File "SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Option A/SL-paper3html
File size: 789.12 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p>Polymers are made up of repeating monomer units which can be manipulated in various ways to give structures with desired properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw the structure of 2-methylpropene.</p>
<p>(ii) Deduce the repeating unit of poly(2-methylpropene).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the percentage atom economy for polymerization of 2-methylpropene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Suggest why incomplete combustion of plastic, such as polyvinyl chloride, is common in industrial and house fires.</p>
<p>(ii) Phthalate plasticizers such as DEHP, shown below, are frequently used in polyvinyl chloride.</p>
<p><img src=""></p>
<p>With reference to bonding, suggest a reason why many adults have measurable levels of phthalates in their bodies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Infrared (IR) spectroscopy is often used for the identification of polymers, such as PETE, for recycling.</p>
</div>
<div class="specification">
<p>LDPE and high density polyethene (HDPE) have very similar IR spectra even though they have rather different structures and physical properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are the IR spectra of two plastics (<strong>A</strong> and <strong>B</strong>); one is PETE, the other is low density polyethene (LDPE).</p>
<p><img src=""></p>
<p>Deduce, giving your reasons, the identity and resin identification code (RIC) of <strong>A</strong> and <strong>B </strong>using sections 26 and 30 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the difference in their structures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the difference in their structures affects their melting points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The development of materials with unique properties is critical to advances in industry.</p>
</div>
<div class="specification">
<p>Low density polyethene (LDPE) and high density polyethene (HDPE) are both addition polymers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline two properties a substance should have to be used as liquid-crystal in a liquid-crystal display.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the structures of LDPE and HDPE affect one mechanical property of the plastics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the two infrared (IR) spectra is that of polyethene and the other of polytetrafluoroethene (PTFE).</p>
<p><img src=""></p>
<p>Deduce, with a reason, which spectrum is that of PTFE. Infrared data is given in section 26 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Many plastics used to be incinerated. Deduce an equation for the complete combustion of two repeating units of PVC, (–C<sub>2</sub>H<sub>3</sub>Cl–)<sub>2</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student wanted to determine the formula of indium sulfate. She applied an electrical current of 0.300A to an aqueous solution of indium sulfate for 9.00 × 10<sup>3 </sup>s and found that 1.07 g of indium metal deposited on the cathode.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the charge, in coulombs, passed during the electrolysis.</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {{\text{current }}I = \frac{{{\text{charge }}Q\,}}{{{\text{time }}t}}} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<mtext>current </mtext>
</mrow>
<mi>I</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow>
<mtext>charge </mtext>
</mrow>
<mi>Q</mi>
<mspace width="thinmathspace"></mspace>
</mrow>
<mrow>
<mrow>
<mtext>time </mtext>
</mrow>
<mi>t</mi>
</mrow>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
</math></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of electrons passed using section 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mass of indium deposited by one mole of electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of moles of electrons required to deposit one mole of indium. Relative atomic mass of indium, <em>A</em><sub>r</sub>=114.82.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the indium ion and the formula of indium sulfate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Materials science involves understanding the properties of materials and applying those properties to desired structures.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium oxide, MgO, and silicon carbide, SiC, are examples of ceramic materials. State the name of the predominant type of bonding in each material.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the predominant type of bonding for a binary compound AB in which the electronegativity of both atoms is low. Use section 29 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="fontstyle0">There has been significant growth in the use of carbon nanotubes, CNT.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain these properties of carbon nanotubes.</span></p>
<p><span class="fontstyle0"><img src="" width="671" height="222"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Alloying metals changes their properties. Suggest </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">property of magnesium that could be improved by making a magnesium–CNT alloy.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Pure magnesium needed for making alloys can be obtained by electrolysis of molten magnesium chloride.</span></p>
<p><span class="fontstyle0"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></span></p>
<p style="text-align: center;"><span class="fontstyle0"> © International Baccalaureate Organization 2020.<br> </span></p>
<p><span class="fontstyle0">Write the half-equations for the reactions occurring in this electrolysis.</span></p>
<p><span class="fontstyle0"><img src="" width="661" height="225"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Calculate the theoretical mass of magnesium obtained if a current of <math xmlns="http://www.w3.org/1998/Math/MathML" class="wrs_chemistry"><mn>3</mn><mo>.</mo><mn>00</mn><mo> </mo><mi mathvariant="normal">A</mi></math> is used for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>.</mo><mn>0</mn></math> hours. Use charge <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>c</mi><mi>u</mi><mi>r</mi><mi>r</mi><mi>e</mi><mi>n</mi><mi>t</mi><mo>(</mo><mi>I</mi><mo> </mo><mo>)</mo><mo>×</mo><mi>t</mi><mi>i</mi><mi>m</mi><mi>e</mi><mo>(</mo><mi>t</mi><mo> </mo><mo>)</mo></math></span><span class="fontstyle0"> and section 2 of the data booklet</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Suggest a gas which should be continuously passed over the molten magnesium in the electrolytic cell.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Zeolites can be used as catalysts in the manufacture of CNT. Explain, with reference to their structure, the high selectivity of zeolites.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Experiments have been done to explore the nematic liquid crystal behaviour of CNT. Justify how CNT molecules could be classified as </span><strong><span class="fontstyle2">nematic</span></strong><span class="fontstyle0">.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<table class="NormalTable" style="width: 835px;">
<tbody>
<tr>
<td style="width: 825px;"><span class="fontstyle0">Carbon fibre reinforced plastic (CFRP) is a useful composite. Epoxy is a thermoset polymer that is used as a binding polymer when making CFRP.</span></td>
</tr>
</tbody>
</table>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Outline the </span><span class="fontstyle2"><strong>two</strong> </span><span class="fontstyle0">distinct phases of this composite.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Thermoplastic composites are increasingly replacing thermosets.</span></p>
<p><span class="fontstyle0">Suggest </span><span class="fontstyle2"><strong>one</strong> </span><span class="fontstyle0">advantage of thermoplastic polymers over thermosets.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain how thermoplastics, such as polyvinylchloride, PVC, can be made more flexible by the addition of phthalate ester plasticizers.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="fontstyle0">Explain why phthalates are replaced by other plasticizers in the production of plastics.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Research has led to the discovery of new catalysts that are in high demand and used in many chemical industries.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to their structure, the great selectivity of zeolites as catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nanocatalysts play an essential role in the manufacture of industrial chemicals.</p>
<p>(i) Describe the high pressure carbon monoxide (HIPCO) method for the production of carbon nanotubes.</p>
<p>(ii) Outline one benefit of using nanocatalysts compared to traditional catalysts in industry.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum nanoparticles are incorporated into certain catalysts and the electrodes of some fuel cells.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the major advantage that nanoparticles have in these applications.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why nanoparticles need to be handled with care.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony oxide is widely used as a homogeneous catalyst in the reaction of benzene-1,4-dicarboxylic acid with ethane-1,2-diol in the production of polyethylene terephthalate (PETE) shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Catalysts reduce the activation energy. Outline how homogeneous catalysts are involved in the reaction mechanism.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why it is important to know how catalysts function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Antimony and its compounds are toxic, so it is important to check that the catalyst is removed from the final product. One technique to detect antimony is Inductively Coupled Plasma Mass Spectroscopy (ICP-MS).</p>
<p>Outline the nature of the plasma state and how it is produced in ICP-MS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum metal may be produced by the electrolysis of molten LaBr<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why lanthanum cannot be produced by reducing its oxide with carbon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the current (<em>I</em>), in A, required to produce 1.00 kg of lanthanum metal per hour. Use the formula <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Q(C) = I(A) \times t(s)">
<mi>Q</mi>
<mo stretchy="false">(</mo>
<mi>C</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mi>I</mi>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>×</mo>
<mi>t</mi>
<mo stretchy="false">(</mo>
<mi>s</mi>
<mo stretchy="false">)</mo>
</math></span> and sections 2 and 6 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Nanotechnology has many applications.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State equations for the formation of iron nanoparticles and carbon atoms from Fe(CO)<sub>5</sub> in the HIPCO process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the iron nanoparticle catalysts produced by the HIPCO process are more efficient than solid iron catalysts.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss one possible risk associated with the use of nanotechnology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Catalysts can take many forms and are used in many industrial processes.</p>
<p>Suggest two reasons why it might be worth using a more expensive catalyst to increase the rate of a reaction.</p>
</div>
<br><hr><br><div class="specification">
<p>Rhodium and palladium are often used together in catalytic converters. Rhodium is a good reduction catalyst whereas palladium is a good oxidation catalyst.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a catalytic converter, carbon monoxide is converted to carbon dioxide. Outline the process for this conversion referring to the metal used.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nickel is also used as a catalyst. It is processed from an ore until nickel(II) chloride solution is obtained. Identify <strong>one</strong> metal, using sections 24 and 25 of the data booklet, which will not react with water and can be used to extract nickel from the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the redox equation for the reaction of nickel(II) chloride solution with the metal identified in (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another method of obtaining nickel is by electrolysis of a nickel(II) chloride solution. Calculate the mass of nickel, in g, obtained by passing a current of 2.50 A through the solution for exactly 1 hour. Charge (<em>Q</em>) = current (<em>I</em>) × time (<em>t</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Polymer nanocomposites often have better structural performance than conventional materials. Lithographic etching and metal coordination are two methods of assembling these nanocomposites.</p>
</div>
<div class="specification">
<p>Nanoparticles anchor plasticizers in PVC so that they cannot escape from the polymer as easily.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the two distinct phases of a composite.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the methods of assembling nanocomposites by completing the table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the structure of plasticizers enables them to soften PVC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a reason why nanoparticles can better anchor plasticizers in the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>It is wise to fill dental cavities before irreversible tooth decay sets in. An amalgam (alloy of mercury, silver, and other metals) is often used although many prefer a white composite material.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the composition of an alloy and a composite.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why an alloy is usually harder than its components by referring to its structure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At present, composite fillings are more expensive than amalgam fillings.</p>
<p>Suggest why a patient might choose a composite filling.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how Inductively Coupled Plasma (ICP) Spectroscopy could be used to determine the concentration of mercury in a sample of dental filling.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid Crystal on Silicon, LCoS, uses liquid crystals to control pixel brightness. The degree of rotation of plane polarized light is controlled by the voltage received from the silicon chip.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two important properties of a liquid crystal molecule are being a polar molecule and having a long alkyl chain. Explain why these are essential components of a liquid crystal molecule.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Metal impurities during the production of LCoS can be analysed using ICP-MS. Each metal has a detection limit below which the uncertainty of data is too high to be valid. Suggest <strong>one</strong> factor which might influence a detection limit in ICP-MS/ICP-OES.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium and high density polyethene (HDPE) are both materials readily found in the kitchen, for example as saucepans and mixing bowls respectively. In these applications it is important that they are impermeable to water.</p>
</div>
<div class="specification">
<p>Both materials are also used in other applications that are more demanding of their physical properties. Carbon nanotubes are often incorporated into their structures to improve certain properties.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, in terms of its structure, why an aluminium saucepan is impermeable to water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name given to a material composed of two distinct solid phases.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one physical property of HDPE that will be affected by the incorporation of carbon nanotubes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how carbon nanotubes are produced by chemical vapour deposition (CVD).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the property of carbon nanotubes that enables them to form a nematic liquid crystal phase.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Both HDPE (high density polyethene) and LDPE (low density polyethene) are produced by the polymerization of ethene.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both of these are thermoplastic polymers. Outline what this term means.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the structures of HDPE and LDPE.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>way in which a physical property of HDPE, other than density, differs from that of LDPE as a result of this structural difference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The production of HDPE involves the use of homogeneous catalysts. Outline how homogeneous catalysts reduce the activation energy of reactions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Trace amounts of metal from the catalysts used in the production of HDPE sometimes remain in the product. State a technique that could be used to measure the concentration of the metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>of the major obstacles, other than collection and economic factors, which have to be overcome in plastic recycling.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why there are so many different ways in which plastics can be classified. HDPE can, for example, be categorized thermoplastic, an addition polymer, having Resin Identification Code (RIC) 2, <em>etc</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Inductively Coupled Plasma (ICP) used with Mass Spectrometry (MS) or Optical Emission Spectrometry (OES) can be used to identify and quantify elements in a sample.</p>
</div>
<div class="specification">
<p>The following graphs represent data collected by ICP-OES on trace amounts of vanadium in oil.</p>
<p style="text-align: center;"><strong>Graph 1</strong>: Calibration graph and signal for 10 μg kg<sup>−1</sup> of vanadium in oil</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;"><strong>Graph 2:</strong> Calibration of vanadium in μg kg<sup>−1</sup></p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: center;">[Source: © Agilent Technologies, Inc.1998. Reproduced with Permission, Courtesy of Agilent Technologies, Inc.]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>ICP-OES/MS can be used to analyse alloys and composites. Distinguish between alloys and composites.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>ICP-MS is a reference mode for analysis. The following correlation graphs between ICP-OES and ICP-MS were produced for yttrium and nickel.</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_13.02.42.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/03.b"></p>
<p>Each <em>y</em>-axis shows concentrations calculated by ICP-OES; each <em>x</em>-axis shows concentrations for the same sample as found by ICP-MS.</p>
<p>The line in each graph is <em>y </em>= <em>x</em>.</p>
<p>Discuss the effectiveness of ICP-OES for yttrium and nickel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the purpose of each graph.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to four significant figures, the concentration, in μg kg<sup>−1</sup>, of vanadium in oil giving a signal intensity of 14 950.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium(V) oxide is used as the catalyst in the conversion of sulfur dioxide to sulfur trioxide.</p>
<p>SO<sub>2</sub>(g) + V<sub>2</sub>O<sub>5</sub>(s) → SO<sub>3</sub>(g) + 2VO<sub>2</sub>(s)</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{2}">
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
</math></span>O<sub>2</sub>(g) + 2VO<sub>2</sub>(s) → V<sub>2</sub>O<sub>5</sub>(s)</p>
<p>Outline how vanadium(V) oxide acts as a catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Propene can polymerize to form polypropene.</p>
<p>Propene monomer: <img src="images/Schermafbeelding_2018-08-08_om_17.53.44.png" alt="M18/4/CHEMI/HP3/ENG/TZ2/05"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch four repeating units of the polymer to show atactic and isotactic polypropene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the chemical reason why plastics do not degrade easily.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare <strong>two </strong>ways in which recycling differs from reusing plastics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Civilizations are often characterized by the materials they use.</p>
<p>Suggest an advantage polymers have over materials from the iron age.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Chemical vapour deposition (CVD) produces multi-walled carbon nanotubes (MWCNT) of a more appropriate size for use in liquid crystals than production by arc discharge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the source of carbon for MWCNT produced by arc discharge and by CVD.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>three </strong>properties a substance should have to be suitable for use in liquid crystal displays.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>One way of classifying materials is based on the type of bonding present.</p>
</div>
<div class="specification">
<p>One reaction to convert cyclohexanone to caprolactam using concentrated sulfuric acid as a catalyst is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why this type of classification is not entirely satisfactory by using magnesium diboride, MgB<sub>2</sub>, as an example. Refer to sections 8 and 29 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Structures of poly(methyl acrylate), PMA, and Bakelite<sup>®</sup> are shown.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Suggest, giving reasons, which is the thermoplastic polymer and which is the thermosetting polymer.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In an incomplete combustion of the polyvinyl chloride, PVC, it was found that hydrogen chloride, carbon monoxide, carbon dioxide, and water vapour were released.</p>
<p style="text-align: center;"><img src=""></p>
<p>Formulate an equation for this reaction using the formula of the PVC repeating unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A zeolite is an alternative catalyst for this reaction.</p>
<p>Explain how zeolites act as selective catalysts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify another advantage of using a zeolite instead of concentrated sulfuric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Repeating units of several polymers are listed.</p>
<p style="text-align: center;"><img src=""></p>
<p>The infrared (IR) spectrum of one of these polymers is shown.</p>
<p><img src=""></p>
<p>Deduce, giving a reason, the name of this polymer and its Resin Identification Code (RIC), using sections 26 and 30 in the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The presence of very small amounts of lead in calcium-based antacids can be determined using inductively coupled plasma-mass spectroscopy (ICP-MS).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of particle present in the plasma formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An unknown antacid sample has a lead ion concentration of 0.50 μg dm<sup>‒3</sup>.</p>
<p>Calculate the concentration of lead ions in the sample in mol dm<sup>‒3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Electrolysis is used to obtain lead from Pb<sup>2+</sup> (aq) solution.</p>
<p>Determine the time, in hours, required to produce 0.0500 mol lead using a current (<em>I</em>) of 1.34 A. Use section 2 of the data booklet and the equation, charge (<em>Q</em>) = current (<em>I</em>) × time (<em>t</em>, in seconds).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>While heating solid cholesteryl benzoate, Reinitzer discovered the liquid crystal phase.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two</strong> observations that he could have made.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structure of biphenyl nitrile is shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>Describe, giving a reason, a feature of the molecular structure, other than its polarity, that allows biphenyl nitrile to show liquid crystal behaviour.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Arc discharge, consisting of two inert metal electrodes in a liquid solvent, is one method of producing carbon nanotubes (CNTs).</p>
<p>Predict, giving a reason, the electrode at which the solvent cyclohexane, C<sub>6</sub>H<sub>12</sub>, will decompose to form CNTs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Lanthanum, La, and antimony, Sb, form compounds with bromine that have similar formulas, LaBr<sub>3</sub> and SbBr<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the type of bond present in SbBr<sub>3</sub>, showing your method. Use sections 8 and 29 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum has a similar electronegativity to group 2 metals. Explain, in terms of bonding and structure, why crystalline lanthanum bromide is brittle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Nanotechnology has allowed the manipulation of materials on the atomic level.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding of a carbon nanotube.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Structure:</span></p>
<p><span style="background-color: #ffffff;">Bonding:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>one</strong> application for carbon nanotubes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Liquid-crystal displays (LCDs) have many uses.</span></p>
<p><span style="background-color: #ffffff;">A molecule which acts as a thermotropic liquid crystal is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="400" height="122"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State the name of the functional group which allows the molecule to be responsive to applied electric fields.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the effects of very low and high temperatures on the liquid-crystal behaviour of this molecule.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Low temperature: </span></p>
<p><span style="background-color: #ffffff;">High temperature:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polybutadiene, used in truck tyres, is a polymer of buta-1,3-diene. The spatial arrangement of atoms in the polymer depends on the type of catalyst used.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> differences between heterogeneous and homogeneous catalysts.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest, giving a reason, how elastomers used for the tyre tread can increase the traction between the tyre and the road.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Tyre fires emit trace quantities of polychlorinated dibenzofurans and polychlorinated dibenzo-<em>p</em>-dioxin.</span></p>
<p><span style="background-color: #ffffff;">Outline, using section 31 of the data booklet, why polychlorinated dibenzofuran is not classed chemically as a dioxin but considered “dioxin-like”.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The trace quantities of dioxins from tyre fires are rarely inhaled and instead settle on the ground.</span></p>
<p><span style="background-color: #ffffff;">Describe why this is a health concern.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="question">
<p>Aluminium is produced by the electrolysis of a molten electrolyte containing bauxite.</p>
<p>Determine the mass, in g, of aluminium produced by the passage of a charge of 1.296 × 10<sup>13</sup> C. Use sections 2 and 6 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Lithium has many uses.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">The emission spectra obtained by ICP-OES for a mixture containing the isotope <sup>6</sup>Li (Li-6) and naturally occurring lithium (Li (N)) is shown.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="589" height="403"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify the type of bonding in lithium hydride, using sections 8 and 29 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why lithium is paramagnetic while lithium hydride is diamagnetic by referring to electron configurations.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why ICP-OES does not give good quantitative results for distinguishing <sup>6</sup>Li from naturally occurring lithium.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a better method.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Lithium is obtained by electrolysis of molten lithium chloride. Calculate the time, in seconds, taken to deposit 0.694 g Li using a current of 2.00 A.</span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><em>Q</em> (charge) = <em>I</em> (current) × <em>t</em> (time)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Metals are extracted from their ores by several methods, including electrolysis and reduction with carbon.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the mass of aluminium, in g, that could be extracted from an appropriate solution by a charge of 48250 C. Use sections 2 and 6 of the data booklet.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Once extracted, the purity of the metal can be assessed using ICP-MS. Suggest <strong>two</strong> advantages of using plasma technology rather than regular mass spectrometry.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain the action of metals as heterogeneous catalysts.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline how alloys conduct electricity and why they are often harder than pure metals.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Conduct electricity:</span></p>
<p><span style="background-color: #ffffff;">Harder than pure metals:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Carbon nanotubes are added to metals to increase tensile strength.</span></p>
<p><span style="background-color: #ffffff;">Write an equation for the formation of carbon nanotubes from carbon monoxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p><span style="background-color: #ffffff;">Describe the characteristics of the nematic liquid crystal phase and the effect that an electric field has on it.</span></p>
<p><span style="background-color: #ffffff;"><br>Shape of molecules:</span></p>
<p><span style="background-color: #ffffff;">Distribution:</span></p>
<p><span style="background-color: #ffffff;">Effect of electric field:</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polymers have a wide variety of uses but their disposal can be problematic.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a section of isotactic polychloroethene (polyvinylchloride, PVC) showing all the atoms and all the bonds of <strong>four</strong> monomer units.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The infrared (IR) spectrum of polyethene is given.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="520"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest how the IR spectrum of polychloroethene would differ, using section 26 of the data booklet.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a hazardous product of the incineration of polychloroethene.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how plasticizers affect the properties of plastics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the addition of plasticizers is controversial.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A soap solution can form a liquid-crystal state.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the arrangement of soap molecules in the nematic liquid crystal phase.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State how liquid crystals are affected by an electric field.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Metals are extracted from their ores by various means.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Aluminium is produced by the electrolysis of alumina (aluminium oxide) dissolved in cryolite.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss why different methods of reduction are needed to extract metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the percentage of ionic bonding in alumina using sections 8 and 29 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write half-equations for the electrolysis of molten alumina using graphite electrodes, deducing the state symbols of the products.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="300" height="191"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Anode (positive electrode):<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Cathode (negative electrode):</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polypropene is used to make many objects including carpets, stationery and laboratory equipment.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a section of an isotactic polypropene polymer chain containing four repeating units.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, with a reason, whether isotactic or atactic polypropene has the higher melting point.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Polypropene is a thermoplastic. Outline what is meant by thermoplastic.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss why the recycling of plastics is an energy intensive process.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals have many applications.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how a lyotropic liquid crystal differs from a thermotropic liquid crystal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of increasing the temperature of a nematic liquid crystal on its directional order.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Catalysts are commonly used in industry.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe how a heterogeneous catalyst provides an alternative pathway for a reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Distinguish between heterogeneous and homogeneous catalysts, giving <strong>one</strong> difference.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Nanotubes are used to support the active material in nanocatalysts.</span></p>
<p><span style="background-color: #ffffff;">Explain why oxygen cannot be used for the chemical vapour deposition (CVD) preparation of carbon nanotubes.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>