File "markscheme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 5 HTML/markscheme-SL-paper1html
File size: 1.72 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>Five resistors of equal resistance are connected to a cell as shown.</p>
<p>                                             <img src="images/Schermafbeelding_2018-08-10_om_16.48.40.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/20"></p>
<p>What is correct about the power dissipated in the resistors?</p>
<p>A.<span class="Apple-converted-space">     </span>The power dissipated is greatest in resistor X.</p>
<p>B.<span class="Apple-converted-space">     </span>The power dissipated is greatest in resistor Y.</p>
<p>C.<span class="Apple-converted-space">     </span>The power dissipated is greatest in resistor Z.</p>
<p>D.<span class="Apple-converted-space">     </span>The power dissipated is the same in all resistors.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The electromotive force (emf) of a cell is defined as</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;the power supplied by the cell per unit current from the cell.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;the force that the cell provides to drive electrons round a circuit.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;the energy supplied by the cell per unit current from the cell.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;the potential difference across the terminals of the cell.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">At both levels the most popular response was D, with A, the correct answer, being the least popular. It must be stressed that candidates are expected to learn rigorous definitions.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A current is established in a coil of wire in the direction shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_18.07.23.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/19"></p>
<p class="p1">The direction of the magnetic field at point <span class="s1">P is </span></p>
<p class="p2">A.&nbsp; &nbsp; &nbsp;out of the plane of the paper.</p>
<p class="p2">B.&nbsp; &nbsp; &nbsp;into the plane of the paper.</p>
<p class="p2">C.&nbsp; &nbsp; &nbsp;to the left.</p>
<p class="p2">D.&nbsp; &nbsp; &nbsp;to the right.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell with negligible internal resistance is connected as shown. The ammeter and the voltmeter are both ideal. </p>
<p>                                                    <img src="images/Schermafbeelding_2018-08-12_om_09.33.11.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/19_01"></p>
<p>What changes occur in the ammeter reading and in the voltmeter reading when the resistance of the variable resistor is increased?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.34.17.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/19_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which diagram best represents the electric field due to a negatively charged conducting sphere?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_04.59.54.png" alt="M09/4/PHYSI/SPM/ENG/TZ1/20"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The circuit shows a resistor R connected in series with a battery and a resistor of resistance \({\text{10 }}\Omega \). The emf of the battery is 20 V and it has negligible internal resistance. The current in the circuit is 1.0 A.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_17.56.53.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/17"></p>
<p class="p3">Which of the following is the resistance of R?</p>
<p class="p3">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{1.0 }}\Omega \)</p>
<p class="p3">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2.0 }}\Omega \)</p>
<p class="p3">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{10 }}\Omega \)</p>
<p class="p3">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{20 }}\Omega \)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Three identical resistors are connected to a battery as shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_18.01.50.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/18"></p>
<p class="p1">Which of the following is a correct statement?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The current through X is greater than that through Z.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The potential difference across Z is greater than that across Y.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;The potential difference across resistor X and Y together is the same as that across Z.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The current through Z is less than the total current through X and Y.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two current-carrying wires, P and Q, that both lie in the plane of&nbsp;the paper. The arrows show the conventional current direction in the wires.</p>
<p style="text-align: center;"><img src=""></p>
<p>The electromagnetic force on Q is in the same plane as that of the wires. What is the direction of&nbsp;the electromagnetic force acting on Q?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A positively-charged particle moves parallel to a wire that carries a current upwards.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the direction of the magnetic force on the particle?</p>
<p>A. &nbsp;To the left</p>
<p>B. &nbsp;To the right</p>
<p>C. &nbsp;Into the page</p>
<p>D. &nbsp;Out of the page</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron travelling at speed <em>v</em> perpendicular to a magnetic field of strength <em>B</em> experiences a force <em>F</em>.</p>
<p>What is the force acting on an alpha particle travelling at 2<em>v</em> parallel to a magnetic field of strength 2<em>B</em>?</p>
<p>A. &nbsp;0</p>
<p>B. &nbsp;2<em>F</em></p>
<p>C. &nbsp;4<em>F</em></p>
<p>D. &nbsp;8<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron is accelerated through a potential difference of 2.5 MV. What is the change in kinetic energy of the electron?</p>
<p>A. &nbsp;0.4&mu;J</p>
<p>B. &nbsp;0.4 nJ</p>
<p>C. &nbsp;0.4 pJ</p>
<p>D. &nbsp;0.4 fJ</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following diagrams illustrates the electric field pattern of a negatively charged sphere?</p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-11-08_om_11.45.31.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/20"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">In the circuits below the cells have the same emf and zero internal resistance. The resistors all have the same resistance.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_11.42.02.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/18"></p>
<p class="p1">Which of the following gives the ratio \(\frac{{{\text{power dissipated in X}}}}{{{\text{power dissipated in Y}}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{4}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{2}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A positively charged particle enters the space between two charged conducting plates, with a constant velocity directed parallel to the plates, as shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_11.47.09.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/21"></p>
<p class="p1">The top plate is positively charged and the bottom plate is negatively charged. There is a magnetic field in the shaded region PQRS. The particle continues to move in a horizontal straight line between the plates. Which of the following correctly describes the magnetic field direction?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Into plane of paper</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Out of plane of paper</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Up</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Down</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A beam of electrons moves between the poles of a magnet.</p>
<p>                                                     <img src="images/Schermafbeelding_2018-08-12_om_10.08.39.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/21"></p>
<p>What is the direction in which the electrons will be deflected?</p>
<p>A.     Downwards</p>
<p>B.     Towards the N pole of the magnet</p>
<p>C.     Towards the S pole of the magnet</p>
<p>D.     Upwards</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell has an emf of 4.0 V and an internal resistance of 2.0 Ω. The ideal voltmeter reads 3.2 V.</p>
<p>                                                          <img src="images/Schermafbeelding_2018-08-12_om_10.10.06.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/22"></p>
<p>What is the resistance of R?</p>
<p>A.     0.8 Ω</p>
<p>B.     2.0 Ω</p>
<p>C.     4.0 Ω</p>
<p>D.     8.0 Ω</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three resistors are connected as shown. What is the value of the total resistance between X and Y?</p>
<p>                                                    <img src="images/Schermafbeelding_2018-08-10_om_16.44.55.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/18"></p>
<p>A.     1.5 Ω</p>
<p>B.     1.9 Ω</p>
<p>C.     6.0 Ω</p>
<p>D.     8.0 Ω</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two resistors X and Y are made of uniform cylinders of the same material. X and Y are connected in series. X and Y are of equal length and the diameter of Y is twice the diameter of X.</p>
<p>                                                            <img src="images/Schermafbeelding_2018-08-10_om_16.52.34.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/21"></p>
<p>The resistance of Y is <em>R</em>.</p>
<p>What is the resistance of this series combination?</p>
<p>A.<span class="Apple-converted-space">     \(\frac{{5R}}{4}\)</span></p>
<p>B.<span class="Apple-converted-space">     \(\frac{{3R}}{2}\)</span></p>
<p>C.<span class="Apple-converted-space">     3<em>R</em></span></p>
<p>D.<span class="Apple-converted-space">     5<em>R</em></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A metal wire X with length <em>L</em> and radius <em>r</em> has a resistance <em>R</em>. A wire Y of length 4<em>L</em> made from the&nbsp;same material as X has the same resistance <em>R</em>. What is the radius of Y?</p>
<p>A. 2<em>r</em></p>
<p>B. 4<em>r</em></p>
<p>C. \(\frac{r}{2}\)</p>
<p>D.&nbsp;\(\frac{r}{4}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">The vast majority of candidates understood, correctly, that the radius had to be larger &ndash; but many chose B, incorrectly thinking that the radius, rather than the cross-sectional area, changes proportionately with the length for two wires of common resistance.</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A cylindrical resistor of length \(l\) is made from a metal of mass \(m\). It has a resistance \(R\).</p>
<p class="p1">Two resistors, each of length \(2l\) and mass \(\frac{m}{2}\), are then created from the same volume of the metal.</p>
<p class="p1">What is the resistance of the two resistors when connected in parallel?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(R\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(2R\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4R\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(8R\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Think proportionality.</p>
<p class="p1">There were a few G2 comments suggesting that this question was too complex and took too much time, but this is only the case if candidates reach for equations before considering proportionality.</p>
<p class="p1">A simple sketch will show that if the new resistors are placed side by side (ie in parallel) then the new length is twice the previous length (leading to a doubling of the resistance) and half its cross-sectional area (leading to a further doubling of the resistance). So the correct response is C.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Two rectangular blocks, \(X\) and \(Y\), of the same material have different dimensions but the same overall resistance. Which of the following equations is correct?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>resistivity of \(X \times {\text{length of }}X = {\text{resistivity}}\) of \(Y \times {\text{length of }}Y\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{{\text{length of }}X}}{{{\text{cross sectional area of }}X}} = \frac{{{\text{length of }}Y}}{{{\text{cross sectional area of Y}}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>resistivity of \(X \times {\text{cross sectional area of }}X = {\text{resistivity of }}Y \times {\text{cross sectional area of }}Y\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{{\text{length of }}X}}{{{\text{cross sectional area of }}Y}} = \frac{{{\text{length of }}Y}}{{{\text{cross sectional area of }}X}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A cell of \({\text{emf }}\varepsilon \) and internal resistance \(r\) delivers current to a small electric motor.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_11.35.33.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/16"></p>
<p class="p1">450 C of charge flows through the motor and 9000 J of energy are converted in the motor. 1800 J are dissipated in the cell. The emf of the cell is</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4.0 V.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>16 V.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>20 V.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>24 V.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A resistor of resistance \({\text{12 }}\Omega \) is connected in series with a cell of negligible internal resistance. The power dissipated in the resistor is \(P\). The resistor is replaced with a resistor of resistance \({\text{3.0 }}\Omega \). What is the power dissipated in this resistor?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(0.25{\text{ }}P\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(P\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(2.0{\text{ }}P\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp;&nbsp;\(4.0{\text{ }}P\)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A proton is accelerated from rest through a potential difference of 1000 V. What is the potential difference through which an alpha particle must be accelerated to gain the same kinetic energy as the accelerated proton?</p>
<p>A. 4000 V<br>B. 2000 V<br>C. 500 V<br>D. 250 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>B was the most popular response, presumably as the candidates were thinking &lsquo;twice the charge, twice the potential difference&rsquo;. A moment&rsquo;s back checking, however, would show that this would lead to an alpha particle with four times the energy of the proton; therefore the correct response must be C.</p>
</div>
<br><hr><br><div class="question">
<p>In the circuit shown, the fixed resistor has a value of 3 &Omega; and the variable resistor can be varied&nbsp;between 0 &Omega; and 9 &Omega;.</p>
<p style="text-align: center;"><img src=""></p>
<p>The power supply has an emf of 12 V and negligible internal resistance. What is the difference&nbsp;between the maximum and minimum values of voltage <em>V</em> across the 3 &Omega; resistor?</p>
<p>A. 3 V</p>
<p>B. 6 V</p>
<p>C. 9 V</p>
<p>D. 12 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two equal and opposite charges that are fixed in place.</p>
<p style="text-align: center;"><img src=""></p>
<p>At which points is the net electric field directed to the right?</p>
<p>A. &nbsp;X and Y only</p>
<p>B. &nbsp;Z and Y only</p>
<p>C. &nbsp;X and Z only</p>
<p>D. &nbsp;X, Y and Z</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wire carrying a current \(I\)<em>&nbsp;</em>is at right angles to a uniform magnetic field of strength <em>B</em>. A magnetic force <em>F </em>is exerted on the wire. Which force acts when the same wire is placed at right angles to a uniform magnetic field of strength 2<em>B </em>when the current is \(\frac{I}{4}\)?</p>
<p>A.&nbsp;\(\frac{F}{4}\)</p>
<p>B.&nbsp;\(\frac{F}{2}\)</p>
<p>C. <em>F&nbsp;<br></em></p>
<p>D. 2<em>F</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A &ndash;5&micro;C charge and a +10&micro;C charge are a fixed distance apart.</p>
<p style="text-align: center;"><img src="" alt></p>
<p>Where can the electric field be zero?&nbsp;</p>
<p>A. position I only&nbsp;<br>B. position II only&nbsp;<br>C. position III only&nbsp;<br>D. positions I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Three positive point charges of equal magnitude are held at the corners X, Y and Z of a right-angled triangle. The point P is at the midpoint of XY. Which of the arrows shows the direction of the electric field at point P?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_08.18.20.png" alt="M10/4/PHYSI/SPM/ENG/TZ1/20"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An electron enters the vacuum between two oppositely charged plates with velocity \(v\). The electron is followed by an alpha particle moving with the same initial velocity as the electron. A uniform magnetic field is directed out of the plane of the paper.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_18.17.11.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/22"></p>
<p class="p1">The electron&rsquo;s path is undeflected. The path of the alpha particle will be</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;deflected out of the plane of the paper.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;undeflected.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;deflected upward.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;deflected downward.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">A surprising number of students were confused by this question, with the evidence being that many were simply guessing. Crossing an electric and a magnetic field is the basis of selecting the velocity of charged particles as can be readily seen by equating \(Bqv\) to \(qE\). The charge cancels which means that if the electron is undeflected then the alpha particle will also be undeflected.</p>
</div>
<br><hr><br><div class="question">
<p>A liquid that contains negative charge carriers is flowing through a square pipe with sides A, B, C and D. A magnetic field acts in the direction shown across the pipe.</p>
<p>On which side of the pipe does negative charge accumulate?</p>
<p>                                   <img src="images/Schermafbeelding_2018-08-10_om_16.46.44.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/19"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron enters the region between two charged parallel plates initially moving parallel to the plates.</p>
<p>                                          <img src="images/Schermafbeelding_2018-08-12_om_10.07.01.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/20"></p>
<p>The electromagnetic force acting on the electron</p>
<p>A.     causes the electron to decrease its horizontal speed.</p>
<p>B.     causes the electron to increase its horizontal speed.</p>
<p>C.     is parallel to the field lines and in the opposite direction to them.</p>
<p>D.     is perpendicular to the field direction.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Two resistors, made of the same material, are connected in series to a battery. The length of resistor X is twice that of resistor Y, and X has twice the cross-sectional area of Y.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_17.49.21.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/16"></p>
<p class="p1"><span class="s1">Which of the following gives </span>\(\frac{{{\text{resistance of X}}}}{{{\text{resistance of Y}}}}\)<span class="s1">? </span></p>
<p class="p2">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{4}\)</p>
<p class="p2">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{2}\)</p>
<p class="p2">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1</p>
<p class="p2">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1"><span class="s1">A \( + 3{\text{ C}}\) charge and a \( - 4{\text{ C}}\)</span> charge are a distance \(x\) apart. P is a distance \(x\)<span class="s1"> from the \( + 3{\text{ C}}\)</span> charge on the straight line joining the charges.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_11.55.04.png" alt="N15/4/PHYSI/SPM/ENG/TZ0/22"></p>
<p class="p1">What is the magnitude of the electric field strength at P?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{{\pi {\varepsilon _0}{x^2}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{{2\pi {\varepsilon _0}{x^2}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{{4\pi {\varepsilon _0}{x^2}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{{7\pi {\varepsilon _0}{x^2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Although it is convenient to use k in the equation for coulombic attraction, candidates need to be able to unpack this as \(\frac{1}{{4\pi {\varepsilon _0}}}\).</p>
</div>
<br><hr><br><div class="question">
<p>What is the definition of electric current?</p>
<p>A. The ratio of potential difference across a component to the resistance of the component</p>
<p>B. The power delivered by a battery per unit potential difference</p>
<p>C. The rate of flow of electric charge</p>
<p>D. The energy per unit charge dissipated in a power supply</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The magnetic field produced by a current in a straight wire is in</p>
<p>A. the same direction as the current.<br>B. the opposite direction to the current.<br>C. the same plane as the wire.<br>D. any plane perpendicular to the wire.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following will <strong>not</strong> give rise to a magnetic field?</p>
<p>A. A moving electron<br>B. A moving neutron<br>C. A proton and electron moving away from each other<br>D. A proton and electron moving towards each other</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p>One electronvolt is equal to</p>
<p><br>A. 1.6&times;10<sup>&minus;19 </sup>C.<br>B. 1.6&times;10<sup>&minus;19 </sup>J.<br>C. 1.6&times;10<sup>&minus;19 </sup>V.<br>D. 1.6&times;10<sup>&minus;19 </sup>W.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electron passes the north pole of a bar magnet as shown below.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">What is the direction of the magnetic force on the electron?</p>
<p style="text-align: left;">A. Into the page<br>B. Out of the page<br>C. To the left<br>D. To the right</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two electrodes, separated by a distance <em>d</em>, in a vacuum are maintained at a constant potential difference. An electron, accelerated from one electrode to the other, gains kinetic energy <em>E</em><sub>k</sub>.</p>
<p>The distance between the electrodes is now changed to \(\frac{1}{3}\)<em>d</em>.</p>
<p>What is the gain in kinetic energy of an electron that is accelerated from one electrode to the other?</p>
<div class="page" title="Page 10">
<div class="layoutArea">
<ol style="list-style-type: upper-alpha;">
<li class="column">\(\frac{{{E_k}}}{3}\)</li>
<li class="column"><em>E</em><sub>k </sub></li>
<li class="column">3<em>E</em><sub>k </sub></li>
<li class="column">9<em>E</em><sub>k</sub></li>
</ol>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">B</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A battery of internal resistance 2 &Omega; is connected to an external resistance of 10 &Omega;. The current&nbsp;is 0.5 A.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">What is the emf of the battery?</p>
<p style="text-align: left;">A. 1.0 V<br>B. 5.0 V<br>C. 6.0 V<br>D. 24.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A battery of emf 6.0V is connected to a 2.0&Omega; resistor. The current in the circuit is 2.0A. The internal resistance of the battery is</p>
<p>A. zero.</p>
<p>B. 1.0 &Omega;.</p>
<p>C. 3.0 &Omega;.</p>
<p>D. 4.0 &Omega;.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Coulomb&rsquo;s law refers to electric charges that are</p>
<p>A. on any charged objects.<br>B. charged hollow spheres.<br>C. charged solid spheres.<br>D. point charges.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p>An electric circuit consists of three identical resistors of resistance <em>R</em> connected to a cell of emf <em>&epsilon;</em> and negligible internal resistance.</p>
<p><img src="" alt></p>
<p>What is the magnitude of the current in the cell?</p>
<p>A. \(\frac{\varepsilon }{{3R}}\)</p>
<p>B. \(\frac{{2\varepsilon }}{{3R}}\)</p>
<p>C. \(\frac{{3\varepsilon }}{{2R}}\)</p>
<p>D. \(\frac{{3\varepsilon }}{R}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Three resistors of resistance \(R\) are connected in parallel across a cell of electromotive force (emf) \(V\) that has a negligible internal resistance. What is the rate at which the cell supplies energy?</p>
<p class="p1">A. &nbsp; &nbsp;&nbsp;\(\frac{{{V^2}}}{{3R}}\)</p>
<p class="p1">B. &nbsp; &nbsp;&nbsp;\(\frac{{{V^2}}}{{9R}}\)</p>
<p class="p1">C. &nbsp; &nbsp;&nbsp;\(\frac{{9{V^2}}}{R}\)</p>
<p class="p1">D. &nbsp; &nbsp;&nbsp;\(\frac{{3{V^2}}}{R}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows two long wires X and Y carrying identical currents in the same direction.</p>
<p><img src="" alt></p>
<p>The direction of the force experienced by Y is</p>
<p>A. to the left.<br>B. to the right.<br>C. into the plane of the page.<br>D. out of the plane of the page.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A copper wire with length <em>L</em> and radius <em>r</em> has a resistance <em>R</em>.</p>
<p>What is the radius of a copper wire with length \(\frac{L}{2}\) and resistance <em>R</em>?</p>
<p>A. 2<em>r</em></p>
<p>B. \(\sqrt 2 r\)</p>
<p>C. \(\frac{r}{{\sqrt 2}}\)</p>
<p>D. \(\frac{r}{2}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The ampere is defined in terms of</p>
<p>A. power dissipated in a wire of known length, cross-sectional area and resistivity.</p>
<p>B. potential difference across a resistance of known value.</p>
<p>C. number of electrons flowing past a point in a circuit in a given time.</p>
<p>D. force per unit length between parallel current-carrying conductors.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The majority of candidates chose the number of electrons flowing past a point in a given time<br>as the definition of the ampere when the correct answer is in terms of a force between parallel<br>currents.</p>
</div>
<br><hr><br><div class="question">
<p>An electron has a kinetic energy of 4.8&times;10<sup>&ndash;10</sup>J. What is the equivalent value of this kinetic energy?</p>
<p>A. 3.0 eV<br>B. 3.0 keV<br>C. 3.0 MeV<br>D. 3.0 GeV</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">The GeV prefix was apparently unknown by a significant number of candidates at both levels. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A cell is connected in series with a resistor and supplies a current of 4.0 A for a time of 500 s.&nbsp;During this time, 1.5 kJ of energy is dissipated in the cell and 2.5 kJ of energy is dissipated in&nbsp;the resistor.</p>
<p>What is the emf of the cell?</p>
<p>A. &nbsp;0.50 V</p>
<p>B. &nbsp;0.75 V</p>
<p>C. &nbsp;1.5 V</p>
<p>D. &nbsp;2.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is a statement of Ohm&rsquo;s law?</p>
<p>A. The resistance of a conductor is constant.</p>
<p>B. The current in a conductor is inversely proportional to the potential difference across the conductor provided the temperature is constant.</p>
<p>C. The resistance of a conductor is constant provided that the temperature is constant.</p>
<p>D. The current in a conductor is proportional to the potential difference across it.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Many candidates were distracted by D and there were quite a few comments from teachers suggesting that this should be accepted. But D is not true as in most cases the varying current will change the temperature of the wire causing a change in resistance. It is only true in the case that temperature is kept constant </span><span style="font-size: 10.000000pt; font-family: 'Arial';">&ndash; and that is the correct statement of Ohm&rsquo;s Law. C is an alternative statement of Ohm&rsquo;s law, given that resistance is calculated from V/I in </span><span style="font-size: 10.000000pt; font-family: 'Arial';">any particular situation. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A cylindrical conductor of length \(l\), diameter \(D\) and resistivity \(\rho \) has resistance \(R\). A different cylindrical conductor of resistivity \(2\rho \), length \(2l\) and diameter \(2D\) has a resistance</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(2R\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(R\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{R}{2}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{R}{4}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An electron is moving parallel to a straight current-carrying wire. The direction of conventional current in the wire and the direction of motion of the electron are the same. In which direction is the magnetic force on the electron?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_11.57.13.png" alt="N15/4/PHYSI/SPM/ENG/TZ0/23"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The conventional current is opposite in direction to the electron flow. So here we have essentially anti-parallel currents and the candidates should know that such currents keep well away from each other, ie they repel, leaving D as the correct response.</p>
</div>
<br><hr><br><div class="question">
<p>A resistor X of resistance <em>R</em> is made of wire of length <em>L</em> and cross-sectional area <em>A</em>. Resistor Y is made of the same material but has a length 4<em>L</em> and a cross-sectional area 2<em>A</em>. X and Y are connected in series. What is the total resistance of the combination?</p>
<p>A. 1.5<em>R</em><br>B. 2<em>R</em><br>C. 3<em>R</em><br>D. 9<em>R</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cylindrical resistor of volume <em>V</em> and length <em>l</em> has resistance <em>R</em>. The resistor has a uniform circular cross-section. What is the resistivity of the material from which the resistor is made?</p>
<p>A. \(\frac{V}{{R{l^2}}}\)</p>
<p>B. \(\frac{{{V^{\rm{2}}}R}}{l}\)</p>
<p>C. \(\frac{{VR}}{{{l^2}}}\)</p>
<p>D. \(\frac{{{V^2}}}{{Rl}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Two \(6{\text{ }}\Omega \) resistors are connected in series with a 6 V cell. A student <strong>incorrectly </strong>connects an ammeter and a voltmeter as shown below.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-07_om_18.30.29.png" alt="M09/4/PHYSI/SPM/ENG/TZ1/17_1"></p>
<p class="p3">The readings on the ammeter and on the voltmeter are</p>
<p class="p3"><img src="images/Schermafbeelding_2016-11-07_om_18.31.55.png" alt="M09/4/PHYSI/SPM/ENG/TZ1/17_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The responses to this question indicated that many candidates were unfamiliar with circuit electricity, a topic which is suitable for teaching from a practical perspective. An ideal voltmeter would have a very high (infinite) resistance.</p>
</div>
<br><hr><br><div class="question">
<p>A circuit contains a cell of electromotive force (emf) 9.0 V and internal resistance 1.0 &Omega; together&nbsp;with a resistor of resistance 4.0 &Omega; as shown. The ammeter is ideal. XY is a connecting wire.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the reading of the ammeter?</p>
<p>A. &nbsp;0 A</p>
<p>B. &nbsp;1.8 A</p>
<p>C. &nbsp;9.0 A</p>
<p>D. &nbsp;11 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is the SI unit of gravitational field strength?</p>
<p>A. N<br>B. N m<br>C. Nkg<sup>&ndash;1</sup><br>D. Nm<sup>2</sup>kg<sup>&ndash;2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An electron travelling in the direction shown by the arrow X, enters a region of uniform magnetic field. It leaves the region of field in the direction shown by the arrow Y.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_08.23.54.png" alt="M10/4/PHYSI/SPM/ENG/TZ1/21"></p>
<p class="p1">The direction of the magnetic field is</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;in the direction of X.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;into the plane of the paper.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;in the opposite direction to X.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;out of the plane of the paper.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three wires, P, Q and R, carry equal currents directed into the plane of the paper.</p>
<p><img src="" alt></p>
<p>Which arrow correctly identifies the direction of the magnetic force on wire P?</p>
<p><br>A. W<br>B. X<br>C. Y<br>D. Z</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The candidates were not sure of how to tackle this. At some stage in their course, however, they should have seen wires carrying a current in the same direction, attracting each other; in which case this question is trivial.</p>
</div>
<br><hr><br><div class="question">
<p>Kirchhoff&rsquo;s laws are applied to the circuit shown.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the equation for the dotted loop?</p>
<p>A. 0 = 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
<p>B. 0 = 4<em>I</em><sub>3</sub> &minus; 3<em>I</em><sub>2</sub></p>
<p>C. 6 = 2<em>I</em><sub>1</sub> + 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
<p>D. 6 = 3<em>I</em><sub>2</sub> + 4<em>I</em><sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of current with potential difference for a filament lamp.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the resistance of the filament when the potential difference across it is 6.0 V?<br>A. &nbsp;0.5 m&Omega;<br>B. &nbsp;1.5 m&Omega;<br>C. &nbsp;670 &Omega;<br>D. &nbsp;2000 &Omega;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two resistors of resistance 10 &Omega; and 20 &Omega; are connected in parallel to a cell of negligible internal resistance.</p>
<p><img src="" alt></p>
<p>The energy dissipated in the 10 &Omega; resistor in one second is <em>Q</em>. What is the energy dissipated in one second in the 20 &Omega; resistor?</p>
<p>A. \(\frac{Q}{4}\)<br>B. \(\frac{Q}{2}\)<br>C. 2Q<br>D. 4Q</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Power is inversely proportional to R when the potential difference is constant (as here) and proportional to R if the current is held constant. Many candidates were confused by this. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>With reference to internal energy conversion and ability to be recharged, what are the&nbsp;characteristics of a primary cell?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A circuit consists of a cell of electromotive force (emf) 6.0V and negligible internal resistance connected to two resistors of 4.0&Omega;.</p>
<div class="layoutArea">
<div class="column">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
</div>
<div class="layoutArea">
<div class="column">
<p>The resistance of the ammeter is 1.0 &Omega;. What is the reading of the ammeter?</p>
<p>A. 2.0A</p>
<p>B. 3.0A</p>
<p>C. 4.5A</p>
<p>D. 6.0A</p>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">Two isolated point charges, -7 &mu;C and +2 &mu;C, are at a fixed distance apart. At which point is it possible for the electric field strength to be zero?</div>
<div class="column">&nbsp;</div>
<div class="column"><img src="" alt></div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p>Three fixed charges, +Q, &ndash;Q and &ndash;2Q, are at the vertices of an equilateral triangle. What is the resultant force on an electron at the centre of the triangle?</p>
<p>&nbsp;</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="text-align: left;">A cell of emf 4V and negligible internal resistance is connected to three resistors as shown. Two resistors of resistance 2&Omega; are connected in parallel and are in series with a resistor of resistance 1&Omega;.</p>
<p style="text-align: center;"><img src="" alt></p>
<p>What power is dissipated in one of the 2&Omega; resistors and in the whole circuit?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Each of the resistors in the arrangements below has resistance <em>R</em>. Each arrangement is connected, in turn, to a power supply of constant emf and negligible internal resistance. In which arrangement is the current in the power supply greatest?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This was a simple question yet a good number of candidates opted for A, showing perhaps that they had not read the question carefully (and were answering the question: In which arrangement is the resistance greatest?) </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A cell is connected in series with a 2.0&Omega; resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.</p>
<p><img src="" alt></p>
<p>What is the internal resistance of the cell?</p>
<p>A. 1.0 &Omega;<br>B. 2.0 &Omega;<br>C. 3.0 &Omega;<br>D. 4.0 &Omega;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An electrical circuit is shown with loop X and junction Y.</p>
<p style="text-align: center;"><img src="" alt></p>
<p>What is the correct expression of Kirchhoff&rsquo;s circuit laws for loop X and junction Y?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Four resistors are connected as shown.<br><img src="" alt></p>
<p>What is the total resistance between X and Y?</p>
<p>A. 3 &Omega;</p>
<p>B. 4 &Omega;</p>
<p>C. 6 &Omega;</p>
<p>D. 24 &Omega;</p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three parallel wires, X, Y and Z, carry equal currents into the page.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<p>Which arrow represents the direction of the magnetic force on wire Z?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question dealt with electric potential, a topic that is not part of the SL syllabus. The<br>question was therefore deleted. The examination team apologizes for the logistical error of<br>including this HL question in the SL paper as well.</p>
</div>
<br><hr><br><div class="question">
<p>An electron is travelling in a region of uniform magnetic field. At the instant shown, the electron is moving parallel to the field direction.</p>
<p><img src="" alt></p>
<p>The magnetic force on the electron is</p>
<p>A. upwards.</p>
<p>B. downwards.</p>
<p>C. to the right.</p>
<p>D. zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A cell with an emf of 2.0 V and negligible internal resistance is connected across a 1.00 m length of uniform resistance wire XY. The free end of the flying lead can be connected to any position on the wire.</p>
<p><img src="" alt></p>
<p>What is the voltmeter reading when the flying lead is connected 0.25m from end X?</p>
<p>A. 0.00 V<br>B. 0.50 V<br>C. 1.50 V<br>D. 2.00 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Many candidates opted for D, failing to see that the wire is a resistance wire and will drop voltage along its length. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is a possible pulse shape when the pulses overlap?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Each of the resistors in the circuit has a resistance of 2.0 &Omega;. The cell has an emf of 3.0 V and negligible internal resistance. The ammeter has negligible resistance.</p>
<p><img src="" alt></p>
<p>What is the ammeter reading?</p>
<p>A. 0.4 A<br>B. 0.5 A<br>C. 1.5 A<br>D. 2.0 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Point P is at the same distance from two charges of equal magnitude and opposite sign.<br><img src="" alt></p>
<p>What is the direction of the electric field at point P?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation of current <em>I</em> in a device with potential difference <em>V</em> across it.&nbsp;</p>
<div class="layoutArea">
<div class="column">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>What is the resistance of the device at P?</p>
<p>A. zero</p>
<p>B. 0.1&Omega;</p>
<p>C. 10&Omega;</p>
<p>D. infinite</p>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following gives the resistances of an ideal ammeter and an ideal voltmeter?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A wire has variable cross-sectional area. The cross-sectional area at Y is double that at X.</p>
<p style="text-align: center;"><img src=""></p>
<p>At X, the current in the wire is <em>I</em> and the electron drift speed is <em>v</em>. What is the current and the electron drift speed at Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three parallel wires, X, Y and Z, carry equal currents. The currents in X and Z are directed into the page. The current in Y is directed out of the page.</p>
<p><img src="" alt></p>
<p>Which arrow shows the direction of the magnetic force experienced by wire Z?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">Which nucleons in a nucleus are involved in the Coulomb interaction and the strong short-range nuclear interaction?</div>
<div class="column"><img src="" alt></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which of the following is the best representation of the electric field lines around a negatively charged metal sphere?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows a circuit used to investigate internal resistance of a cell.</p>
<p><img src="" alt></p>
<p>The variable resistor <em>R</em> is adjusted and the values of potential difference <em>V</em> across the cell and current <em>I</em> are recorded. Which graph shows the variation of<em> V</em> with <em>I</em>?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ideal ammeter is used to measure the current in a resistor. Which of the following gives the resistance of an ideal ammeter and the way it is connected to the resistor?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">The graph shows the<em> I&ndash;V</em> characteristics of two resistors.</div>
<div class="column"><img src="" alt></div>
<div class="column">&nbsp;</div>
<div class="column">When resistors X and Y are connected in series, the current in the resistors is 2.0 A. What is the resistance of the series combination of X and Y?</div>
<div class="column">&nbsp;</div>
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<ol style="list-style-type: upper-alpha;">
<li>
<p>7.0 &Omega;</p>
</li>
<li>
<p>1.3 &Omega;</p>
</li>
<li>
<p>1.1 &Omega;</p>
</li>
<li>
<p>0.14 &Omega;</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which diagram represents the pattern of electric field lines of two small positive point charges held at the positions shown?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A battery of emf 12 V and negligible internal resistance is connected to a resistor of constant resistance 6 &Omega;, an ideal ammeter and an ideal voltmeter.</p>
<p><img src="" alt></p>
<p>What is the reading on the ammeter and on the voltmeter?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A long, straight, current-carrying wire is placed between a pair of magnets as shown. What is the direction of the force on the wire?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p>A wire carrying a current<em> I</em> is placed in a region of uniform magnetic field <em>B</em>, as shown in the diagram.</p>
</div>
</div>
<div class="section">
<div class="layoutArea">
<div class="column">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
</div>
</div>
<div class="layoutArea">
<div class="column">
<p>The direction of the field <em>B</em> is out of the page and the length of the wire is <em>L</em>. What is correct about the direction and magnitude of the force acting on the wire?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Three identical filament lamps W, X and Y are connected in the circuit as shown. The cell has negligible internal resistance.</p>
<p><img src="" alt></p>
<p>When the switch is closed, all the lamps light. Which of the following correctly describes what happens to the brightness of lamp W and lamp Y when the switch is opened?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">As these are identical lamps we can assume that their brightness depends either on the current through them or on the voltage across them, whichever is easier to find. (Note that if they had been non-identical lamps, then we would have had to find the power, VI, to detect the brightness). </span></p>
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Opening the switch will increase the total resistance of the circuit, reducing the current through W. Hence B and D can be eliminated. And opening the switch will also increase the voltage across Y </span><span style="font-size: 10.000000pt; font-family: 'Arial';">&ndash; </span><span style="font-size: 10.000000pt; font-family: 'Arial';">from about V/3 to V/2. Hence C. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p>A long straight wire carries an electric current perpendicularly out of the paper. Which of the following represents the magnetic field pattern due to the current?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Three identical filament lamps, X, Y and Z, are connected as shown to a battery of negligible&nbsp;internal resistance.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The filament of lamp X breaks. Which of the following correctly describes the change in brightness&nbsp;of lamp Y and of lamp Z?</p>
<p style="text-align: left;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;Most candidates chose A &ndash; an intuitive guess, but an incorrect one. When X breaks then the resistance in the circuit increases hence Z will be dimmer. Hence only C or D could be correct. And since Y has half the battery voltage across it, rather than a third previously, it has increased in brightness.</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A lamp is connected to an electric cell and it lights at its working voltage. The lamp is then connected to the same cell in a circuit with an ideal ammeter and an ideal voltmeter. Which circuit allows the lamp to light at the original brightness?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is the correct way of connecting an ammeter and of connecting a voltmeter in&nbsp;a circuit designed to measure the characteristics of a thermistor?</p>
<p style="text-align: left;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br>