File "markscheme-HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 7 HTML/markscheme-HL-paper3html
File size: 444.54 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p>A positive pion decays into a positive muon and a neutrino.</p>
<p>\[{\pi ^ + } \to {\mu ^ + } + {v_\mu }\]</p>
<p>The momentum of the muon is measured to be 29.8 MeV c<sup>–1</sup> in a laboratory reference frame in which the pion is at rest. The rest mass of the muon is 105.7 MeV c<sup>–2</sup> and the mass of the neutrino can be assumed to be zero.</p>
</div>
<div class="specification">
<p>For the laboratory reference frame</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>write down the momentum of the neutrino.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that the energy of the pion is about 140 MeV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the rest mass of the pion with an appropriate unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="Apple-converted-space">–</span><strong>»</strong>29.8 <strong>«</strong>MeVc<sup>–1</sup><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>E<sub>π</sub></em> = \(\sqrt {p_\mu ^2{c^2} + m_\mu ^2{c^4}} \) + <em>p<sub>v</sub>c</em> <strong><em>OR</em></strong> <em>E<sub>μ</sub></em> = 109.8 <strong>«</strong><span class="Apple-converted-space">MeV</span><strong>»</strong></p>
<p><em>E<sub>π</sub></em> = <strong>«</strong><span class="Apple-converted-space">\(\sqrt {{{29.8}^2} + {{105.7}^2}} \) + 29.8 =</span><strong>»</strong> 139.6 <strong>«</strong>MeV<strong>»</strong></p>
<p> </p>
<p><em>Final value to at least 3 sig figs required for mark.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>139.6 MeVc<sup>–2</sup></p>
<p> </p>
<p><em>Units required.</em></p>
<p><em>Accept 140 MeVc<sup>–</sup></em><sup><em>2</em></sup><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about interactions and quarks.</p>
</div>
<div class="specification">
<p class="p1">For the lambda baryon \({\Lambda ^0}\), a student proposes a possible decay of \({\Lambda ^0}\) as shown.</p>
<p class="p1">\[{\Lambda ^0} \to p + {K^ - }\]</p>
<p class="p1">The quark content of the \({K^ - }\) meson is \({\rm{\bar us}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A lambda baryon \({\Lambda ^0}\) is composed of the three quarks uds. Show that the charge is 0 and the strangeness is \( - 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss, with reference to strangeness and baryon number, why this proposal is feasible.</p>
<p class="p2"> </p>
<p class="p1">Strangeness:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Baryon number:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another interaction is</p>
<p class="p1">\[{\Lambda ^0} \to p + {\pi ^ - }.\]</p>
<p class="p1">In this interaction strangeness is found <strong>not </strong>to be conserved. Deduce the nature of this interaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\( + \frac{2}{3} - \frac{1}{3} - \frac{1}{3} = 0\) for charge;</p>
<p class="p1">any particle containing a strange quark has strangeness of \( - 1\);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>strangeness</em>:</p>
<p class="p1">the \(p\) has a strangeness of 0;</p>
<p class="p1">the \({K^ - }\) particle has a strangeness of \( - 1\);</p>
<p class="p1"><em>baryon number</em>:</p>
<p class="p1">lambda and protons are baryons each having a baryon number of \( + 1\);</p>
<p class="p1">the \({K^ - }\) meson has a baryon number of 0;</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">only during the weak interaction strangeness is not conserved (therefore it is a weak interaction);</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii).</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered question, often very clearly and straightforward; some, even better candidates made mistakes in calculation in (b)(iii).</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about particle interactions.</p>
<p class="p1">An electron and a positron interact to produce a muon and antimuon through a weak interaction. The weak interaction involves one of the virtual particles \({{\text{W}}^ - }\), \({{\text{W}}^ + }\) or \({{\text{Z}}^{\text{0}}}\) boson.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by a virtual particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a Feynman diagram which represents this interaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain whether this interaction involves the \({{\text{W}}^ - }\), \({{\text{W}}^ + }\) or \({{\text{Z}}^{\text{0}}}\) boson.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">a particle that mediates one of fundamental forces / a particle that appears as an intermediate particle in a Feynman diagram / a particle that is not observed and may violate energy and momentum conservation at a vertex;</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-08-30_om_09.49.01.png" alt="N15/4/PHYSI/HP3/ENG/TZ0/22.a.ii/M"></p>
<p class="p1">electron and positron directions and symbols shown correctly;</p>
<p class="p1">muon and antimuon directions and symbols shown correctly;</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({{\text{Z}}^0}\) boson, no charge has been transferred/neutral current;</p>
<div class="question_part_label">a.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally well answered.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally well answered.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally well answered.</p>
<div class="question_part_label">a.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particles and interactions.</p>
</div>
<div class="question">
<p>When a free neutron decays to a proton, an electron is one of the decay products.</p>
<p>(i) State the name of the exchange particle and the interaction involved in this decay.</p>
<p>(ii) The interaction and the exchange particle in (a)(i) may arise when a quark decays. Describe the change in the quark structure of the neutron.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">W</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">/intermediate vector boson <strong>and</strong></span> <span style="font-size: 11.000000pt; font-family: 'Arial';">weak; </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>(both needed for mark)</em><br></span><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">d </span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">in neutron changes to </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">u </span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">(in proton);</span></p>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>This question is about a K meson decay.</p>
<p>The positive kaon K<sup>+</sup> has a strangeness of +1. It can decay through the interaction</p>
<p style="text-align: center;">K<sup>+</sup> → μ<sup>+</sup> + ν<sub>μ</sub>.</p>
<p style="text-align: left;">Charge, energy and momentum are conserved in this decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quark structure of the K<sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce one further quantity in this decay that is</p>
<p>(i) conserved.</p>
<p>(ii) not conserved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">\(u\overline s \);</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) baryon/lepton number / colour;<br>(ii) strangeness; </span></p>
</div>
</div>
</div>
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"> </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the standard model.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the standard model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the conservation of lepton number and charge to deduce the nature of the particle <em>x </em>in the following reaction.</p>
<p class="p1">\[{v_{\text{e}}} + {\mu ^ - } \to {e^ - } + x\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by deep inelastic scattering.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the theory that describes the electromagnetic and weak (and strong) interaction of quarks and electrons/particles;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({v_\mu }\) / muon neutrino;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">scattering (of leptons by hadrons) in which large amounts of energy is transferred (to the hadrons);</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">A significant number of candidates left the question unanswered. Of those candidates who did attempt the question very few knew anything about deep inelastic scattering.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A significant number of candidates left the question unanswered. Of those candidates who did attempt the question very few knew anything about deep inelastic scattering.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A significant number of candidates left the question unanswered. Of those candidates who did attempt the question very few knew anything about deep inelastic scattering.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particle production.</p>
</div>
<div class="question">
<p>In a particular experiment, moving kaon mesons collide with stationary protons. The following reaction takes place<br>\[p + {K^ - } \to {K^0} + {K^ + } + X\]</p>
<p>where X is an unknown particle. This process involves the strong interaction. The quark structure of the kaons is \({K^ - } = \bar us\), \({K^0} = d\bar s\), and \({K^ + } = \bar us\).</p>
<p>(i) State the strangeness of the unknown particle X.</p>
<p>(ii) Particle X is a hadron. State and explain whether X is a meson <strong>or</strong> a baryon.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>(i) S = -3; <br>(ii) baryon;<br>to conserve baryon number / has structure sss;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>(a)(i) a strangeness = -3 was usually correctly given, as was the identification of X as a baryon.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about elementary particles.</p>
<p>The quark is said to be an elementary particle.</p>
</div>
<div class="question">
<p>(i) State what is meant by the term elementary particle.</p>
<p>(ii) Identify another elementary particle other than the quark.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">(i) particle with no internal structure / cannot be broken down further;</span></p>
<p>(ii) Electron / neutrino / any lepton / any named exchange particle;</p>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Well answered although many answers just said “lepton” in (ii) without naming it.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about linear accelerators.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A moving proton is incident on a stationary pion, producing a kaon (<em>K</em> meson) and an unknown hadron X according to the reaction given below.</p>
<p style="text-align: center;">p+π<sup>−</sup>→X+K<sup>−</sup></p>
<p>(i) State, with a reason, the electric charge of X.</p>
<p>(ii) State, with a reason, if X is a baryon <strong>or</strong> a meson.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a deep inelastic scattering experiment, protons of momentum 2.70 ×10<sup>–18</sup> N s are scattered by gold nuclei.</p>
<p>Given that the diameter of nucleons is of the order 10<sup>–15</sup> m and the diameter of quarks is less than 10<sup>–18</sup> m, determine if these protons will be able to resolve</p>
<p>(i) nucleons within the gold nuclei.</p>
<p>(ii) quarks within the gold nuclei.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how deep inelastic scattering experiments led to the conclusion that gluons exist.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) positive in order to satisfy electric charge conservation; <br>(ii) baryon in order to satisfy baryon number conservation/contains 3 quarks;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) the de Broglie wavelength is \(\lambda = \frac{{6.63 \times {{10}^{ - 34}}}}{{2.7 \times {{10}^{ - 18}}}} = 2.5 \times {10^{ - 16}}{\rm{m}}\);<br>this is less than the nucleon size so nucleons can be resolved; <br><em>Argument required for second mark.</em></p>
<p>(ii) but it is greater than the quark size so quarks cannot be resolved;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>deep inelastic scattering experiments measure the (fraction of) momentum carried by electrically charged constituents of hadrons;<br>this is less than the total momentum of the hadron indicating the presence of neutral constituents;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about deep inelastic scattering.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student states that “the strong nuclear force is the strongest of the four fundamental interactions”. Explain why this statement is not correct.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how deep inelastic scattering experiments support your answer to (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> other conclusions that may be reached from deep inelastic scattering experiments.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the statement is true only for low energies;<br>at higher energies the strength of the strong interaction decreases;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in deep inelastic scattering experiments the energy transferred to the constituents of hadrons is very large;<br>the scattering pattern is consistent with quarks inside hadrons behaving as free particles / the interaction between the constituents is very weak (asymptotic freedom);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there are electrically neutral constituents inside hadrons / there are gluons within hadrons;<br>quarks come in (three) colours;<br>quarks are charged particles;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about conservation laws and the standard model.</p>
</div>
<div class="question">
<p>A muon decays into an electron and two other particles according to the reaction equation <em>μ</em><sup>−</sup>→<em>e</em><sup>−</sup>+?+?.</p>
<p>State the names of the <strong>two</strong> other particles that are produced in this decay explaining your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>muon neutrino;<br>electron antineutrino;<br>so that (family) <span style="text-decoration: underline;">lepton number</span> is conserved;<br><em>Do not accept particle symbols only.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model.</p>
<p>The Feynman diagrams show two electroweak interactions between electrons. The particle represented by the wavy line is a photon.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State</p>
<p>(i) the name of the exchange particle represented by the dotted line.<br>(ii) one difference between the two exchange particles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the observation of the interaction represented by the diagram with the dotted line provides evidence for the standard model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) Z (boson) / Z<sup>0</sup> / boson;</p>
<p>(ii) Z is massive/has mass;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>neutral current interaction (mentioned);<br>which is only observed with a weak/electroweak (interaction);<br>as predicted by the standard model;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 28">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This was generally well answered by well prepared candidates. Many identified the Z boson in (a)(i). </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 28">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">In (b), incorrect answers were rare. Candidates with sound knowledge answered well and others did not answer at all. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of a particle that is its own antiparticle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The meson <em>K</em><sup>0</sup> consists of a d quark and an anti s quark. The <em>K</em><sup>0</sup> decays into two pions as shown in the Feynman diagram.</p>
<p><img src="" alt></p>
<p>(i) State a reason why the kaon <em>K</em><sup>0</sup> cannot be its own antiparticle.</p>
<p>(ii) Explain how it may be deduced that this decay is a weak interaction process.</p>
<p>(iii) State the name of the particle denoted by the dotted line in the diagram.</p>
<p>(iv) The mass of the particle in (b)(iii) is approximately 1.6×10<sup>–25</sup>kg. Determine the range of the weak interaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>photon / graviton / Z / Higgs;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>K</em><sup>0</sup> has a strangeness of +1, its antiparticle has strangeness –1 and so are different;<br>the antiparticle is s, \(\overline d \) and so is different;</p>
<p>(ii) strangeness is violated in this decay;<br>this can only happen with the weak interaction;</p>
<p>(iii) <em>Z</em><sup>0</sup> / <em>Z</em>;</p>
<p>(iv) \(R = \left( {\frac{h}{{4\pi mc}} = } \right)\frac{{6.6 \times {{10}^{ - 34}}}}{{4 \times \pi \times 1.6 \times {{10}^{ - 25}} \times 3.0 \times {{10}^8}}}\);<br><em>R</em>≈10<sup>−18</sup>m;<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about hadrons.</p>
</div>
<div class="question">
<p>The interaction in (a) can also occur via the weak interaction with neutral current mediation producing an up and anti-up quark pair.</p>
<p>Draw a labelled Feynman diagram for this interaction. Time on your diagram should go from left to right.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="" alt></p>
<p> </p>
<p>correct incoming and outgoing particles with correct arrow direction;<br>Z<sup>0</sup> shown correctly;<br><em>Allow any consistent labelling for quark pair.</em></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Were reasonably well answered</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about the early universe and the Higgs boson.</p>
<p>The graph shows the variation of the logarithm of the temperature <em>T</em> of the universe with the logarithm of the time <em>t</em> after the Big Bang.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question">
<p>Evidence for the Higgs boson might be discovered at the Large Hadron Collider (LHC) at CERN. Outline why such a discovery would be of crucial significance to the standard model.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>the Higgs is the only undiscovered particle of the standard model;<br>the discovery would help to verify standard model / failure to discover it would necessitate a change in the model;<br>the Higgs is responsible for giving mass to particles / is linked to the problem of mass so its discovery would shed light on the problem of mass;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particles and interactions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State what is meant by an antiparticle.</p>
<p>(ii) Some particles are identical to their antiparticles. Discuss whether the neutron and the antineutron are identical.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram represents the decay \({K^{\rm{ - }}} \to {\pi ^{\rm{ + }}}{\rm{ + }}{\pi ^{\rm{ - }}}{\rm{ + }}{\pi ^{\rm{ - }}}\).</p>
<p><img src="" alt></p>
<p>Particles X and Y are exchange particles.</p>
<p>(i) Explain what is meant by an exchange particle.</p>
<p>(ii) Identify X.</p>
<p>(iii) Determine the electric charge of Y.</p>
<p>(iv) Calculate the change in strangeness in the decay of the <em>K</em><sup> –</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) a particle with the same mass but opposite quantum numbers/charge;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) the neutron has baryon number </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">+</span><span style="font-size: 11.000000pt; font-family: 'Arial';">1, so the antineutron has baryon number </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">-</span><span style="font-size: 11.000000pt; font-family: 'Arial';">1<br>so they are different;</span></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';"><strong>or</strong> </span></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">the neutron consists of three quarks (udd) and the antineutron consists of three antiquarks \(\left( {{\rm{\bar u\bar d\bar d}}} \right)\);<br>so they are different; </span></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[0] </span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>for a bald correct answer.</em> </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) a short lived/virtual particle/(gauge) boson;<br>that transfers energy/momentum/force between interacting particles;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">W</span></em><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">–</span><span style="font-size: 11.000000pt; font-family: 'Arial';">;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(iii) zero;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';"> (iv) \(\Delta S = 0 - \left( { - 1} \right) = + 1\)</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 31">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (a)(i) the fact that antiparticles have equal mass was often not mentioned. Most realised that antineutrons and neutrons were not identical as they had different quark structure or opposite baryon numbers. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 31">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">Part (b)(i) was usually partially correct. Few mentioned that exchange particles were bosons. Parts (ii), (iii) and (iv) were answered correctly only if candidates knew the charges on the various quarks in the Feynman diagram. About half did know. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model and the Pauli exclusion principle.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> conservation law that would be violated, if the following reactions were to occur.</p>
<p>(i) \({\pi ^0} \to {e^ + } + {\mu ^ - }\)</p>
<p>(ii) \({p^ + } + \bar n \to {e^ + } + {e^ - } + {\bar v_e} + {v_e}\)</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction \({\bar v_\mu } + {e^ - } \to {\bar v_\mu } + {e^ - }\) is an example of a neutral current reaction. Draw a Feynman diagram for this reaction labelling all the particles involved. The arrow provided indicates the direction of time.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) electron lepton number/muon lepton number/family lepton number;</span><span style="font-size: 11.000000pt; font-family: 'Arial,Bold';"><br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Do not accept just “lepton number” as this </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">is </span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>conserved.</em><br> </span></p>
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) </span><span style="font-size: 11.000000pt; font-family: 'Arial';">electric charge; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 16">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 17">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 18">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';"><img src="" alt></span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">arrows for </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>e</em><sup>– </sup></span><span style="font-size: 11.000000pt; font-family: 'Arial';">point forward in time and arrows for \({\bar v_\mu }\) </span><span style="font-size: 11.000000pt; font-family: 'Arial';">point backwards in time;<br>vertices \({\bar v_\mu }Z{\bar v_\mu }\) </span> <span style="font-size: 11.000000pt; font-family: 'Arial';">and </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">e</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">–</span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">Ze</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">– </span><span style="font-size: 11.000000pt; font-family: 'Arial';">; </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">(inspect carefully, many draw </span></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>\({e^ - }Z{\bar v_\mu }\) vertices)</em><br> </span><span style="font-size: 11.000000pt; font-family: 'Arial';">Z particle;</span></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award each marking point independently.<br>Award </span><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';"><strong>[2 max]</strong> </span><span style="font-size: 11pt; font-family: 'Arial,Italic';">if the diagram is rotated 90º</span></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>.<br>Allow particles to be expressed in words.</em> </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 31">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">Part (a)(i) was poorly answered as many just stated lepton number is not conserved. They needed to be specific. In (ii) a common mistake was to think that baryon number is not conserved when in fact it is charge that is not conserved. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 31">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">The Feynman diagram in (b) was rarely correct. Far too many candidates drew vertices that did not conserve charge. However partial marks were obtained for identifying the Z boson or for correct arrow directions. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model.</p>
</div>
<div class="question">
<p>Muons can decay via the weak interaction into electrons and neutrinos. One such decay is</p>
<p>\[{\mu ^ + } \to {e^ + } + {v_e} + {\bar v_\mu }\]</p>
<p>(i) Using the table provided, show that in this decay, lepton number <em>L</em>, electron lepton number <em>L</em><sub>e</sub> and muon lepton number <em>L</em><sub>μ</sub> are all conserved.</p>
<p><img src="" alt></p>
<p>(ii) Label the Feynman diagram below for the decay of a positive muon (μ<sup>+</sup>).</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="" alt></p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>