</p>
<p>&nbsp;</p>
<p><em>Thermosetting polymer:</em></p>
<p>Bakelite<sup>®</sup> <em><strong>AND</strong> </em>«strong» covalent bonds «between layers/chains»</p>
<p><em><strong>OR</strong></em></p>
<p>Bakelite<sup>®</sup> <em><strong>AND</strong> </em>extensive cross-links «between layers/chains» ✔</p>
<p>&nbsp;</p>
<p><em>Do <strong>not</strong> accept “hydrogen bonding” for M1.</em></p>
<p><em>Award <strong>[1 max]</strong> for correct&nbsp;reasons for both polymer&nbsp;classes even if named&nbsp;polymers are incorrectly&nbsp;classified.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>pores/cavities/channels/holes/cage-like structures «in zeolites» have specific shape/size ✔</p>
<p>only reactants «with appropriate size/geometry» fit inside/go through/are activated/can react ✔</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amino <em><strong>AND</strong> </em>carboxyl ✔</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “carbonyl”, “hydroxyl”.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p> </p>
<p><em>Continuation bonds at NH and CO are required for mark.</em></p>
<p><em>Ignore any brackets and n.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Name and reason:</em></p>
<p>PET/PETE <em><strong>AND</strong> </em>peak for C=O «at 1700–1750 cm<sup>–1</sup>» ✔</p>
<p>&nbsp;</p>
<p><em>RIC:</em></p>
<p>1 ✔</p>
<p>&nbsp;</p>
<p><em>Accept “PET/PETE <strong>AND</strong> peak for C–O&nbsp;«at 1050–1410 cm<sup>–1</sup>»” for M1.</em></p>
<p><em>Accept “PET/PETE <strong>AND</strong> peak(s) for&nbsp;COO” for M1.</em></p>
<p><em>Accept name or abbreviation for&nbsp;polymer.</em></p>
<p><em>No ECF for M2.</em></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A representation of the unit cell of gold is shown.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of the crystal structure of gold.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of atoms per unit cell of gold, showing your working.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The edge length of the gold unit cell is 4.08 × 10<sup>‒8</sup> cm.</p>
<p>Determine the density of gold in g cm<sup>‒3</sup>, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>face-centred cube/fcc</p>
<p><em><strong>OR</strong></em></p>
<p>cubic close packed/ccp ✔</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
</math></span>&nbsp;«atom per face» × 6 «faces per cube» × 3 «atoms» <em><strong>AND </strong></em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
  <mfrac>
    <mn>1</mn>
    <mn>8</mn>
  </mfrac>
</math></span>&nbsp;«atom per&nbsp;corner» × 8 «corners per cube»&nbsp;= 1 «atom» ✔</p>
<p>«atoms per unit cell&nbsp;= 3&nbsp;+ 1 =» 4 ✔</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for “4” without working shown.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«4 atoms per unit cell»</p>
<p>mass of 4 atoms «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = 4 \times \frac{{196.97\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}{{6.02 \times {{10}^{23}}\,{\text{mo}}{{\text{l}}^{ - 1}}}} = ">
  <mo>=</mo>
  <mn>4</mn>
  <mo>×</mo>
  <mfrac>
    <mrow>
      <mn>196.97</mn>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
  <mo>=</mo>
</math></span>» 1.31 × 10<sup>–21</sup> «g»</p>
<p>volume of unit cell «= (4.08 × 10<sup>‒8</sup>)<sup>3</sup> cm<sup>3</sup>»&nbsp;= 6.79 × 10<sup>–23</sup>&nbsp;«cm<sup>3</sup>»</p>
<p>density =&nbsp;«<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.31 \times {{10}^{ - 21}}\,{\text{g}}}}{{6.79 \times {{10}^{ - 23}}\,{\text{c}}{{\text{m}}^3}}}">
  <mfrac>
    <mrow>
      <mn>1.31</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>21</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>6.79</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mspace width="thinmathspace"></mspace>
      <mrow>
        <mtext>c</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>m</mtext>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» =&nbsp;1.93 × 10<sup>1</sup>/19.3 «g cm<sup>‒3</sup>»</p>
<p>&nbsp;</p>
<p><em>Award<strong> [3]</strong> for correct final answer.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Nanotechnology has allowed the manipulation of materials on the atomic level.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding of a carbon nanotube.</span></p>
<p>&nbsp;</p>
<p><span style="background-color: #ffffff;">Structure:</span></p>
<p><span style="background-color: #ffffff;">Bonding:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>one</strong> application for carbon nanotubes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Structure</em>:<br>giant covalent/network covalent &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Bonding</em>:<br>each carbon covalently bonded to 3 other carbons<br><em><strong>OR</strong></em><br>each bond has order of 1.5 &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept “cylindrical/tube shaped”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “has delocalized electrons” <strong>OR</strong> “has sp2 hybridization”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>3D electrodes &nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">catalysts&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">biosensors&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">molecular stents&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">body armour&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">synthetic muscles&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">micro transistors/circuitry/capacitors/electrodes&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">reinforcing phase in a matrix/composite material «such as concrete»&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">micro antenna&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">stealth technology&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">water/air filtration&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">solar cells&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">tennis racquets&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">microelectronic circuits&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note:&nbsp;</strong>Do <strong>not</strong> accept just general answers such as “medicine” or “defence”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Describing the structure and bonding of a carbon nanotube was generally answered satisfactorily, although some candidates simply said the bonding was covalent with no further detail.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were some vague responses for applications of carbon nanotubes when specific details were needed to score the mark in (b).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">X-ray crystallography of a metal crystal produces a diffraction pattern of bright spots.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="392" height="305"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Using X-rays of wavelength 1.54 × 10<sup>−10</sup> m, the first bright spots were produced at an angle θ of 22.3° from the centre.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Calculate the separation between planes of atoms in the lattice, in meters, using section 1 of the data booklet.</span></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="background-color: #ffffff;">«<em>d</em> = <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{n\lambda }}{{2\sin \theta }}"><mfrac><mrow><mi>n</mi><mi>λ</mi></mrow><mrow><mn>2</mn><mi>sin</mi><mo> </mo><mtext>θ</mtext></mrow></mfrac></math></span>»</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><em>d</em> = «<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1 \times 1.54 \times {{10}^{ - 10}}{\text{m}}}}{{2 \times \sin {{22.3}^ \circ }}}"><mfrac><mrow><mn>1</mn><mo>×</mo><mn>1.54</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>10</mn></mrow></msup><mtext>m</mtext></mrow><mrow><mn>2</mn><mo>×</mo><mi>sin</mi><mo> </mo><msup><mn>22.3</mn><mo>∘</mo></msup></mrow></mfrac></math></span>» 2.03 × 10<sup>−10</sup> «m» ✔</span></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polybutadiene, used in truck tyres, is a polymer of buta-1,3-diene. The spatial arrangement of atoms in the polymer depends on the type of catalyst used.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> differences between heterogeneous and homogeneous catalysts.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, how elastomers used for the tyre tread can increase the traction between the tyre and the road.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Tyre fires emit trace quantities of polychlorinated dibenzofurans and polychlorinated dibenzo-p-dioxin.</span></p>
<p><span style="background-color: #ffffff;">Outline, using section 31 of the data booklet, why polychlorinated dibenzofuran is not classed chemically as a dioxin but considered “dioxin-like”.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Classify polybutadiene as either an addition or condensation polymer, giving a reason.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> factor considered when making green chemistry polymers.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>heterogeneous catalyst is in different phase than reactants <em><strong>AND</strong> </em>homogeneous catalyst in same phase &nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">homogeneous catalysts chemically change/react and reformed at end of reaction<br><em><strong>OR</strong></em><br>reactants adsorb onto heterogenous catalyst and products desorb &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">heterogeneous catalysts are more easily removed than homogenous catalysts&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">heterogeneous catalysts can function at higher temperatures&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">homogeneous catalysts are «generally» more selective&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">homogeneous catalysts offer a broader range of reactions&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note:&nbsp;</strong>Accept “state” for “phase”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “heterogeneous catalyst provides a surface to activate reaction”.</span></em></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">elastomers bend under force «and return to original form when force is released»<br><em><strong>OR</strong></em><br>elastomers make tyre more flexible &nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">allows greater contact with road &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">does not contain heterocyclic ring with 2 oxygen atoms<br><em><strong>OR</strong></em><br>middle ring has only 1 oxygen atom &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">produces similar toxic effects to dioxins &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">addition <em><strong>AND</strong> </em>not two different functional groups reacting<br><em><strong>OR</strong></em><br>addition <em><strong>AND</strong> </em>formed by breaking one bond of the carbon–carbon double bonds<br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OR</span><br>addition <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>AND</strong> </em>empirical formula of monomer equals empirical formula of polymer<br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OR</span><br>addition <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>AND</strong> </em>no atoms removed/all atoms accounted for/no loss of water/ammonia/inorganic by-product/small molecules<br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OR</span><br>addition <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>AND</strong> </em>atom economy/efficiency is 100 %<br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">OR</span><br>addition <em style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"><strong>AND</strong> </em>there is only one «reaction» product &nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>high content of raw materials in product/high atom economy &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use of low toxic chemicals/catalysts/materials/solvents&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">renewable feedstock/raw materials&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use of renewable/clean/low carbon energy source&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">high safety standards&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">increase energy efficiency&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">waste recycling&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;"> &nbsp;&nbsp; </span><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note:&nbsp;</strong>Accept other reasonable answers.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates correctly stated one difference between heterogeneous and homogeneous catalysts. Few gave a second difference even though the question is worth 2 marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most explained well how elastomers increase tyre traction.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>But had difficulty applying their knowledge to outline why polychlorinated dibenzofuran is considered dioxin-like but is not classified as a dioxin.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates failed to score the mark as they did not give a reason for classifying polybutadiene as an addition polymer.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to state a factor considered when making green chemistry polymers.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Metals are extracted from their ores by several methods, including electrolysis and reduction with carbon.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the mass of aluminium, in g, that could be extracted from an appropriate solution by a charge of 48 250 C. Use sections 2 and 6 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Once extracted, the purity of the metal can be assessed using ICP-MS. Suggest <strong>two</strong> advantages of using plasma technology rather than regular mass spectrometry.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the action of metals as heterogeneous catalysts.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how alloys conduct electricity and why they are often harder than pure metals.</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Conduct electricity:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Harder than pure metals:</span></span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Carbon nanotubes are added to metals to increase tensile strength.</span></p>
<p><span style="background-color: #ffffff;">Write an equation for the formation of carbon nanotubes from carbon monoxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">moles of electrons «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{48250{\text{ C}}}}{{96500{\text{ C mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>48250</mn>
      <mrow>
        <mtext>&nbsp;C</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mn>96500</mn>
      <mrow>
        <mtext>&nbsp;C mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 0.5000 «mol» &nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">moles of aluminium «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{0.5000{\text{ mol}}}}{3}">
  <mfrac>
    <mrow>
      <mn>0.5000</mn>
      <mrow>
        <mtext>&nbsp;mol</mtext>
      </mrow>
    </mrow>
    <mn>3</mn>
  </mfrac>
</math></span>» = 0.1667 «mol»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">mass of aluminium «= 26.98 g mol<sup>–1</sup> × 0.1667 mol» = 4.50 «g»&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><strong>Note:&nbsp;</strong><span style="background-color: #ffffff;">Award <strong>[3]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>larger linear calibration&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">«accurate» detection of multiple elements/metals&nbsp;<strong><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></strong></span></p>
<p><span style="background-color: #ffffff;">«accurate» detection of elements in low concentration &nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">temperature around 10 000 K atomises/ionises every material &nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>reactant(s) adsorb onto active sites/surface&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">bonds weakened/broken/stretched «in adsorbed reactants»<br><em><strong>OR</strong></em><br>activation energy lowered <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">products desorbed <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>:&nbsp;Accept “products released” for M3.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Conduct electricity:</em><br>«delocalized/valence» electrons free to move «under potential difference»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Harder than pure metals:</em><br>atoms/ions of different sizes prevent layers «of atoms/ions» from sliding over one another&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">2CO (g) → C (s) + CO<sub>2</sub> (g)&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many candidates did reasonably well in this question but some struggled with the number of electrons required.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates did not seem to understand any advantages of using plasma technology rather than regular mass spectrometry.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was reasonably answered with many candidates receiving a mark for the action of a catalyst. The terms adsorbed and desorbed were often missing.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were awarded one mark for how alloys conduct electricity. Some struggled with describing why they are harder than pure metals.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Carbon nanotubes proved to be difficult for the majority of the candidates. Hardly any candidates stated an equation for the formation of carbon nanotubes from carbon monoxide.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Describe the characteristics of the nematic liquid crystal phase.</span></p>
<p><span style="background-color: #ffffff;">Shape of molecules:</span></p>
<p><span style="background-color: #ffffff;">Distribution:&nbsp;</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="background-color: #ffffff;"><em>Shape of molecules:</em><br>linear<br><em><strong>OR</strong></em><br>rod «shaped»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><br><em>Distribution</em>:<br>no positional order <em><strong>AND</strong> </em>«some» directional order&nbsp; <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept “partly ordered”.</span></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Most candidates were able to obtain at least one mark on this question but struggled with the distribution of the nematic liquid crystal phase.</p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Superconductivity has many applications.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what is meant by a superconductor.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the difference in behaviour of Type 1 and Type 2 superconductors when the temperature is lowered.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«material with» no electrical resistance&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">Type 1 has sharper transition to superconductivity&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept annotated plot of electrical resistance against temperature.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The question about superconductor was well answered by the candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Some candidates struggled to outline the difference in the behaviour of Type 1 and Type 2 superconductors when the temperature is lowered.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Heavy metals are toxic even in very low concentrations.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline why heavy metals are toxic.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the maximum concentration of lead(II) ions at 298 K in a solution in which the concentration of carbonate ions is maintained at 1.10 × 10<sup>−4</sup> mol dm<sup>−3</sup>. Use section 32 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State a method, other than precipitation, of removing heavy metal ions from solution.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>disrupt endocrine system<br><em><strong>OR</strong></em><br>compete for active sites of enzymes/cellular receptors<br><em><strong>OR</strong></em><br>form complexes with/inhibit enzymes<br><em><strong>OR</strong></em><br>denature proteins<br><em><strong>OR</strong></em><br>change shape of active site&nbsp; <strong>[✔]</strong><br><br>participate in redox reactions<br><em><strong>OR</strong></em><br>disturb normal redox balance «in cells»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">initiate «free» radical reactions «in electron transfer»&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«<em>K<sub>sp</sub></em> = 7.40 × 10<sup>–14</sup>»<br><em>K<sub>sp</sub></em> = [Pb<sup>2+</sup>][CO<sub>3</sub><sup>2–</sup>]&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">[Pb<sup>2+</sup>] «= <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{7.40 \times {{10}^{ - 14}}}}{{1.10 \times {{10}^{ - 4}}}}">
  <mfrac>
    <mrow>
      <mn>7.40</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>14</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
    <mrow>
      <mn>1.10</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>4</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span>» = 6.73 × 10<sup>–10</sup> «mol dm<sup>–3</sup>»&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of</em>:<br>chelation «by EDTA/polydentate ligand anchored»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">ion exchange systems&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">adsorption by «water» plants &nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note:&nbsp;</strong>Accept “use of zeolites”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The candidates seemed to have difficulty in outlining why heavy metals are toxic.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Majority of the candidates managed to get two marks in determining the maximum concentration of lead(II) ions using solubility product constant.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was not well answered by most of the candidates.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polymers have a wide variety of uses but their disposal can be problematic.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a section of isotactic polychloroethene (polyvinylchloride, PVC) showing all the atoms and all the bonds of four monomer units.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The infrared (IR) spectrum of polyethene is given.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="506" height="411"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest how the IR spectrum of polychloroethene would diff er, using section 26 of the data booklet.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how plasticizers affect the properties of plastics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the addition of plasticizers is controversial.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline, giving a reason, how addition and condensation polymerization compare with regard to green chemistry.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the full structural formula of the organic functional group formed during the polymerization of the two reactants below.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="602" height="123"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="477" height="144"></p>
<p><span style="background-color: #ffffff;">correct bonding&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">Cl atoms all on same side and alternate&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Continuation bonds must be shown.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[1 max]</strong> if less than or more than four units shown.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept a stereo formula with all atoms and bonds shown.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«strong additional» absorption at 600–800 «cm<sup>–1</sup>»&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>embedded/fit between chains of polymers&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">prevent chains from forming crystalline regions &nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">keep polymer strands/chains/molecules separated/apart <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">increase space/volume between chains &nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">weaken intermolecular/dipole-dipole/London/dispersion/instantaneous dipoleinduced dipole/van der Waals/vdW forces «between chains»&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">increase flexibility/durability/softness&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">make polymers less brittle&nbsp;<span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note</strong>:&nbsp;Accept “lowers density/melting point”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">leach into foodstuffs/environment<br><em><strong>OR</strong></em><br>«unknown» health/environmental consequences&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept “plasticizers cannot be recycled”.</span></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">addition produces only the polymer «<em><strong>AND</strong> </em>more green»<br><em><strong>OR</strong></em><br>addition has no by/side-product/condensation produces by-product/small molecules/HCl/NH<sub>3</sub> «AND less green»<br><em><strong>OR</strong></em><br>addition has high atom economy/condensation has lower atom economy «<em><strong>AND</strong></em> less green»<br><em><strong>OR</strong></em><br>condensation polymers «often» more biodegradable than addition polymers «<em><strong>AND</strong></em> more green»&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept “if water produced by condensation «<strong>AND</strong> condensation and addition equally green»”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept for addition “all of reactants change into products”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> &nbsp;<strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p>&nbsp;</p>
<p><em><strong>Note:&nbsp;</strong><span style="background-color: #ffffff;">Continuation bonds must be shown.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept condensed formula.</span></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Few candidates scored at least one mark although most either scored both or none for this polymer structure. Some did not read that only four monomer units are required.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates received the mark for identifying the correct absorption band for polychloroethene.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a well-answered question; with most candidates identifying at least one method plasticizers affect the properties of plastic.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates wrote vague answers as to why the addition of plasticizers is controversial.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Candidates seemed to have difficulty in comparing addition and condensation polymerisation with regard to green chemistry.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Several candidates struggled to draw the full structural formula of the peptide linkage formed during the polymerisation of the two reactants.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Chemical vapour deposition (CVD) produces multi-walled carbon nanotubes (MWCNT) of a&nbsp;more appropriate size for use in liquid crystals than production by arc discharge.</p>
</div>

<div class="question">
<p>MWCNT are very small in size and can greatly increase switching speeds in a liquid&nbsp;crystal allowing the liquid crystal to change orientation quickly.</p>
<p>Discuss <strong>two other </strong>properties a substance should have to be suitable for use in liquid&nbsp;crystal displays.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two from:</em></p>
<p>chemically stable <strong><em>AND </em></strong>does not <strong>«</strong>chemically<strong>» </strong>degrade over time</p>
<p>stable over range of temperatures <strong><em>AND </em></strong>to avoid <strong>«</strong>voltage/random shift<strong>»</strong>&nbsp;fluctuations</p>
<p>polar <strong><em>AND </em></strong>influenced by an electric field</p>
<p>strong intermolecular forces <strong><em>AND </em></strong>allow molecule to align in specific orientations</p>
<p>&nbsp;</p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for identifying two&nbsp;</em><em>correct properties without any&nbsp;</em><em>discussion given or incorrect&nbsp;</em><em>interpretation of suitability.</em></p>
<p><em>Accept “voltage” for “electric field”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Kevlar<sup>®</sup> is used to make racing tires.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="420" height="124"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw the structure of the monomers of Kevlar<sup>®</sup> if the by-product of the condensation polymerization is hydrogen chloride.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State and explain why plasticizers are added to polymers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss why the recycling of plastics is an energy intensive process.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="184" height="97"></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>H<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>NH<sub>2</sub> ✔</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="197" height="149"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>Cl(O)CC<sub>6</sub>H<sub>4</sub>C(O)Cl ✔</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increases flexibility/softness/plasticity ✔<br>break/weaken intermolecular forces/IMF/H-bonds «between chains» ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>collection/transportation of plastic waste ✔</span></p>
<p><span style="background-color: #ffffff;">separation/sorting of different types «of plastic»<br><em><strong>OR</strong></em><br>separation/sorting of plastic from other materials ✔</span></p>
<p><span style="background-color: #ffffff;">melting plastic ✔</span></p>
<p><span style="background-color: #ffffff;">processing/washing/cleaning/drying/manufacture of recycled plastic ✔</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Superconductors have no resistance below a critical temperature.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how resistance to electric currents occurs in metals.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the resistance of metals increases with temperature.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>two</strong> differences between Type I and Type II superconductors.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electrons collide with cations/positive ions ✔</span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">increased vibrations of «lattice» ions ✔<br>increased «probability of» collisions «between electrons and cations» ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Accept “increases lattice vibrations” for M1.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>Type I have sharper transitions to superconductivity «than Type II» ✔<br>Type I have lower critical/operating temperatures «than Type II» ✔<br>Type I have lower critical magnetic field «strength than Type II» ✔<br>Type I carry lower currents «than Type II» ✔<br>Type I are «pure» metals/metalloids <em><strong>AND</strong> </em>Type II are alloys/metal oxide ceramics/perovskites/metallic compounds ✔<br>Type II exist in a mixed state/are partly permeable to the magnetic field <em><strong>AND</strong> </em>Type I do not/are not ✔</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">1.40 × 10<sup>−3</sup> g of NaOH (s) are dissolved in 250.0 cm<sup>3</sup> of 1.00 × 10<sup>−11</sup> mol dm<sup>−3</sup> Pb(OH)<sub>2</sub> (aq) solution.</span></p>
<p><span style="background-color: #ffffff;">Determine the change in lead ion concentration in the solution, using section 32 of the data booklet.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="background-color: #ffffff;">«[OH<sup>−</sup>] =<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{1.40 \times {{10}^{ - 3}}{\text{g}}}}{{40.00{\text{ g mo}}{{\text{l}}^{ - 1}} \times 0.2500{\text{ d}}{{\text{m}}^3}}}"> <mfrac> <mrow> <mn>1.40</mn> <mo>×</mo> <mrow> <msup> <mrow> <mn>10</mn> </mrow> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mtext>g</mtext> </mrow> </mrow> <mrow> <mn>40.00</mn> <mrow> <mtext>&nbsp;g mo</mtext> </mrow> <mrow> <msup> <mrow> <mtext>l</mtext> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mo>×</mo> <mn>0.2500</mn> <mrow> <mtext>&nbsp;d</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </mrow> </mfrac> </math></span> =» 1.40 × 10<sup>−4</sup> «mol dm<sup>−3</sup>» ✔</span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«[OH<sup>−</sup>] from dissolved Pb(OH)<sub>2</sub> is negligible»</span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE:&nbsp;Accept «ratio&nbsp;</span></span></em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left[ {P{b^{2 + }}} \right]}_{initial}}}}{{{{\left[ {P{b^{2 + }}} \right]}_{final}}}}"> <mfrac> <mrow> <mrow> <msub> <mrow> <mrow> <mo>[</mo> <mrow> <mi>P</mi> <mrow> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow> </mrow> <mrow> <mrow> <msub> <mrow> <mrow> <mo>[</mo> <mrow> <mi>P</mi> <mrow> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>f</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow> </mrow> </mfrac> </math></span>&nbsp;<em>=» 13.7&nbsp;</em><em><strong>OR &nbsp;</strong>«ratio&nbsp;</em><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{{\left[ {P{b^{2 + }}} \right]}_{final}}}}{{{{\left[ {P{b^{2 + }}} \right]}_{initial}}}}"> <mfrac> <mrow> <mrow> <msub> <mrow> <mrow> <mo>[</mo> <mrow> <mi>P</mi> <mrow> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>f</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow> </mrow> <mrow> <mrow> <msub> <mrow> <mrow> <mo>[</mo> <mrow> <mi>P</mi> <mrow> <msup> <mi>b</mi> <mrow> <mn>2</mn> <mo>+</mo> </mrow> </msup> </mrow> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi>i</mi> <mi>n</mi> <mi>i</mi> <mi>t</mi> <mi>i</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> </mrow> </mrow> </mfrac> </math></span>&nbsp;<em>=» 0.0730 for M4.</em></span></span></p>
<p>&nbsp;</p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><em>K</em><sub>sp</sub> = [Pb<sup>2+</sup>][OH<sup>−</sup>]<sup>2</sup><br><em><strong>OR<br></strong></em>1.43 × 10<sup>−20</sup> = [Pb<sup>2+</sup>] × (1.40 × 10<sup>−4</sup>)<sup>2</sup> ✔</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">[Pb<sup>2+</sup>]<sub>final</sub> = 7.30 × 10<sup>−13</sup> «mol dm<sup>−3</sup>» ✔</span></span></span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">NOTE:&nbsp;Award <strong>[4]</strong> for correct final answer.</span></span></span></span></em></p>
<p>&nbsp;</p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">«change in [Pb<sup>2+</sup>] = 1.00 × 10<sup>−11</sup> − 7.30 × 10<sup>−13</sup> =» 9.27 × 10<sup>−12</sup> «mol dm<sup>−3</sup>» ✔</span></span></span></span></span></p>
<p><em><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"> NOTE:&nbsp;Award<strong> [3]</strong> for correct [Pb<sup>2+</sup>]<sub>final</sub>.</span></span></span></span></span></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The development of materials with unique properties is critical to advances in industry.</p>
</div>

<div class="question">
<p>Explain why Type 2 superconductors are generally more useful than Type 1.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>Any two of:</em></p>
<p>have higher critical temperatures<em>/T</em><sub>c</sub> «than Type 1»</p>
<p><em><strong>OR</strong></em></p>
<p>can act at higher temperatures</p>
<p>have higher critical magnetic fields/<em>B</em><sub>c</sub> «than Type 1»</p>
<p>less time needed to cool to operating temperature</p>
<p>less energy required to cool down/maintain low temperature</p>
<p><em>Do <strong>not</strong> accept “Type 2 has a gradual&nbsp;transition to a superconducting state but&nbsp;in Type 1 it is a sharp transition”.</em></p>
<p><em><strong>[Max 2 Marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Both HDPE (high density polyethene) and LDPE (low density polyethene) are produced by&nbsp;the polymerization of ethene.</p>
</div>

<div class="specification">
<p>An alternative method of polymerizing molecules is condensation polymerization. One&nbsp;of the earliest condensation polymers was nylon-6. A short section of the polymer&nbsp;chain of nylon-6 is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-08_om_08.31.45.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/04.c"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of the monomer from which nylon-6 is produced by a&nbsp;condensation reaction.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, whether the atom economy of a condensation&nbsp;polymerization, such as this, would be greater or less than an addition&nbsp;polymerization, such as the formation of HDPE.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_09.02.17.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/04.c.i/M"></p>
<p>–NH<sub>2</sub> <strong><em>AND </em></strong>–COOH</p>
<p>six C-atoms</p>
<p>&nbsp;</p>
<p><em>Accept –COCl instead of –COOH.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>less <strong><em>AND </em></strong>a second molecule/product formed</p>
<p>&nbsp;</p>
<p><em>Accept “not all the reactant molecules&nbsp;</em><strong><em>«</em></strong><em>in the equation</em><strong><em>» </em></strong><em>are converted </em><strong><em>«</em></strong><em>to&nbsp;</em><em>product molecules</em><strong><em>»</em></strong><em>”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Calcium has a face-centred cubic (cubic close packing) arrangement of atoms.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="358" height="318"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of atoms in the unit cell.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the density of calcium, in g cm<sup>−3</sup>, using section 2 of the data booklet.</span></p>
<p><span style="background-color: #ffffff;">Ar = 40.08; metallic radius (r) = 1.97 × 10<sup>−10</sup> m</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="8 \times \frac{1}{8} + 6 \times \frac{1}{2} = ">
  <mn>8</mn>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>8</mn>
  </mfrac>
  <mo>+</mo>
  <mn>6</mn>
  <mo>×</mo>
  <mfrac>
    <mn>1</mn>
    <mn>2</mn>
  </mfrac>
  <mo>=</mo>
</math></span> » 4&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>a</em> = «&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{4r}}{{\sqrt 2 }} = \frac{{4 \times 1.97 \times {{10}^{ - 10}}{\text{m}}}}{{\sqrt 2 }}">
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mi>r</mi>
    </mrow>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>4</mn>
      <mo>×</mo>
      <mn>1.97</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>10</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>m</mtext>
      </mrow>
    </mrow>
    <mrow>
      <msqrt>
        <mn>2</mn>
      </msqrt>
    </mrow>
  </mfrac>
</math></span> =» 5.572 × 10<sup>–10</sup> «m»<br><em><strong>OR</strong></em><br>volume of unit cell = «(5.572 × 10<sup>–10</sup> m)<sup>3</sup> × 10<sup>6</sup> =» 1.73 × 10<sup>–22</sup> «cm<sup>3</sup>»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">mass of unit cell =«&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{40.08{\text{ g mo}}{{\text{l}}^{ - 1}} \times 4}}{{6.02 \times {{10}^{23}}{\text{mo}}{{\text{l}}^{ - 1}}}}">
  <mfrac>
    <mrow>
      <mn>40.08</mn>
      <mrow>
        <mtext>&nbsp;g mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
      <mo>×</mo>
      <mn>4</mn>
    </mrow>
    <mrow>
      <mn>6.02</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mn>23</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>mo</mtext>
      </mrow>
      <mrow>
        <msup>
          <mrow>
            <mtext>l</mtext>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>1</mn>
          </mrow>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> =» 2.66 × 10<sup>–22</sup> «g»&nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">density = «&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{2.66 \times {{10}^{ - 22}}{\text{g}}}}{{{{(5.572 \times {{10}^{ - 10}})}^3} \times {{10}^6}}}">
  <mfrac>
    <mrow>
      <mn>2.66</mn>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mrow>
            <mo>−</mo>
            <mn>22</mn>
          </mrow>
        </msup>
      </mrow>
      <mrow>
        <mtext>g</mtext>
      </mrow>
    </mrow>
    <mrow>
      <mrow>
        <msup>
          <mrow>
            <mo stretchy="false">(</mo>
            <mn>5.572</mn>
            <mo>×</mo>
            <mrow>
              <msup>
                <mrow>
                  <mn>10</mn>
                </mrow>
                <mrow>
                  <mo>−</mo>
                  <mn>10</mn>
                </mrow>
              </msup>
            </mrow>
            <mo stretchy="false">)</mo>
          </mrow>
          <mn>3</mn>
        </msup>
      </mrow>
      <mo>×</mo>
      <mrow>
        <msup>
          <mrow>
            <mn>10</mn>
          </mrow>
          <mn>6</mn>
        </msup>
      </mrow>
    </mrow>
  </mfrac>
</math></span> » 1.54 «g cm<sup>–3</sup>»&nbsp; <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Award<strong> [3] </strong>for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The number of atoms in the unit cell was correctly calculated by most of the candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Majority of the candidates managed to get three marks in determining the density of the calcium.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">EDTA chelates with Ni<sup>2+</sup> (aq).</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;">[Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> (aq) + EDTA<sup>4−</sup> (aq)&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" \rightleftharpoons ">
  <mo stretchy="false">⇌<!-- ⇌ --></mo>
</math></span> [Ni(EDTA)]<sup>2−</sup> (aq) + 6H<sub>2</sub>O (l)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how entropy affects this equilibrium.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the number of coordinate covalent bonds EDTA forms with Ni<sup>2+</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">entropy increases «and the reaction proceeds to the right» &nbsp; <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">more species / free molecules are formed<br><em><strong>OR</strong></em><br>more ways of distributing energy &nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">six &nbsp;&nbsp; <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There were several incorrect responses that products were more ordered than the reactants.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Proved very challenging with very few candidates knowing the number of coordinate covalent bonds EDTA forms with a nickel ion.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about global warming.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the effect of infrared (IR) radiation on carbon dioxide molecules.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> approach to controlling industrial emissions of carbon dioxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">bond length/C=O distance changes<br><em><strong>OR</strong></em><br>«asymmetric» stretching «of bonds»<br><em><strong>OR</strong></em><br>bond angle/OCO changes <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">polarity/dipole «moment» changes<br><em><strong>OR</strong></em><br>dipole «moment» created «when molecule absorbs IR» <strong>[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong>Note:&nbsp;</strong>Accept appropriate diagrams.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>capture where produced «and store» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use scrubbers to remove&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use as feedstock for synthesising other chemicals&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">carbon credit/tax/economic incentive/fines/country specific action&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use alternative energy<br><em><strong>OR</strong></em><br>stop/reduce use of fossil fuels for producing energy&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">use carbon reduced fuels «such as methane»&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">increase efficiency and reduce energy use&nbsp;<strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p>&nbsp;</p>
<p><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note:&nbsp;</strong>Do <strong>not</strong> accept “planting more trees”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept specific correct examples.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This part was fairly well answered with most candidates receiving one of the two marks. There were many candidates who stated asymmetric stretching and bonds vibrate but missed writing polarity and dipole changes, which deprived them of the second mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part was reasonably answered although there were many candidates who gave vague answers that did not receive marks.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>