File "markscheme-HL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 6 HTML/markscheme-HL-paper2html
File size: 481.95 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<div class="page" title="Page 35">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is in </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold;">two </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">parts. </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold;">Part 1 </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">is about gravitational force fields. </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold;">Part 2 </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">is about properties of a gas. </span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-weight: bold;">Part 1 </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">Gravitational force fields </span></p>
</div>
</div>
</div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Newton&rsquo;s universal law of gravitation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A satellite of mass <em>m</em> orbits a planet of mass<em> M</em>. Derive the following relationship between&nbsp;the period of the satellite <em>T</em> and the radius of its orbit <em>R</em> (Kepler&rsquo;s third law).</p>
<p style="text-align: center;">\({T^2} = \frac{{4{\pi ^2}{R^3}}}{{GM}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: left;">A polar orbiting satellite has an orbit which passes above both of the Earth&rsquo;s poles.&nbsp;One polar orbiting satellite used for Earth observation has an orbital period of 6.00 &times; 10<sup>3</sup>s.<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Mass of Earth &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;= 5.97 &times; 10<sup>24 </sup>kg<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Average radius of Earth = 6.37 &times; 10<sup>6 </sup>m</p>
<p style="text-align: left;">(i) Using the relationship in (b), show that the average height above the surface of the&nbsp;Earth for this satellite is about 800 km.</p>
<p style="text-align: left;">(ii) The satellite moves from an orbit of radius 1200 km above the Earth to one of&nbsp;radius 2500 km. The mass of the satellite is 45 kg.</p>
<p style="text-align: left;">Calculate the change in the gravitational potential energy of the satellite.</p>
<p style="text-align: left;">(iii) Explain whether the gravitational potential energy has increased, decreased or&nbsp;stayed the same when the orbit changes, as in (c)(ii).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the (attractive) force between two (point) masses is directly proportional to the&nbsp;product of the masses;<br>and inversely proportional to the square of the distance (between their centres of&nbsp;mass);&nbsp;<br><em>Use of equation is acceptable:</em><br><em>Award<strong> [2]</strong> if all five quantities defined. Award <strong>[1]</strong> if four quantities defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(G\frac{{Mm}}{{{R^2}}} = \frac{{m{v^2}}}{R}\) so&nbsp;\({v^2} = \frac{{Gm}}{R}\);<br>\(v = \frac{{2\pi R}}{T}\);<br>\({v^2} = \frac{{4{\pi ^2}{R^2}}}{{{T^2}}} = \frac{{Gm}}{R}\);</p>
<p><strong>or</strong></p>
<p>\(G\frac{{Mm}}{{{R^2}}} = m{\omega ^2}R\)<em>;<br></em>\({\omega ^2} = \frac{{4{\pi ^2}}}{{{T^2}}}\);<br>\(\frac{{4{\pi ^2}}}{{{T^2}}} = \frac{{GM}}{{{R^3}}}\);<br><em>Award <strong>[3]</strong> to a clear response with a missing step.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \({R^3} = \frac{{6.67 \times {{10}^{ - 11}} \times 5.97 \times {{10}^{24}} \times {{6000}^2}}}{{4 \times {\pi ^2}}}\);<br><em>R</em>=7.13x10<sup>6</sup>(m);<br><em>h</em>=(7.13x10<sup>6</sup>-6.37x10<sup>6</sup>)=760(km);<br><em>Award <strong>[3]</strong> for an answer of 740 with &pi; taken as 3.14.</em></p>
<p>(ii)&nbsp;clear use of \(\Delta V = \frac{{\Delta E}}{m}\) and&nbsp;\(V =&nbsp; - \frac{{Gm}}{r}\) <strong>or</strong> \(\Delta E = GMm\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)\);<br>one value of potential energy calculated (2.37&times;10<sup>9</sup> <em><strong>or</strong></em> 2.02&times;10<sup>9</sup> );<br>3.5&times;10<sup>8</sup> (J);<br><em>Award <strong>[3]</strong> for a bald correct answer.</em><br><em>Award <strong>[2]</strong> for 7.7x10<sup>9</sup>. Award <strong>[1]</strong> for 7.7x10<sup>12</sup>.</em><br><em>Award <strong>[0] </strong>for answers using mg&Delta;h.</em></p>
<p>(iii) increased;<br>further from Earth / closer to infinity / smaller negative value;<br><em>Award<strong> [0]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>(a) Many candidates stated that the Newton&rsquo;s law force is proportional to the masses of the objects in question, rather than the product of the masses.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This part was generally well done with most candidates coming to the correct outcome; too often steps were missed out in the derivations and this cost candidates mark. It is&nbsp;essential that they realise that a derivation must include every step. The presentation of this part left much to be desired in quite a large minority with mathematically incorrect statements being given.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) Most candidates were able to substitute values into the equation and rearrange it to find a value for R. Many then fail to subtract the radius of the Earth.</p>
<p>(ii) Very few candidates completed this part correctly. Confusion between potential and potential energy was common as were adding the height in kilometres to the radius of the Earth in metres. A sizeable minority of candidates attempted to use the mgh equation.</p>
<p>(iii) This part was quite well answered with most candidates realising that the increase in height meant an increase in potential energy. Several argued that the magnitude decreased but being a negative quantity this meant an increase.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the thermodynamics of a car engine and the dynamics of the car.</p>
<p class="p1">A car engine consists of four cylinders. In each of the cylinders, a fuel-air mixture explodes to supply power at the appropriate moment in the cycle.</p>
<p class="p1">The diagram models the variation of pressure <em>P </em>with volume <em>V </em>for one cycle of the gas, ABCDA, in one of the cylinders of the engine. The gas in the cylinder has a fixed mass and can be assumed to be ideal.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-07_om_09.01.07.png" alt="M14/4/PHYSI/HP2/ENG/TZ2/09"></p>
</div>

<div class="specification">
<p>The car is travelling at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). At this speed, the energy provided by the fuel injected into one cylinder in each cycle is 9200 J. One litre of fuel provides 56 MJ of energy.</p>
</div>

<div class="specification">
<p class="p1">A car is travelling along a&nbsp;straight horizontal road at its maximum speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\). The power output required at the wheels is 0.13 MW.</p>
</div>

<div class="specification">
<p class="p1">A driver moves a&nbsp;car in a horizontal circular path of radius 200 m. Each of the four tyres will not grip the road if the frictional force between a tyre and the road becomes less than 1500 N.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">At point A in the cycle, the fuel-air mixture is at 18 &deg;C. During process AB, the gas is compressed to 0.046 of its original volume and the pressure increases by a factor of 40. Calculate the temperature of the gas at point B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the nature of the change in the gas that takes place during process BC in the cycle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Process CD is an adiabatic change. Discuss, with reference to the first law of thermodynamics, the change in temperature of the gas in the cylinder during process CD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the diagram can be used to calculate the net work done during one cycle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) &nbsp; &nbsp; Calculate the volume of fuel injected into one cylinder during one cycle.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Each of the four cylinders completes a cycle 18 times every second. Calculate the distance the car can travel on one litre of fuel at a speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A car accelerates uniformly along a straight horizontal road from an initial speed of \({\text{12 m}}\,{{\text{s}}^{ - 1}}\) to a final speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\) in a distance of 250 m. The mass of the car is 1200 kg. Determine the rate at which the engine is supplying kinetic energy to the car as it accelerates.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate the total resistive force acting on the car when it is travelling at a constant speed of \({\text{56 m}}\,{{\text{s}}^{ - 1}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The mass of the car is 1200 kg. The resistive force <em>F </em>is related to the speed <em>v</em> by \(F \propto {v^2}\). Using your answer to (g)(i), determine the maximum theoretical acceleration of the car at a speed of \({\text{28 m}}\,{{\text{s}}^{ - 1}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Calculate the maximum speed of the car at which it can continue to move in the circular path. Assume that the radius of the path is the same for each tyre.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;While the car is travelling around the circle, the people in the car have the sensation that they are being thrown outwards. Outline how Newton&rsquo;s first law of motion accounts for this sensation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">535 (K) / 262 (&deg;C);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">constant volume change / isochoric / isovolumetric / <em>OWTTE</em>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Q</em>/thermal energy transfer is zero;</p>
<p>\(\Delta U =&nbsp; - W\);</p>
<p>as work is done by gas internal energy falls;</p>
<p>temperature falls as temperature is measure of average kinetic energy;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">work done is estimated by evaluating area;</p>
<p class="p1">inside the loop / <em>OWTTE</em>;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(1.6 \times {10^{ - 4}}{\text{ (litre)}}\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>one litre \( = \left( {\frac{1}{{4 \times 18 \times 1.64 \times {{10}^{ - 4}}}} = } \right){\text{ }}87{\text{ s of travel}}\);</p>
<p class="p1">\((87 \times 56) = 4.7{\text{ (km)}}\);</p>
<p class="p1"><em>Allow rounded 1.6 value to be used, giving 4.9 (km).</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of a kinematic equation to determine motion time \({\text{(}} = 12.5{\text{ s)}}\);</p>
<p class="p1">change in kinetic energy \( = \frac{1}{2} \times {\text{1200}} \times {\text{[2}}{{\text{8}}^2} - {\text{1}}{{\text{2}}^2}]{\text{ (}} = 384{\text{ kJ)}}\);</p>
<p class="p1">rate of change in kinetic energy \( = \frac{{{\text{384000}}}}{{{\text{12.5}}}}\); } <em>(allow ECF of 16<sup>2</sup></em> <em>from (28 </em>\( - \)<em> 12)<sup>2</sup></em> <em>for this mark)</em></p>
<p class="p1">31 (kW);</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">use of a kinematic equation to determine motion time \(( = 12.5{\text{ s)}}\);</p>
<p class="p1">use of a kinematic equation to determine acceleration \(( = 1.28{\text{ m}}\,{{\text{s}}^{ - 2}})\);</p>
<p class="p1">work done \(\frac{{F \times s}}{{{\text{time}}}} = \frac{{1536 \times 250}}{{12.5}}\);</p>
<p class="p1">31 (kW);</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{force}} = \frac{{{\text{power}}}}{{{\text{speed}}}}\);</p>
<p class="p1">2300 <strong><em>or </em></strong>2.3k (N);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>resistive force \( = \frac{{2300}}{4}\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)\(\frac{{2321}}{4}{\text{ }}( = {\text{575)}}\); <em>(allow ECF)</em></p>
<p class="p1">so accelerating force \((2300 - 580 = ){\text{ }}1725{\text{ (N)}}\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)1741 (N);</p>
<p class="p1">\(a = \frac{{1725}}{{1200}} = 1.44{\text{ (m}}\,{{\text{s}}^{ - 2}})\)\(\,\,\,\)<strong><em>or</em></strong>\(\,\,\,\)\(a = \frac{{1741}}{{1200}} = 1.45{\text{ (m}}\,{{\text{s}}^{ - 2}})\);</p>
<p class="p1"><em>Award </em><strong><em>[2 max] </em></strong><em>for an answer of 0.49 (m</em>\(\,\)<em>s<sup>&ndash;2</sup> (omits 2300 N).</em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>centripetal force must be \( &lt; 6000{\text{ (N)}}\); <em>(allow force 6000 N)</em></p>
<p class="p1">\({v^2} = F \times \frac{r}{m}\);</p>
<p class="p1">\(31.6{\text{ (m}}\,{{\text{s}}^{ - 1}})\);</p>
<p class="p1"><em>Allow </em><strong><em>[3] </em></strong><em>for a bald correct answer.</em></p>
<p class="p1"><em>Allow </em><strong><em>[2 max] </em></strong><em>if 4</em>\( \times \)<em> is omitted, giving 15.8 (m</em>\(\,\)<em>s<sup>&ndash;1</sup>)</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>statement of Newton&rsquo;s first law;</p>
<p class="p1">(hence) without car wall/restraint/friction at seat, the people in the car would move in a straight line/at a tangent to circle;</p>
<p class="p1">(hence) seat/seat belt/door exerts centripetal force;</p>
<p class="p1">(in frame of reference of the people) straight ahead movement is interpreted as &ldquo;outwards&rdquo;;</p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This simple gas law calculation was surprisingly badly done. Certainly similar questions have attracted better scores in previous examinations. Common errors included the inevitable failure to work in kelvin, and simple arithmetic errors.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to describe the constant volume nature of the change in question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates scored full credit in a question that has been well rehearsed in previous examinations. The zero change in thermal energy transfer was common and many were able to deduce that \(\Delta U\) is therefore equal to \( - W\). This led immediately to a deduction of temperature decrease.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Almost all recognised that the work done was related to some area under the graph. In a small minority of cases the exact specification of the area was too imprecise to gain the second mark.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;It was common to see a correct value for the volume of fuel used though not a correct unit.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Many were able to arrive at a travel time for the fuel and therefore the distance travelled. However, routes were indirect and lengthy and few could see a direct way to the answer.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">There were at least two routes to tackle this problem. Some solutions were so confused that it was difficult to decide which method had been used. Common errors included: forgetting that the initial speed was \({\text{12 m}}\,{{\text{s}}^{ - 1}}\) not zero, power of ten errors, and simple mistakes in the use of the kinematic equations, or failure to evaluate work done \( = {\text{force }} \times {\text{ distance}}\) correctly. However, many candidates scored partial credit. Scores of two or three out of the maximum four were common showing that many are persevering to get as far as they can.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Many correct solutions were seen. Candidates are clearly comfortable with the use of the equation force = power/speed.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;The method to be used here was obvious to many. What was missing was a clear appreciation of what was happening in terms of resistive force in the system. Many scored two out of three because they indicated a sensible method but did not use the correct value for the force. Scoring two marks does require that the explanation of the method is at least competent. Those candidates who give limited explanations of their method leading to a wrong answer will generally accumulate little credit. A suggestion (never seen in answers) is that candidates should have begun from a free-body force diagram which would have revealed the relationship of all the forces.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp; The major problem here was that most candidates did not recognise that 1500 N of force acting at each of four wheels will imply a total force of 6 kN. Again, partial credit was available only if it was clear what the candidate was doing and what the error was.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Statements of Newton&rsquo;s first law were surprisingly poor. As in previous examinations, few candidates appear to have learnt this essential rule by heart and they produce a garbled and incomplete version under examination pressure. The first law was then only loosely connected to the particular context of the question. Candidates have apparently not learnt to relate the physics they learn to everyday contexts.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about fields, electric potential difference and electric<br>circuits. <strong>Part 2</strong> is about thermodynamic cycles.</p>
<p><strong>Part 1</strong> Fields, electric potential difference and electric circuits</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The magnitude of gravitational field strength <em>g</em> is defined from the equation shown below.</p>
<p>\[g = \frac{{{F_g}}}{m}\]</p>
<p>The magnitude of electric field strength <em>E</em> is defined from the equation shown below.</p>
<p>\[E = \frac{{{F_E}}}{q}\]</p>
<p>For each of these defining equations, state the meaning of the symbols</p>
<p>(i) <em>F</em><sub>g</sub>.</p>
<p>(ii) <em>F</em><sub>E</sub>.</p>
<p>(iii) <em>m</em>.</p>
<p>(iv) <em>q</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a simple model of the hydrogen atom, the electron is regarded as being in a&nbsp;circular orbit about the proton. The magnitude of the electric field strength at the&nbsp;electron due to the proton is <em>E</em><sub>p</sub> . The magnitude of the gravitational field strength at&nbsp;the electron due to the proton is <em>g</em><sub>p</sub>.</p>
<p>Determine the order of magnitude of the ratio shown below.</p>
<p>\[\frac{{{E_p}}}{{{g_p}}}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>(i) the force exerted on a small/test/point mass;&nbsp;<br><em>Do not allow bald &ldquo;gravitational force&rdquo;.</em></p>
<p>(ii) the force exerted on a small/point/test positive charge;&nbsp;<br><em>To award <strong>[1]</strong> &ldquo;positive&rdquo; is required.</em><br><em>Do not allow bald &ldquo;electric force&rdquo;.</em></p>
<p>(iii) the size/magnitude/value of the small/point mass;&nbsp;<br><em>Do not accept bald &ldquo;mass&rdquo;</em>.</p>
<p>(iv) the magnitude/size/value of the small/point/test (positive) charge;<br><em>Do not accept bald &ldquo;charge&rdquo;.</em></p>
<p><em>In part (a) only penalize lack of &ldquo;small/test/point&rdquo; once, annotate as ECF.<br>It must be clear that the mass/charge in (iii) &amp; (iv) refer to the object in (i) and (ii).</em></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'Times New Roman';">\({E_p} = \frac{e}{{4\pi {\varepsilon _0}{r^2}}}\) and \({g_p} = \frac{{G{m_p}}}{{{r^2}}}\); </span><em><span style="font-size: 12pt; font-family: 'Times New Roman,Italic';">(both needed) <br></span></em><span style="font-size: 12pt; font-family: 'Times New Roman,Italic';">\(\frac{e}{{4\pi {\varepsilon _0}G{m_p}}}\left( { = \frac{{9 \times {{10}^9} \times 1.6 \times {{10}^{ - 19}}}}{{6.7 \times {{10}^{ - 11}} \times 1.7 \times {{10}^{ - 27}}}}} \right)\);<br>&asymp;10<sup>28</sup>;</span></p>
</div>
</div>
</div>
<p><em>Award <strong>[2 max]</strong> if response calculates ratio of force as this is an ECF from the&nbsp;</em><em>first marking point (10<sup>39</sup>) .</em><br><em>Award <strong>[3]</strong> for solution that correctly evaluates field strengths separately and&nbsp;</em><em>then divides.</em></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>In this part candidates were completely at a loss and could not state the meanings of the symbols in the definitions of gravitational or electric field strengths. This was a disappointing failure in what was meant to be an easy opener to the whole question.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>Following (a) candidates failed widely on this part too. They often had little idea which data to use (mass and charge were frequently confused) and sometimes the meaning of the constants in the equations failed them too. This was compounded by arithmetic errors to make a straightforward calculation very hard for many.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The gravitational potential due to the Sun at its surface is &ndash;1.9 x&nbsp;10<sup>11</sup> J kg<sup>&ndash;1</sup>. The following&nbsp;data are available.</p>
<table style="width: 441.4px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 422px;">Mass of Earth</td>
<td style="width: 558.4px;">=&nbsp;6.0 x&nbsp;10<sup>24</sup> kg</td>
</tr>
<tr>
<td style="width: 422px;">Distance from Earth to Sun</td>
<td style="width: 558.4px;">=&nbsp;1.5 x&nbsp;10<sup>11</sup> m</td>
</tr>
<tr>
<td style="width: 422px;">Radius of Sun</td>
<td style="width: 558.4px;">=&nbsp;7.0 x&nbsp;10<sup>8</sup> m</td>
</tr>
</tbody>
</table>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the gravitational potential is negative.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The gravitational potential due to the Sun at a distance <em>r</em> from its centre is <em>V</em><sub>S</sub>.&nbsp;Show that</p>
<p style="text-align: center;"><em>rV</em><sub>S</sub> = constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the gravitational potential energy of the Earth in its orbit around the Sun.&nbsp;Give your answer to an appropriate number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total energy of the Earth in its orbit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An asteroid strikes the Earth and causes the orbital speed of the Earth to&nbsp;suddenly decrease. Suggest the ways in which the orbit of the Earth will change.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the force acting on it, why the Earth remains in a circular orbit&nbsp;around the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>potential is defined to be zero at infinity</p>
<p>so a positive amount of work needs to be supplied for a mass to reach infinity</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em><sub>S</sub> =&nbsp;\( - \frac{{GM}}{r}\) so <em>r</em> x <em>V</em><sub>S</sub> &laquo;= &ndash;<em>GM</em>&raquo; = constant because<em> G</em> and<em> M</em> are constants</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>GM</em> =&nbsp;1.33 x 10<sup>20</sup> &laquo;J m kg<sup>&ndash;1</sup>&raquo;</p>
<p>GPE at Earth orbit&nbsp;&laquo;= &ndash;\(\frac{{1.33 \times {{10}^{20}} \times 6.0 \times {{10}^{24}}}}{{1.5 \times {{10}^{11}}}}\)&raquo; = &laquo;&ndash;&raquo; 5.3 x 10<sup>33</sup> &laquo;J&raquo;</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> unless answer is to 2 sf.</em></p>
<p><em>Ignore addition of Sun radius to radius of&nbsp;Earth orbit.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em><br>work leading to statement that kinetic energy&nbsp;\(\frac{{GMm}}{{2r}}\), <em><strong>AND</strong></em> kinetic energy evaluated&nbsp;to be &laquo;+&raquo; 2.7&nbsp;x 10<sup>33</sup> &laquo;J&raquo;</p>
<p>energy &laquo;=&nbsp;PE + KE =&nbsp;answer to (b)(ii) + 2.7&nbsp;x 10<sup>33</sup>&raquo; =&nbsp;&laquo;&ndash;&raquo; 2.7&nbsp;x 10<sup>33</sup> &laquo;J&raquo;</p>
<p>&nbsp;</p>
<p><em><strong>ALTERNATIVE 2</strong></em><br>statement that kinetic energy is \( = &nbsp;- \frac{1}{2}\)&nbsp;gravitational potential energy in orbit</p>
<p>so energy &laquo;\( = \frac{{{\text{answer to (b)(ii)}}}}{2}\)&raquo; = &laquo;&ndash;&raquo;&nbsp;2.7&nbsp;x 10<sup>33</sup>&nbsp;&laquo;J&raquo;</p>
<p>&nbsp;</p>
<p><em>Various approaches possible.</em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;KE will initially decrease so&raquo; total energy decreases<br><em><strong>OR</strong></em><br>&laquo;KE will initially decrease so&raquo; total energy becomes more negative</p>
<p>Earth moves closer to Sun</p>
<p>new orbit with greater speed &laquo;but lower total energy&raquo;</p>
<p>changes ellipticity of orbit</p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>centripetal force is required</p>
<p>and is provided by gravitational force between Earth and Sun</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for statement that there is a &ldquo;centripetal&nbsp;force of gravity&rdquo; without further qualification.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium-106 (\(_{\,\,\,45}^{106}{\text{Rh}}\))&nbsp;decays into palladium-106 (\(_{\,\,\,46}^{106}{\text{Pd}}\))&nbsp;by beta minus (<em>&beta;</em><sup>&ndash;</sup>) decay.&nbsp;The diagram shows some of the nuclear energy levels of rhodium-106 and palladium-106.&nbsp;The arrow represents the <em>&beta;</em><sup>&ndash;</sup> decay.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-14_om_06.42.36.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/09.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bohr modified the Rutherford model by introducing the condition <em>mvr </em>= <em>n</em>\(\frac{h}{{2\pi }}\). Outline the reason for this modification.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the speed <em>v </em>of an electron in the hydrogen atom is related to the radius <em>r </em>of the orbit by the expression</p>
<p>\[v = \sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} \]</p>
<p>where <em>k </em>is the Coulomb constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the answer in (b) and (c)(i), deduce that the radius <em>r </em>of the electron’s orbit in the ground state of hydrogen is given by the following expression.</p>
<p>\[r = \frac{{{h^2}}}{{4{\pi ^2}k{m_{\text{e}}}{e^2}}}\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the electron’s orbital radius in (c)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what may be deduced about the energy of the electron in the <em>β</em><sup>–</sup> decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the <em>β</em><sup>–</sup> decay is followed by the emission of a gamma ray photon.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength of the gamma ray photon in (d)(ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the electrons accelerate and so radiate energy</p>
<p>they would therefore spiral into the nucleus/atoms would be unstable</p>
<p>electrons have discrete/only certain energy levels</p>
<p>the only orbits where electrons do not radiate are those that satisfy the Bohr condition <strong>«</strong><span class="Apple-converted-space"><em>mvr</em> = <em>n</em>\(\frac{h}{{2\pi }}\)</span><strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{m_{\text{e}}}{v^2}}}{r} = \frac{{k{e^2}}}{{{r^2}}}\)</p>
<p><strong><em>OR</em></strong></p>
<p>KE = \(\frac{1}{2}\)PE hence \(\frac{1}{2}\)<em>m</em><sub>e</sub><em>v</em><sup>2</sup> = \(\frac{1}{2}\frac{{k{e^2}}}{r}\)</p>
<p><strong>«</strong>solving for <em>v </em>to get answer<strong>»</strong></p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>combining <em>v</em> = \(\sqrt {\frac{{k{e^2}}}{{{m_{\text{e}}}r}}} \) with <em>m</em><sub>e</sub><em>vr</em> = \(\frac{h}{{2\pi }}\) using correct substitution</p>
<p><strong>«</strong><span class="Apple-converted-space"><em>eg</em> \({m_e}^2\frac{{k{e^2}}}{{{m_{\text{e}}}r}}{r^2} = \frac{{{h^2}}}{{4{\pi ^2}}}\)</span><strong>»</strong></p>
<p>correct algebraic manipulation to gain the answer</p>
<p> </p>
<p><em>Answer given – look for correct working</em></p>
<p><em>Do not allow a bald statement of the answer for MP2. Some further working eg cancellation of m or r must be shown</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><span class="Apple-converted-space"> <em>r</em> = \(\frac{{{{(6.63 \times {{10}^{ - 34}})}^2}}}{{4{\pi ^2} \times 8.99 \times {{10}^9} \times 9.11 \times {{10}^{ - 31}} \times {{(1.6 \times {{10}^{ - 19}})}^2}}}\)</span><strong>»</strong></p>
<p><em>r</em> = 5.3 × 10<sup>–11</sup> <strong>«</strong><span class="Apple-converted-space">m</span><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the energy released is 3.54 – 0.48 = 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p>this is shared by the electron and the antineutrino</p>
<p>so the electron’s energy varies from 0 to 3.06 <strong>«</strong>MeV<strong>»</strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the palladium nucleus emits the photon when it decays into the ground state <strong>«</strong>from the excited state<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Photon energy</p>
<p><em>E</em> = 0.48 × 10<sup>6</sup> × 1.6 × 10<sup>–19</sup> = <strong>«</strong><span class="Apple-converted-space">7.68 × 10<sup>–14</sup> <em>J</em></span><strong>»</strong></p>
<p><em>λ</em> = <strong>«</strong><span class="Apple-converted-space">\(\frac{{hc}}{E} = \frac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{7.68 \times {{10}^{ - 14}}}}\) =</span><strong>»</strong> 2.6 × 10<sup>–12</sup><strong> «</strong><span class="Apple-converted-space">m</span><strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer</em></p>
<p><em>Allow ECF from incorrect energy</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A planet has radius <em>R</em>. At a distance <em>h </em>above the surface of the planet the&nbsp;gravitational field strength is <em>g </em>and the gravitational potential is <em>V</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by gravitational field strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>V </em>= –<em>g</em>(<em>R </em>+ <em>h</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph, on the axes, to show the variation of the gravitational potential <em>V</em> of the planet with height <em>h </em>above the surface of the planet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A planet has a radius of 3.1 × 10<sup>6</sup> m. At a point P a distance 2.4 × 10<sup>7</sup> m above the surface of the planet the gravitational field strength is 2.2 N kg<sup>–1</sup>. Calculate the gravitational potential at point P, include an appropriate unit for your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the path of an asteroid as it moves past the planet.</p>
<p>                                                                    <img src="images/Schermafbeelding_2018-08-14_om_07.33.17.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/06.c"></p>
<p>When the asteroid was far away from the planet it had negligible speed. Estimate the speed of the asteroid at point P as defined in (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of the asteroid is 6.2 × 10<sup>12</sup> kg. Calculate the gravitational force experienced by the <strong>planet </strong>when the asteroid is at point P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the <strong>«</strong>gravitational<strong>» </strong>force per unit mass exerted on a point/small/test mass</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at height <em>h </em>potential is <em>V</em> = –\(\frac{{GM}}{{(R + h)}}\)</p>
<p>field is <em>g </em>= \(\frac{{GM}}{{{{(R + h)}^2}}}\)</p>
<p><strong>«</strong>dividing gives answer<strong>»</strong></p>
<p> </p>
<p><em>Do not allow an answer that starts with g = –</em>\(\frac{{\Delta V}}{{\Delta r}}\)<em> and then cancels the deltas and substitutes </em><em>R </em>+ <em>h</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>correct shape and sign</p>
<p>non-zero negative vertical intercept</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-14_om_07.26.11.png" alt="M18/4/PHYSI/HP2/ENG/TZ2/06.a.iii/M"></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>V</em> = <strong>«</strong><span class="Apple-converted-space">–2.2 × (3.1 × 10<sup>6</sup> + 2.4 × 10<sup>7</sup>) =</span><strong>»</strong> <strong>«</strong><span class="Apple-converted-space">–</span><strong>»</strong> 6.0 × 10<sup>7</sup> J kg<sup>–1</sup></p>
<p> </p>
<p><em>Unit is essential</em></p>
<p><em>Allow eg MJ kg<sup>–</sup></em><em><sup>1</sup> </em><em>if power of 10 is correct</em></p>
<p><em>Allow other correct SI units eg m</em><sup><em>2</em></sup><em>s<sup>–</sup></em><sup><em>2</em></sup><em>, N m kg<sup>–</sup></em><sup><em>1</em></sup></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total energy at P = 0 / KE gained = GPE lost</p>
<p><strong>«</strong><span class="Apple-converted-space">\(\frac{1}{2}\)<em>mv</em><sup>2</sup> + <em>mV</em> = 0 ⇒</span><strong>»</strong> <em>v</em> = \(\sqrt { - 2V} \)</p>
<p><em>v</em> = <strong>«</strong><span class="Apple-converted-space">\(\sqrt {2 \times 6.0 \times {{10}^7}} \) =</span><strong>»</strong> 1.1 × 10<sup>4</sup> <strong>«</strong><span class="Apple-converted-space">ms<sup>–1</sup></span><strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for a bald correct answer</em></p>
<p><em>Ignore negative sign errors in the workings</em></p>
<p><em>Allow ECF from 6(b)</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>force on asteroid is <strong>«</strong><span class="Apple-converted-space">6.2 × 10<sup>12</sup> × 2.2 =</span><strong>»</strong> 1.4 × 10<sup>13</sup> <strong>«</strong><span class="Apple-converted-space">N</span><strong>»</strong></p>
<p><strong>«</strong>by Newton’s third law<strong>» </strong>this is also the force on the planet</p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>mass of planet = 2.4 x 10<sup>25</sup> <strong>«</strong>kg<strong>» «</strong>from <em>V</em> = –\(\frac{{GM}}{{(R + h)}}\)<strong>»</strong></p>
<p>force on planet <strong>«</strong><span class="Apple-converted-space">\(\frac{{GMm}}{{{{(R + h)}^2}}}\)</span><strong>»</strong> = 1.4 × 10<sup>13</sup> <strong>«</strong><span class="Apple-converted-space">N</span><strong>»</strong></p>
<p> </p>
<p><em>MP2 must be explicit</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Part 2</strong> Motion of a rocket</p>
<p>A rocket is moving away from a planet within the gravitational field of the planet. When the rocket is at position P a distance of 1.30&times;10<sup>7</sup>m from the centre of the planet, the engine is switched off. At P, the speed of the rocket is 4.38&times;10<sup>3</sup>ms<sup>&ndash;1</sup>.</p>
<p><img src="" alt></p>
<p>At a time of 60.0 s later, the rocket has reached position Q. The speed of the rocket at Q is 4.25&times;10<sup>3</sup>ms<sup>&ndash;1</sup>. Air resistance is negligible.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the energy of the rocket, why the speed of the rocket is changing between P and Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the average gravitational field strength of the planet between P and Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) An object is a distance<em> r</em> from the centre of a planet. Show that the minimum speed required to escape the gravitational field is equal to<br>\[\sqrt {2g'r} \]<br>where <em>g&prime;</em> is the gravitational field strength at distance <em>r</em> from the centre of a planet.</p>
<p>(ii) Discuss, using a calculation, whether the rocket at P can completely escape the gravitational field of the planet without further use of the engine.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A space station is in orbit at a distance <em>r</em> from the centre of the planet in (e)(i). A satellite is launched from the space station so as just to escape from the gravitational field of the planet. The launch takes place in the same direction as the velocity of the space station. Outline why the launch velocity relative to the space station can be less than your answer to (e)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gravitational potential energy is being gained;<br>this is at the expense of kinetic energy (and speed falls);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {{\rm{acceleration}} = \frac{{\left( {v - u} \right)}}{t} = \frac{{4.25 \times {{10}^3} - 4.38 \times {{10}^3}}}{{60}} = } \right)\left(&nbsp; -&nbsp; \right)2.17\left( {{\rm{m}}{{\rm{s}}^{ - 2}}} \right)\);</p>
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">gravitational field strength <span style="font-size: 11.000000pt; font-family: 'SymbolMT';">= </span></span><span style="font-size: 11.000000pt; font-family: 'Arial';">acceleration of rocket (</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">2.17 N kg</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 3.000000pt;">&ndash;1</span><span style="font-size: 11.000000pt; font-family: 'Arial';">); } </span><em>(allow g <span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span> a in symbols)</em></p>
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><em><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">or </span></strong></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">computes potential difference from KE per unit mass change (5.61</span><span style="font-size: 11.000000pt; font-family: 'Arial';">\( \times \)10</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">5</span><span style="font-size: 11.000000pt; font-family: 'Arial';">),<br>computes distance travelled (0.259 Mm), uses \(g = \frac{{\left(&nbsp; -&nbsp; \right)\Delta V}}{{\Delta r}}\);<br><em>g</em>=(\( - \))2.17(ms<sup>-2</sup>);<br></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\left( {{\rm{gravitational force}}} \right){\rm{ = }}mg'{\rm{ = }}\frac{{{\rm{GMm}}}}{{{r^2}}}\);<br>\(\left( {{\rm{kinetic energy}}} \right){\rm{ = }}\frac{{{\rm{m}}{{\rm{v}}^{\rm{2}}}}}{2} = \frac{{GMm}}{r}\);<br>\({v^2} = 2\frac{{GM}}{{{r^2}}}r\left( { = 2g'r} \right)\);</p>
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[0] </span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>for centripetal force argument as rocket is not in orbit.</em><br> </span></p>
<p><span style="font-size: 11pt; font-family: 'Arial,Italic';">(ii) </span><span style="font-size: 11.000000pt; font-family: 'Arial';">calculation of speed at a relevant distance </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">eg</span><span style="font-size: 11.000000pt; font-family: 'Arial';">: \(\sqrt {2 \times g' \times 13 \times {{10}^6}}&nbsp; = 7500\left( {{\rm{m}}{{\rm{s}}^{ - 1}}} \right)\);<br>speed is less than this so will not escape; } </span><em>(allow ECF from (d) which could lead to rocket able to escape)</em></p>
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1 max] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for use of g</span><span style="font-size: 11pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11pt; font-family: 'Arial,Italic';">9.81 and r which gives 16000 ms</span><span style="font-size: 7pt; font-family: 'Arial,Italic'; vertical-align: 3pt;">&ndash;1 </span></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>.</em><br> </span></p>
</div>
</div>
</div>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">the satellite has velocity/kinetic energy as it is orbiting with the space station; </span></p>
</div>
</div>
</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows a planet near two stars of equal mass <em>M</em>.</p>
<p><img src="" alt></p>
<p>Each star has mass <em>M</em>=2.0&times;10<sup>30</sup>kg. Their centres are separated by a distance of 6.8&times;10<sup>11</sup>m. The planet is at a distance of 6.0&times;10<sup>11</sup>m from each star.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram above, draw <strong>two</strong> arrows to show the gravitational field strength at the position of the planet due to each of the stars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the magnitude and state the direction of the resultant gravitational field strength at the position of the planet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>two arrows each along the line connecting the planet to its star <em><strong>AND</strong></em> directed towards each star</p>
<p>arrow lines straight and of equal length</p>
<div class="page" title="Page 6">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Do not allow kinked, fuzzy curved lines.</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g =&nbsp; \ll \frac{{GM}}{{{r^2}}} = \frac{{6.67 \times {{10}^{ - 11}} \times 2.0 \times {{10}^{30}}}}{{{{\left( {6.0 \times {{10}^{11}}} \right)}^2}}} \gg \) <em><strong>OR</strong></em> 3.7&times;10<sup>-4</sup>Nkg<sup>-1</sup></p>
<p>\({g_{{\rm{net}}}} =&nbsp; \ll 2g\cos \theta&nbsp; = 2 \times 3.7 \times {10^{ - 4}} \times \frac{{\sqrt {{{6.0}^2} - {{3.4}^2}} }}{{6.0}} =&nbsp; \gg 6.1 \times {10^{ - 4}}{\rm{Nk}}{{\rm{g}}^{ - 1}}\)</p>
<p>directed vertically down &laquo;page&raquo; <em><strong>OR</strong></em> towards midpoint between two stars <em><strong>OR</strong></em> south</p>
<p><em>Allow rounding errors.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about a probe in orbit.</p>
<p>A probe of mass <em>m</em> is in a circular orbit of radius <em>r</em> around a spherical planet of mass <em>M</em>.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the work done by the gravitational force during one full revolution of the&nbsp;probe is zero.</p>
<p>&nbsp;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce for the probe in orbit that its</p>
<p>(i) speed is \(v = \sqrt {\frac{{GM}}{r}} \).</p>
<p>(ii) total energy is \(E =&nbsp; - \frac{{GMm}}{{2r}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is now required to place the probe in another circular orbit further away from the planet.&nbsp;To do this, the probe&rsquo;s engines will be fired for a very short time.</p>
<p>State and explain whether the work done on the probe by the engines is positive, negative&nbsp;<strong>or</strong> zero.</p>
<p>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>because the force is always at right angles to the velocity / motion/orbit is an&nbsp;equipotential surface;&nbsp;<br><em>Do not accept answers based on the displacement being zero for a full revolution.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) equating gravitational force \(\frac{{GMm}}{{{r^2}}}\);<br>to centripetal force&nbsp;\(\frac{{m{v^2}}}{r}\) to get result;</p>
<p>(ii) kinetic energy is \(\frac{{GMm}}{{2r}}\);<br>addition to potential energy &minus;\(\frac{{GMm}}{{r}}\) to get result;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the total energy (at the new orbit) will be greater than before/is less negative;<br>hence probe engines must be fired to produce force in the direction of motion / positive&nbsp;work must be done (on the probe);&nbsp;<br><em>Award <strong>[1]</strong> for mention of only potential energy increasing.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is in <strong>two</strong> parts. <strong>Part 1</strong> is about solar radiation and the greenhouse effect. <strong>Part 2 </strong>is about orbital motion.</p>
<p><strong>Part 1</strong> Solar radiation and the greenhouse effect</p>
<p>The following data are available.</p>
<p><img src="" alt></p>
</div>

<div class="specification">
<p><strong>Part 2</strong> Orbital motion</p>
<p>A spaceship of mass <em>m</em> is moving at speed <em>v</em> in a circular orbit of radius <em>r</em> around a planet of mass <em>M</em>.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the Stefan-Boltzmann law for a black body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the solar power incident per unit area at distance <em>d</em> from the Sun is given by</p>
<p>\(\frac{{\sigma {R^2}{T^4}}}{{{d^2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, using the data given, the solar power incident per unit area at distance <em>d</em> from the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reasons why the solar power incident per unit area at a point on the surface of the Earth is likely to be different from your answer in (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The average power absorbed per unit area at the Earth&rsquo;s surface is 240Wm<sup>&ndash;2</sup>. By treating the Earth&rsquo;s surface as a black body, show that the average surface temperature of the Earth is approximately 250K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the actual surface temperature of the Earth is greater than the value in (e).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Identify the force that causes the centripetal acceleration of the spaceship.</p>
<p>(ii) Explain why astronauts inside the spaceship would feel &ldquo;weightless&rdquo;, even though there is a force acting on them.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that the speed of the spaceship is \(v = \sqrt {\frac{{GM}}{r}} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The table gives equations for the forms of energy of the orbiting spaceship.</p>
<p><img src="" alt></p>
<p>The spaceship passes through a cloud of gas, so that a small frictional force acts on the spaceship.</p>
<p>(i) State and explain the effect that this force has on the total energy of the spaceship.</p>
<p>(ii) Outline the effect that this force has on the speed of the spaceship.</p>
<div class="marks">[4]</div>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>power/energy per second emitted is proportional to surface area;<br>and proportional to fourth power of absolute temperature / temperature in K;<br><em>Accept equation with symbols defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>solar power given by \(4\pi {R^2}\sigma {T^4}\);<br>spreads out over sphere of surface area \(4\pi {d^2}\);<br><em>Hence equation given.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {\frac{{\sigma {R^2}{T^4}}}{{{d^2}}} = } \right)\frac{{5.7 \times {{10}^{ - 8}} \times {{\left[ {7.0 \times {{10}^8}} \right]}^2} \times {{\left[ {5.8 \times {{10}^3}} \right]}^4}}}{{{{\left[ {1.5 \times {{10}^{11}}} \right]}^2}}}\);</p>
<p>=1.4&times;10<sup>3</sup>(Wm<sup>-2</sup>);</p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>some energy reflected;<br>some energy absorbed/scattered by atmosphere;<br>depends on latitude;<br>depends on time of day;<br>depends on time of year;<br>depends on weather (<em>eg</em> cloud cover) at location;<br>power output of Sun varies;<br>Earth-Sun distance varies;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>power radiated=power absorbed;<br>\(T = {}^4\sqrt {\frac{{240}}{{5.7 \times {{10}^{ - 8}}}}} \left( { = 250{\rm{K}}} \right)\);</p>
<p><em>Accept answers given as 260 (K).</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>radiation from Sun is re-emitted from Earth at longer wavelengths;<br>greenhouse gases in the atmosphere absorb some of this energy;<br>and radiate some of it back to the surface of the Earth;</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) gravitational force / gravitational attraction / weight; <em>(do not accept gravity)</em></p>
<p>(ii) astronauts and spaceship have the same acceleration;<br>acceleration is towards (centre of) planet;<br>so no reaction force between astronauts and spaceship;</p>
<p><em><strong>or</strong></em></p>
<p>astronauts and spaceships are both falling towards the (centre of the) planet;<br>at the same rate;<br>so no reaction force between astronauts and spaceship;</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitational force equated with centripetal force / \(\frac{{GmM}}{{{r^2}}} = \frac{{m{v^2}}}{r}\);</p>
<p>\( \Rightarrow {v^2} = \frac{{GM}}{r} \Rightarrow \left( {v = \sqrt {\frac{{GM}}{r}} } \right)\);</p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) thermal energy is lost;<br>total energy decreases;</p>
<p>(ii) since <em>E</em> decreases, <em>r</em> also decreases;<br>as <em>r</em> decreases <em>v</em> increases / <em>E</em><sub>k</sub> increases so <em>v</em> increases;</p>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">The Stefan-Boltzmann law was poorly understood with few candidates stating that the absolute temperature is raised to the fourth power. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This question was poorly done with few candidates substituting the surface area of the sun or the </span><span style="font-size: 10.000000pt; font-family: 'Arial';">surface area of a sphere at the Earth&rsquo;s radius of orbit. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Despite not being able to state or manipulate the Stefan-Boltzmann law most candidates could substitute values into the expression and calculate a result. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This question was well answered at higher level. </span></p>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">To show the given value there is the requirement for an explanation of why the incident power </span><span style="font-size: 10.000000pt; font-family: 'Arial';">absorbed by the Earth&rsquo;s surface is equal to the power radiated by the Earth, few candidates were </span><span style="font-size: 10.000000pt; font-family: 'Arial';">successful in this aspect. Although most could substitute into the Stefan-Boltzmann equation they needed to either show that the fourth root was used or to find the temperature to more significant figures than the value given. </span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">A surprising number of candidates could not explain the greenhouse effect. A common misunderstanding was that the Earth reflected radiation into the atmosphere and that the atmosphere reflected the radiation back to the Earth. </span></p>
</div>
</div>
</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">(i) Most were able to state gravitational force, however a significant number stated gravity and consequently did not get the mark. </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">(ii) Many answers only discussed the astronauts and not the spaceship, missing points such as </span><span style="font-size: 10.000000pt; font-family: 'Arial';">&lsquo;falling at the same rate&rsquo; or &lsquo;with the same acceleration&rsquo;. </span></p>
</div>
</div>
</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 19">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This was well answered with candidates able to adequately show in their explanation where the expression comes from. </span></p>
</div>
</div>
</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 20">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">ji) Most appreciated that the effect of the force would be to decrease the total energy. </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">jii) Very few appreciated that they should use the equations above to answer this part of the question. As a consequence, the most common answer discussed a decrease in kinetic energy and a decrease in speed. </span></p>
</div>
</div>
</div>
<div class="question_part_label">j.</div>
</div>
<br><hr><br>