File "markscheme-SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 6 HTML/markscheme-SL-paper1html
File size: 448.01 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>A mass at the end of a string is swung in a horizontal circle at increasing speed until the string breaks.</p>
<p> <img src="images/Schermafbeelding_2018-08-12_om_10.12.50.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/23"></p>
<p>The subsequent path taken by the mass is a</p>
<p>A. line along a radius of the circle.</p>
<p>B. horizontal circle.</p>
<p>C. curve in a horizontal plane.</p>
<p>D. curve in a vertical plane.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object rotates in a horizontal circle when acted on by a centripetal force <em>F</em>. What is the centripetal force acting on the object when the radius of the circle doubles and the kinetic energy of the object halves?</p>
<p>A. \(\frac{F}{4}\)</p>
<p>B. \(\frac{F}{2}\)</p>
<p>C. <em>F</em></p>
<p>D. 4<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object at the end of a wooden rod rotates in a vertical circle at a constant angular velocity. What is correct about the tension in the rod? </p>
<p>A. It is greatest when the object is at the bottom of the circle.<br>B. It is greatest when the object is halfway up the circle. <br>C. It is greatest when the object is at the top of the circle. <br>D. It is unchanged throughout the motion.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass is suspended by a string from a fixed point. The mass moves with constant speed along a circular path in a horizontal plane.</p>
<p><img src="images/Screen_Shot_2016-08-01_at_1.18.48_PM.png" alt></p>
<p>The resultant force acting on the mass is</p>
<p>A. zero.</p>
<p>B. directed upwards along the string.</p>
<p>C. directed towards the centre of the circular path.</p>
<p>D. in the same direction as the velocity of the mass.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the acceleration of an object rotating with constant speed <em>v</em> in a circle of radius <em>r</em>?</p>
<p>A. Zero</p>
<p>B. \(\frac{{{v^2}}}{r}\) towards the centre of the circle</p>
<p>C. \(\frac{{{v^2}}}{r}\) away from the centre of the circle</p>
<p>D. \(\frac{{{v^2}}}{r}\) along a tangent to the circle</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A spherical planet of uniform density has three times the mass of the Earth and twice the average radius. The magnitude of the gravitational field strength at the surface of the Earth is <em>g</em>. What is the gravitational field strength at the surface of the planet?</p>
<p>A. 6 <em>g</em></p>
<p>B. \(\frac{2}{3}g\)</p>
<p>C. \(\frac{3}{4}g\)</p>
<p>D. \(\frac{3}{2}g\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The maximum speed with which a car can take a circular turn of radius <em>R</em> is <em>v</em>. The maximum speed with which the same car, under the same conditions, can take a circular turn of radius 2<em>R</em> is</p>
<p>A. 2<em>v</em>.<br>B. \(v\sqrt 2 \).<br>C. 4<em>v</em>.<br>D. \(2v\sqrt 2 \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';"> </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which single condition enables Newton’s universal law of gravitation to be used to predict the force between the Earth and the Sun?</p>
<p>A. The Earth and the Sun both have a very large radius.</p>
<p>B. The distance between the Earth and the Sun is approximately constant.</p>
<p>C. The Earth and the Sun both have a very large mass.</p>
<p>D. The Earth and the Sun behave as point masses.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>On Mars, the gravitational field strength is about \(\frac{1}{4}\) of that on Earth. The mass of Earth is approximately ten times that of Mars.</p>
<p>What is \(\frac{{{\text{radius of Earth}}}}{{{\text{radius of Mars}}}}\) ?</p>
<p>A. 0.4</p>
<p>B. 0.6 </p>
<p>C. 1.6 </p>
<p>D. 2.5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A car moves at constant speed around a horizontal circular track. The resultant force on the car is always equal to</p>
<p>A. the forward force from the engine.</p>
<p>B. the sideways friction between the tires and the track.</p>
<p>C. the weight of the car.</p>
<p>D. zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The weight of an object of mass 1 kg at the surface of Mars is about 4 N. The radius of Mars is about half the radius of Earth. Which of the following is the best estimate of the ratio below?</p>
<p class="p1">\[\frac{{{\text{mass of Mars}}}}{{{\text{mass of Earth}}}}\]</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>0.1</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>0.2</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>5</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>10</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The inverse square law means that halving the radius of a planet results in quadrupling the gravitational field strength at its surface.</p>
</div>
<br><hr><br><div class="question">
<p>The centres of two planets are separated by a distance <em>R</em>. The gravitational force between the two planets is <em>F</em>. What will be the force between the planets when their separation increases to 3<em>R</em>?</p>
<p>A. \(\frac{F}{9}\)</p>
<p>B. \(\frac{F}{3}\)</p>
<p>C. <em>F</em></p>
<p>D. 3<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass at point <em>X</em> gives rise to a gravitational field strength <em>g</em> at point <em>P</em> as shown below.</p>
<p><img src="" alt></p>
<p>An identical mass is placed at point <em>Y</em> as shown below.</p>
<p><img src="" alt></p>
<p>The resultant gravitational field strength at <em>P</em> is now</p>
<p><br>A. greater than 2<em>g</em>.</p>
<p>B. between 2<em>g</em> and <em>g</em>.</p>
<p>C. between <em>g</em> and zero.</p>
<p>D. zero.<br><br></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A small sphere X of mass \(M\) is placed a distance \(d\) from a point mass. The gravitational force on sphere X is 90 N. Sphere X is removed and a second sphere Y of mass \(4M\) is placed a distance \(3d\) from the same point mass. The gravitational force on sphere Y is</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>480 N.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>160 N.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>120 N.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>40 N.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The gravitational field strength at the surface of Earth is<em> g</em>. Another planet has double the radius of Earth and the same density as Earth. What is the gravitational field strength at the surface of this planet?</p>
<p>A. \(\frac{g}{2}\)</p>
<p>B. \(\frac{g}{4}\)</p>
<p>C. 2<em>g</em></p>
<p>D. 4<em>g</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Newton’s law of gravitation</p>
<p>A.<span class="Apple-converted-space"> </span>is equivalent to Newton’s second law of motion.</p>
<p>B.<span class="Apple-converted-space"> </span>explains the origin of gravitation.</p>
<p>C.<span class="Apple-converted-space"> </span>is used to make predictions.</p>
<p>D.<span class="Apple-converted-space"> </span>is not valid in a vacuum.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">For a particle moving at constant speed in a horizontal circle, the work done by the centripetal force is</p>
<p class="p1">A. zero.</p>
<p class="p1">B. directly proportional to the particle mass.</p>
<p class="p1">C. directly proportional to the particle speed.</p>
<p class="p1">D. directly proportional to the (particle speed)<sup><span class="s1">2</span></sup>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object of mass <em>m </em>at the end of a string of length <em>r </em>moves in a vertical circle at a constant angular speed <em>ω</em>.</p>
<p>What is the tension in the string when the object is at the bottom of the circle?</p>
<p>A. <em> m</em>(<em>ω</em><sup>2</sup><em>r </em>+ <em>g</em>)</p>
<p>B. <em> m</em>(<em>ω</em><sup>2</sup><em>r</em><em> –</em> <em>g</em>)</p>
<p>C. <em> mg</em>(<em>ω</em><sup>2</sup><em>r</em><em> </em>+ 1)</p>
<p>D. <em> mg</em>(<em>ω</em><sup>2</sup><em>r</em><em> –</em> 1)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="column">A spacecraft travels away from Earth in a straight line with its motors shut down. At one instant the speed of the spacecraft is 5.4 km s<sup>–1</sup>. After a time of 600 s, the speed is 5.1 km s<sup>-1</sup>. The average gravitational field strength acting on the spacecraft during this time interval is</div>
<div class="column"> </div>
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<ol style="list-style-type: upper-alpha;">
<li>
<p>5.0×10<sup>–4 </sup>N kg<sup>–1</sup></p>
</li>
<li>
<p>3.0×10<sup>–2 </sup>N kg<sup>–1</sup></p>
</li>
<li>
<p>5.0×10<sup>–1 </sup>N kg<sup>–1</sup></p>
</li>
<li>
<p>30 N kg<sup>–1</sup></p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">C</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>What is the definition of gravitational field strength at a point?</p>
<p>A. Force acting per unit mass on a small mass placed at the point.</p>
<p>B. Work done per unit mass on any mass moved to the point.</p>
<p>C. Force acting on a small mass placed at the point.</p>
<p>D. Work done on any mass moved to the point.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A body moves with uniform speed around a circle of radius <em>r</em>. The period of the motion is <em>T</em>. What is the speed of the body?</p>
<p>A. \(\frac{{2\pi r}}{T}\)</p>
<p>B. \(\frac{{2\pi T}}{r}\)</p>
<p>C. Zero</p>
<p>D. \(\frac{{\pi {r^2}}}{T}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 15">
<div class="layoutArea">
<div class="column">Planet X has mass <em>M</em> and radius <em>R</em>. Planet Y has mass 2<em>M</em> and radius 3<em>R</em>. The gravitational field strength at the surface of planet X is <em>g</em>. What is the gravitational field strength at the surface of planet Y?</div>
<div class="column"> </div>
<div class="column">A. \(\frac{2}{9}g\)</div>
<div class="column"> </div>
<div class="column">B. \(\frac{2}{3}g\)</div>
<div class="column"> </div>
<div class="column">C. \(\frac{3}{2}g\)</div>
<div class="column"> </div>
<div class="column">D. \(\frac{9}{2}g\)</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A ball is tied to a string and rotated at a uniform speed in a vertical plane. The diagram shows the ball at its lowest position. Which arrow shows the direction of the net force acting on the ball?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_17.23.19.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/07"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A planet has half the mass and half the radius of the Earth. What is the gravitational field strength at the surface of the planet? The gravitational field strength at the surface of the Earth is 10 N kg<sup>–1</sup>.</p>
<p>A. 2.5 N kg<sup>–1</sup></p>
<p>B. 5.0 N kg<sup>–1</sup></p>
<p>C. 10 N kg<sup>–1</sup></p>
<p>D. 20 N kg<sup>–1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A satellite X of mass <em>m</em> orbits the Earth with a period <em>T</em>. What will be the orbital period of satellite Y of mass <em>2m </em>occupying the same orbit as X?</p>
<p>A. \(\frac{T}{2}\)</p>
<p>B. <em>T</em></p>
<p>C. \(\sqrt {2T} \)</p>
<p>D. 2<em>T</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object of constant mass is tied to the end of a rope of length <em>l</em> and made to move in a horizontal circle. The speed of the object is increased until the rope breaks at speed <em>v</em>. The length of the rope is then changed. At what other combination of rope length and speed will the rope break?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A particle P is moving anti-clockwise with constant speed in a horizontal circle.</p>
<p class="p1">Which diagram correctly shows the direction of the velocity \(v\)<em> </em>and acceleration \(a\)<em> </em>of the particle P in the position shown?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_07.50.24.png" alt="M10/4/PHYSI/SPM/ENG/TZ1/08"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The magnitude of the gravitational field strength at the surface of a planet of mass <em>M</em> and radius <em>R</em> is <em>g</em>. What is the magnitude of the gravitational field strength at the surface of a planet of mass 2<em>M</em> and radius 2<em>R</em>?</p>
<p>A. \(\frac{g}{4}\)</p>
<p>B. \(\frac{g}{2}\)</p>
<p>C. <em>g<br></em></p>
<p>D. 2<em>g</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the correct definition of gravitational field strength?</p>
<p class="p1">A. The mass per unit weight</p>
<p class="p1">B. The weight of a small test mass</p>
<p class="p1">C. The force acting on a small test mass</p>
<p class="p1">D. The force per unit mass acting on a small test mass</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A horizontal disc rotates uniformly at a constant angular velocity about a central axis normal to the plane of the disc.</p>
<p style="text-align: center;"><img src=""></p>
<p>Point X is a distance 2<em>L</em> from the centre of the disc. Point Y is a distance <em>L</em> from the centre of the disc. Point Y has a linear speed <em>v</em> and a centripetal acceleration <em>a</em>.</p>
<p>What is the linear speed and centripetal acceleration of point X?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The mass of Earth is \({M_{\text{E}}}\), its radius is \({R_{\text{E}}}\) and the magnitude of the gravitational field strength at the surface of Earth is \(g\). The universal gravitational constant is \(G\). The ratio \(\frac{g}{G}\) is equal to</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(\frac{{{M_{\text{E}}}}}{{R_{\text{E}}^2}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(\frac{{R_{\text{E}}^2}}{{{M_{\text{E}}}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({M_{\text{E}}}{R_{\text{E}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>1</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A communications satellite is moving at a constant speed in a circular orbit around Earth. At any given instant in time, the resultant force on the satellite is</p>
<p class="p1">A. zero.</p>
<p class="p1">B. equal to the gravitational force on the satellite.</p>
<p class="p1">C. equal to the vector sum of the gravitational force on the satellite and the centripetal force.</p>
<p class="p1">D. equal to the force exerted by the satellite’s rockets.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The mass of a planet is twice that of Earth. Its radius is half that of the radius of Earth. The gravitational field strength at the surface of Earth is \(g\)<em>. </em>The gravitational field strength at the surface of the planet is</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(\frac{1}{2}g\).</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(g\).</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\(2g\).</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(8g\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An aircraft is flying at constant speed in a horizontal circle. Which of the following diagrams best illustrates the forces acting on the aircraft in the vertical plane?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_10.43.36.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/05"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">A considerable number of candidates were misled by A, suggesting that they were used to marking in <em>components </em>of forces directly on force diagrams. This practice only leads to confusion.</p>
</div>
<br><hr><br><div class="question">
<p style="text-align: left;">A pendulum bob is attached to a light string and is swinging in a vertical plane.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">At the lowest point of the motion, the magnitude of the tension in the string is</p>
<p style="text-align: left;">A. less than the weight of the mass of the pendulum bob.<br>B. zero.<br>C. greater than the weight of the mass of the pendulum bob.<br>D. equal to the weight of the mass of the pendulum bob.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">As many teachers pointed out the question should have referred to the tension in the string rather than the centripetal force. This clearly also confused many of the candidates and the question was discounted.</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A car on a road follows a horizontal circular path at constant speed. Which of the following correctly identifies the origin and the direction of the net force on the car?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was well done by the candidates who correctly identified the origin of the force as the frictional force of the road on the tyres.</p>
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is a possible pulse shape when the pulses overlap?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two satellites of mass <em>m</em> and 2<em>m</em> orbit a planet at the same orbit radius. If <em>F</em> is the force exerted on the satellite of mass <em>m</em> by the planet and a is the centripetal acceleration of this satellite, what is the force and acceleration of the satellite with mass 2<em>m</em>?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass attached to a string rotates in a gravitational field with a constant period in a vertical plane.</p>
<p style="text-align: center;"><img src=""></p>
<p>How do the tension in the string and the kinetic energy of the mass compare at P and Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cyclist rides around a circular track at a uniform speed. Which of the following correctly gives the net horizontal force on the cyclist at any given instant of time?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The force <em>F</em> between particles in gravitational and electric fields is related to the separation <em>r</em> of the particles by an equation of the form</p>
<p>\(F = a\frac{{bc}}{{{r^2}}}\).</p>
<p>Which of the following identifies the units for the quantities <em>a</em>, <em>b</em> and <em>c</em> for a gravitational field?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron moves with uniform circular motion in a region of magnetic field. Which diagram shows the acceleration <em>a</em> and velocity <em>v</em> of the electron at point P?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass connected to one end of a rigid rod rotates at constant speed in a vertical plane about the other end of the rod.</p>
<p> </p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>The force exerted by the rod on the mass is</p>
<p>A. zero everywhere.</p>
<p>B. constant in magnitude.</p>
<p>C. always directed towards the centre.</p>
<p>D. a minimum at the top of the circular path.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two particles, X and Y, are attached to the surface of a horizontally mounted turntable.</p>
<p><img src="" alt></p>
<p>The turntable rotates uniformly about a vertical axis. The magnitude of the linear velocity of X is <em>v</em> and the magnitude of its acceleration is <em>a</em>. Which of the following correctly compares the magnitude of the velocity of Y and the magnitude of the acceleration of Y with <em>v</em> and <em>a</em> respectively?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There was much guessing here with even A and C being popular options. This would suggest that many candidates had not understood the situation – surely a fly near the hub of spinning bicycle wheel is going slower than one perched on the rim. So A and C should have<br>been instantly discounted through the application of commonsense. Since the velocity and also the radius is changing from situation X to Y, it is easier to use the formula a = ω2r (where ω is constant) to ascertain that the acceleration at Y is greater. Alternatively, you can imagine that Y is on the outer edge of a fairground big wheel in order to realize that the forces upon you (and hence acceleration) will be greater.</p>
</div>
<br><hr><br>