File "markscheme-SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 6 HTML/markscheme-SL-paper2html
File size: 2.02 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p class="p1">This question is about gravitation and uniform circular motion.</p>
<p class="p1">Phobos, a moon of Mars, has an orbital period of 7.7 hours and an orbital radius of \(9.4 \times {10^3}{\text{ km}}\)<span class="s1">.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why Phobos moves with uniform circular motion.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the orbital speed of Phobos is about \({\text{2 km}}\,{{\text{s}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the mass of Mars.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">gravitational </span>provides centripetal force / gravitational provides force towards centre; (because radius is implied constant) (centripetal) force is constant;</p>
<p class="p2">at 90&deg; to velocity (vector)/orbit/direction / <em>OWTTE </em><span class="s2">/ \(\frac{{GmM}}{{{r^2}}} = \frac{{m{v^2}}}{r}\) </span>(or re-arranged) and therefore speed <span class="s3">is constant (and motion is uniform); } </span><em>(do not allow &ldquo;inwards/centripetal&rdquo; for this mark. The right angle must be explicit) </em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(v = \omega r\) and \(\omega&nbsp; = \frac{{2\pi }}{T}\) combined; } <em>(allow approach from speed </em>\( = \frac{s}{T}\), <em>do not allow approach from </em>\({v^2} = ar\) or \(f = \frac{1}{T}\))</p>
<p>\(v = \left( {\frac{{2\pi r}}{T} = } \right)\frac{{2\pi&nbsp; \times 9.4 \times {{10}^6}}}{{7.7 \times 3600}}\) <strong><em>or</em></strong> \(2.1(3) \times {10^3}{\text{ (m}}\,{{\text{s}}^{ - 1}})\);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(m\frac{{{v^2}}}{r} = G\frac{{mM}}{{{r^2}}}\) <strong><em>or</em></strong> \({F_{\text{c}}} = {F_{\text{G}}}\);</p>
<p class="p1">\(M = \frac{{{v^2}r}}{G}\) <strong><em>or</em></strong> \(\frac{{{{(2.13 \times {{10}^3})}^2} \times 9.4 \times {{10}^6}}}{{6.67 \times {{10}^{ - 11}}}}\); <em>(allow power of ten error in this mark)</em></p>
<p class="p1">\(M = 6.4 \times {10^{23}}{\text{ (kg)}}\) from 2.13 <strong><em>or</em></strong> \(5.6 \times {10^{23}}{\text{ (kg)}}\) from 2;</p>
<p class="p1"><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Candidates were asked to outline the real meaning of &ldquo;uniform circular motion&rdquo;. They were required to link the gravitational force acting on Phobos due to Mars (and the constancy of this force) to the dynamics of the force direction associated with the orbit and its consequences for the change in velocity (and lack of change in speed). Few managed to score all points with the majority managing to score 2 out of the 3 available.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was a particularly simple &ldquo;show that&rdquo; question. Once again, examiners saw considerable numbers of answers that gave little information about the origin of the solution. As in past examinations, examiners saw much pure substitution without any explanation of its origin. This does not score well. It is best practice for candidates to present a full argument in calculations, and in &ldquo;show that&rdquo; and &ldquo;deduce&rdquo; questions it is essential.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Candidates were on surer ground with the deduction of the mass of Mars. An algebraic starting point was allowed and many scored all 3 marks. However, a very large number failed to arrive at the correct numerical answer due to errors in powers of ten from the data provided.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about a simple pendulum. <strong>Part 2 </strong>is about the Rutherford model of the atom.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1&nbsp; &nbsp; &nbsp;</strong>Simple pendulum</p>
</div>

<div class="specification">
<p class="p1">A pendulum consists of a bob suspended by a light inextensible string from a rigid support. The pendulum bob is moved to one side and then released. The sketch graph shows how the displacement of the pendulum bob undergoing simple harmonic motion varies with time over one time period.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-09_om_17.23.17.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.a"></p>
<p class="p1">On the sketch graph above,</p>
</div>

<div class="specification">
<p class="p1">A pendulum bob is moved to one side until its centre is 25 mm above its rest position and then released.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-09_om_17.28.30.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.c"></p>
</div>

<div class="specification">
<p class="p1">The point of suspension of a pendulum bob is moved from side to side with a small amplitude and at a variable driving frequency \(f\).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-09_om_17.33.24.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.d"></p>
<p class="p1">For each value of the driving frequency a steady constant amplitude \(A\) is reached. The oscillations of the pendulum bob are lightly damped.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2&nbsp; &nbsp; &nbsp;</strong>Rutherford model of the atom</p>
</div>

<div class="specification">
<p class="p1">The isotope gold-197 \(\left( {_{\;79}^{197}Au} \right)\) is stable but the isotope gold-199 \(\left( {_{\;79}^{199}Au} \right)\) is not.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>label with the letter A a point at which the acceleration of the pendulum bob is a maximum.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>label with the letter V a point at which the speed of the pendulum bob is a maximum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">Part1.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the magnitude of the tension in the string at the midpoint of the oscillation is greater than the weight of the pendulum bob.</p>
<div class="marks">[3]</div>
<div class="question_part_label">Part1.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that the speed of the pendulum bob at the midpoint of the oscillation is \({\text{0.70 m}}\,{{\text{s}}^{ - 1}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The mass of the pendulum bob is 0.057 kg. The centre of the pendulum bob is 0.80 m below the support. Calculate the magnitude of the tension in the string when the pendulum bob is vertically below the point of suspension.</p>
<div class="marks">[5]</div>
<div class="question_part_label">Part1.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>On the axes below, sketch a graph to show the variation of \(A\) with \(f\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_06.33.19.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.d.i"></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain, with reference to the graph in (d)(i), what is meant by resonance.</p>
<div class="marks">[4]</div>
<div class="question_part_label">Part1.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The pendulum bob is now immersed in water and the variable frequency driving force in (d) is again applied. Suggest the effect this immersion of the pendulum bob will have on the shape of your graph in (d)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">Part1.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles are deviated from their original direction through angles greater than <span class="s1">90&deg;</span>. Use these observations to describe the Rutherford atomic model.</p>
<div class="marks">[5]</div>
<div class="question_part_label">Part2.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Outline, in terms of the forces acting between nucleons, why, for large stable nuclei such as gold-197, the number of neutrons exceeds the number of protons.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>A nucleus of \(_{\;{\text{79}}}^{{\text{199}}}{\text{Au}}\) decays to a nucleus of \(_{\;{\text{80}}}^{{\text{199}}}{\text{Hg}}\) with the emission of an electron and another particle. State the name of this other particle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">Part2.b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;one A correctly shown;</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;one V correctly shown;</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-10_om_06.05.54.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.a.ii/M"></p>
<div class="question_part_label">Part1.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">pendulum bob accelerates towards centre of circular path / <em>OWTTE</em>;</p>
<p class="p1">therefore force upwards;</p>
<p class="p1">that <span style="text-decoration: underline;">adds</span> to tension produced by the weight;</p>
<div class="question_part_label">Part1.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>evidence shown of equating kinetic energy and gravitational potential energy;</p>
<p class="p1">\(v = \sqrt {(2 \times 9.8 \times 0.025)} \);</p>
<p class="p1">\( = 0.70{\text{ m}}\,{{\text{s}}^{ - 1}}\)</p>
<p class="p1"><em>Allow g = 10 m</em>\(\,\)<em>s<sup>&ndash;2</sup> answer 0.71 m</em>\(\,\)<em>s<sup>&ndash;2</sup>.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>centripetal acceleration \(\left( { = \frac{{{v^2}}}{r}} \right){\text{ }}\left[ { = \frac{{{\text{0.}}{{\text{7}}^{\text{2}}}}}{{{\text{0.8}}}}} \right] = 0.61{\text{ }}\left( {{\text{m}}\,{{\text{s}}^{ - 2}}} \right)\);</p>
<p class="p1">net acceleration \( = (9.81 + 0.61 = ){\text{ }}10.4{\text{ }}\left( {{\text{m}}\,{{\text{s}}^{ - 2}}} \right)\) <strong><em>or</em></strong> \(T-mg = m \times 0.61\);</p>
<p class="p1">\({\text{tension}} = (ma = ){\text{ }}0.59{\text{ N}}\);</p>
<p class="p1"><em>Allow g = 10 m</em>\(\,\)<em>s<sup>&ndash;2</sup> answer 0.60 N.</em></p>
<p class="p1"><em>Award </em><strong><em>[3] </em></strong><em>for bald correct answer.</em></p>
<div class="question_part_label">Part1.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-11-10_om_06.34.57.png" alt="N10/4/PHYSI/SP2/ENG/TZ0/B1.Part1.d.i/M"></p>
<p class="p1">one maximum shown and curve broadly similar to example above;</p>
<p class="p1">amplitude falls on each side by lower amount on low driving frequency side;</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;resonance is where driving frequency equals/close to natural frequency;</p>
<p class="p1">the frequency at the maximum amplitude of the graph;</p>
<div class="question_part_label">Part1.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">lower amplitude everywhere on graph;</p>
<p class="p1">with a much broader resonance peak;</p>
<p class="p1">maximum moves to left on graph;</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for a sketch graph.</em></p>
<div class="question_part_label">Part1.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">most of the atom is empty space;</p>
<p class="p1">most of the mass/(protonic) charge of the atom is concentrated in the nucleus/nucleus is dense;</p>
<p>\(\begin{array}{*{20}{l}} \begin{gathered} {\text{nucleus is positively charged;}} \hfill \\ {\text{(most) alphas not close enough to nuclei to be deflected;}} \hfill \\ {\text{(very few) alphas (are) close enough to nuclei to be deflected;}} \hfill \\ \end{gathered} &amp;{\left\{ \begin{gathered} These points can \hfill \\ be awarded to a \hfill \\ labelled diagram. \hfill \\ \end{gathered} \right.} \end{array}\)</p>
<p class="p1"><em>To award the last two marking points for a diagram response the candidate must&nbsp;</em><em>show that a non-deflected alpha is well away from a nucleus and a strongly&nbsp;</em><em>deflected alpha is aimed very close or head-on.</em></p>
<div class="question_part_label">Part2.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>mention of Coulomb repulsion between protons;</p>
<p class="p1">mention of strong (nuclear) force (between nucleons);</p>
<p class="p1">overall balance must be correct (and more neutrons needed for this);</p>
<p class="p1"><em>Award </em><strong><em>[0] </em></strong><em>for a statement that neutron is negative.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>anti neutrino / \(\bar v\);</p>
<div class="question_part_label">Part2.b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Identifications of points A and V were mixed. About half the candidates received both marks here.</p>
<div class="question_part_label">Part1.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was poorly done with many misapprehensions evident. The main problem was that candidates failed to associate the effect with the presence of a centripetal force and also unable to consider it in terms of the directions and additions of the various forces in the situation.</p>
<div class="question_part_label">Part1.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;This was well done by many. However a use of a <em>suvat </em>equation is not appropriate in this case as the acceleration is not uniform.</p>
<p class="p2">(ii)&nbsp; &nbsp; &nbsp;Candidates who kept a clear head were able to arrive at a correct answer even if they had failed in part (b)</p>
<div class="question_part_label">Part1.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Graphs were poor in general with few gaining both marks and many candidates unable to make any progress. Graphs often showed a decreasing amplitude against time despite the frequency label on the <em>x</em>-axis.</p>
<p class="p2">(ii)&nbsp; &nbsp; &nbsp;Few understood the meaning of the term &ldquo;resonance&rdquo; sufficiently to be able to describe it in terms of the graph.</p>
<div class="question_part_label">Part1.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Again, few candidates referred their answer to the graph. Some were able to gain credit for discussing changes in amplitude.</p>
<div class="question_part_label">Part1.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Candidates who rely on a diagram rather than a written description must ensure that their sketches give all the required information unambiguously. In this type of question it is also common to see candidates repeating part of the question itself back to the examiner; this will not gain credit. Candidates needed to distinguish between those alpha particles passing close to and those far away from a nucleus, and then to give the deduced properties of the nucleus from these observations. Descriptions were often illogical and repetitive.</p>
<div class="question_part_label">Part2.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates could write with confidence about the repulsive nature of the proton-proton interaction and the attractive nature of the strong nuclear force. Few gave good accounts of the balance between these two forces or described the energy situation (a better way to answer). Weak candidates could not name the strong nuclear force adequately.</p>
<div class="question_part_label">Part2.b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Gravitational fields and electric fields</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnitude of gravitational field strength <em>g</em> is defined from the equation shown below.</p>
<p>\[g = \frac{{{F_g}}}{m}\]</p>
<p>The magnitude of electric field strength <em>E</em> is defined from the equation shown below.</p>
<p>\[E = \frac{{{F_E}}}{q}\]</p>
<p>For each of these defining equations, state the meaning of the symbols</p>
<p>(i) <em>F</em><sub>g</sub>.</p>
<p>(ii) <em>F</em><sub>E</sub>.</p>
<p>(iii) <em>m</em>.</p>
<p>(iv) <em>q</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple model of the hydrogen atom, the electron is regarded as being in a&nbsp;circular orbit about the proton. The magnitude of the electric field strength at the&nbsp;electron due to the proton is <em>E</em><sub>p</sub>. The magnitude of the gravitational field strength at&nbsp;the electron due to the proton is <em>g</em><sub>p</sub>.</p>
<p>(i) Draw the electric field pattern of the proton alone.</p>
<p>(ii) Determine the order of magnitude of the ratio shown below.</p>
<p>\[\frac{{{E_p}}}{{{g_p}}}\]</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>(i) the force exerted on a small/test/point mass;&nbsp;<br><em>Do not allow bald &ldquo;gravitational force&rdquo;.</em></p>
<p>(ii) the force exerted on a small/point/test positive charge;&nbsp;<br><em>To award <strong>[1]</strong> &ldquo;positive&rdquo; is required.</em><br><em>Do not allow bald &ldquo;electric force&rdquo;.</em></p>
<p>(iii) the size/magnitude/value of the small/point mass;&nbsp;<br><em>Do not accept bald &ldquo;mass&rdquo;</em>.</p>
<p>(iv) the magnitude/size/value of the small/point/test (positive) charge;<br><em>Do not accept bald &ldquo;charge&rdquo;.</em></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>(i)<img src="" alt></p>
<p>pattern correct with at least 8 symmetrical lines as shown;<br>direction correct;</p>
<p>(ii) \({E_p} = \frac{e}{{4\pi {\varepsilon _0}{r^2}}}\) and \({g_p} = \frac{{G{m_p}}}{{{r^2}}}\); <em>(both needed)<br></em>\(\frac{e}{{4\pi {\varepsilon _0}G{m_p}}}\left( { = \frac{{9 \times {{10}^9} \times 1.6 \times {{10}^{ - 19}}}}{{6.7 \times {{10}^{ - 11}} \times 1.7 \times {{10}^{ - 27}}}}} \right)\);<br><span style="font-size: 12.000000pt; font-family: 'Symbol';"></span><span style="font-size: 12.000000pt; font-family: 'Times New Roman';">10</span><span style="font-size: 7.000000pt; font-family: 'Times New Roman'; vertical-align: 5.000000pt;">28 </span><span style="font-size: 12.000000pt; font-family: 'Times New Roman';">;</span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>In this part candidates were completely at a loss and could not state the meanings of the symbols in the definitions of gravitational or electric field strengths. This was a disappointing failure in what was meant to be an easy opener to the whole question.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>(i) The diagrams presented to examiners frequently gave a clear indication of the direction and shape of the field pattern. This was well done.</p>
<p>(ii) Following(a) candidates failed widely on this part too. They often had little idea which data to use (mass and charge were frequently confused) and sometimes the meaning of the constants in the equations failed them too. This was compounded by arithmetic errors to make a straightforward calculation very hard for many.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron moves in circular motion in a uniform magnetic field.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_18.05.11.png" alt="M18/4/PHYSI/SP2/ENG/TZ1/05"></p>
<p>The velocity of the electron at point P is 6.8 &times; 10<sup>5</sup> m s<sup>&ndash;1</sup> in the direction shown.</p>
<p>The magnitude of the magnetic field is 8.5 T.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the magnetic field.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in N, the magnitude of the magnetic force acting on the electron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves at constant speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the electron moves on a circular path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>out of the page plane / ⊙</p>
<p> </p>
<p><em>Do not accept just “up” or “outwards”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1.60 × 10<sup>–19</sup> × 6.8 × 10<sup>5</sup> × 8.5 = 9.2 × 10<sup>–13</sup> <strong>«</strong>N<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the magnetic force does not do work on the electron hence does not change the electron’s kinetic energy</p>
<p><strong><em>OR</em></strong></p>
<p>the magnetic force/acceleration is at right angles to velocity</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the velocity of the electron is at right angles to the magnetic field</p>
<p>(therefore) there is a centripetal acceleration / force acting on the charge</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A small ball of mass <em>m </em>is moving in a horizontal circle on the inside surface of a&nbsp;frictionless hemispherical bowl.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_12.45.38.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a"></p>
<p>The normal reaction force <em>N </em>makes an angle <em>&theta;</em> to the horizontal.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the direction of the resultant force on the ball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, construct an arrow of the correct length to represent the weight of the ball.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the magnitude of the net force <em>F </em>on the ball is given by the following equation.</p>
<p>                                          \[F = \frac{{mg}}{{\tan \theta }}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of the bowl is 8.0 m and <em>θ</em> = 22°. Determine the speed of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline whether this ball can move on a horizontal circular path of radius equal to the radius of the bowl.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second identical ball is placed at the bottom of the bowl and the first ball is displaced so that its height from the horizontal is equal to 8.0 m.</p>
<p>                                   <img src="images/Schermafbeelding_2018-08-12_om_13.41.19.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.d"></p>
<p>The first ball is released and eventually strikes the second ball. The two balls remain in contact. Determine, in m, the maximum height reached by the two balls.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>towards the centre <strong>«</strong>of the circle<strong>» </strong>/ horizontally to the right</p>
<p> </p>
<p><em>Do not accept towards the centre of the bowl</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>downward vertical arrow of any length</p>
<p>arrow of correct length</p>
<p> </p>
<p><em>Judge the length of the vertical arrow by eye. The construction lines are not required. A label is not required</em></p>
<p><em>eg</em>: <img src="images/Schermafbeelding_2018-08-12_om_13.22.33.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><em>F</em> = <em>N</em> cos <em>θ</em></p>
<p><em>mg</em> = <em>N</em> sin <em>θ</em></p>
<p>dividing/substituting to get result</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>right angle triangle drawn with <em>F</em>, <em>N </em>and <em>W/mg </em>labelled</p>
<p>angle correctly labelled and arrows on forces in correct directions</p>
<p>correct use of trigonometry leading to the required relationship</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-12_om_13.28.39.png" alt="M18/4/PHYSI/SP2/ENG/TZ2/01.a.ii"></p>
<p><em>tan θ</em> = \(\frac{{\text{O}}}{A} = \frac{{mg}}{F}\)</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{mg}}{{\tan \theta }}\) = <em>m</em>\(\frac{{{v^2}}}{r}\)</p>
<p><em>r</em> = <em>R</em> cos <em>θ</em></p>
<p><em>v</em> = \(\sqrt {\frac{{gR{{\cos }^2}\theta }}{{\sin \theta }}} /\sqrt {\frac{{gR\cos \theta }}{{\tan \theta }}} /\sqrt {\frac{{9.81 \times 8.0\cos 22}}{{\tan 22}}} \)</p>
<p><em>v</em> = 13.4/13 <strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for a bald correct answer<span class="Apple-converted-space"> </span></em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for an answer of 13.9/14 </em><strong>«</strong><em>ms <sup>–</sup></em><em><sup>1</sup></em><strong>»</strong><em>. MP2 omitted</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is no force to balance the weight/N is horizontal</p>
<p>so no / it is not possible</p>
<p> </p>
<p><em>Must see correct justification to award MP2</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed before collision <em>v</em> = <strong>«</strong>\(\sqrt {2gR} \) =<strong>»</strong> 12.5 <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><strong>«</strong>from conservation of momentum<strong>» </strong>common speed after collision is \(\frac{1}{2}\) initial speed <strong>«</strong><em>v<sub>c</sub></em> = \(\frac{{12.5}}{2}\) = 6.25 ms<sup>–1</sup><strong>»</strong></p>
<p><em>h = </em><strong>«</strong>\(\frac{{{v_c}^2}}{{2g}} = \frac{{{{6.25}^2}}}{{2 \times 9.81}}\)<strong>»</strong> 2.0 <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><em>Allow 12.5 from incorrect use of kinematics equations</em></p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Award </em><strong><em>[0] </em></strong><em>for mg(8) = 2mgh leading to h = 4 m if done in one step.</em></p>
<p><em>Allow ECF from MP1</em></p>
<p><em>Allow ECF from MP2</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is in <strong>two </strong>parts. <strong>Part 1 </strong>is about the motion of a car. <strong>Part 2 </strong>is about electricity.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 1</strong> Motion of a car</p>
</div>

<div class="specification">
<p class="p1">A car is travelling along the straight horizontal road at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). The power output required at the wheels is 0.13 MW.</p>
</div>

<div class="specification">
<p class="p1">A driver moves the car in a horizontal circular path of radius 200 m. Each of the four tyres will not grip the road if the frictional force between a tyre and the road becomes less than 1500 N.</p>
</div>

<div class="specification">
<p class="p1"><strong>Part 2 </strong>Electricity</p>
</div>

<div class="specification">
<p class="p1">A lemon can be used to make an electric cell by pushing a copper rod and a zinc rod into the lemon.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-08_om_17.27.58.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/06_Part2.d"></p>
<p class="p1">A student constructs a lemon cell and connects it in an electrical circuit with a variable resistor. The student measures the potential difference <em>V </em>across the lemon and the current <em>I </em>in the lemon.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A car accelerates uniformly along a straight horizontal road from an initial speed of \({\text{12 m}}\,{{\text{s}}^{ - 1}}\) to a final speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\) in a distance of 250 m. The mass of the car is 1200 kg. Determine the rate at which the engine is supplying kinetic energy to the car as it accelerates.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A car is travelling along a straight horizontal road at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). The power output required at the wheels is 0.13 MW.</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate the total resistive force acting on the car when it is travelling at a constant speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The mass of the car is 1200 kg. The resistive force \(F\) is related to the speed \(v\) by \(F \propto {v^2}\). Using your answer to (b)(i), determine the maximum theoretical acceleration of the car at a speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Calculate the maximum speed of the car at which it can continue to move in the circular path. Assume that the radius of the path is the same for each tyre.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;While the car is travelling around the circle, the people in the car have the sensation that they are being thrown outwards. Outline how Newton&rsquo;s first law of motion accounts for this sensation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Draw a circuit diagram of the experimental arrangement that will enable the student to collect the data for the graph.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that the potential difference \(V\) across the lemon is given by</p>
<p class="p1">\[V = E - Ir\]</p>
<p class="p1">where \(E\) is the emf of the lemon cell and \(r\) is the internal resistance of the lemon cell.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The graph shows how \(V\) varies with \(I\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_09.50.40.png" alt="M14/4/PHYSI/SP2/ENG/TZ2/06_Part2.d.iii"></p>
<p class="p2">Using the graph, estimate the emf of the lemon cell.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Determine the internal resistance of the lemon cell.</p>
<p class="p2">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The lemon cell is used to supply energy to a digital clock that requires a current of \({\text{6.0 }}\mu {\text{A}}\). The clock runs for 16 hours. Calculate the charge that flows through the clock in this time.</p>
<div class="marks">[10]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of a kinematic equation to determine motion time \(( = 12.5{\text{ s)}}\);</p>
<p class="p1">change in kinetic energy \( = \frac{1}{2} \times 1200 \times \left[ {{{28}^2} - {{12}^2}} \right]{\text{ }}( = 384{\text{ kJ)}}\);</p>
<p class="p1">rate of change in kinetic energy \( = \frac{{384000}}{{12.5}}\); } <em>(allow ECF of 162</em> <em>from (28 &ndash; 12)<sup>2</sup></em> <em>for this mark)</em></p>
<p class="p1">31 (kW);</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">use of a kinematic equation to determine motion time \(( = 12.5{\text{ s)}}\);</p>
<p class="p1">use of a kinematic equation to determine acceleration \(( = {\text{1.28 m}}\,{{\text{s}}^{ - 2}}{\text{)}}\);</p>
<p class="p1">work done \( = \frac{{F \times s}}{{{\text{time}}}} = \frac{{1536 \times 250}}{{12.5}}\);</p>
<p class="p1">31 (kW);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{force}} = \frac{{{\text{power}}}}{{{\text{speed}}}}\);</p>
<p class="p1">2300 <strong><em>or </em></strong>2.3k (N);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>resistive force \( = \frac{{2300}}{4}\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)\(\frac{{2321}}{4}{\text{ }}( = 575)\); <em>(allow ECF)</em></p>
<p class="p1">so accelerating force = \((2300 - 580 = ){\text{ }}1725{\text{ (N)}}\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)1741 (N);</p>
<p class="p1">\(a = \frac{{1725}}{{1200}} = 1.44{\text{ (m}}{{\text{s}}^{ - 2}}{\text{)}}\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)\(a = \frac{{1741}}{{1200}} = 1.45{\text{ (m}}\,{{\text{s}}^{ - 2}}{\text{)}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2 max] </em></strong><em>for an answer of 0.49 </em><span class="s1"><em>(m</em>\(\,\)<em>s<sup>&ndash;2</sup>) </em></span><em>(omits 2300 N).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>centripetal force must be <span class="s1">\( &lt; {\text{6000 (N)}}\)</span>; <em>(allow force = 6000 N)</em></p>
<p class="p1">\({v^2} = F \times \frac{r}{m}\);</p>
<p class="p1">\({\text{31.6 (m}}\,{{\text{s}}^{ - 1}}{\text{)}}\);</p>
<p class="p1"><em>Allow </em><strong><em>[3] </em></strong><em>for a bald correct answer.</em></p>
<p class="p1"><em>Allow </em><strong><em>[2 max] </em></strong><em>if 4</em>\( \times \)<em> is omitted, giving 15.8 (m</em>\(\,\)<em>s</em><sup><span class="s2"><em>&ndash;1</em></span></sup><em>)</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>statement of Newton&rsquo;s first law;</p>
<p class="p1">(hence) without car wall/restraint/friction at seat, the people in the car would move in a straight line/at a tangent to circle;</p>
<p class="p1">(hence) seat/seat belt/door exerts centripetal force;</p>
<p class="p1">(in frame of reference of the people) straight ahead movement is interpreted as &ldquo;outwards&rdquo;;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>voltmeter in parallel with cell; <em>(allow ammeter within voltmeter leads)</em></p>
<p class="p1">ammeter in series with variable resistor; } <em>(must draw as variable arrangement or as potential divider)</em></p>
<p class="p1"><em>Allow cell symbol for lemon/cell/box labelled &ldquo;lemon cell&rdquo;.</em></p>
<p class="p1"><em>Award </em><strong><em>[1 max] </em></strong><em>if additional cell appears in the circuit.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(E = I(R + r)\) and \(V = IR\) used; <em>(must state both explicitly)</em></p>
<p class="p1">re-arrangement correct <em>ie </em>\(E = V + Ir\); } <em>(accept any other correct re-arrangement eg. involving energy conversion)</em></p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>line correctly extrapolated to <em>y</em>-axis; <em>(judge by eye)</em></p>
<p class="p1">1.6 <strong><em>or </em></strong>1.60 (V); <em>(allow ECF from incorrect extrapolation)</em></p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>correct read-offs from large triangle greater than half line length;</p>
<p class="p1">gradient determined;</p>
<p class="p1">290 to 310 \({\text{(}}\Omega {\text{)}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2 max] </em></strong><em>for the use of one point on line and equation.</em></p>
<p class="p1">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>0.35 (C);</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">There were at least two routes to tackle this problem. Some solutions were so confused that it was difficult to decide which method had been used. Common errors included: forgetting that the initial speed was \({\text{12 m}}\,{{\text{s}}^{ - 1}}\) not zero, power of ten errors, and simple mistakes in the use of the kinematic equations, or failure to evaluate work done = force \( \times \) distance correctly. However, many candidates scored partial credit. Scores of two or three out of the maximum four were common showing that many are persevering to get as far as they can.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Many correct solutions were seen. Candidates are clearly comfortable with the use of the equation force = power/speed.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;The method to be used here was obvious to many. What was missing was a clear appreciation of what was happening in terms of resistive force in the system. Many scored two out of three because they indicated a sensible method but did not use the correct value for the force. Scoring two marks does require that the explanation of the method is at least competent. Those candidates who give limited explanations of their method leading to a wrong answer will generally accumulate little credit. A suggestion (never seen in answers) is that candidates should have begun from a free-body force diagram which would have revealed the relationship of all the forces.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;The major problem here was that most candidates did not recognise that 1500 N of force acting at each of four wheels will imply a total force of 6 kN. Again, partial credit was available only if it was clear what the candidate was doing and what the error was.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Statements of Newton&rsquo;s first law were surprisingly poor. As in previous examinations, few candidates appear to have learnt this essential rule by heart and they produce a garbled and incomplete version under examination pressure. The first law was then only loosely connected to the particular context of the question. Candidates have apparently not learnt to relate the physics they learn to everyday contexts.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Circuit diagrams continue to be a particular issue for many candidates. Neat, well-drawn diagrams are rarely seen. Some diagrams had two cells, the lemon cell and another. Variable resistors were sometimes absent (or were drawn as fixed). Potential dividers were often attempted usually unsuccessfully. Generally candidates gained an average one mark for what should have been a familiar task.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Those who quoted the data booklet equation and the definition of resistance were generally able to show the final expression. Some however could not convince the examiners that they knew what they were doing.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Candidates were expected to understand the physical point that the emf can be determined when the current in the cell is zero. For many, an extrapolation of the obvious straight line to the emf axis and a correct read-off gave an easy couple of marks. Some however did not understand the physics of the circuit and gave poorly described solutions.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The internal resistance was best obtained from a large triangle drawn on the graph. Many however gained two of the three marks because they engendered power of ten errors or because they used only one point, or because their triangle was too small.</p>
<p class="p1">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Only a minority were able to use the data to calculate the charge transferred correctly.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The two arrows in the diagram show the gravitational field strength vectors at the position of a planet due to each of two stars of equal mass <em>M</em>.</p>
<p><img src="" alt></p>
<p>Each star has mass <em>M</em>=2.0&times;10<sup>30</sup>kg. The planet is at a distance of 6.0&times;10<sup>11</sup>m from each star.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the gravitational field strength at the position of the planet due to <strong>one</strong> of the stars is <em>g</em>=3.7&times;10<sup>&ndash;4</sup>Nkg<sup>&ndash;1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude of the resultant gravitational field strength at the position of the planet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(g = \frac{{GM}}{{{r^2}}} = \frac{{6.67 \times {{10}^{ - 11}} \times 2.0 \times {{10}^{30}}}}{{{{\left( {6.0 \times {{10}^{11}}} \right)}^2}}}\)</p>
<p><em><strong>OR</strong></em><br>3.71&times;10<sup>-4</sup>Nkg<sup>&minus;1</sup>&nbsp; </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>&laquo;<em>g</em><sub>net</sub> = 2cos34&raquo; 2<em>g</em> <em><strong>OR</strong></em> <em>g</em>cos34 <em><strong>OR</strong></em> <em>g</em>sin56 <em><strong>OR</strong></em> vector addition diagram shown</p>
<p><img src="" alt></p>
<p>&laquo;<em>g</em><sub>net&nbsp;</sub>=&laquo;2&times;3.7&times;10<sup>&minus;4</sup> &times;cos34<sup>o</sup> =<strong>&raquo;</strong> 6.1&times;10<sup>&minus;4</sup> Nkg<sup>&minus;1</sup></p>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define<em> gravitational field strength.</em></p>
<p>(ii) State the SI unit for gravitational field strength.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A planet orbits the Sun in a circular orbit with orbital period <em>T</em> and orbital radius <em>R</em>. The mass of the Sun is <em>M</em>.</p>
<p>(i) Show that \(T = \sqrt {\frac{{4{\pi ^2}{R^3}}}{{GM}}} \).</p>
<p>(ii) The Earth&rsquo;s orbit around the Sun is almost circular with radius 1.5&times;10<sup>11</sup> m. Estimate the mass of the Sun.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp;&laquo;gravitational&raquo; force per unit mass on a &laquo;small <strong>or</strong> test&raquo; mass&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp;N kg<sup>&ndash;1 </sup></p>
<p><em>Award mark if N kg<sup>-1</sup> is seen, treating any further work as neutral.<br>Do not accept bald m s<sup>&ndash;2</sup></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>clear evidence that <em>v</em> in&nbsp;\({v^2} = \frac{{4{\pi ^2}{R^2}}}{{{T^2}}}\) is equated to orbital speed&nbsp;\(\sqrt {\frac{{GM}}{R}} \)<br><em><strong>OR</strong></em><br>clear evidence that centripetal force is equated to gravitational force<br><em><strong>OR</strong></em><br>clear evidence that <em>a</em> in&nbsp;\(a = \frac{{{v^2}}}{R}\) etc is equated to <em>g</em> in&nbsp;\(g = \frac{{GM}}{{{R^2}}}\) with consistent use of symbols<br><em>Minimum is a statement that \(\sqrt {\frac{{GM}}{R}} \) is the orbital speed which is then used in \(v = \frac{{2\pi R}}{T}\)</em><br><em>Minimum is F<sub>c</sub> = F<sub>g</sub> ignore any signs.</em><br><em>Minimum is g = a.</em></p>
<p>substitutes and re-arranges to obtain result<br><em>Allow any legitimate method not identified here.</em><br><em>Do not allow spurious methods involving equations of shm etc</em></p>
<p>\( \ll T = \sqrt {\frac{{4{\pi ^2}R}}{{\left( {\frac{{GM}}{{{R^2}}}} \right)}}}&nbsp; = \sqrt {\frac{{4{\pi ^2}{R^3}}}{{GM}}}&nbsp; \gg \)</p>
<p>ii<br>&laquo;<em>T&nbsp;</em>= 365 &times; 24 &times; 60 &times; 60 = 3.15 &times; 10<sup>7&nbsp;</sup>s&raquo;</p>
<p>\(M = \, \ll \frac{{4{\pi ^2}{R^3}}}{{G{T^2}}} = &nbsp;\gg \,\, = \frac{{4 \times {{3.14}^2} \times {{\left( {1.5 \times {{10}^{11}}} \right)}^3}}}{{6.67 \times {{10}^{ - 11}} \times {{\left( {3.15 \times {{10}^7}} \right)}^2}}}\)<br>2&times;10<sup>30</sup>&laquo;kg&raquo;</p>
<p><em>Allow use of 3.16 x 10<sup>7</sup> s for year length (quoted elsewhere in paper).</em><br><em>Condone error in power of ten in MP1.</em><br><em>Award<strong> [1 max]</strong> if incorrect time used (24 h is sometimes seen, leading to 2.66 x 10<sup>35</sup> kg).</em><br><em>Units are not required, but if not given assume kg and mark POT accordingly if power wrong.</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em><br><em>No sf penalty here.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A satellite powered by solar cells directed towards the Sun is in a polar orbit about the Earth.</p>
<p style="text-align: center;"><img src=""></p>
<p>The satellite is orbiting the Earth at a distance of 6600 km from the centre of the Earth.</p>
</div>

<div class="specification">
<p>The satellite carries an experiment that measures the peak wavelength emitted by&nbsp;different objects. The Sun emits radiation that has a peak wavelength <em>&lambda;</em><sub>S</sub> of 509 nm.&nbsp;The peak wavelength <em>&lambda;</em><sub>E</sub>&nbsp;of the radiation emitted by the Earth is 10.1 &mu;m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the orbital period for the satellite.</p>
<p style="text-align: center;">Mass of Earth = 6.0 x 10<sup>24</sup> kg</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mean temperature of the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the difference between <em>&lambda;</em><sub>S</sub> and <em>&lambda;</em><sub>E</sub> helps to account for the&nbsp;greenhouse effect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Not all scientists agree that global warming is caused by the activities of man.</p>
<p>Outline how scientists try to ensure agreement on a scientific issue.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{m{v^2}}}{r} = G\frac{{Mm}}{{{r^2}}}\)</p>
<p>leading to <em>T</em><sup>2</sup> =&nbsp;\(\frac{{4{\pi ^2}{r^3}}}{{GM}}\)</p>
<p><em>T</em> = 5320 &laquo;s&raquo;</p>
<p><em><strong>Alternative 2</strong></em></p>
<p>&laquo;\(v = \sqrt {\frac{{G{M_E}}}{r}} \)&raquo; =&nbsp;\(\sqrt {\frac{{6.67 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{6600 \times {{10}^3}}}} \)&nbsp;<em><strong>or&nbsp;</strong></em>7800 &laquo;ms<sup>&ndash;1</sup>&raquo;</p>
<p>distance = 2\(\pi \)<em>r</em> = 2\(\pi \) x 6600 x 10<sup>3</sup>&nbsp;&laquo;m&raquo; or 4.15 x 10<sup>7</sup>&nbsp;&laquo;m&raquo;</p>
<p>&laquo;<em>T</em> = \(\frac{d}{v} = \frac{{4.15 \times {{10}^7}}}{{7800}}\)&raquo; = 5300&nbsp;&laquo;s&raquo;</p>
<p><em>Accept use of &omega; instead of v</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> =&nbsp;&laquo;\(\frac{{2.90 \times {{10}^{ - 3}}}}{{{\lambda _{{\text{max}}}}}} = \)&raquo;&nbsp;\(\frac{{2.90 \times {{10}^{ - 3}}}}{{10.1 \times {{10}^{ - 6}}}}\)</p>
<p>= 287&nbsp;&laquo;K&raquo; <em><strong>or</strong> </em>14&nbsp;&laquo;&deg;C&raquo;</p>
<p><em>Award <strong>[0]</strong> for any use of wavelength from Sun </em></p>
<p><em>Do not accept 287 &deg;C</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>wavelength of radiation from the Sun is shorter than that emitted from Earth &laquo;and is not absorbed by the atmosphere&raquo;</p>
<p>infrared radiation emitted from Earth is absorbed by greenhouse gases in the atmosphere</p>
<p>this radiation is re-emitted in all directions &laquo;including back to Earth&raquo;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peer review</p>
<p>international collaboration</p>
<p>full details of experiments published so that experiments can repeated</p>
<p><em><strong>[Max 1 Mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows part of a downhill ski course which starts at point A, 50 m above&nbsp;level ground. Point B is 20 m above level ground.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A skier of mass 65 kg starts from rest at point A and during the ski course some of the&nbsp;gravitational potential energy transferred to kinetic energy.</p>
</div>

<div class="specification">
<p>At the side of the course flexible safety nets are used. Another skier of mass 76 kg falls normally into the safety net with speed 9.6 m s<sup>&ndash;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From A to B, 24 % of the gravitational potential energy transferred to kinetic&nbsp;energy. Show that the velocity at B is 12 m s<sup>&ndash;1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Some of the gravitational potential energy transferred into internal energy of the&nbsp;skis, slightly increasing their temperature. Distinguish between internal energy&nbsp;and temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The dot on the following diagram represents the skier as she passes point B.<br>Draw and label the vertical forces acting on the skier.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The hill at point B has a circular shape with a radius of 20 m. Determine whether the skier will lose contact with the ground at point B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The skier reaches point C with a speed of 8.2 m s<sup>&ndash;1</sup>. She stops after a distance of 24 m at point D.</p>
<p>Determine the coefficient of dynamic friction between the base of the skis and the snow. Assume that the frictional force is constant and that air resistance can be neglected.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the impulse required from the net to stop the skier and state an appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to change in momentum, why a flexible safety net is less likely to harm the skier than a rigid barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{2}{v^2} = 0.24\,{\text{gh}}\)</p>
<p>\(v = 11.9\) &laquo;m s<sup>&ndash;1</sup>&raquo;</p>
<p>&nbsp;</p>
<p><em>Award GPE lost = 65 &times; 9.81 &times; 30 = &laquo;19130 J&raquo;</em></p>
<p><em>Must see the 11.9 value for MP2, not simply 12.</em></p>
<p><em>Allow g = 9.8 ms<sup>&ndash;2</sup>.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>internal energy is the total KE &laquo;and PE&raquo; of the molecules/particles/atoms in an object</p>
<p>temperature is a measure of the average KE of the molecules/particles/atoms</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if there is no mention of molecules/particles/atoms.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrow vertically downwards from dot labelled weight/W/mg/gravitational force/F<sub>g</sub>/F<sub>gravitational</sub>&nbsp;<strong><em>AND</em></strong> arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F<sub>N</sub></p>
<p>W &gt; R</p>
<p>&nbsp;</p>
<p><em>Do not allow gravity.</em><br><em>Do not award MP1 if additional &lsquo;centripetal&rsquo; force arrow is added.</em><br><em>Arrows must connect to dot.</em><br><em>Ignore any horizontal arrow labelled friction.</em><br><em>Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>recognition that centripetal force is required / \(\frac{{m{v^2}}}{r}\) seen</p>
<p>= 468 &laquo;N&raquo;</p>
<p>W/640 N (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>recognition that centripetal acceleration is required / \(\frac{{{v^2}}}{r}\) seen</p>
<p>a = 7.2 &laquo;ms<sup>&ndash;2</sup>&raquo;</p>
<p><em>g</em> is larger than the centripetal acceleration required, so the skier does not lose contact with the ground</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>recognition that to lose contact with the ground centripetal force &ge; weight</p>
<p>calculation that v &ge; 14 &laquo;ms<sup>&ndash;1</sup>&raquo;</p>
<p>comment that 12 &laquo;ms<sup>&ndash;1</sup>&raquo; is less than 14 &laquo;ms<sup>&ndash;1</sup>&raquo; so the skier does not lose contact with the ground</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 4</strong></em></p>
<p>recognition that centripetal force is required / \(\frac{{m{v^2}}}{r}\) seen</p>
<p>calculation that reaction force = 172 &laquo;N&raquo;</p>
<p>reaction force &gt; 0 so the skier does not lose contact with the ground</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><em>Do not award a mark for the bald statement that the skier does not lose contact with the ground.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>0 = 8.2<sup>2&nbsp;</sup>+ 2&nbsp;&times;&nbsp;<em>a</em> &times; 24 therefore <em>a</em> = &laquo;&minus;&raquo;1.40 &laquo;m s<sup>&minus;2</sup>&raquo;</p>
<p>friction force = <em>ma&nbsp;</em>= 65 &times; 1.4 = 91 &laquo;N&raquo;</p>
<p>coefficient of friction = \(\frac{{91}}{{65 \times 9.81}}\) = 0.14</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br><em>KE</em> = \(\frac{1}{2}\)<em>mv</em><sup>2</sup> = 0.5 x 65 x 8.2<sup>2</sup> = 2185 &laquo;J&raquo;</p>
<p>friction force = KE/distance = 2185/24 = 91 &laquo;N&raquo;</p>
<p>coefficient of friction =&nbsp;\(\frac{{91}}{{65 \times 9.81}}\)&nbsp;=&nbsp;0.14</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;76 &times; 9.6&raquo;=&nbsp;730<br>Ns <em><strong>OR</strong></em> kg ms<sup>&ndash;1</sup></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>safety net extends stopping time</p>
<p><em>F</em> = \(\frac{{\Delta p}}{{\Delta t}}\) therefore <em>F</em> is smaller &laquo;with safety net&raquo;</p>
<p><em><strong>OR</strong></em></p>
<p>force is proportional to rate of change of momentum therefore <em>F</em> is smaller &laquo;with safety net&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept reverse argument.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about motion in a magnetic field.</p>
<p>An electron, that has been accelerated from rest by a potential difference of 250 V, enters a&nbsp;region of magnetic field of strength 0.12 T that is directed into the plane of the page.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The electron&rsquo;s path while in the region of magnetic field is a quarter circle. Show that the</p>
<p>(i) speed of the electron after acceleration is 9.4&times;10<sup>6</sup>ms<sup>&minus;1</sup>.</p>
<p>(ii) radius of the path is 4.5&times;10<sup>&minus;4</sup>m.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows the momentum of the electron as it enters and leaves the&nbsp;region of magnetic field. The magnitude of the initial momentum and of the final&nbsp;momentum is 8.6&times;10<sup>&minus;24</sup>Ns.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) On the diagram above, draw an arrow to indicate the vector representing the change&nbsp;in the momentum of the electron.</p>
<p style="text-align: left;">(ii) Show that the magnitude of the change in the momentum of the electron is&nbsp;1.2&times;10<sup>&minus;23</sup>Ns.</p>
<p style="text-align: left;">(iii) The time the electron spends in the region of magnetic field is 7.5 &times;10<sup>&minus;11</sup>s.&nbsp;Estimate the magnitude of the average force on the electron.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(v = \sqrt {\frac{{2eV}}{m}} \);<br>\(v = \sqrt {\frac{{2 \times 1.6 \times {{10}^{ - 19}} \times 250}}{{9.1 \times {{10}^{ - 31}}}}} \);<br>=9.4&times;10<sup>6</sup>ms<sup>&minus;1</sup></p>
<p>(ii) <em>evB</em>=<em>m</em>\(\frac{{{v^2}}}{r}\);<br>\(r = \frac{{9.1 \times {{10}^{ - 31}} \times 9.4 \times {{10}^6}}}{{1.6 \times {{10}^{ - 19}} \times 0.12}}\);<br>=4.5&times;10<sup>&minus;4</sup>m</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) vector as shown;</p>
<p><img src="" alt></p>
<p>(ii) \(\Delta p = \sqrt {{{\left[ {8.6 \times {{10}^{ - 24}}} \right]}^2} + {{\left[ {8.6 \times {{10}^{ - 24}}} \right]}^2}} \);<br>=1.2&times;10<sup>&minus;23</sup>Ns</p>
<p>(iii) \(F\left( { = \frac{{\Delta p}}{{\Delta t}} = \frac{{1.2 \times {{10}^{ - 23}}}}{{7.5 \times {{10}^{ - 11}}}}} \right) = 1.6 \times {10^{ - 13}}{\rm{N}}\);</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. <strong>Part 1</strong> is about electric charge and electric circuits. <strong>Part 2</strong> is about momentum.</p>
<p><strong>Part 1</strong> Electric charge and electric circuits</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Coulomb&rsquo;s law.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple model of the hydrogen atom, the electron can be regarded as being in a&nbsp;circular orbit about the proton. The radius of the orbit is 2.0&times;10<sup>&ndash;10 </sup>m.</p>
<p>(i) Determine the magnitude of the electric force between the proton and the electron.</p>
<p>(ii) Calculate the magnitude of the electric field strength <em>E</em> and state the direction of&nbsp;the electric field due to the proton at a distance of 2.0&times;10<sup>&ndash;10</sup> m from the proton.</p>
<p>(iii) The magnitude of the gravitational field due to the proton at a distance of&nbsp;2.0&times;10<sup>&ndash;10</sup> m from the proton is <em>H.</em><br>Show that the ratio&nbsp;\(\frac{H}{E}\) is of the order 10<sup>&ndash;28</sup>C kg<sup>&ndash;1</sup>.</p>
<p>(iv) The orbital electron is transferred from its orbit to a point where the potential&nbsp;is zero. The gain in potential energy of the electron is 5.4&times;10<sup>&ndash;19</sup>J. Calculate the&nbsp;value of the potential difference through which the electron is moved.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electric cell is a device that is used to transfer energy to electrons in a circuit. A particular circuit consists of a cell of emf <em>&epsilon;</em> and internal resistance <em>r</em> connected in series with a resistor of resistance 5.0 &Omega;.</p>
<p>(i) Define<em> emf of a cell.</em></p>
<p>(ii) The energy supplied by the cell to one electron in transferring it around the circuit&nbsp;is 5.1&times;10<sup>&ndash;19</sup>J. Show that the emf of the cell is 3.2V.</p>
<p>(iii) Each electron in the circuit transfers an energy of 4.0&times;10<sup>&ndash;19</sup> J to the 5.0 &Omega; resistor.&nbsp;Determine the value of the internal resistance <em>r.</em></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the force between two (point) charges;<br>is inversely proportional to the square of their separation and (directly) proportional to (the product of) their magnitudes;</p>
<p><em>Allow <strong>[2]</strong> for equation with F, Q and r defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(F = \left( {k\frac{{{q_1}{q_2}}}{{{r^2}}} = } \right)\frac{{9 \times {{10}^9} \times {{\left[ {1.6 \times {{10}^{ - 19}}} \right]}^2}}}{{4 \times {{10}^{ - 20}}}}\);<br>=5.8&times;10<sup>-9</sup>(N);<br><em>Award <strong>[0]</strong> for use of masses in place of charges. </em></p>
<p>(ii) (\(\frac{{\left( b \right)\left( i \right)}}{{1.6 \times {{10}^{ - 19}}}}\)<strong> or</strong> 3.6 x 10<sup>10</sup> (NC<sup>-1</sup>) <strong>or</strong> (Vm<sup>-1</sup>);<br>(directed) away from the proton;<br><em>Allow ECF from (b)(i).<br>Do not penalize use of masses in both (b)(i) and (b)(ii) &ndash; allow ECF. </em></p>
<p>(iii) \(H = \left( {G\frac{m}{{{r^2}}} = } \right)\frac{{6.67 \times {{10}^{ - 11}} \times 1.673 \times {{10}^{ - 27}}}}{{4 \times {{10}^{ - 20}}}} = 2.8 \times {10^{ - 18}}\left( {{\rm{Nk}}{{\rm{g}}^{ - 1}}} \right)\);</p>
<p>\(\frac{H}{E} = \frac{{2.8 \times {{10}^{ - 18}}}}{{3.6 \times {{10}^{10}}}}\) <strong>or</strong> 7.8&times;10<sup>-29</sup>(Ckg<sup>-1</sup>);<br>(&asymp;10<sup>28</sup>Ckg<sup>-1</sup>)<br><em>Allow ECF from (b)(i).</em></p>
<p>(iv) 3.4(V);&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) power supplied per unit current / energy supplied per unit charge / work done per unit charge;</p>
<p>(ii) energy supplied per coulomb=\(\frac{{5.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}\) <em><strong>or</strong></em> 3.19(V);<br>(&asymp;3.2V)</p>
<p>(iii) pd across 5.0&Omega; resistor=\(\left( {\frac{{4.0 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}} = } \right)2.5\left( {\rm{V}} \right)\);<br>pd across<em> r=</em>(3.2-2.5=)0.70(V);</p>
<p><strong>and </strong></p>
<p><em><strong>either </strong></em></p>
<p>current in circuit=\(\left( {\frac{{2.5}}{{5.0}} = } \right)0.5\left( {\rm{A}} \right)\);<br>resistance of <em>r=</em>\(\left( {\frac{{0.70}}{{0.50}} = } \right)1.4\left( \Omega&nbsp; \right)\);</p>
<p><em><strong>or</strong></em></p>
<p>resistance of<em> r</em>=\(\frac{{0.70}}{{2.5}} \times 5.0\);<br>=1.4(&Omega;);</p>
<p><strong>or</strong></p>
<p>3.2=0.5(R+<em>r</em>);<br>resistance of <em>r</em>=1.4(&Omega;);<br><em>Award <strong>[4]</strong> for alternative working leading to correct answer.<br>Award<strong> [4]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many were able to state Coulomb&rsquo;s law or to give the equation with explanations of the symbols. Some candidates however failed to define their symbols and lost marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) The electric force was calculated well by many.</p>
<p>(ii) The answer to (i) was well used to determine the magnitude of <em>E</em>. However, many candidates did not read the question and failed to state the direction of the field or gave it in an ambiguous way.</p>
<p>(iii) Calculations to show the order of magnitude of <em>H/E</em> were generally well done. The last step was often missing with the answer simply given as a fraction.</p>
<p>(iv) Many obtained this simple mark.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) Many candidates gave confused or incorrect definitions of the emf of a cell. Previous comments in this report on the memorizing of definitions apply. Too many had recourse to the next part and used this idea in their answer.</p>
<p>(ii) This was well done.</p>
<p>(iii) A large number of candidates completed this calculation stylishly, generally explaining steps (or at least writing down the algebra) in a logical way. There were many correct and original solutions that gained full marks.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about circular motion.</p>
<p>A ball of mass 0.25 kg is attached to a string and is made to rotate with constant speed<em> v&nbsp;</em>along a horizontal circle of radius <em>r</em> = 0.33m. The string is attached to the ceiling and makes&nbsp;an angle of 30&deg; with the vertical.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) On the diagram above, draw and label arrows to represent the forces on the ball&nbsp;in the position shown.</p>
<p>(ii) State and explain whether the ball is in equilibrium.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the speed of rotation of the ball.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) <em><strong>[1]</strong></em> each for correct arrow <span style="text-decoration: underline;">and</span> (any reasonable) labelling;</p>
<p><img src="" alt></p>
<p><em>Award <strong>[1 max]</strong> for arrows in correct direction but not starting at the ball.</em></p>
<p>(ii) no;<br>because the two forces on the ball can never cancel out / there is a net force on<br>the ball / the ball moves in a circle / the ball has acceleration/it is changing<br>direction;&nbsp;<br><em>Award <strong>[0]</strong> for correct answer with no or wrong argument.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(T\left( { = \frac{{mg}}{{\cos {{30}^ \circ }}}} \right) = 2.832{\rm{N}}\);<br>\(\frac{{m{v^2}}}{r} = T\sin {30^ \circ }\);<br>\(v = \left( {\sqrt {\frac{{Tr\sin {{30}^ \circ }}}{m}}&nbsp; = \sqrt {\frac{{2.832 \times 0.33 \times \sin {{30}^ \circ }}}{{0.25}}} } \right) = 1.4{\rm{m}}{{\rm{s}}^{ - 1}}\);</p>
<p><em><strong>or</strong></em></p>
<p>\(T\cos {30^ \circ } = mg\);<br>\(T\sin {30^ \circ } = \frac{{m{v^2}}}{r}\);<br>\(v = \left( {\sqrt {gr\tan {{30}^ \circ }}&nbsp; = \sqrt {9.81 \times 0.33 \times \tan {{30}^ \circ }} } \right) = 1.4{\rm{m}}{{\rm{s}}^{ - 1}}\);</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about circular motion.</p>
<p>The diagram shows a car moving at a constant speed over a curved bridge. At the position&nbsp;shown, the top surface of the bridge has a radius of curvature of 50 m.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the car is accelerating even though it is moving with a constant speed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label the vertical forces acting on the car in the position shown.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum speed at which the car will stay in contact with the bridge.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>direction changing;</p>
<p>velocity changing so accelerating;&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>weight/gravitational force/mg/w/F<sub>w</sub>/F<sub>g</sub>&nbsp;and reaction/normal reaction/perpendicular contact force/N/R/F<sub>N</sub>/F<sub><span style="font-size: 10.5px;">R</span>&nbsp;</sub>both labelled; <em>(do not allow &ldquo;gravity&rdquo; for &ldquo;weight&rdquo;.)</em></p>
<p>weight between wheels (in box) from centre of mass and reactions at both wheels / single reaction acting along same line of action as the weight;</p>
<p><em>Judge by eye. Look for reasonably vertical lines with weight force longer than (sum of) reaction(s). Extra forces (eg centripetal force) loses the second mark.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g = \frac{{{v^2}}}{r}\);<br>\(v = \sqrt {50 \times 9.8} \);</p>
<p>22(ms<sup>-1</sup>);</p>
<p><em>Allow <strong>[3]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>Most candidates failed to state that acceleration is the rate of change of velocity and that as velocity is a vector it has both magnitude and direction. With there being a change in direction the car accelerates. Many erroneously talked about there being a change of direction of the acceleration &ndash; the direction is always centripetal. <br><br></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;Few marked in reaction acting at each wheel and the weight acting from the centre of gravity. The weight needed to be larger than the combined reaction to give a resultant centripetal force (this is shown by the relative length of the lines). Most candidates were unconcerned about the point of application of the forces and often added spurious horizontal and/or centripetal forces. Centripetal forces, being the resultant of the other force, should not be marked in on free body diagrams like this.&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The majority of candidates made a good attempt at calculating the maximum speed by equating the weight to the centripetal force (that is, in the limit there is no reaction force).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Gravitational fields</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Newton&rsquo;s universal law of gravitation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the gravitational field strength <em>g</em> at the surface of a spherical planet of uniform density is given by</p>
<p>\[g = \frac{{GM}}{{{R^2}}}\]</p>
<p>where <em>M</em> is the mass of the planet, <em>R</em> is its radius and <em>G</em> is the gravitational constant. You can assume that spherical objects of uniform density act as point masses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The gravitational field strength at the surface of Mars <em>g</em><sub>M</sub> is related to the gravitational field strength at the surface of the Earth <em>g</em><sub>E</sub> by</p>
<p style="text-align: center;"><em>g</em><sub>M</sub>&nbsp;= 0.38 &times; <em>g</em><sub>E</sub>.</p>
<p>The radius of Mars <em>R</em><sub>M</sub> is related to the radius of the Earth&nbsp;<em>R</em><sub>E</sub> by</p>
<p style="text-align: center;"><em>R</em><sub>M</sub>&nbsp;= 0.53 &times; <em>R</em><sub>E</sub>.</p>
<p>Determine the mass of Mars <em>M</em><sub>M</sub> in terms of the mass of the Earth <em>M</em><sub>E</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) On the diagram below, draw lines to represent the gravitational field around the planet Mars.</p>
<p><img src="" alt></p>
<p>(ii) An object falls freely in a straight line from point A to point B in time <em>t</em>. The speed of the object at A is <em>u</em> and the speed at B is <em>v</em>. A student suggests using the equation <em>v</em>=<em>u</em>+<em>g</em><sub>M</sub><em>t</em> to calculate <em>v</em>. Suggest <strong>two</strong> reasons why it is not appropriate to use this equation.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>there is an <span style="text-decoration: underline;">attractive</span> force;<br>between any two point/small masses;<br>proportional to the product of their masses;<br>and inversely proportional to the square of their separation;<br><em>Accept formula with all terms defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of \(g = \frac{F}{m}\) and \(F = \frac{{GmM}}{{{R^2}}}\);<br>evidence of substitution/manipulation;<br>to get \(g = \frac{{GM}}{{{R^2}}}\)</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{g_M}}}{{{g_E}}} = \frac{{\frac{{{M_M}}}{{R_M^2}}}}{{\frac{{{M_E}}}{{R_E^2}}}} \Rightarrow \frac{{{M_M}}}{{{M_E}}} = \frac{{{g_M}}}{{{g_E}}} \times {\left[ {\frac{{{R_M}}}{{{R_E}}}} \right]^2}\);</p>
<p>\({M_{\rm{M}}}\left( { = 0.38 \times {{0.53}^2}{M_{\rm{E}}}} \right) = 0.11{M_{\rm{E}}}\);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) radial field with arrows pointing inwards;</p>
<p><img src="" alt></p>
<p>(ii) field between A and B is not equal to field at surface;<br>acceleration is not constant between these two points;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Satellite</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, in words, Newton&rsquo;s universal law of gravitation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows a satellite orbiting the Earth. The satellite is part of the network of global-positioning satellites (GPS) that transmit radio signals used to locate the position of receivers that are located on the Earth.</p>
<p><img src="" alt></p>
<p>When the satellite is directly overhead, the microwave signal reaches the receiver 67ms after it leaves the satellite.</p>
<p>(i) State the order of magnitude of the wavelength of microwaves.</p>
<p>(ii) Calculate the height of the satellite above the surface of the Earth</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain why the satellite is accelerating towards the centre of the Earth even though its orbital speed is constant.</p>
<p>(ii) Calculate the gravitational field strength due to the Earth at the position of the satellite.</p>
<p>Mass of Earth = 6.0&times;10<sup>24</sup>kg<br>Radius of Earth = 6.4&times;10<sup>6</sup>m</p>
<p>(iii) Determine the orbital speed of the satellite.</p>
<p>(iv) Determine, in hours, the orbital period of the satellite.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>force is proportional to product of masses and inversely proportional to square of distance apart; <br>reference to point masses;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) order of 1 cm;</p>
<p>(ii) 3&times;10<sup>8</sup>&times;67&times;10<sup>&minus;3</sup>;<br>2.0&times;10<sup>7</sup>m;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) force required towards centre of Earth to maintain orbit;<br>force means that there is an acceleration / <em>OWTTE</em>;</p>
<p><em><strong>or</strong></em></p>
<p>direction changes;<br>a change in velocity therefore acceleration;</p>
<p>(ii) uses=\(\frac{{GM}}{{{r^2}}}\) <em><strong>or </strong></em>\(\frac{{6.7 \times {{10}^{ - 11}} \times 6.0 \times {{10}^{24}}}}{{{{\left[ {2.6 \times {{10}^7}} \right]}^2}}}\);<br>0.57Nkg<sup>&ndash;1</sup>; (allow ms<sup>&ndash;2</sup>)</p>
<p>(iii) \(v = \sqrt {0.57 \times \left( {2.0 \times {{10}^7} + 6.4 \times {{10}^6}} \right)} \) by equating \(\frac{{{v^2}}}{r}\) and <em>g</em>;<br>3900ms<sup>&ndash;1</sup>;</p>
<p>(iv) \(T = 2\pi \frac{{2.6 \times {{10}^7}}}{{3900}}\);<br>11.9 hours;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A glider is an aircraft with no engine. To be launched, a glider is uniformly accelerated from&nbsp;rest by a cable pulled by a motor that exerts a horizontal force on the glider throughout&nbsp;the launch.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider reaches its launch speed of 27.0 m s<sup>&ndash;1</sup> after accelerating for 11.0 s.&nbsp;Assume that the glider moves horizontally until it leaves the ground. Calculate the&nbsp;total distance travelled by the glider before it leaves the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The glider and pilot have a total mass of 492 kg. During the acceleration the glider&nbsp;is subject to an average resistive force of 160 N. Determine the average tension in&nbsp;the cable as the glider accelerates.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is pulled by an electric motor. The motor has an overall efficiency of 23 %. Determine the average power input to the motor.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cable is wound onto a cylinder of diameter 1.2 m. Calculate the angular velocity&nbsp;of the cylinder at the instant when the glider has a speed of 27 m s<sup>&ndash;1</sup>. Include an&nbsp;appropriate unit for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After takeoff the cable is released and the unpowered glider moves horizontally at&nbsp;constant speed. The wings of the glider provide a lift force. The diagram shows the&nbsp;lift force acting on the glider and the direction of motion of the glider.</p>
<p><img src=""></p>
<p>Draw the forces acting on the glider to complete the free-body diagram. The dotted lines&nbsp;show the horizontal and vertical directions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using appropriate laws of motion, how the forces acting on the glider maintain&nbsp;it in level flight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a particular instant in the flight the glider is losing 1.00 m of vertical height for&nbsp;every 6.00 m that it goes forward horizontally. At this instant, the horizontal speed of&nbsp;the glider is 12.5 m s<sup>&ndash;1</sup>. Calculate the <strong>velocity</strong> of the glider. Give your answer to an&nbsp;appropriate number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>correct use of kinematic equation/equations</p>
<p>148.5 <em><strong>or</strong> </em>149 <em><strong>or</strong> </em>150 &laquo;m&raquo;</p>
<p>&nbsp;</p>
<p><em>Substitution(s) must be correct.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>a</em>&nbsp;= \(\frac{{27}}{{11}}\)&nbsp;<em><strong>or</strong></em> 2.45 &laquo;m s<sup>&ndash;2</sup>&raquo;</p>
<p><em>F</em> &ndash; 160 =&nbsp;492 &times;&nbsp;2.45</p>
<p>1370 &laquo;N&raquo;</p>
<p>&nbsp;</p>
<p><em>Could be seen in part (a).</em><br><em>Award <strong>[0]</strong> for solution that uses a = 9.81 m s<sup>&ndash;2</sup></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>&laquo;work done to launch glider&raquo; = 1370 x 149 &laquo;= 204 kJ&raquo;</p>
<p>&laquo;work done by motor&raquo;&nbsp;\( = \frac{{204 \times 100}}{{23}}\)</p>
<p>&laquo;power input to motor&raquo;&nbsp;\( = \frac{{204 \times 100}}{{23}} \times \frac{1}{{11}} = 80\) <em><strong>or</strong> </em>80.4 <em><strong>or</strong> </em>81 k&laquo;W&raquo;</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>use of average speed 13.5 m s<sup>&ndash;1</sup></p>
<p>&laquo;useful power output&raquo; =&nbsp;&nbsp;force&nbsp;x average speed&nbsp;&laquo;=&nbsp;1370 x 13.5&raquo;</p>
<p>power input =&nbsp;&laquo;\(1370 \times 13.5 \times \frac{{100}}{{23}} = \)&raquo; 80&nbsp;<em><strong>or</strong>&nbsp;</em>80.4&nbsp;<em><strong>or</strong>&nbsp;</em>81 k&laquo;W&raquo;</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 3</strong></em></p>
<p>work required from motor =&nbsp;KE +&nbsp;work done against&nbsp;friction&nbsp;&laquo;\( = 0.5 \times 492 \times {27^2} + \left( {160 \times 148.5} \right)\)&raquo; = 204&nbsp;&laquo;kJ&raquo;</p>
<p>&laquo;energy input&raquo; \( = \frac{{{\text{work required from motor}} \times 100}}{{23}}\)</p>
<p>power input&nbsp;\( = \frac{{883000}}{{11}} = 80.3\)&nbsp;k&laquo;W&raquo;</p>
<p>&nbsp;</p>
<p><em>Award <strong>[2 max]</strong> for an answer of 160 k&laquo;W&raquo;.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\omega &nbsp;= \) &laquo;\(\frac{v}{r} = \)&raquo;&nbsp;\(\frac{{27}}{{0.6}} = 45\)</p>
<p>rad s<sup>&ndash;1</sup></p>
<p>&nbsp;</p>
<p><em>Do not accept Hz.</em><br><em>Award <strong>[1 max]</strong> if unit is missing.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>drag correctly labelled and in correct direction</p>
<p>weight correctly labelled and in correct direction <em><strong>AND</strong></em>&nbsp;no other incorrect force shown</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if forces do not touch the dot, but are otherwise OK.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>name Newton's first law</p>
<p>vertical/all forces are in equilibrium/balanced/add to zero<br><em><strong>OR</strong></em><br>vertical component of lift mentioned</p>
<p>as equal to weight</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any speed and any direction quoted together as the answer</p>
<p>quotes their answer(s) to 3 significant figures</p>
<p>speed =&nbsp;12.7 m s<sup>&ndash;1</sup> <em><strong>or</strong></em> direction =&nbsp;9.46<sup>&ordm;</sup> <em><strong>or</strong></em> 0.165 rad &laquo;below the horizontal&raquo; <em><strong>or&nbsp;</strong></em>gradient of&nbsp;\( - \frac{1}{6}\)</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in two parts. <strong>Part 1</strong> is about forces. <strong>Part 2</strong> is about internal energy.</p>
<p><strong>Part 1</strong> Forces</p>
<p>A railway engine is travelling along a horizontal track at a constant velocity.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram above, draw labelled arrows to represent the vertical forces that act on the railway engine.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to Newton&rsquo;s laws of motion, why the velocity of the railway engine is constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The constant horizontal velocity of the railway engine is 16 ms<sup>&ndash;1</sup>. A total horizontal resistive force of 76 kN acts on the railway engine.</p>
<p>Calculate the useful power output of the railway engine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The power driving the railway engine is switched off. The railway engine stops, from its speed of 16 ms<sup>&ndash;1</sup>, without braking in a distance of 1.1 km. A student hypothesizes that the horizontal resistive force is constant.</p>
<p>Based on this hypothesis, calculate the mass of the railway engine.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another hypothesis is that the horizontal force in (c) consists of two components. One component is a constant frictional force of 19 kN. The other component is a resistive force <em>F</em> that varies with speed <em>v</em> where <em>F</em> is proportional to <em>v</em><sup>3</sup>.</p>
<p>(i) State the value of the magnitude of <em>F</em> when the railway engine is travelling at 16 ms<sup>&ndash;1</sup>.</p>
<p>(ii) Determine the <strong>total</strong> horizontal resistive force when the railway engine is travelling at 8.0 ms<sup>&ndash;1</sup>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On its journey, the railway engine now travels around a curved track at constant speed. Explain whether or not the railway engine is accelerating.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em>The shaded box shows the acceptable range of position for W/mg.</em><br>single downward arrow labelled <em>W</em>/weight <em><strong>or</strong></em> <em>mg</em>/gravity force; <em>(do not allow gravity)</em><br>two upward arrows labelled reaction/contact forces; <em>(do not allow for only </em><em>one arrow seen)</em><br>arrow positions as shown in diagram;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>horizontal forces have resultant of zero; <em>(must describe or imply horizontal force)</em><br>valid statement linked to theory (<em>e.g.</em> Newton 1/Newton 2/conservation of momentum)<br>explaining why zero force results in constant velocity/zero acceleration;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power =16&times;76000;<br>1.2 MW;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acceleration\( = \frac{{{{16}^2}}}{{2 \times 1100}}\left( { = 0.116} \right)\);<br>\(m = \left( {\frac{{7.6 \times {{10}^4}}}{{0.116}} = } \right)6.5 \times {10^5}{\rm{kg}}\);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p><em><strong>or</strong></em></p>
<p>use of <em>Fs</em>=\(\frac{1}{2}m{v^2}\);<br>\(m = \left( {\frac{{2 \times 7.6 \times {{10}^4} \times 1100}}{{{{16}^2}}} = } \right)6.5 \times {10^5}{\rm{kg}}\);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) 57 kN;</p>
<p>(ii) \({F_8} = \frac{{{F_{16}}}}{{{2^3}}}\);<br><em>F</em><sub>8</sub>=7.1(kN);<br>total force =19+7.1(kN);<br>=26 kN;<br><em>Award <strong>[4]</strong> for a bald correct answer.</em></p>
<p><em><strong>or</strong></em></p>
<p>\(k = \left( {\frac{{57 \times {{10}^3}}}{{{{16}^3}}}} \right) = 13.91\);<br><em>F</em><sub>8</sub>=(13.91&times;8<sup>3</sup>)=7.1(kN);<br>total force=19+7.1(kN);<br>=26 kN;<br><em>Award<strong> [4]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>direction of engine is constantly changing;<br>velocity is speed + direction / velocity is a vector;<br>engine is accelerating as velocity is changing;<br><em>Award <strong>[0]</strong> for a bald correct answer.</em></p>
<p><em><strong>or</strong></em></p>
<p>centripetal force required to maintain circular motion;<br>quotes Newton 1/Newton 2;<br>so engine is accelerating as a force acts;<br><em>Award <strong>[0]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about two children on a merry-go-round. <strong>Part 2</strong> is about electric circuits.</p>
<p><strong>Part 1</strong> Two children on a merry-go-round</p>
<p>Aibhe and Euan are sitting on opposite sides of a merry-go-round, which is rotating at constant speed around a fixed centre. The diagram below shows the view from above.</p>
<p><img src="" alt></p>
<p>Aibhe is moving at speed 1.0ms<sup>&ndash;1</sup> relative to the ground.</p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Orbital motion</p>
<p>A spaceship of mass <em>m</em> is moving at speed <em>v</em> in a circular orbit of radius <em>r</em> around a planet of mass <em>M</em>.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the magnitude of the velocity of Aibhe relative to</p>
<p>(i) Euan.</p>
<p>(ii) the centre of the merry-go-round.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline why Aibhe is accelerating even though she is moving at constant speed.</p>
<p>(ii) Draw an arrow on the diagram on page 22 to show the direction in which Aibhe is accelerating.</p>
<p>(iii) Identify the force that is causing Aibhe to move in a circle.</p>
<p>(iv) The diagram below shows a side view of Aibhe and Euan on the merry-go-round.</p>
<p><img src="" alt></p>
<p>Explain why Aibhe feels as if her upper body is being &ldquo;thrown outwards&rdquo;, away from the centre of the merry-go-round.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Euan is rotating on a merry-go-round and drags his foot along the ground to act as a brake. The merry-go-round comes to a stop after 4.0 rotations. The radius of the merry-go-round is 1.5 m. The average frictional force between his foot and the ground is 45 N. Calculate the work done.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aibhe moves so that she is sitting at a distance of 0.75 m from the centre of the merry-go-round, as shown below.</p>
<p><img src="" alt></p>
<p>Euan pushes the merry-go-round so that he is again moving at 1.0 ms<sup>&ndash;1</sup> relative to the ground.</p>
<p>(i) Determine Aibhe&rsquo;s speed relative to the ground.</p>
<p>(ii) Calculate the magnitude of Aibhe&rsquo;s acceleration.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the <em>electric resistance</em> of a wire.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the following data, calculate the length of constantan wire required to make a resistor with a resistance of 6.0&Omega;.</p>
<p style="padding-left: 30px;">Resistivity of constantan = 5.0&times;10<sup>&ndash;7</sup>&Omega;m<br>Average radius of wire = 2.5&times;10<sup>&ndash;5</sup>m</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Three resistors, each of resistance 6.0&Omega;, are arranged in the circuit shown below. The cell has an emf of 12V and negligible internal resistance.</p>
<p><img src="" alt></p>
<p>Determine the total power supplied by the cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The same resistors and cell are now re-arranged into a different circuit, as shown below.</p>
<p><img src="" alt></p>
<p>Explain why the total power supplied by the cell is greater than for the circuit in (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>
<div title="Page 7">
<div>(i) 2.0 <em><strong>or</strong></em> 0(ms<sup>-1</sup>); <br>(ii) 1.0 <em><strong>or</strong></em> 0(ms<sup>-1</sup>);</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>
<div title="Page 7">
<div>(i) her direction is changing;<br>hence her velocity is changing;<br><em><strong>or</strong></em><br>since her direction/velocity is changing;<br>a <span style="text-decoration: underline;">resultant/unbalanced/net</span> force must be acting on her (hence she is accelerating);</div>
<div>&nbsp;</div>
<div>(ii) arrow from Aibhe towards centre of merry-go-round;<br><em>Ignore length of arrow.</em></div>
<div>&nbsp;</div>
<div>(iii) the force of the merry-go-round on <span style="text-decoration: underline;">Aibhe</span>/<span style="text-decoration: underline;">her</span>;</div>
<div>&nbsp;</div>
<div>(iv) no force is acting on the upper body towards the centre of the circle / no centripetal force acting on the upper body (to maintain circular motion);<br>upper body (initially) continues to move in a straight line at constant speed/ velocity is tangential to circle;</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>distance travelled by Euan=\(4.0 \times 2\pi&nbsp; \times 1.5\left( { = 37.70{\rm{m}}} \right)\);<br>\(W\left( { = {F_{av}}d = 45 \times 37.70} \right) = 1700\left( {\rm{J}} \right)\);</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>
<div title="Page 7">(i) Aibhe&rsquo;s period of revolution is the same as before;<br>from \(v = \frac{{2\pi r}}{T}\), since<em> r</em> is halved, <em>v</em> is halved;<br><em>v</em>=0.5(ms<sup>-1</sup>);<br><em>Award <strong>[3]</strong> for a bald correct answer.</em></div>
<div title="Page 7">&nbsp;</div>
<div title="Page 7">(ii) \(a\left( { = \frac{{{v^{\rm{2}}}}}{r}} \right) = \frac{{{{0.5}^2}}}{{0.75}}\);<br>a=0.33(ms<sup>-2</sup>);<br><em>Allow ECF from (d)(i).</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em></div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>\(\frac{{{\rm{potential difference across the wire}}}}{{{\rm{current through the wire}}}}\);<br><em>Accept equation with symbols defined. Accept p.d. Do not accept voltage.</em></div>
</div>
</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>\(A = \left( {\pi {r^{\rm{2}}} = } \right)\pi&nbsp; \times {\left[ {2.5 \times {{10}^{ - 5}}} \right]^2}\left( { = 1.963 \times {{10}^{ - 9}}} \right)\);<br>\(l = \left( {\frac{{RA}}{\rho } = } \right)\frac{{6.0 \times 1.963 \times {{10}^{ - 9}}}}{{5.0 \times {{10}^{ - 7}}}}\);<br>=2.4&times;10<sup>-2</sup>(m)<em>;<br>Award <strong>[3]</strong> for a bald correct answer.</em></div>
</div>
</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">resistance of two resistors in parallel </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">3.0(<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&Omega;</span>), s</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">o total resistance </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">6.0 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">+ </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">3.0 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">9.0(</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&Omega;</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">);<br>\(I = \left( {\frac{V}{R} = } \right)\frac{{12}}{{9.0}}\left( { = 1.333} \right)\left( {\rm{A}} \right)\);<br>\(P = \left( {VI = 12 \times 1.333 = } \right)16\left( {\rm{W}} \right)\);<br> </span></p>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold; font-style: italic;">or </span></p>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">resistance of two resistors in parallel </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= <span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">3.0(&Omega;), s</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">o total resistance </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">6.0 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">+ </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">3.0 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">9.0(</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&Omega;</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">);<br>\(P = \left( {\frac{{{V^{\rm{2}}}}}{R} = } \right)\frac{{144}}{{9.0}}\);<br></span></span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">P </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">16 (W); </span></p>
<p><span style="font-size: 12.000000pt; font-family: 'SymbolMT';"><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">&nbsp;</span></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 7">
<div>
<div>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">total resistance is smaller (</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">4.0</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&Omega;</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">);<br></span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">p.d./voltage is the same so current is greater (</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">3.0A);<br> since </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">P</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">VI </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold; font-style: italic;">or </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">P</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">I</span><span style="font-size: 7.000000pt; font-family: 'TimesNewRomanPSMT'; vertical-align: 5.000000pt;">2</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">R</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">,power is greater (</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">36W);</span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold; font-style: italic;">or </span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">total resistance is smaller (</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">4.0</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&Omega;</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">);</span> <span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">p.d./voltage is the same;<br></span>since <em>P</em>=\(\frac{{{V^{\rm{2}}}}}{R}\), power is greater (=36W);</p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">Award </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold; font-style: italic;">[1] </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">for a bald calculation of 36 (W). The marks are for an explanation. </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Most were able to identify the relative speeds. The markscheme was amended to also include answers in terms of velocity. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">i) This was well-answered with most identifying a change in direction and a change in velocity. </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">ii) The majority were able to show the direction of the centripetal acceleration. </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">iii) Few identified a force that would act on Aibhe. They did not realize that the centripetal force is the resultant of the forces acting.</span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">iv) Few realized from the diagram that it would be difficult provide an inward directed force on </span><span style="font-size: 10.000000pt; font-family: 'Arial';">Aibhe&rsquo;s upper torso</span><span style="font-size: 10.000000pt; font-family: 'Arial';">. The consequence of this is that it would tend to continue to move in a direction which is tangential to the circle. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This was well done by many. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">i) Many scored three marks here. </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">ii) Most candidates were able to gain both marks. </span></p>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">The definition of resistance was poorly attempted with many describing some difficulty that a current has in travelling down a wire. </span></p>
</div>
</div>
</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This calculation was generally well done although it was disappointing to see a significant proportion of candidates who did not know the formula for the area of a circle. </span></p>
</div>
</div>
</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Most were able to calculate the equivalent resistance of the combination of resistors and progress successfully to find the power supplied by the cell. </span></p>
</div>
</div>
</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Many recalculated the po</span><span style="font-size: 10.000000pt; font-family: 'Arial';">wer but didn&rsquo;t provide an explanation and so consequently </span><span style="font-size: 10.000000pt; font-family: 'Arial';">only scored one mark. Explanations were often detailed enough to score full marks. </span></p>
</div>
</div>
</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about kinematics and gravitation. <strong>Part 2</strong> is about radioactivity.</p>
<p><strong>Part 1</strong> Kinematics and gravitation</p>
<p>A ball is released near the surface of the Moon at time <em>t</em>=0. The point of release is on a straight line between the centre of Earth and the centre of the Moon. The graph below shows the variation with time <em>t</em> of the displacement s of the ball from the point of release.</p>
<p><img src="" alt></p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Radioactivity</p>
<p>Two isotopes of calcium are calcium-40&nbsp;\(\left( {\frac{{40}}{{20}}{\rm{Ca}}} \right)\) and calcium-47 \(\left( {\frac{{47}}{{20}}{\rm{Ca}}} \right)\). Calcium-40 is stable and calcium-47 is radioactive with a half-life of 4.5 days.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the significance of the negative values of <em>s</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to</p>
<p>(i) estimate the velocity of the ball at <em>t</em> \( = \) 0.80 s.</p>
<p>(ii) calculate a value for the acceleration of free fall close to the surface of the Moon.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following data are available.</p>
<p style="padding-left: 30px;">Mass of the ball&nbsp;<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 0.20 kg</p>
<p style="padding-left: 30px;">Mean radius of the Moon&nbsp;<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 1.74&nbsp;\( \times \) 10<sup>6</sup> m</p>
<p style="padding-left: 30px;">Mean orbital radius of the Moon about the centre of Earth <span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 3.84&nbsp;\( \times \) 10<sup>8</sup> m</p>
<p style="padding-left: 30px;">Mass of Earth&nbsp;<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 5.97&nbsp;\( \times \) 10<sup>24</sup> kg</p>
<p>Show that Earth has no significant effect on the acceleration of the ball.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed of an identical ball when it falls 3.0 m from rest close to the surface of Earth. Ignore air resistance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the graph, the variation with time<em> t</em> of the displacement<em> s</em> from the point of release of the ball when the ball is dropped close to the surface of Earth. (For this sketch take the direction towards the Earth as being negative.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of the number of nucleons and the forces between them, why calcium-40 is stable and calcium-47 is radioactive.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of a sample of calcium-47 that decays in 27 days.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nuclear equation for the decay of calcium-47 into scandium-47&nbsp;\(\left( {{}_{21}^{47}{\rm{Sc}}} \right)\) is given by</p>
<p>\[{}_{20}^{47}{\rm{Ca}} \to {}_{21}^{47}{\rm{Sc + }}{}_{ - 1}^0{\rm{e + X}}\]</p>
<p>(i) Identify X.</p>
<p>(ii) The following data are available.</p>
<p style="padding-left: 30px;">Mass of calcium-47 nucleus&nbsp;<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 46.95455 u<br>Mass of scandium-47 nucleus&nbsp;<span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span> 46.95241 u</p>
<p>Using the data, determine the maximum kinetic energy, in MeV, of the products in the decay of calcium-47.</p>
<p>(iii) State why the kinetic energy will be less than your value in (h)(ii).</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>upwards (or away from the Moon) is taken as positive / downwards (or towards the Moon) is taken as negative / towards the Earth is positive;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(i) tangent drawn to curve at 0.80s;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">correct calculation of gradient of tangent drawn;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.3 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.1m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;1 </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold; font-style: italic;">or </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.3 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.1m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;1 </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">downwards;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold; font-style: italic;">or </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT'; color: rgb(20.000000%, 20.000000%, 20.000000%);">correct coordinates used from the graph; substitution into a correct equation;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.3 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.1m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;1 </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold; font-style: italic;">or </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.3 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.1m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;1 </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">downwards; </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(ii) any correct method used;</span></p>
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">correct reading from graph;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.6 to 1.7 m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;2</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">values for masses, distance and correct G substituted into Newton&rsquo;s law;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">see subtraction (</span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic;">ie r </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">value </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">3.84 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">10</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">8 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.74 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">10</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">6 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">3.82 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">10</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">8 </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">m);</span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">F</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">5.4 to 5.5 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">10</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;4 </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">N / </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic;">a</span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">2.7 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">10</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;3 </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;2</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">comment that it&rsquo;s insignificant compared with (0.2 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">&times; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.63 </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">) 0.32 to 0.33 N / 1.63 m s</span><span style="font-size: 7.000000pt; font-family: 'ArialMT'; vertical-align: 4.000000pt;">&ndash;2</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>7.7 m s\(^{ - 1}\);</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve permanently below Moon curve;</p>
<p>smooth parabola; <span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic;">(judge by eye)</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">line passing through s </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">3.00 m, t </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.78 s </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold; font-style: italic;">or </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">s </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">3.50 m, t </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.84 s (</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1mm); </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';"><img src="" alt></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">Ca-40 has 20 protons and 20 neutrons, Ca-47 has 20 protons and 27 neutrons / Ca-47 has 7 additional neutrons;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">mention of strong/nuclear </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold;">and </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">coulomb/electrostatic/electromagnetic forces;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">excess neutrons/too high a neutron-to-proton ration leads to the coulomb/electrostatic&rsquo; electromagnetic force being greater than the strong/nuclear force (so the nucleus is unstable); </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic; color: rgb(20.000000%, 20.000000%, 20.000000%);">Award </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold; font-style: italic; color: rgb(20.000000%, 20.000000%, 20.000000%);">[1 max] </span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic; color: rgb(20.000000%, 20.000000%, 20.000000%);">for an answer stating that Ca-47 has more neutrons so is bigger and less stable. </span></p>
</div>
</div>
</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">six half-lives occurred;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">\(\left( {{{\left( {\frac{1}{2}} \right)}^6} = } \right)1.6\% \) remaining;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">98.4 / 98% decayed; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(i)(electron) anti-neutrino /&nbsp;</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">\(\overline v \) </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">; </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(ii) 46.95455 u </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&minus; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(46.95241 u </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">+ </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.00055 u) </span><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">= </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">0.00159 u;</span></p>
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">1.48 MeV; </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">(iii) does not account for energy of (anti) neutrino/gamma ray photons; </span></p>
</div>
</div>
</div>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br>