File "markscheme-HL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 5 HTML/markscheme-HL-paper1html
File size: 602.36 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>A cell of emf 6.0 V and negligible internal resistance is connected to three resistors as shown.</p>
<p>The resistors have resistance of 3.0 Ω and 6.0 Ω as shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_18.36.47.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/16"></p>
<p>What is the current in resistor X?</p>
<p>A. 0.40 A</p>
<p>B. 0.50 A</p>
<p>C. 1.0 A</p>
<p>D. 2.0 A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A filament lamp and a semiconducting diode have the voltage–current (<span class="s1">\(V\)</span>–<span class="s1">\(I\)</span>) characteristics shown and are connected in parallel.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-29_om_09.54.23.png" alt="N15/4/PHYSI/HPM/ENG/TZ0/18"></p>
<p class="p1">What is the resistance of the lamp and the resistance of the diode when the current in each device is 2.0 A?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-29_om_09.55.36.png" alt="N15/4/PHYSI/HPM/ENG/TZ0/18-02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Four point charges of magnitudes \( + q\), \( + q\), \( - q\), and \( - q\) are held in place at the corners of a square of side \(r\)<em>.</em></p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_09.37.04.png" alt="N09/4/PHYSI/HPM/ENG/TZ0/09"></p>
<p class="p1">The Coulomb constant is \(k\). Which of the following is the electrical potential at the centre of the square O?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>0</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(\frac{{4kq}}{r}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\(\frac{{4kq\sqrt 2 }}{r}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(\frac{{ - 4kq\sqrt 2 }}{{{r^2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>When an electric cell of negligible internal resistance is connected to a resistor of resistance 4<em>R</em>, the power dissipated in the resistor is <em>P</em>.</p>
<p>What is the power dissipated in a resistor of resistance value <em>R </em>when it is connected to the same cell?</p>
<p>A. \(\frac{P}{4}\)</p>
<p>B. <em>P</em></p>
<p>C. 4<em>P</em></p>
<p>D. 16<em>P</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A circuit is formed by connecting a resistor between the terminals of a battery of electromotive force (emf) 6 V. The battery has internal resistance. Which statement is correct when 1 C of charge flows around the complete circuit?</p>
<p>A. 6 V is the potential difference across the resistor.</p>
<p>B. 6 J of thermal energy is dissipated in the battery.</p>
<p>C. 6 J of chemical energy is transformed in the battery.</p>
<p>D. 6 J of thermal energy is dissipated in the resistor.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ion of charge +<em>Q </em>moves vertically upwards through a small distance <em>s </em>in a uniform vertical electric field. The electric field has a strength <em>E </em>and its direction is shown in the diagram.</p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_10.43.27.png" alt="M18/4/PHYSI/HPM/ENG/TZ1/15"></p>
<p>What is the electric potential difference between the initial and final position of the ion?</p>
<p>A. \(\frac{{EQ}}{s}\)</p>
<p>B. <em>EQs</em></p>
<p>C. <em>Es</em></p>
<p>D. \(\frac{E}{s}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A 12V battery has an internal resistance of 2.0Ω. A load of variable resistance is connected across the battery and adjusted to have resistance equal to that of the internal resistance of the battery. Which statement is correct for this circuit? </p>
<p>A. The current in the battery is 6A. <br>B. The potential difference across the load is 12V. <br>C. The power dissipated in the battery is 18W. <br>D. The resistance in the circuit is 1.0Ω.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A proton p is at rest between the poles of two horizontal magnets as shown below.</p>
<p><img src="" alt></p>
<p>The magnetic force on the proton is</p>
<p>A. from left to right.</p>
<p>B. from top to bottom.</p>
<p>C. into the plane of the paper.</p>
<p>D. zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows the path of a particle in a region of uniform magnetic field. The field is directed into the plane of the page.</p>
<p style="text-align: center;"><img src=""></p>
<p>This particle could be</p>
<p>A. an alpha particle.</p>
<p>B. a beta particle.</p>
<p>C. a photon.</p>
<p>D. a neutron.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A current carrying wire is in the same plane as a uniform magnetic field. The angle between the wire and the magnetic field is \(\theta \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-07_om_17.08.24.png" alt="M09/4/PHYSI/HPM/ENG/TZ1/23"></p>
<p class="p1">The magnetic force on the current carrying wire is</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>zero.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>into the plane of the paper.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>out of the plane of the paper.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>at an angle \(\theta \) to the direction of the magnetic field.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Electrons, each with a charge <em>e</em>, move with speed <em>v</em> along a metal wire. The electric current in the wire is <em>I</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>Plane <em>P</em> is perpendicular to the wire. How many electrons pass through plane <em>P</em> in each second?</p>
<p>A. \(\frac{e}{I}\)</p>
<p>B. \(\frac{{ve}}{I}\)</p>
<p>C. \(\frac{I}{{ve}}\)</p>
<p>D. \(\frac{I}{e}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ion follows a circular path in a uniform magnetic field. Which single change decreases the radius of the path?</p>
<p>A. Increasing the mass of the ion</p>
<p>B. Increasing the charge of the ion</p>
<p>C. Increasing the speed of the ion</p>
<p>D. Decreasing the magnetic flux density of the field</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A resistor has a resistance <em>R</em>. The potential difference across the resistor is <em>V</em>. Which of the following gives the energy dissipated in the resistor in time <em>t</em>?</p>
<p>A. \(\frac{{Vt}}{R}\)</p>
<p>B. \(\frac{{Rt}}{{{V^{\rm{2}}}}}\)</p>
<p>C. RV<sup>2</sup>t</p>
<p>D. \(\frac{{{V^{\rm{2}}}t}}{R}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The electric potential is <em>V</em><sub>R</sub> at a point R in an electric field and at another point S the electric potential is <em>V</em><sub>S</sub>. Which of the following is the work done by the electric field on a point charge +<em>q</em> as it moves from R to S?</p>
<p>A. <em>V</em><sub>R</sub>-<em>V</em><sub>S</sub></p>
<p><br>B. <em>q</em>(<em>V</em><sub>R</sub>-<em>V</em><sub>S</sub>)</p>
<p><br>C. <em>V</em><sub>S</sub>-<em>V</em><sub>R</sub></p>
<p><sub><br></sub>D. <em>q</em>(<em>V</em><sub>S</sub>-<em>V</em><sub>R</sub>)<br> </p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question stem needed careful reading. The discrimination index of 0.00 showed that even the better candidates were jumping to conclusions. When work is done, it must be stated clearly what it is that is doing the work, and on what. So if a weight is being lifted, then the lifter is doing (positive) work against the field, which means that the field is doing negative work on the ball. This needs to be clearly spelt out to candidates. In this case there is a charge moving in an electrical field and the candidates are being invited to state the work done by the field on the charge.</p>
</div>
<br><hr><br><div class="question">
<p>Two wires, X and Y, are made from the same metal. The wires are connected in series. The radius of X is twice that of Y. The carrier drift speed in X is <em>v</em><sub>X</sub> and in Y it is <em>v</em><sub>Y</sub>.</p>
<p><br>What is the value of the ratio \(\frac{{{{\text{v}}_{\text{X}}}}}{{{{\text{v}}_{\text{Y}}}}}\)?</p>
<p>A. 0.25</p>
<p>B. 0.50</p>
<p>C. 2.00</p>
<p>D. 4.00</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A copper wire with length <em>L</em> and radius r has a resistance <em>R</em>.</p>
<p>What is the radius of a copper wire with length \(\frac{L}{2}\) and resistance <em>R</em>?</p>
<p>A. 2<em>r</em></p>
<p><br>B. \(\sqrt 2 r\)</p>
<p><br>C. \(\frac{r}{{\sqrt 2 }}\)</p>
<p><br>D. \(\frac{r}{2}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Positive charge is uniformly distributed on a semi-circular plastic rod. What is the direction of the electric field strength at point S?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">Two resistors, of resistance <em>R</em><sub>1</sub> and <em>R</em><sub>2</sub>, are connected in series with a cell of emf <em>ε</em> and negligible internal resistance.</div>
<div class="column"> </div>
<div class="column"><img src="" alt></div>
<div class="column"> </div>
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">Which expression gives the potential difference across the resistor of resistance R<sub>1</sub>?</div>
<div class="column"> </div>
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p>A. \(\left( {\frac{{{R_1}}}{{{R_1} + {R_2}}}} \right)\varepsilon \)</p>
<p><br>B. \(\left( {\frac{{{R_1} + {R_2}}}{{{R_1}}}} \right)\varepsilon \)</p>
<p><br>C. \(\left( {\frac{{{R_2}}}{{{R_1} + {R_2}}}} \right)\varepsilon \)</p>
<p><br>D. \(\left( {\frac{{{R_1} + {R_2}}}{{{R_2}}}} \right)\varepsilon \)</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A voltmeter of resistance 50kΩ is used to measure the electric potential difference in a circuit, as shown. The cell has an electromotive force (emf) of 5.0V and negligible internal resistance.</p>
<p><img src="" alt></p>
<p>What is the reading on the voltmeter?</p>
<p>A. 1.0 V<br>B. 1.7 V<br>C. 4.0 V<br>D. 5.0 V</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">This should have been a straightforward question but many candidates opted for B. This highlights the importance of carefully reading the question. Candidates must not assume that all relevant information will be on the diagram. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A positively charged particle follows a circular path as shown below.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Which of the following electric fields could have caused the charged particle to follow the above path?</p>
<p style="text-align: left;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A metal rod M is falling vertically within a horizontal magnetic field. The metal rod and magnetic field are directed into the paper. What is the direction of the initial force acting on the metal rod that is predicted by Lenz’s law?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">The correct response here is B. As the rod falls, an electric current in induced, forcing the electrons across the diameter of the wire. This in turn, produces an upward force on the rod </span><span style="font-size: 10.000000pt; font-family: 'Arial';">as a whole in line with Lenz’s Law. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p>A circuit consists of a cell of electromotive force (emf) 6.0V and negligible internal resistance connected to two resistors of 4.0Ω.</p>
<p> <img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p>The ammeter has resistance equal to 1.0Ω and the voltmeter is ideal. What are the readings of the ammeter and the voltmeter?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p>Two isolated point charges, -7μC and +2μC, are at a fixed distance apart. At which point is it possible for the electric field strength to be zero?</p>
</div>
</div>
</div>
</div>
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><img src="" alt></p>
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>An ideal ammeter is used to measure the current in a resistor. Which of the following gives the resistance of an ideal ammeter and the way it is connected to the resistor?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">The diagram below shows a uniform electric field of strength <em><strong>E</strong></em>. The field is in a vacuum.</div>
<div class="column"> </div>
<div class="column"> </div>
</div>
</div>
</div>
<div class="column"><img src="" alt></div>
<div class="column"> </div>
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<p> </p>
<p>An electron enters the field with a velocity <strong><em>v</em></strong> in the direction shown. The electron is moving in the plane of the paper. The path followed by the electron will be</p>
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<ol style="list-style-type: upper-alpha;">
<li>
<p>parabolic.</p>
</li>
<li>
<p>in the direction of <em><strong>E</strong></em>.</p>
</li>
<li>
<p>in the direction of <em><strong>v</strong></em>.</p>
</li>
<li>
<p>circular.</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p>A long straight wire carries an electric current perpendicularly out of the paper. Which of the following represents the magnetic field pattern due to the current?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The diagram shows the magnetic field surrounding two current-carrying metal wires P and Q. The wires are parallel to each other and at right angles to the plane of the page.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the direction of the electron flow in P and the direction of the electron flow in Q?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A lamp is connected to an electric cell and it lights at its working voltage. The lamp is then connected to the same cell in a circuit with an ideal ammeter and an ideal voltmeter. Which circuit allows the lamp to light at the original brightness?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows an electric circuit containing a potentiometer of maximum resistance <em>R</em>. The potentiometer is connected in series with a resistor also of resistance <em>R</em>. The electromotive force (emf) of the battery is 6 V and its internal resistance is negligible.<img src="" alt></p>
<p>The slider on the potentiometer is moved from P<sub>1</sub> to P<sub>2</sub>. Which graph shows the variation of the voltmeter V reading with slider distance <em>d</em>?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>