File "markscheme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 7 HTML/markscheme-SL-paper1html
File size: 462.87 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>The energy-level diagram for an atom that has four energy states is shown.</p>
<p>                                            <img src="images/Schermafbeelding_2018-08-10_om_17.05.37.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/27"></p>
<p>What is the number of different wavelengths in the emission spectrum of this atom?</p>
<p>A.<span class="Apple-converted-space">     1</span></p>
<p>B.<span class="Apple-converted-space">     3</span></p>
<p>C.<span class="Apple-converted-space">     6</span></p>
<p>D.<span class="Apple-converted-space">     7</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A graph of the variation of average binding energy per nucleon with nucleon number has a maximum. What is indicated by the region around the maximum?</p>
<p>A.     The position below which radioactive decay cannot occur</p>
<p>B.     The region in which fission is most likely to occur</p>
<p>C.     The position where the most stable nuclides are found</p>
<p>D.     The region in which fusion is most likely to occur</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A detector, placed close to a radioactive source, detects an activity of 260 Bq. The average background activity at this location is 20 Bq. The radioactive nuclide has a half-life of 9 hours.</p>
<p>What activity is detected after 36 hours?</p>
<p>A.     15 Bq</p>
<p>B.     16 Bq</p>
<p>C.     20 Bq</p>
<p>D.     35 Bq</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The average binding energy per nucleon of the \(_8^{15}{\text{O}}\) nucleus is 7.5 MeV. What is the total energy required to separate the nucleons of one nucleus of \(_8^{15}{\text{O}}\)?</p>
<p>A.     53 MeV</p>
<p>B.     60 MeV</p>
<p>C.     113 MeV</p>
<p>D.     173 MeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The half-life of a radioactive element is 5.0 days. A freshly-prepared sample contains 128 g of this element. After how many days will there be 16 g of this element left behind in the sample?</p>
<p>A. 5.0 days</p>
<p>B. 10 days</p>
<p>C. 15 days</p>
<p>D. 20 days</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Atomic spectra are caused when a certain particle makes transitions between energy levels.<br>What is this particle?</p>
<p>A. Electron</p>
<p>B. Proton</p>
<p>C. Neutron</p>
<p>D. Alpha particle</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A sample contains an amount of radioactive material with a half-life of 3.5 days. After 2 weeks the fraction of the radioactive material remaining is</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;94 %.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;25 %.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;6 %.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;0 %.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In a nuclear fission reaction, nucleus X splits into nucleus Y and nucleus Z. Which of the following gives a possible order of the nuclei from lowest to highest binding energy per nucleon?</p>
<p>A. Z &rarr; Y &rarr; X</p>
<p>B. Z &rarr; X &rarr; Y</p>
<p>C. Y &rarr; X &rarr; Z</p>
<p>D. X &rarr; Z &rarr; Y</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Bismuth-210 \(\left( {_{\;83}^{210}{\text{Bi}}} \right)\) is a radioactive isotope that decays as follows.</p>
<p class="p1">\[_{\;83}^{210}{\text{Bi}}\xrightarrow{{{\beta ^ - }}}{\text{X}}\xrightarrow{\alpha }{\text{Y}}\]</p>
<p class="p1">What are the mass number and proton number of Y?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-30_om_12.03.25.png" alt="N15/4/PHYSI/SPM/ENG/TZ0/25"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The initial number of atoms in a pure radioactive sample is <em>N</em>. The radioactive half-life of the sample is defined as the</p>
<p>A. time taken for one atom to undergo decay.</p>
<p>B. probability for \(\frac{N}{2}\) atoms to undergo decay.</p>
<p>C. time taken for \(\frac{N}{2}\) atoms to undergo decay.</p>
<p>D. probability that one atom will decay per unit time.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is true about beta minus (\({\beta ^ - }\)) decay?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>An antineutrino is absorbed.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The charge of the daughter nuclide is less than that of the parent nuclide.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>An antineutrino is emitted.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The mass number of the daughter nuclide is less than that of the parent nuclide.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Geiger and Marsden bombarded a thin gold foil with alpha particles. They observed that a small fraction of the alpha particles were deflected through angles greater than 90˚. What does this observation suggest about the nucleus?</p>
<p>A. It is at the centre of the atom.</p>
<p>B. It is surrounded by orbiting electrons.</p>
<p>C. It is made of protons and neutrons.</p>
<p>D. It is a small region of the atom and is positively charged.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The nuclear reaction&nbsp;\({}_1^2{\rm{H}} + {}_1^3{\rm{H}} \to {}_2^4{\rm{He + }}{}_0^1{\rm{n}}\) would best be described as</p>
<p>A. alpha decay.<br>B. nuclear fission.<br>C. nuclear fusion.<br>D. neutron capture.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>What is the definition of the unified atomic mass unit?</p>
<p>A. The mass of one atom of hydrogen.</p>
<p>B. \(\frac{1}{{12}}\) of the mass of an atom of carbon-12.</p>
<p>C. The mass of one atom of carbon-12.</p>
<p>D. \(\frac{1}{{16}}\) of the mass of an atom of oxygen-16.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following affects the rate at which a sample of a radioactive material decays?</p>
<p>A. The mass of the sample<br>B. The temperature of the sample<br>C. The volume of the sample<br>D. The pressure acting on the sample</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Nucleus P decays by a sequence of emissions to form nucleus Q. One&nbsp;\(\alpha \) particle and two &beta;<sup>&minus;</sup> particles are emitted during the sequence. Which statement is correct?</p>
<p>A. Nucleus P has the same number of neutrons as nucleus Q.</p>
<p>B. Nucleus P is an isotope of nucleus Q.</p>
<p>C. Nucleus P has a greater charge than nucleus Q.</p>
<p>D. Nucleus P has fewer protons than nucleus Q.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following correctly identifies the three particles emitted in the decay of the nucleus \(_{{\text{20}}}^{{\text{45}}}{\text{Ca}}\) into a nucleus of \(_{{\text{21}}}^{{\text{45}}}{\text{Sc}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\alpha ,{\text{ }}{\beta ^ - },{\text{ }}\gamma \)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\beta ^ - },{\text{ }}\gamma {\text{, }}\bar \nu \)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\alpha ,{\text{ }}\gamma {\text{, }}\bar \nu \)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\alpha ,{\text{ }}{\beta ^ - }{\text{, }}\bar \nu \)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The rest mass of a proton is \({\text{938 MeV}}\,{{\text{c}}^{ - 2}}\). The energy of a proton at rest is</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(9.38{\text{ J}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(9.38 \times {10^8} \times {(3 \times {10^8})^2}{\text{ J}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(9.38 \times {10^8}{\text{ eV}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(9.38 \times {10^8} \times {(3 \times {10^8})^2}{\text{ eV}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Many candidates appeared unfamiliar with the unit \({\text{MeV}}\,{{\text{c}}^{ - 2}}\), despite the fact that the Physics Guide states that students should be familiar with this unit.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A simple model of the hydrogen atom suggests that the electron orbits the proton. What is the force that keeps the electron in orbit?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Electrostatic</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Gravitational</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Strong nuclear</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Centripetal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The question asks &ldquo;What is the force?&rdquo;, it does not ask &ldquo;What is the nature/direction of the force?&rdquo;. To distinguish the two it is probably best, when teaching, to use the adverb &ldquo;centripetally&rdquo; rather than centripetal. So we would say &ldquo;The electrostatic force acts centripetally&rdquo;. In this way the candidates understand that there are many different forces, all of which can act centripetally under certain conditions.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The Geiger&ndash;Marsden experiment provides evidence for</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;the existence of discrete atomic energy levels.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;the existence of the neutron.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;a dense positively charged nucleus.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;the stability of some nuclei.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Emission and absorption spectra provide evidence for</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;the nuclear model of the atom.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;natural radioactivity.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;the existence of isotopes.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;the existence of atomic energy levels.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Data concerning nuclides are plotted using the axes below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_18.21.24.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/25_1"></p>
<p class="p1">What are the axis labels for this graph?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_18.22.37.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/25_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the relationship between nucleon number <em>A</em>, proton number <em>Z</em> and neutron number <em>N</em>?</p>
<p>A.&nbsp;<em>A</em>=<em>Z</em>=<em>N</em></p>
<p>B.&nbsp;<em>A</em>+<em>Z</em>=<em>N</em></p>
<p>C.&nbsp;<em>A</em>&minus;<em>Z</em>=<em>N</em></p>
<p>D. <em>Z</em>&minus;<em>A</em>=<em>N</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The nuclear reaction</p>
<p class="p1">\[_1^2{\text{H}} + _1^3{\text{H}} \to _2^4{\text{He}} + _0^1{\text{n}}\]</p>
<p class="p1">is an example of</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>nuclear fission.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>radioactive decay.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>nuclear fusion.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>artificial transmutation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A radioactive isotope has a half-life of two minutes. A sample contains sixteen grams of the isotope. How much time elapses until one gram of the isotope remains?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;6 minutes</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;8 minutes</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;10 minutes</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;12 minutes</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When an alpha particle collides with a nucleus of nitrogen-14 \(\left( {{}_7^{14}{\rm{N}}} \right)\), a nucleus X can be produced together with a proton. What is X?</p>
<p>A. \({}_8^{18}{\rm{X}}\)</p>
<p>B. \({}_8^{17}{\rm{X}}\)</p>
<p>C. \({}_9^{18}{\rm{X}}\)</p>
<p>D. \({}_9^{17}{\rm{X}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The binding energy per nucleon of \({}_4^{11}Be\) is 6 MeV. What is the energy required to separate the nucleons of this nucleus?</p>
<p>A. &nbsp;24 MeV</p>
<p>B. &nbsp;42 MeV</p>
<p>C. &nbsp;66 MeV</p>
<p>D. &nbsp;90 MeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is true in respect of both the Coulomb interaction and the strong interaction between nucleons in an atom?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_08.26.45.png" alt="M10/4/PHYSI/SPM/ENG/TZ1/23"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A radioactive sample has activity <em>A</em><sub>0</sub> at <em>t</em>=0. What will be the activity of the sample after two half-lives?</p>
<p>A. zero<br>B. \(\frac{{{A_0}}}{4}\)<br>C. less than&nbsp;\(\frac{{{A_0}}}{4}\) if the sample is kept at high pressure<br>D. greater than \(\frac{{{A_0}}}{4}\) if the sample is kept at high temperature</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Element X decays through a series of alpha (<em>α</em>) and beta minus (<em>β</em><sup>–</sup>) emissions. Which series of emissions results in an isotope of X?</p>
<p>A.     1<em>α</em> and 2<em>β</em><sup>–</sup></p>
<p>B.     1<em>α</em> and 4<em>β</em><sup>–</sup></p>
<p>C.     2<em>α</em> and 2<em>β</em><sup>–</sup></p>
<p>D.     2<em>α</em> and 3<em>β</em><sup>–</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which Feynman diagram shows beta-plus (β<sup>+</sup>) decay?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_16.58.22.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/24"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A radio-isotope has an activity of 400 Bq and a half-life of 8 days. After 32 days the activity of the sample is</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;200 Bq.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;100 Bq.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;50 Bq.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;25 Bq.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>As quarks separate from each other within a hadron, the interaction between them becomes larger. What is the nature of this interaction?&nbsp;</p>
<p>A. Electrostatic<br>B. Gravitational&nbsp;<br>C. Strong nuclear&nbsp;<br>D. Weak nuclear</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three of the fundamental forces between particles are</p>
<p>          I.     strong nuclear</p>
<p>          II.     weak nuclear</p>
<p>          III.     electromagnetic.</p>
<p>What forces are experienced by an electron?</p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following lists three fundamental forces in increasing order of strength?</p>
<div class="column">A. electromagnetic, gravity, strong nuclear</div>
<div class="column">B. weak nuclear, gravity, strong nuclear</div>
<div class="column">C. gravity, weak nuclear, electromagnetic
<p>D. electromagnetic, strong nuclear, gravity</p>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The relationship between proton number \(Z\), neutron number \(N\) and nucleon number \(A\) is</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(A = Z - N\).</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(Z = A + N\).</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(N = A - Z\).</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(N = A + Z\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The mass defect for deuterium is 4&times;10<sup>&ndash;30&nbsp;</sup>kg. What is the binding energy of deuterium?&nbsp;</p>
<p>A. 4&times;10<sup>&ndash;7&nbsp;</sup>eV&nbsp;</p>
<p>B. 8&times;10<sup>&ndash;2&nbsp;</sup>eV&nbsp;</p>
<p>C. 2&times;10<sup>6&nbsp;</sup>eV&nbsp;</p>
<p>D. 2&times;10<sup>12&nbsp;</sup>eV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the energy equivalent to the mass of one proton?</p>
<p>A. &nbsp;9.38 &times; (3 &times; 10<sup>8</sup>)<sup>2</sup> &times; 10<sup>6</sup> J</p>
<p>B. &nbsp;9.38 &times; (3 &times; 10<sup>8</sup>)<sup>2</sup> &times; 1.6 &times; 10<sup>&ndash;19</sup> J</p>
<p>C. &nbsp;\(\frac{{9.38 \times {{10}^8}}}{{1.6 \times {{10}^{ - 19}}}}\)J</p>
<p>D. &nbsp;9.38 &times; 10<sup>8</sup> &times; 1.6 &times; 10<sup>&ndash;19</sup> J</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<p>A simple model of an atom has five energy levels. What is the maximum number of different frequencies in the emission spectrum of that atom?</p>
<p>A. 4</p>
<p>B. 6</p>
<p>C. 10</p>
<p>D. 25</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">In the Geiger&ndash;Marsden experiment \(\alpha \)-particles are scattered by gold nuclei. The experimental results provide evidence that</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;\(\alpha \)-particles have discrete amounts of kinetic energy.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;most of the mass and positive charge of an atom is concentrated in a small volume.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;the nucleus contains protons and neutrons.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;gold atoms have a high binding energy per nucleon.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The binding energy per nucleon of a&nbsp;\({}_1^3{\rm{H}}\) nucleus is 3 MeV. What is the minimum energy needed to<br>completely separate the nucleons of \({}_1^3{\rm{H}}\)?</p>
<p>A. 12 MeV<br>B. 9 MeV<br>C. 6 MeV<br>D. 3 MeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Two pure samples of radioactive nuclides X and Y have the same initial number of atoms. The half-life of X is \({T_{\frac{1}{2}}}\).</p>
<p>After a time equal to 4 half-lives of X the ratio<span class="Apple-converted-space"> </span>\(\frac{{{\text{number of atoms of X}}}}{{{\text{number of atoms of Y}}}}\) is \(\frac{1}{8}\).</p>
<p>What is the half-life of Y?</p>
<p>A.<span class="Apple-converted-space">     \(0.25{T_{\frac{1}{2}}}\)</span></p>
<p>B.<span class="Apple-converted-space">     \(0.5{T_{\frac{1}{2}}}\)</span></p>
<p>C.<span class="Apple-converted-space">     \(3{T_{\frac{1}{2}}}\)</span></p>
<p>D.<span class="Apple-converted-space">     \(4{T_{\frac{1}{2}}}\)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The number of neutrons and the number of protons in a nucleus of an atom of the isotope of uranium \(_{\;{\text{92}}}^{{\text{235}}}{\text{U}}\) are</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_05.05.26.png" alt="M09/4/PHYSI/SPM/ENG/TZ1/22"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the definition of the unified atomic mass unit?</p>
<p>A. &nbsp;\(\frac{1}{{12}}\) the mass of a neutral atom of carbon-12</p>
<p>B. &nbsp;The mass of a neutral atom of hydrogen-1</p>
<p>C. &nbsp;\(\frac{1}{{12}}\) the mass of a nucleus of carbon-12</p>
<p>D. &nbsp;The mass of a nucleus of hydrogen-1</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which particle is acted on by both the strong nuclear force and the Coulomb force?</p>
<p>A. Antineutrino<br>B. Electron<br>C. Neutron<br>D. Proton</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The Feynman diagram shows a particle interaction involving a W<sup>&ndash;</sup> boson.</p>
<p style="text-align: center;"><img src=""></p>
<p>Which particles are interacting?</p>
<p>A. U and Y</p>
<p>B. W<sup>&ndash;</sup> boson and Y</p>
<p>C. X and Y</p>
<p>D. U and X</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A nucleus of the isotope plutonium-238 \(\left( {{}^{238}{\rm{P}}} \right)\) decays into a nucleus of uranium by emitting an alpha particle. What is the nucleon number of the uranium nucleus?</p>
<p>A. 234<br>B. 236<br>C. 238<br>D. 240</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The nuclear reaction equation for the decay of a nucleus of thorium-231 (Th-231) to a nucleus of&nbsp;protactinium-231 (Pa-231) is shown below.</p>
<p style="text-align: center;">\[{}_{90}^{231}{\rm{Th}} \to {}_{91}^{231}{\rm{Pa}} + {\beta ^ - } + x\]</p>
<p style="text-align: left;">The particle <em>x</em> is a/an</p>
<p style="text-align: left;">A. proton.<br>B. antineutrino.<br>C. neutron.<br>D. electron.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<p>Which of the following is the correct definition of the binding energy of a nucleus?</p>
<p>A. The product of the binding energy per nucleon and the nucleon number</p>
<p>B. The minimum work required to completely separate the nucleons from each other</p>
<p>C. The energy that keeps the nucleus together</p>
<p>D. The energy released during the emission of an alpha particle</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>For which quantity can the unit MeVc<sup>&ndash;2</sup> be used?</p>
<p>A. Mass<br>B. Momentum<br>C. Kinetic energy<br>D. Binding energy</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This proved to be a difficult question, with many candidates opting for response D. This is possibly down to the fact that they encountered these units in the topic on binding energy so they have made an incorrect connection. Often such questions can be approached by elimination. By being aware that responses C and D both involved energy, they were unlikely to be the correct answer. The physics data book also has the masses of particles expressed in the same units. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<p style="display: inline !important;">For which reason were quarks first introduced?</p>
</div>
<div class="column">&nbsp;</div>
<div class="column">A. To explain the existence of isotopes</div>
<div class="column">B. To describe nuclear emission and absorption spectra</div>
<div class="column">C. To account for patterns in properties of elementary particles</div>
<div class="column">D. To account for the missing energy and momentum in beta decay</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The reaction <em>p</em><sup>+</sup> + <em>n</em><sup>0</sup>&nbsp;&rarr; <em>p</em><sup>+</sup> + \(\pi \)<sup>0</sup> does not occur because it violates the conservation law of</p>
<p>A. &nbsp;electric charge.</p>
<p>B. &nbsp;baryon number.</p>
<p>C. &nbsp;lepton number.</p>
<p>D. &nbsp;strangeness.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement about atomic spectra is <strong>not</strong> true?</p>
<p>A. They provide evidence for discrete energy levels in atoms.</p>
<p>B. Emission and absorption lines of equal frequency correspond to transitions between the&nbsp;same two energy levels.</p>
<p>C. Absorption lines arise when electrons gain energy.</p>
<p>D. Emission lines always correspond to the visible part of the electromagnetic spectrum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The half-life of a particular radioactive isotope is 8 days. The initial activity of a pure sample of the&nbsp;isotope is<em> A</em>.</p>
<p>Which of the following is the time taken for the activity of the isotope to change by \(\frac{7}{8}\)<em>A</em>?</p>
<p>A. 7 days<br>B. 24 days<br>C. 32 days<br>D. 56 days</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which of the following provides evidence for the existence of atomic energy levels?</p>
<p>A. Absorption spectra</p>
<p>B. Nuclear fission</p>
<p>C. The Geiger&ndash;Marsden experiment</p>
<p>D. Radioactive decay</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement correctly describes the process of nuclear fusion?</p>
<p>A. The joining together of two small atoms to create a larger atom.</p>
<p>B. The splitting up of a large atom to create two smaller atoms.</p>
<p>C. The joining together of two small nuclei to create a larger nucleus.</p>
<p>D. The splitting up of a large nucleus to create two smaller nuclei.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p>The nuclear equation below is an example of the transmutation of mercury into gold.</p>
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p>\[{}_1^2{\rm{H}} + {}_{80}^{199}{\rm{Hg}} \to {}_{79}^{197}{\rm{Au}} + {\rm{X}}\]</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p>The particle <strong>X</strong> is a</p>
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<ol style="list-style-type: upper-alpha;">
<li>
<p>gamma-ray photon.</p>
</li>
<li>
<p>helium nucleus.</p>
</li>
<li>
<p>proton.</p>
</li>
<li>
<p>neutron.</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="column">&nbsp;</div>
</div>
</div>
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">B</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Nuclei of the isotope nitrogen-14 are bombarded with neutrons and as a result nuclei of an isotope of carbon are produced. The nuclear reaction equation for this process may be written as</p>
<p>\[_7^{14}{\rm{N}} + {\rm{neutron}} \to {}_6^A{\rm{C}} + {\rm{proton}}\]</p>
<p>What is the nucleon number <em>A</em> of the isotope of carbon?</p>
<p>A. 12</p>
<p>B. 13</p>
<p>C. 14</p>
<p>D. 15</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Many candidates opted for B, presumably assuming that a neutron had no mass.</p>
</div>
<br><hr><br><div class="question">
<p>In a particular atom, the nucleon number is the total number of</p>
<p>A. protons.<br>B. neutrons.<br>C. electrons.<br>D. protons and neutrons.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Photons of energy 2.3eV are incident on a low-pressure vapour. The energy levels of the atoms in the vapour are shown</p>
<p style="text-align: center;"><img src="" alt></p>
<p>What energy transition will occur when a photon is absorbed by the vapour?&nbsp;</p>
<p>A. &ndash;3.9eV to &ndash;1.6eV</p>
<p>B. &ndash;1.6eV to 0eV&nbsp;</p>
<p>C. &ndash;1.6eV to &ndash;3.9eV&nbsp;</p>
<p>D. 0eV to &ndash;1.6eV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When compared with beta particles and gamma-ray photons, alpha particles have the greatest</p>
<p>A. mass.</p>
<p>B. penetrating power.</p>
<p>C. range in air.</p>
<p>D. speed.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In a neutral atom there are <em>n</em><sub>e</sub> electrons,&nbsp;<em>n</em><sub>p</sub> protons and&nbsp;<em>n</em><sub>n</sub> neutrons. What is the mass number of the nuclide?</p>
<p>A.&nbsp;<em>n</em><sub>p</sub> +&nbsp;<em>n</em><sub>e</sub> + <em>n</em><sub>n</sub></p>
<p>B.&nbsp;<em>n</em><sub>p</sub> + <em>n</em><sub>n</sub></p>
<p>C.&nbsp;<em>n</em><sub>n</sub> +&nbsp;<em>n</em><sub>p</sub> &ndash; <em>n</em><sub>e</sub></p>
<p>D.&nbsp;<em>n</em><sub>n</sub> &ndash; <em>n</em><sub>e</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A freshly prepared sample contains 4.0 &mu;g of iodine-131. After 24 days, 0.5&mu;g of iodine-131 remain.&nbsp;The best estimate of the half-life of iodine-131 is</p>
<p>A. 8 days.<br>B. 12 days.<br>C. 24 days.<br>D. 72 days.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A nucleus of californium (Cf) contains 98 protons and 154 neutrons. Which of the following correctly identifies this nucleus of californium?</p>
<p>A. \({}_{252}^{98}{\rm{Cf}}\)</p>
<p><br>B. \({}_{98}^{154}{\rm{Cf}}\)</p>
<p><br>C. \({}_{98}^{252}{\rm{Cf}}\)</p>
<p><br>D. \({}_{154}^{350}{\rm{Cf}}\)</p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following gives the correct number of protons and neutrons in a nucleus of&nbsp;carbon-14 \(\left( {{}_6^{14}{\rm{C}}} \right)\).</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A nucleus of phosphorus (P) decays to a nucleus of silicon (Si) with the emission of particle X and particle Y.</p>
<p>\[{}_{15}^{30}{\text{P}} \to {}_{14}^{30}{\text{Si}} + {\text{X}} + {\text{Y}}\]</p>
<p>What are X and Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In nuclear fission, a nucleus of element X absorbs a neutron (n) to give a nucleus of element Y and a nucleus of element Z.</p>
<p style="text-align: center;">X + n &rarr; Y + Z + 2n</p>
<p style="text-align: left;">What is&nbsp;\(\frac{{{\text{magnitude of the binding energy per nucleon of Y}}}}{{{\text{magnitude of the binding energy per nucleon of X}}}}\) and&nbsp;\(\frac{{{\text{total binding energy of Y and Z}}}}{{{\text{total binding energy of X}}}}\)?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student suggests the following nuclear reaction between deuterium&nbsp;\({}_1^2{\rm{H}}\) and tritium \({}_1^3{\rm{H}}\)</p>
<p>\[{}_1^2{\rm{H}} + {}_1^3{\rm{H}} \to n{\rm{X}} + m{\rm{Y}}\]</p>
<p>where <em>n</em> and <em>m</em> are integers. What are X and Y?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">A few comments from the G2 forms suggested that B was indeed possible with </span><span style="font-size: 10.000000pt; font-family: 'Arial,Italic';">n </span><span style="font-size: 10.000000pt; font-family: 'Arial';">= 3 and </span><span style="font-size: 10.000000pt; font-family: 'Arial,Italic';">m </span><span style="font-size: 10.000000pt; font-family: 'Arial';">= 5. This is, however, only a mathematical possibility and there is no evidence that candidates were distracted. Over 80% of the HL candidates and 60% of the SL candidates selected the correct response, recognising the reaction as fusion. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>What gives the total change in nuclear mass and the change in nuclear binding energy as a result&nbsp;of a nuclear fusion reaction?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is a possible pulse shape when the pulses overlap?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron is accelerated through a potential difference of 100 V. Which of the following gives the correct gain in kinetic energy of the electron in both joule and electronvolt?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">Which nucleons in a nucleus are involved in the Coulomb interaction and the strong short-range nuclear interaction?</div>
<div class="column"><img src="" alt></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The graph shows the relationship between binding energy per nucleon and nucleon number. In which region are nuclei most stable?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the Geiger&ndash;Marsden experiment alpha particles were directed at a thin gold foil. Which of the following shows how the majority of the alpha particles behaved after reaching the foil?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Response B with many particles being significantly deflected was a common choice of candidates at both levels; A shows the clear majority of particles passing through the foil undeflected. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br>