File "markscheme-SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 3 HTML/markscheme-SL-paper3html
File size: 89.03 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>The equipment shown in the diagram was used by a student to investigate the variation with volume, of the pressure <em>p</em> of air, at constant temperature. The air was trapped in a tube of constant cross-sectional area above a column of oil.</p>
<p style="text-align: center;"><img src=""></p>
<p>The pump forces oil to move up the tube decreasing the volume of the trapped air.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student measured the height <em>H</em> of the air column and the corresponding air pressure <em>p</em>. After each reduction in the volume the student waited for some time before measuring the pressure. Outline why this was necessary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The following graph of <em>p</em> versus \(\frac{1}{H}\) was obtained. Error bars were negligibly small.</p>
<p style="text-align: center;"><img src=""></p>
<p>The equation of the line of best fit is \(p = a + \frac{b}{H}\).</p>
<p>Determine the value of <em>b</em> including an appropriate unit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the results of this experiment are consistent with the ideal gas law at constant temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The cross-sectional area of the tube is 1.3 × 10<sup>–3</sup>\(\,\)m<sup>2</sup> and the temperature of air is 300 K. Estimate the number of moles of air in the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation in (b) may be used to predict the pressure of the air at extremely large values of \(\frac{1}{H}\). Suggest why this will be an unreliable estimate of the pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>in order to keep the temperature constant</p>
<p>in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE</p>
<p> </p>
<p>Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognizes <em>b</em> as gradient</p>
<p>calculates <em>b</em> in range 4.7 × 10<sup>4</sup> to 5.3 × 10<sup>4</sup></p>
<p>Pa\(\,\)m</p>
<p> </p>
<p><em>Award <strong>[2 max]</strong> if POT error in b.</em><br><em>Allow any correct SI unit, eg kg\(\,\)s<sup>–2</sup>.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(V \propto H\) thus ideal gas law gives \(p \propto \frac{1}{H}\)</p>
<p><strong>so</strong> graph<strong> should be</strong> «a straight line through origin,» as<strong> observed</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(n = \frac{{bA}}{{RT}}\) <em><strong>OR </strong></em>correct substitution of one point from the graph</p>
<p>\(n = \frac{{5 \times {{10}^4} \times 1.3 \times {{10}^{ - 3}}}}{{8.31 \times 300}} = 0.026 \approx 0.03\)</p>
<p> </p>
<p><em>Answer must be to 1 or 2 SF. </em></p>
<p><em>Allow ECF from (b).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>very large \(\frac{1}{H}\) means very small volumes / very high pressures</p>
<p>at very small volumes the ideal gas does not apply<br><em><strong>OR</strong></em><br>at very small volumes some of the assumptions of the kinetic theory of gases do not hold</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In an experiment, data were collected on the variation of specific heat capacity of water with temperature. The graph of the plotted data is shown.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The uncertainty in the values for specific heat capacity is 5%.</p>
<p>Water of mass (100 ± 2) g is heated from (75.0 ± 0.5) °C to (85.0 ± 0.5) °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best-fit for the data.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the gradient of the line at a temperature of 80 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the unit for the quantity represented by the gradient in your answer to (b)(i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the energy required to raise the temperature of the water from 75 °C to 85 °C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using an appropriate error calculation, justify the number of significant figures that should be used for your answer to (c)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>single smooth curve passing through all data points</p>
<p> </p>
<p><em>Do not accept straight lines joining the dots </em></p>
<p><em>Curve must touch some part of every x</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>tangent drawn at 80 °C</p>
<p>gradient values separated by minimum of 20 °C</p>
<p>9.0 × 10<sup>–4</sup> «kJ kg<sup>–1</sup> K<sup>–2</sup>»</p>
<p><em>Do not accept tangent unless “ruler” straight.</em></p>
<p><em>Tangent line must be touching the curve drawn for MP1 to be awarded.</em></p>
<p><em>Accept values between 7.0 × 10<sup>–4</sup> and 10 × 10<sup>–4</sup>.</em></p>
<p><em>Accept working in J, giving 0.7 to 1.0</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>kJ kg<sup>−1</sup> K<sup>−2</sup></p>
<p> </p>
<p><em>Accept J instead of kJ</em></p>
<p><em>Accept °C<sup>–2</sup> instead of K<sup>−2</sup></em></p>
<p><em>Accept °C<sup>–1</sup> K<sup>–1</sup> instead of K<sup>−2</sup></em></p>
<p><em>Accept C for °C</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«0.1 x 4.198 x 10 =» 4.198 «kJ» <em><strong>or</strong></em> 4198 «J»</p>
<p><em>Accept values between 4.19 and 4.21</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>percentage uncertainty in Δ<em>T</em> = 10%</p>
<p>«2% + 5% + 10%» = 17%</p>
<p>absolute uncertainty «0.17 × 4.198 =» 0.7 «kJ» therefore 2 sig figs</p>
<p><em><strong>OR</strong></em></p>
<p>absolute uncertainty to more than 1 sig fig and consistent final answer</p>
<p><em>Allow fractional uncertainties in MP1 and MP2</em></p>
<p><em>Watch for ECF from (c)(i)<br></em></p>
<p><em>Watch for ECF from MP1</em></p>
<p><em>Watch for ECF from MP2<br></em></p>
<p><em>Do not accept an answer without justification</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br>