File "markscheme-SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 7 HTML/markscheme-SL-paper3html
File size: 939.48 KB
MIME-type: application/octet-stream
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p class="p1">This question is about leptons and mesons.</p>
</div>
<div class="specification">
<p class="p1">Leptons are a class of elementary particles and each lepton has its own antiparticle. State what is meant by an</p>
</div>
<div class="specification">
<p class="p1">Unlike leptons, the \({\pi ^ + }\) meson is not an elementary particle. State the</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>elementary particle.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>antiparticle of a lepton.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The electron is a lepton and its antiparticle is the positron. The following reaction can take place between an electron and positron.</p>
<p>\[{e^ - } + {e^ + } \to \gamma + \gamma \]</p>
<p class="p1">Sketch the Feynman diagram for this reaction and identify on your diagram any virtual particles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>quark structure of the \({\pi ^ + }\) meson.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>reason why the following reaction does not occur.</p>
<p class="p1">\[{p^ + } + {p^ + } \to {p^ + } + {\pi ^ + }\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) a particle that cannot be made from any smaller constituents/particles;</p>
<p class="p1">(ii) has <span style="text-decoration: underline;">the same rest mass</span> (and spin) as the lepton but opposite charge (and opposite lepton number);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-11-10_om_18.05.18.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D2.b/M"></p>
<p class="p1"><em>Award </em><strong><em>[1] </em></strong><em>for each correct section of the diagram.</em></p>
<p class="p1">\({e^ - }\) correct direction \(\gamma \);</p>
<p class="p1">\({e^ + }\) correct direction and \(\gamma \);</p>
<p class="p1">virtual electron/positron;</p>
<p class="p1"><em>Accept all three time orderings.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\({\rm{u\bar d}}\) / up and anti-down;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>baryon number is not conserved / quarks are not conserved;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was often correct.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The Feynman diagrams rarely showed the virtual particle.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates had a good understanding of quark structure.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about fundamental interactions.</p>
</div>
<div class="specification">
<p class="p1">The kaon \(({{\text{K}}^ + } = {\rm{u\bar s)}}\) decays into an antimuon and a neutrino as shown by the Feynman diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_10.56.53.png" alt="M14/4/PHYSI/SP3/ENG/TZ2/11.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the virtual particle in this Feynman diagram must be a weak interaction exchange particle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A student claims that the \({{\text{K}}^ + }\) is produced in neutron decays according to the reaction \({\text{n}} \to {{\text{K}}^ + } + {{\text{e}}^ - }\). State <strong>one </strong>reason why this claim is false.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the decay does not conserve strangeness;</p>
<p class="p1">and only the weak interaction violates strangeness conservation;</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">a neutrino is produced in this decay;</p>
<p class="p1">neutrinos interact only via the weak interaction;</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">does not conserve baryon/quark/lepton number;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about interactions and quarks.</p>
</div>
<div class="specification">
<p class="p1">For the lambda baryon \({\Lambda ^0}\), a student proposes a possible decay of \({\Lambda ^0}\) as shown.</p>
<p class="p1">\[{\Lambda ^0} \to p + {K^ - }\]</p>
<p class="p1">The quark content of the \({K^ - }\) meson is \({\rm{\bar us}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A lambda baryon \({\Lambda ^0}\) is composed of the three quarks uds. Show that the charge is 0 and the strangeness is \( - 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss, with reference to strangeness and baryon number, why this proposal is feasible.</p>
<p class="p2"> </p>
<p class="p1">Strangeness:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Baryon number:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another interaction is</p>
<p class="p1">\[{\Lambda ^0} \to p + {\pi ^ - }\]</p>
<p class="p1">In this interaction strangeness is found <strong>not </strong>to be conserved. Deduce the nature of this interaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\( + \frac{2}{3} - \frac{1}{3} - \frac{1}{3} = 0\) for charge;</p>
<p class="p1">any particle containing a strange quark has strangeness of \( - 1\);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>strangeness</em>:</p>
<p class="p1">the \(p\) has a strangeness of 0;</p>
<p class="p1">the \({K^ - }\) particle has a strangeness of \( - 1\);</p>
<p class="p1"><em>baryon number</em>:</p>
<p class="p1">lambda and protons are baryons each having a baryon number of \( + 1\);</p>
<p class="p1">the \({K^ - }\) meson has a baryon number of 0;</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">only during the weak interaction strangeness is not conserved (therefore it is a weak interaction);</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii). SL candidates showed more difficulty with (b)(iii), often using an incorrect approach.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii). SL candidates showed more difficulty with (b)(iii), often using an incorrect approach.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii). SL candidates showed more difficulty with (b)(iii), often using an incorrect approach.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
<p class="p1">Meteorites contain a small proportion of radioactive aluminium-26 \(\left( {_{{\text{13}}}^{{\text{26}}}{\text{Al}}} \right)\) in the rock.</p>
<p class="p1">The amount of \(_{{\text{13}}}^{{\text{26}}}{\text{Al}}\) is constant while the meteorite is in space due to bombardment with cosmic rays.</p>
</div>
<div class="specification">
<p class="p1">After reaching Earth, the number of radioactive decays per unit time in a meteorite sample begins to diminish with time. The half-life of aluminium-26 is \(7.2 \times {10^5}\) years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aluminium-26 decays into an isotope of magnesium (Mg) by \({\beta ^ + }\) decay.</p>
<p class="p1">\[_{{\text{13}}}^{{\text{26}}}{\text{Al}} \to _{\text{Y}}^{\text{X}}{\text{Mg}} + {\beta ^ + } + {\text{Z}}\]</p>
<p class="p1">Identify X, Y and Z in this nuclear decay process.</p>
<p class="p2"> </p>
<p class="p1">X:</p>
<p class="p1">Y:</p>
<p class="p1">Z:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the beta particles emitted from the aluminium-26 have a continuous range of energies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by half-life.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A meteorite which has just fallen to Earth has an activity of 36.8 Bq. A second meteorite of the same mass, which arrived some time ago, has an activity of 11.2 Bq. Determine, in years, the time since the second meteorite arrived on Earth.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>X</em>: 26 and <em>Y</em>: 12; <em>(both needed for </em><strong><em>[1]</em></strong><em>)</em></p>
<p class="p1"><em>Z</em>: <em>v</em>/neutrino;</p>
<p class="p1"><em>Do not allow the antineutrino.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">total energy released is fixed;</p>
<p class="p1">neutrino carries some of this energy;</p>
<p class="p1">(leaving the beta particle with a range of energies)</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">the time taken for half the radioactive nuclides to decay / the time taken for the activity to decrease to half its initial value;</p>
<p class="p1"><em>Do not allow reference to change in weight.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\lambda = \left( {\frac{{\ln 2}}{{7.2 \times {{10}^5}}} = } \right){\text{ }}9.63 \times {10^{ - 7}}\);</p>
<p>\(11.2 = 36.8{e^{ - (9.63 \times {{10}^{ - 7}})t}}\);</p>
<p>\(t = 1.24 \times {10^6}{\text{ (yr)}}\);</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well answered, although a significant minority insisted that nuclear half-life is defined by a loss of mass.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well answered, although a significant minority insisted that nuclear half-life is defined by a loss of mass.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well answered, although a significant minority insisted that nuclear half-life is defined by a loss of mass.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well answered, although a significant minority insisted that nuclear half-life is defined by a loss of mass.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about fundamental interactions and elementary particles.</p>
</div>
<div class="specification">
<p class="p1">The Feynman diagram represents the decay of a \({\pi ^ + }\) meson into an anti-muon and a muon neutrino.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the type of fundamental interactions associated with the exchange particles in the table.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-04_om_15.45.49.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/13.a.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State why \({\pi ^ + }\) mesons are <strong>not </strong>considered to be elementary particles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the exchange particle associated with this decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce that this decay conserves baryon number.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">electromagnetic;</p>
<p class="p1">strong;</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">they are composed of more than one quark;</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({W^ + }\);</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">u has a baryon number of \(\frac{1}{3}\) and <span class="s1">\({\rm{\bar d}}\) </span>has a baryon number of <span class="s1">\( - \frac{1}{3}\) </span><span class="s2">;</span></p>
<p class="p1">\({\mu ^ + }\) and \({v_\mu }\) both have a baryon number of 0;</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a)(i) was well answered.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a)(ii) was well answered.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most answers to (b)(ii) used quark baryon numbers of 1 etc, not \(\frac{1}{3}\).</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about atomic spectra.</p>
</div>
<div class="specification">
<p class="p1">The diagram shows some of the energy levels of a hydrogen atom.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_10.45.15.png" alt="M14/4/PHYSI/SP3/ENG/TZ2/05.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how atomic line spectra provide evidence for the existence of discrete electron energy levels in atoms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate the wavelength of the photon that will be emitted when an electron moves from the –3.40 eV energy level to the –13.6 eV energy level.</p>
<p class="p1">(ii) State and explain if it is possible for a hydrogen atom in the ground state to absorb a photon with an energy of 12.5 eV.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">each line represents a single frequency/wavelength;</p>
<p class="p1">which corresponds to a specific photon energy / \(E = hf\);</p>
<p class="p1">energy of photon determined by energy change of electrons;</p>
<p class="p1">electrons transition between energy levels (so discrete energy levels);</p>
<p class="p1"><em>Award </em><strong><em>[3 max] </em></strong><em>for reverse argument that discrete energy levels produce line spectra.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\Delta E = [13.6 - 3.40] \times 1.60 \times {10^{ - 19}}{\text{ (}} = 1.63 \times {10^{ - 18}}{\text{ J)}}\);</p>
<p>\(E = \frac{{hc}}{\lambda }\); <em>(accept implicit use of this equation)</em></p>
<p>\(\lambda = \frac{{6.63 \times {{10}^{ - 34}} \times 3.00 \times {{10}^8}}}{{1.63 \times {{10}^{ - 18}}}} = 1.22 \times {10^{ - 7}}{\text{ (m)}}\);</p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a correct bald answer.</em></p>
<p>(ii) photon absorbed when its energy is equal to the difference between two energy levels;</p>
<p>so absorption not possible;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (a) the logical sequence is: line spectra <span class="s1">➡ </span>discrete photon energy <span class="s1">➡ </span>discrete electron transitions <span class="s1">➡ </span>discrete electron energy levels. However, very few were able to sequence their answers in this way. Despite this there were many reasonable answers.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (i) many correct answers were seen, but there were some answers where the de Broglie formula was mistakenly used. (ii) was poorly answered as few could explain that a 12.5eV photon did not match any of the possible transition energies.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about radioactive decay.</span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">Sodium-22 undergoes </span><em><span style="font-size: 12pt; font-family: 'SymbolMT';">β</span></em><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">+ </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">decay. </span></p>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing entries in the following nuclear reaction.</p>
<p>\[{}_{11}^{22}{\rm{Na}} \to {}_ \ldots ^{22}{\rm{Ne}} + {}_ \ldots ^0e + {}_0^0 \ldots \]</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>half-life</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sodium-22 has a decay constant of 0.27 yr<sup>–1</sup>.</p>
<p>(i) Calculate, in years, the half-life of sodium-22.</p>
<p>(ii) A sample of sodium-22 has initially 5.0 × 10<sup>23</sup> atoms. Calculate the number of sodium-22 atoms remaining in the sample after 5.0 years.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({}_{11}^{22}{\rm{Na}} \to {}_{10}^{22}{\rm{Ne}} + {}_{ + 1}^0e + {}_0^0v\)<br>\({}_{10}^{22}{\rm{Ne}}\);<br>\({}_{ + 1}^0e\) (<em>accep</em>t \({}_ + ^0e\))<br>\({}_0^0v\); (<em>award <strong>[0]</strong> for</em> \({}_0^0\bar v\))</p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time taken for half/50% of the nuclei to decay / activity to drop by half/50%;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \({T_{\frac{1}{2}}} = \frac{{\ln 2}}{\lambda }\);<br>\(\frac{{0.693}}{{0.27{\rm{y}}{{\rm{r}}^{ - 1}}}}\)=2.6 (years);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>(ii) <em>N</em>=5.0 x 10<sup>23 </sup>x e<sup>-0.27x5.0</sup>;<br><em>N</em>=1.3 x 10<sup>23;<br></sup><em>Award<strong> [2]</strong> for a bald correct answer. </em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> This question was well done in general.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>Many candidates referred to mass halving rather than activity.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the spectrum of atomic hydrogen.</p>
</div>
<div class="question">
<p class="p1">Calculate the difference in energy in eV between the energy levels in the hydrogen atom that give rise to the red line in the spectrum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(E = \left( {\frac{{hc}}{\lambda } = } \right){\text{ }}3.03 \times {10^{ - 19}}{\text{ J}}\);</p>
<p class="p1">\( = 1.90{\text{ eV}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for bald correct answer.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The calculation in (b) was often correctly done.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
</div>
<div class="specification">
<p class="p1">The half-life of Au-189 is 8.84 minutes. A freshly prepared sample of the isotope has an activity of 124Bq.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A nucleus of a radioactive isotope of gold (Au-189) emits a neutrino in the decay to a nucleus of an isotope of platinum (Pt).</p>
<p class="p1">In the nuclear reaction equation below, state the name of the particle X and identify the nucleon number \(A\) and proton number \(Z\) of the nucleus of the isotope of platinum.</p>
<p class="p1">\[_{\;79}^{189}Au \to _Z^APt + X + v\]</p>
<p class="p1">X:</p>
<p class="p1"><em>A</em>:</p>
<p class="p1"><em>Z</em>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the decay constant of Au-189.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the activity of the sample after 12.0 min.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>X</em>: positron <strong><em>or</em></strong> \({\beta ^ + }\);</p>
<p class="p1"><em>A</em>: 189 and <em>Z</em>: 78; <em>(both responses needed)</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(0.0784{\text{ mi}}{{\text{n}}^{ - 1}}\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>recognize to use \(A = {A_0}{e^{ - \lambda t}}\);</p>
<p class="p1">\(A = 48.4{\text{ Bq}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">A surprisingly large number of candidates were unable to correctly identify the products of beta plus decay.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Unit errors were often made in (i) and in (ii) there was often some very strange arithmetic to be seen.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about atomic spectra and energy states.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how atomic absorption spectra provide evidence for the quantization of energy states in atoms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The diagram shows some atomic energy levels of hydrogen.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-04_om_15.05.07.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/06.b"></p>
<p class="p1">A photon of energy 2.86 eV is emitted from a hydrogen atom. Using the diagram, draw an arrow to indicate the electron transitions that results in the emission of this photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">an atom will only absorb a photon if the photon energy corresponds to an energy difference between two of its energy states;</p>
<p class="p1">the absorption of energy takes places in discrete quantities (quanta);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">arrow drawn downwards from \( - 0.54\) level to \( - 3.40\) level;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (a), candidates rarely described absorption spectra, rather explaining emission spectra. There were very poor explanations of quantized energy states.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(b) was generally well answered, although a common mistake was to have the change in the wrong direction.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about strangeness.</p>
</div>
<div class="question">
<p>The following particle interaction is proposed.</p>
<p>\[p + {\pi ^ - } \to {K^ - } + {\pi ^ + }\]</p>
<p>In this interaction, charge is conserved.</p>
<p>State, in terms of baryon and strangeness conservation, whether the interaction is possible.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>baryon (1+ 0→0 + 0) not conserved and strangeness (0 + 0→−1+ 0) not conserved;<br>so interaction not possible;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
<p class="p1">In a particular nuclear medical imaging technique, carbon-11 \((_{\;6}^{11}{\text{C}})\) is used. It is radioactive and decays through \({\beta ^ + }\) decay to boron (B).</p>
</div>
<div class="specification">
<p class="p1">The half-life of carbon-11 is 20.3 minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the numbers and the particle to complete the decay equation.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-04_om_15.09.19.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/07.a.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the nature of the \({\beta ^ + }\) particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline a method for measuring the half-life of an isotope, such as the half-life of carbon-11.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the law of radioactive decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Derive the relationship between the half-life \({T_{\frac{1}{2}}}\) and the decay constant <span class="s1">\(\lambda \) </span>, using the law of radioactive decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the number of nuclei of carbon-11 that will produce an activity of \(4.2 \times {10^{20}}{\text{ Bq}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\left( {_{\;6}^{11}{\text{C}} \to _{\;5}^{11}{\text{B}} + _{ + 1}^{\;\;0}{\beta ^ + } + v{\text{ (or neutrino)}}} \right)\)</p>
<p class="p1">\(_{\;6}^{11}{\text{C}} \to _{\;5}^{11}{\text{B}} + _{ + 1}^{\;\;0}{\beta ^ + }\);</p>
<p class="p1">v (or neutrino);</p>
<p class="p1"><em>Award </em><strong><em>[1] </em></strong><em>for all the correct numbers and </em><strong><em>[1] </em></strong><em>for the neutrino.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">positron / antielectron / lepton;</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">measure activity as a function of time;</p>
<p class="p1">create a graph of activity with time, and estimate half-life from the graph;</p>
<p class="p1">make at least three estimates of half-life from the graph and take mean;</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">measure activity as a function of time;</p>
<p class="p1">create a graph of ln(A) with time, find the decay constant <span class="s1">\(\lambda \) </span>from the gradient;</p>
<p class="p1">estimate the half-life using \({T_{\frac{1}{2}}} = \frac{{\ln 2}}{\lambda }\);</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">the rate of decay is proportional to the amount of (radioactive) material remaining;</p>
<p class="p1">the number of undecayed nuclei at time \(t\) is given by \(N = {N_0}{e^{ - \lambda t}}\), where \({N_0}\) is the number of undecayed nuclei at time \(t = 0\) and \(\lambda \) is the decay constant;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{N_0}}}{2} = {N_0}{e^{ - {T_{\frac{1}{2}}}}}\);</p>
<p>\(\ln \left( {\frac{1}{2}} \right) = - \lambda {T_{\frac{1}{2}}}\) so \({T_{\frac{1}{2}}} = \frac{{\ln 2}}{\lambda }\);</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\lambda = \frac{{\ln 2}}{{60 \times 20.3}}{\text{ }}( = 5.69 \times {10^{ - 4}}{s^{ - 1}})\);</p>
<p>\(\frac{A}{\lambda } = \frac{{4.2 \times {{10}^{20}}}}{{5.69 \times {{10}^{ - 4}}}} = 7.4 \times {10^{23}}\);</p>
<div class="question_part_label">b.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a)(i) was well answered.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a)(ii) was well answered.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(b)(i) was poorly answered, with many referring to measurement of the loss of mass of the sample.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(b)(ii) was very poorly answered.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most did not use the law of radioactive decay, as required in (b)(iii).</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(b)(iv) was either very well answered or very poorly answered.</p>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about electrons and the weak interaction.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State</p>
<p>(i) what is meant by an elementary particle.</p>
<p>(ii) to which class of elementary particles the electron belongs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is one of the particles produced in the decay of a free neutron into a proton. An exchange particle is also involved in the decay.</p>
<p>(i) State the name of the exchange particle.</p>
<p>(ii) The weak interaction has a range of the order of 10<sup>–18</sup>m. Determine, in GeVc<sup>–2</sup>, the order of magnitude of the mass of the exchange particle.</p>
<p>(iii) It is suggested that the exchange particle in the weak interaction arises from the decay of one type of quark into another. With reference to the quark structure of nucleons, state the reason for this suggestion.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) particle that has no internal structure/is not made out of any smaller constituents;</p>
<p>(ii) leptons;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) intermediate vector boson/W boson;</p>
<p>(ii) \(m = \frac{h}{{4\pi Rc}}\);<br>\( = \left( {\frac{{6.6 \times {{10}^{ - 34}}}}{{4 \times 3.14 \times {{10}^{ - 18}} \times 3.0 \times {{10}^8}}} = } \right)1.75 \times {10^{ - 25}}{\rm{kg}}\);<br>\( = \frac{{1.75 \times {{10}^{ - 25}}{c^2}}}{e} = 109{\rm{GeV}}{{\rm{c}}^{ - 2}} \approx 10^2{\rm{GeV}}{{\rm{c}}^{ - 2}}\);</p>
<p>(iii) the neutron quark structure is udd and the proton uud;<br>a d quark in the neutron changes to a u quark by emitting a W boson;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about elementary particles.<br> </span></p>
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This quark is said to be an elementary particle.<br> </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the term elementary particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The strong interaction between two nucleons has a range of about 10<sup>–15</sup> m.</p>
<p>(i) Identify the boson that mediates the strong interaction. </p>
<p>(ii) Determine the approximate mass of the boson in (b)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>particle with no internal structure / cannot be broken down further;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) pion/meson/gluon;</p>
<p>(ii) \(m = \frac{h}{{4\pi Rc}}\);</p>
<p><br>1.8x10<sup>-28</sup>(kg);</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>This question was well answered.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>This question was well answered.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A nuclide of the isotope potassium-40 \(\left( {{}_{19}^{40}{\rm{K}}} \right)\) decays into a stable nuclide of the isotope<br>argon-40 \(\left( {{}_{18}^{40}{\rm{Ar}}} \right)\). Identify the particles X and Y in the nuclear equation below.</p>
<p>\[{}_{19}^{40}{\rm{K}} \to {}_{18}^{40}{\rm{Ar + X + Y}}\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3×10<sup>9</sup>yr. In a particular rock sample it is found that 85 % of the original potassium-40 nuclei have decayed. Determine the age of the rock.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quantities that need to be measured in order to determine the half-life of a long-lived isotope such as potassium-40.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>neutrino/<em>ν</em>;<br>positron / e<sup>+</sup> / \({}_{ + 1}^0{\rm{e}}\) / β<sup>+</sup>;<br><em>Award <strong>[1 max]</strong> for wrongly stating electron and antineutrino. Both needed for the ECF.</em><br><em>Order of answers is not important.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\lambda = \left( {\frac{{\ln 2}}{{1.3 \times {{10}^9}}} = } \right)5.31 \times {10^{ - 10}}{\rm{y}}{{\rm{r}}^{ - 1}}\);<br>\(0.15 = {{\rm{e}}^{\left[ { - 5.31 \times {{10}^{ - 10}} \times t} \right]}}\);<br><em>t</em>=3.6×10<sup>9</sup>yr;<br><em>Award<strong> [3]</strong> for a bald correct answer.</em></p>
<p><em><strong>or</strong></em></p>
<p>(0.5)<sup><em>n</em></sup>=0.15;<br>\(n = \frac{{\log \left( {0.15} \right)}}{{\log \left( {0.5} \right)}} = 2.74{\rm{half - lives}}\);<br>2.74×1.3×10<sup>9</sup>=3.6×10<sup>9</sup>yr;<br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the count rate/activity of a sample;<br>the mass/number of atoms in the sample;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about atomic energy levels.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline a laboratory procedure for producing and observing the atomic absorption spectrum of a gas.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Describe the appearance of an atomic absorption spectrum.</p>
<p>(ii) Explain why the spectrum in (a) provides evidence for quantization of energy in atoms.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The principal energy levels of the hydrogen atom in electronvolt (eV) are given by</p>
<p>\[{E_n} = \frac{{13.6}}{{{n^2}}}\]</p>
<p>where <em>n</em> is a positive integer.</p>
<p>Determine the wavelength of the absorption line that corresponds to an electron transition from the energy level given by <em>n</em>=1 to the level given by <em>n</em>=3.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>shine <span style="text-decoration: underline;">white</span> light through;<br>a tube of the gas;<br>then observe with spectroscope/grating/prism;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) continuous spectrum crossed by dark lines;</p>
<p>(ii) dark lines formed by the absorption of photons;<br>the absorbed photons have specific/discreet wavelengths;<br>indicating discreet differences in energy;<br>which can only be explained by existence of energy levels;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(E = 13.6\left[ {\frac{1}{{{1^2}}} - \frac{1}{{{3^2}}}} \right] = 12.1{\rm{eV}}\);<br>12.1eV=12.1×1.6×10<sup>–19</sup>J =\(\frac{{hc}}{\lambda }\);<br><em>λ</em>=102nm <em><strong>or</strong></em> 103nm;<br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about mesons.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an exchange particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A meson called the pion was detected in cosmic ray reactions in 1947 by Powell and Occhialini. The pion comes in three possible charge states: π<sup>+</sup> ,π<sup>−</sup> and π<sup>0</sup>. The Feynman diagram below represents a possible reaction in which a pion participates.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">State and explain whether the meson produced is a π<sup>+</sup> ,π<sup>−</sup> <strong>or </strong>a π<sup>0</sup>.</p>
<p style="text-align: left;"> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a particle that mediates/carries/transmits one of the fundamental forces / a particle that is exchanged between two particles when undergoing one of the fundamental interactions / <em>OWTTE</em>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>π<sup>+</sup>;<br>from conservation of charge at either vertex, the pion must have charge of +1;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the decay of a kaon.</p>
<p>A kaon (<em>K</em><sup>+</sup>) is a meson consisting of an up quark and an anti-strange quark.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;">Suggest why the kaon is classified as a boson.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A kaon decays into an antimuon and a neutrino, <em>K</em><sup>+</sup> →<em>μ</em> <sup>+</sup>+<em>v</em> . The Feynman diagram for the decay is shown below.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) State the <strong>two</strong> particles labelled X and Y.</p>
<p style="text-align: left;">(ii) Explain how it can be deduced that this decay takes place through the weak interaction.</p>
<p style="text-align: left;">(iii) State the name and sign of the electric charge of the particle labelled A.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the spin number of a boson is an integer value;<br>the spin of the kaon can be \(\frac{1}{2} + \frac{1}{2} = 1\) <em><strong>or</strong></em> \(\frac{1}{2} - \frac{1}{2} = 0\)</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>X</em>: anti-strange quark / \(\bar s\);<br><em>Y</em>: antimuon / <em>μ</em><sup>+</sup>;</p>
<p>(ii) the process violates strangeness number conservation;<br>only the weak interaction allows this violation;</p>
<p><em><strong>or</strong></em></p>
<p>the decay of the kaon involves a neutrino;<br>any decay involving the neutrino must take place by the weak interaction;</p>
<p>(iii) <em>name:</em> W (boson);<br><em>sign:</em> positive;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks.</p>
<p>The quark content of a <em>π</em><sup>+</sup> meson includes an up quark.</p>
<p>The Feynman diagram represents the decay of a <em>π</em><sup>+</sup> meson.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the particles labelled A and B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with reference to their properties, <strong>two</strong> differences between a photon and a W boson.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>A: π<sup>+</sup> meson;<br>B: antimuon neutrino;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rest mass is non-zero for W, zero for photon;<br>range of photon is infinite, not for W;<br>photon carries electromagnetic force, W weak force;<br>photon is uncharged, W is charged;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of a particle that is its own antiparticle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The meson <em>K</em><sup>0</sup> consists of a d quark and an anti s quark. The <em>K</em><sup>0</sup> decays into two pions as shown in the Feynman diagram.</p>
<p><img src="" alt></p>
<p>(i) State a reason why the kaon <em>K</em><sup>0</sup> cannot be its own antiparticle.</p>
<p>(ii) Explain how it may be deduced that this decay is a weak interaction process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>photon / graviton / Z / Higgs;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>K</em><sup>0</sup> has a strangeness of +1, its antiparticle has strangeness –1 and so are different;<br>the antiparticle is s, \(\overline d \) and so is different;</p>
<p>(ii) strangeness is violated in this decay;<br>this can only happen with the weak interaction;</p>
<p>(iii) <em>Z</em><sup>0</sup> / <em>Z</em>;</p>
<p>(iv) \(R = \left( {\frac{h}{{4\pi mc}} = } \right)\frac{{6.6 \times {{10}^{ - 34}}}}{{4 \times \pi \times 1.6 \times {{10}^{ - 25}} \times 3.0 \times {{10}^8}}}\);<br>R≈10<sup>−18</sup>m;<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the Ω<span style="font-size: 7.000000pt; font-family: 'TimesNewRomanPSMT'; vertical-align: 5.000000pt;">– </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">particle. </span></p>
<p>The Ω<sup>–</sup> particle is a baryon which contains only strange quarks.</p>
</div>
<div class="specification">
<div class="page" title="Page 34">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about laser light.<br> </span></p>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the strangeness of the Ω<sup>–</sup> particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram shows a quark change that gives rise to a possible decay of the Ω<sup>–</sup> particle.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>(i) Identify X.</p>
<p>(ii) Identify Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The number of lines per millimetre in the diffraction grating in (b) is reduced. Describe the effects of this change on the fringe pattern in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>-3;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) anti u (quark) /\(\bar u\);<br>(ii) W<sup>–</sup>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>principal maxima broaden;</p>
<p>secondary maxima appear;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> Many candidates knew about the idea of strangeness, but did not assign a numerical value. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> Was reasonably well answered. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> There were almost no correct answers. Candidates clearly need a lot of practice answering questions on the diffraction grating. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about atomic spectra.</p>
<p>Diagram 1 shows some of the energy levels of the hydrogen atom. Diagram 2 is a representation of part of the emission spectrum of atomic hydrogen. The lines shown represent transitions involving the – 3.40 eV level.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: center;"> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the energy of a photon of wavelength 658 nm is 1.89 eV.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) On <strong>diagram 1</strong>, draw an arrow to show the electron transition between energy levels that gives rise to the emission of a photon of wavelength 658 nm. Label this arrow with the letter A.</p>
<p>(ii) On<strong> diagram 1</strong>, draw arrows to show the electron transitions between energy levels that give rise to the emission of photons of wavelengths 488 nm, 435 nm and 411 nm. Label these arrows with the letters B, C and D.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the lines in the emission spectrum of atomic hydrogen, shown in <strong>diagram 2</strong>, become closer together as the wavelength of the emitted photons decreases.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align: left;">\(E = \frac{{hc}}{\lambda }\);<br>\( = \frac{{6.63 \times {{10}^{ - 34}} \times 3.00 \times {{10}^8}}}{{658 \times {{10}^{ - 9}}}} = 3.02 \times {10^{ - 19}}\);<br>=\(\frac{{3.02 \times {{10}^{ - 19}}}}{{1.60 \times {{10}^{ - 19}}}}\);<br>=1.89eV</p>
<p style="text-align: left;"><em><strong>or</strong></em></p>
<p style="text-align: left;">the photon of wavelength 658nm is the longest (in the emission graph);<br>therefore it has the shortest frequency and lowest energy (from <em>E</em>=<em>hf</em> );<br>therefore it arises from the transition between the –1.51eV and the –3.40eV energy levels which have a difference of 1.89eV;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) see diagram below;</p>
<p>(ii) see diagram below;<br><em>All three must be correct for the mark.</em></p>
<p><img src="" alt></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at higher energy levels, energy levels become closer together;<br>the energy differences between higher energy levels and the lower level (<em>n</em>=2) become more equal;<br>hence the difference in wavelength of emitted photons decreases / <em>OWTTE</em>;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A student pours a canned carbonated drink into a cylindrical container after shaking the can violently before opening. A large volume of foam is produced that fills the container. The graph shows the variation of foam height with time.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time taken for the foam to drop to</p>
<p>(i) half its initial height.</p>
<p>(ii) a quarter of its initial height.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The change in foam height can be modelled using ideas from other areas of physics. Identify <strong>one</strong> other situation in physics that is modelled in a similar way.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>18 «s»</p>
<p><em>Allow answer in the range of 17 «s» to 19 «s».<br>Ignore wrong unit.</em></p>
<p>ii</p>
<p>36 «s»</p>
<p><em>Allow answer in the range of 35 «s» to 37 «s».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>radioactive/nuclear decay<br><em><strong>OR<br></strong></em>capacitor discharge<br><em><strong>OR<br></strong></em>cooling</p>
<p><em>Accept any relevant situation, eg: critically damping, approaching terminal velocity</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks and interactions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how interactions in particle physics are understood in terms of exchange particles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether or not strangeness is conserved in this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total energy of the particle represented by the dotted line is 1.2 GeV more than what is allowed by energy conservation. Determine the time interval from the emission of the particle from the s quark to its conversion into the d \({\rm{\bar d}}\) pair.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pion is unstable and decays through the weak interaction into a neutrino and an anti-muon.</p>
<p>Draw a Feynman diagram for the decay of the pion, labelling all particles in the diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>exchange particles are virtual particles/bosons;<br>that mediate/carry/transmit the weak/strong/em force between interacting particles / <em>OWTTE</em>;<br><em>Award first marking point for named bosons also, e.g. photons, W, Z, gluons.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>strangeness in initial state is –1 and zero in the final;<br>hence it is not conserved;</p>
<p><em>Award <strong>[0]</strong> for unsupported second marking point.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\Delta t \approx \frac{h}{{4\pi \Delta E}} = \frac{{6.63 \times {{10}^{ - 34}}}}{{4\pi \times 1.2 \times {{10}^9} \times 1.6 \times {{10}^{ - 19}}}}\);<br>\(\Delta t \approx 3 \times {10^{ - 25}}{\rm{s}}\);</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>diagram as above;<br>correctly labelled W<sup>+</sup>;</p>
<p><em>Allow time to run vertically. Allow particle symbols. Ignore missing or wrong arrow directions.</em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about fundamental interactions.</p>
<p>The Feynman diagram shows the decay of a K<sup>+</sup> meson into three other particles.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify particle A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Identify the interaction whose exchange particle is represented by B.</p>
<p>(ii) Identify the exchange particle labelled C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the concept of strangeness applies to the decay of a K<sup>+</sup> meson shown in this Feynman diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\pi \)<sup>- </sup>/ antiparticle of \(\pi \)<sup>+</sup><sup><br></sup></p>
<p><em>Do not award mark if sign is omitted.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) (electro) weak;</p>
<p>(ii) gluon/photon;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>strangeness is not conserved (in interaction B therefore it is a weak interaction);<br>strangeness is conserved in interaction C/in strong and electromagnetic interactions;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particles.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Σ<sup>+</sup> particle can decay into a π<sup>0</sup> particle and another particle Y as shown in the Feynman diagram.</p>
<p><img src="" alt></p>
<p>(i) Identify the exchange particle X.</p>
<p>(ii) Identify particle Y.</p>
<p>(iii) Outline the nature of the π<sup>0</sup>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The π<sup>0</sup> particle can decay with the emission of two gamma rays, each one of which can subsequently produce an electron and a positron.</p>
<p>(i) State the process by which the electron and the positron are produced.</p>
<p>(ii) Sketch the Feynman diagram for the process in (c)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss whether strangeness is conserved in the decay of the Σ<sup>+</sup> particle in (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>W </em><sup>-</sup>; <em>(allow W<sup>+</sup>,W boson)</em></p>
<p>(ii) proton;</p>
<p>(iii) π<sup>0</sup> is a (neutral) meson;<br>π<sup>0</sup> has integer spin/is a boson;<br>π<sup>0</sup> is unstable;<br>π<sup>0</sup> is its own antiparticle;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) pair production;</p>
<p>(ii) <img src="" alt></p>
<p>single vertex showing photon and two correctly labelled particles;<br>arrow direction correct for e<sup>+</sup> and e<sup>-</sup>;<br><em>Allow time axis to run vertically.</em><br><em>If Feynman diagrams include the meson decay, only consider either </em><em>gamma’s pair production.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>strangeness is not conserved, changes from –1 to 0;<br>weak interaction does not have to conserve strangeness in decay of Σ<sup>+</sup>;<br><em>To award the mark reasoned answers are required.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the hydrogen atom.</p>
<p>The diagram shows the three lowest energy levels of a hydrogen atom.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is excited to the <em>n</em>=3 energy level. On the diagram, draw arrows to show the possible electron transitions that can lead to the emission of a photon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that a photon of wavelength 656 nm can be emitted from a hydrogen atom.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">energy / 10</span><span style="font-size: 6.000000pt; font-family: 'Arial'; vertical-align: 4.000000pt;">–18 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">J<br><img src="" alt></span></p>
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">two correct arrows<br>a third correct arrow;</span><span style="font-size: 11.000000pt; font-family: 'Arial,Bold';"><br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for three upward arrows.<br> </span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">energy of photon is \(E = \left( {\frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{656 \times {{10}^{ - 9}}}} = } \right)3.03 \times {10^{ - 19}}\left( {\rm{J}} \right)\);<br></span></p>
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">((0.545-</span><span style="font-size: 11.000000pt; font-family: 'Arial';">0.242)</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">×</span><span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">-</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">18</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">3.03</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">×</span><span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">-</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">19 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">J) is the difference in energy between </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">n=</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">3 and </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">n</span></em><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">2; </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 33">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (a) almost everyone drew just two transitions out of the three possible.<br></span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 33">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (b) many candidates were able to identify the transition. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks.</p>
<p>An interaction between an electron and a positron can lead to the production of hadrons via the reaction<br>\[{e^ - } + {e^ + } \to u + \bar u\]<br>where u is an up quark. This process involves the electromagnetic interaction.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Feynman diagram for this interaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the strong interaction, why hadrons are produced in the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">particles correctly labelled and interaction correctly shown;<br>arrow directions correct;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';"><img src="" alt></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">strong (colour) interaction increases with separation requiring high energy;<br> high energy allows creation of hadrons/quarks;<br> confinement requires the formation of two quarks, not one; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
<p>Iodine-124 (I-124) is an unstable radioisotope with proton number 53. It undergoes beta plus decay to form an isotope of tellurium (Te).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reaction for the decay of the I-124 nuclide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph below shows how the activity of a sample of iodine-124 changes with time.</p>
<p><img src="" alt></p>
<p>(i) State the half-life of iodine-124.</p>
<p>(ii) Calculate the activity of the sample at 21 days.</p>
<p>(iii) A sample of an unknown radioisotope has a half-life twice that of iodine-124 and the same initial activity as the sample of iodine-124. On the axes opposite, draw a graph to show how the activity of the sample would change with time. Label this graph X.</p>
<p>(iv) A second sample of iodine-124 has half the initial activity as the original sample of iodine-124. On the axes opposite, draw a graph to show how the activity of this sample would change with time. Label this graph Y.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({}_{53}^{124}{\rm{I}} \to {}_{52}^{124}{\rm{Te + }}{}_1^0\beta ^+ \);<br>\({}_0^0v/v\);<br><em>Do not allow an antineutrino.</em><br><em>Award<strong> [1 max]</strong> for </em>\({}_{53}^{124}{\rm{I}} \to {}_{54}^{124}{\rm{Te + }}{}_1^0\beta^- + \bar v\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) 4 days;</p>
<p>(ii) \(\lambda = \frac{{\ln 2}}{{{T_{\frac{1}{2}}}}} = \frac{{\ln 2}}{4} = \left( {0.173{\rm{da}}{{\rm{y}}^{ - 1}}} \right)\);<br>\(A = {A_0}{e^{ - \lambda t}} = 16 \times {10^7} \times {e^{ - 0.173 \times 21}}\left( {{\rm{Bq}}} \right)\);<br><em>A</em>=4.2×10<sup>6</sup>Bq; <br><em>Award <strong>[2 max]</strong> for bald answer in range </em>4.2−4.5×10<sup>6</sup> Bq<em>, or linear </em><em>interpolation between half lives giving </em>4.4×10<sup>6</sup>Bq.</p>
<p>(iii) graph passing through or near (0,16), (8,8) and (16,4) – see below;</p>
<p>(iv) graph passing through or near (0,8), (4,4) and (8,2) – see below; <br><em>Do not penalize if graph does not pass through (12,1) and (16,0.5).</em></p>
<p><em><img src="" alt></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about atomic energy levels. </span></p>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how atomic spectra provide evidence for the quantization of energy in atoms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the de Broglie hypothesis explains the existence of a <strong>discrete</strong> set of wavefunctions for electrons confined in a box of length<em> L</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows the shape of two allowed wavefunctions <em>ѱ<sub>A</sub></em> and <em>ѱ<sub>B</sub></em> for an electron confined in a one-dimensional box of length<em> L</em>.</p>
<p><img src="" alt></p>
<p>(i) With reference to the de Broglie hypothesis, suggest which wavefunction corresponds to the larger electron energy.</p>
<p>(ii) Predict and explain which wavefunction indicates a larger probability of finding the electron near the position \(\frac{L}{2}\) in the box.</p>
<p>(iii) On the graph in (c) on page 7, sketch a possible wavefunction for the <strong>lowest</strong> energy state of the electron.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>atomic spectra have discrete line structures / only discrete frequencies/wavelengths;<br>photon energy is related to frequency/wavelength;<br>photons have discrete energies;<br>photons arise from electron transitions between energy levels;<br>which must have discrete values of energy;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>de Broglie suggests that electrons/all particles have an associated wavelength; this wave will be a stationary wave which meets the boundary conditions of the box; the stationary wave has wavelength \(\frac{{2L}}{n}\) (where <em>L</em> is the length of the box and where <em>n</em> is an integer);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) wavelength of <em>ψ<sub>A</sub></em> larger than <em>ψ<sub>B</sub></em>;<br>therefore momentum of <em>ψ<sub>B</sub></em> larger than <em>ψ<sub>A</sub></em> (from de Broglie hypothesis); therefore <em>ψ<sub>B</sub></em> has larger energy;<br><em>Award <strong>[1 max]</strong> for a bald correct answer. </em></p>
<p><strong>or</strong></p>
<p><em>ψ<sub>B</sub></em> has <em>n</em>=3, <em>ψ<sub>A</sub></em> has <em>n</em>=2;<br>E<sub>K</sub> ∝ <em>n</em><sup>2</sup>;<br>so <em>ψ<sub>B</sub> </em>corresponds to the larger energy;</p>
<p>(ii) <em>ψ<sub>A</sub></em>=0, <em>ψ<sub>B</sub></em>≠0 in the middle of the box/at \(\frac{L}{2}\);<br>so <em>ψ</em><sub>B</sub> corresponds to the larger probability since probability ∝Ι<em>ψ</em>Ι<sup>2</sup>;<br><em>Accept ∝ ψ<sup>2</sup>.</em></p>
<p><strong>or</strong></p>
<p>the probability (of finding the electron) is related to the amplitude;<br>amplitude of <em>ψ<sub>B</sub></em> is greater than amplitude of <em>ψ<sub><span style="font-size: 10.5px;">A</span></sub></em><sub> </sub>so <em>ψ<sub>B</sub></em> is more likely to be found;</p>
<p><em>Award <strong>[1 max]</strong> for a bald correct answer.</em></p>
<p>(iii)</p>
<p><img src="" alt></p>
<p>correct sketch; (accept -<em>ψ</em>)<br><em>Accept wavefunction with any amplitude. </em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>(a) Candidates struggled with this question. Although they demonstrated some familiarity with the idea, they could not clearly describe the connection between atomic structure and the emission spectra, usually discussing electrons without photons. The arguments leading from atomic spectra to energy levels were not logically organised.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> There were very few correct answers to (b).</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>(i) was reasonably well done by many, although many did not refer to the de Broglie hypothesis explicitly and thus relate wavelength to momentum and so to energy.</p>
<p>(ii) was poorly answered. Not many candidates understood the relation between amplitude and probability of locating the particle.</p>
<p>(iii) was well done by most.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>