File "HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 7 HTML/HL-paper3html
File size: 251.68 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p>A positive pion decays into a positive muon and a neutrino.</p>
<p>\[{\pi ^ + } \to {\mu ^ + } + {v_\mu }\]</p>
<p>The momentum of the muon is measured to be 29.8 MeV c<sup>–1</sup> in a laboratory reference frame in which the pion is at rest. The rest mass of the muon is 105.7 MeV c<sup>–2</sup> and the mass of the neutrino can be assumed to be zero.</p>
</div>
<div class="specification">
<p>For the laboratory reference frame</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>write down the momentum of the neutrino.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that the energy of the pion is about 140 MeV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the rest mass of the pion with an appropriate unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about interactions and quarks.</p>
</div>
<div class="specification">
<p class="p1">For the lambda baryon \({\Lambda ^0}\), a student proposes a possible decay of \({\Lambda ^0}\) as shown.</p>
<p class="p1">\[{\Lambda ^0} \to p + {K^ - }\]</p>
<p class="p1">The quark content of the \({K^ - }\) meson is \({\rm{\bar us}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A lambda baryon \({\Lambda ^0}\) is composed of the three quarks uds. Show that the charge is 0 and the strangeness is \( - 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss, with reference to strangeness and baryon number, why this proposal is feasible.</p>
<p class="p2"> </p>
<p class="p1">Strangeness:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Baryon number:</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another interaction is</p>
<p class="p1">\[{\Lambda ^0} \to p + {\pi ^ - }.\]</p>
<p class="p1">In this interaction strangeness is found <strong>not </strong>to be conserved. Deduce the nature of this interaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about particle interactions.</p>
<p class="p1">An electron and a positron interact to produce a muon and antimuon through a weak interaction. The weak interaction involves one of the virtual particles \({{\text{W}}^ - }\), \({{\text{W}}^ + }\) or \({{\text{Z}}^{\text{0}}}\) boson.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by a virtual particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a Feynman diagram which represents this interaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain whether this interaction involves the \({{\text{W}}^ - }\), \({{\text{W}}^ + }\) or \({{\text{Z}}^{\text{0}}}\) boson.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particles and interactions.</p>
</div>
<div class="question">
<p>When a free neutron decays to a proton, an electron is one of the decay products.</p>
<p>(i) State the name of the exchange particle and the interaction involved in this decay.</p>
<p>(ii) The interaction and the exchange particle in (a)(i) may arise when a quark decays. Describe the change in the quark structure of the neutron.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about a K meson decay.</p>
<p>The positive kaon K<sup>+</sup> has a strangeness of +1. It can decay through the interaction</p>
<p style="text-align: center;">K<sup>+</sup> → μ<sup>+</sup> + ν<sub>μ</sub>.</p>
<p style="text-align: left;">Charge, energy and momentum are conserved in this decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quark structure of the K<sup>+</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce one further quantity in this decay that is</p>
<p>(i) conserved.</p>
<p>(ii) not conserved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the standard model.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the standard model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the conservation of lepton number and charge to deduce the nature of the particle <em>x </em>in the following reaction.</p>
<p class="p1">\[{v_{\text{e}}} + {\mu ^ - } \to {e^ - } + x\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by deep inelastic scattering.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about particle production.</p>
</div>
<div class="question">
<p>In a particular experiment, moving kaon mesons collide with stationary protons. The following reaction takes place<br>\[p + {K^ - } \to {K^0} + {K^ + } + X\]</p>
<p>where X is an unknown particle. This process involves the strong interaction. The quark structure of the kaons is \({K^ - } = \bar us\), \({K^0} = d\bar s\), and \({K^ + } = \bar us\).</p>
<p>(i) State the strangeness of the unknown particle X.</p>
<p>(ii) Particle X is a hadron. State and explain whether X is a meson <strong>or</strong> a baryon.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about elementary particles.</p>
<p>The quark is said to be an elementary particle.</p>
</div>
<div class="question">
<p>(i) State what is meant by the term elementary particle.</p>
<p>(ii) Identify another elementary particle other than the quark.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about linear accelerators.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A moving proton is incident on a stationary pion, producing a kaon (<em>K</em> meson) and an unknown hadron X according to the reaction given below.</p>
<p style="text-align: center;">p+π<sup>−</sup>→X+K<sup>−</sup></p>
<p>(i) State, with a reason, the electric charge of X.</p>
<p>(ii) State, with a reason, if X is a baryon <strong>or</strong> a meson.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a deep inelastic scattering experiment, protons of momentum 2.70 ×10<sup>–18</sup> N s are scattered by gold nuclei.</p>
<p>Given that the diameter of nucleons is of the order 10<sup>–15</sup> m and the diameter of quarks is less than 10<sup>–18</sup> m, determine if these protons will be able to resolve</p>
<p>(i) nucleons within the gold nuclei.</p>
<p>(ii) quarks within the gold nuclei.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how deep inelastic scattering experiments led to the conclusion that gluons exist.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about deep inelastic scattering.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student states that “the strong nuclear force is the strongest of the four fundamental interactions”. Explain why this statement is not correct.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how deep inelastic scattering experiments support your answer to (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> other conclusions that may be reached from deep inelastic scattering experiments.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about conservation laws and the standard model.</p>
</div>
<div class="question">
<p>A muon decays into an electron and two other particles according to the reaction equation <em>μ</em><sup>−</sup>→<em>e</em><sup>−</sup>+?+?.</p>
<p>State the names of the <strong>two</strong> other particles that are produced in this decay explaining your answer.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model.</p>
<p>The Feynman diagrams show two electroweak interactions between electrons. The particle represented by the wavy line is a photon.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State</p>
<p>(i) the name of the exchange particle represented by the dotted line.<br>(ii) one difference between the two exchange particles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the observation of the interaction represented by the diagram with the dotted line provides evidence for the standard model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of a particle that is its own antiparticle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The meson <em>K</em><sup>0</sup> consists of a d quark and an anti s quark. The <em>K</em><sup>0</sup> decays into two pions as shown in the Feynman diagram.</p>
<p><img src="" alt></p>
<p>(i) State a reason why the kaon <em>K</em><sup>0</sup> cannot be its own antiparticle.</p>
<p>(ii) Explain how it may be deduced that this decay is a weak interaction process.</p>
<p>(iii) State the name of the particle denoted by the dotted line in the diagram.</p>
<p>(iv) The mass of the particle in (b)(iii) is approximately 1.6×10<sup>–25</sup>kg. Determine the range of the weak interaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about hadrons.</p>
</div>
<div class="question">
<p>The interaction in (a) can also occur via the weak interaction with neutral current mediation producing an up and anti-up quark pair.</p>
<p>Draw a labelled Feynman diagram for this interaction. Time on your diagram should go from left to right.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about the early universe and the Higgs boson.</p>
<p>The graph shows the variation of the logarithm of the temperature <em>T</em> of the universe with the logarithm of the time <em>t</em> after the Big Bang.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question">
<p>Evidence for the Higgs boson might be discovered at the Large Hadron Collider (LHC) at CERN. Outline why such a discovery would be of crucial significance to the standard model.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about particles and interactions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State what is meant by an antiparticle.</p>
<p>(ii) Some particles are identical to their antiparticles. Discuss whether the neutron and the antineutron are identical.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Feynman diagram represents the decay \({K^{\rm{ - }}} \to {\pi ^{\rm{ + }}}{\rm{ + }}{\pi ^{\rm{ - }}}{\rm{ + }}{\pi ^{\rm{ - }}}\).</p>
<p><img src="" alt></p>
<p>Particles X and Y are exchange particles.</p>
<p>(i) Explain what is meant by an exchange particle.</p>
<p>(ii) Identify X.</p>
<p>(iii) Determine the electric charge of Y.</p>
<p>(iv) Calculate the change in strangeness in the decay of the <em>K</em><sup> –</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model and the Pauli exclusion principle.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> conservation law that would be violated, if the following reactions were to occur.</p>
<p>(i) \({\pi ^0} \to {e^ + } + {\mu ^ - }\)</p>
<p>(ii) \({p^ + } + \bar n \to {e^ + } + {e^ - } + {\bar v_e} + {v_e}\)</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction \({\bar v_\mu } + {e^ - } \to {\bar v_\mu } + {e^ - }\) is an example of a neutral current reaction. Draw a Feynman diagram for this reaction labelling all the particles involved. The arrow provided indicates the direction of time.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the standard model.</p>
</div>
<div class="question">
<p>Muons can decay via the weak interaction into electrons and neutrinos. One such decay is</p>
<p>\[{\mu ^ + } \to {e^ + } + {v_e} + {\bar v_\mu }\]</p>
<p>(i) Using the table provided, show that in this decay, lepton number <em>L</em>, electron lepton number <em>L</em><sub>e</sub> and muon lepton number <em>L</em><sub>μ</sub> are all conserved.</p>
<p><img src="" alt></p>
<p>(ii) Label the Feynman diagram below for the decay of a positive muon (μ<sup>+</sup>).</p>
<p><img src="" alt></p>
</div>
<br><hr><br>