File "markscheme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 3 HTML/markscheme-SL-paper1html
File size: 306.02 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>A sealed container contains water at 5 °C and ice at 0 °C. This system is thermally isolated from its surroundings. What happens to the total internal energy of the system?</p>
<p>A.     It remains the same.</p>
<p>B.     It decreases.</p>
<p>C.     It increases until the ice melts and then remains the same.</p>
<p>D.     It increases.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A fixed mass of an ideal gas is trapped in a cylinder of constant volume and its temperature is varied. Which graph shows the variation of the pressure of the gas with temperature in degrees Celsius?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_16.23.05.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/10"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass m of ice at a temperature of &ndash;5 &deg;C is changed into water at a temperature of 50 &deg;C.</p>
<p style="padding-left: 90px;">Specific heat capacity of ice = <em>c</em><sub>i</sub><br>Specific heat capacity of water = <em>c</em><sub>w</sub><br>Specific latent heat of fusion of ice = <em>L</em></p>
<p>Which expression gives the energy needed for this change to occur?</p>
<p>A. &nbsp;55 <em>m c</em><sub>w</sub> + <em>m L</em></p>
<p>B. &nbsp;55 <em>m c</em><sub>i</sub> + 5 <em>m L</em></p>
<p>C. &nbsp;5 <em>m c</em><sub>i</sub> + 50 <em>m c</em><sub>w</sub> + <em>m L</em></p>
<p>D. &nbsp;5 <em>m c</em><sub>i</sub> + 50 <em>m c</em><sub>w</sub> + 5 <em>m L</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A system consists of an ice cube placed in a cup of water. The system is thermally insulated from its surroundings. The water is originally at 20 &deg;<span class="s1">C</span>. Which graph best shows the variation of total internal energy \(U\) of the system with time \(t\)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_17.29.56.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/09"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the definition of the <em>mole</em>?</p>
<p>A. The amount of substance that has the same mass as 6.02&nbsp;\( \times \) 10<sup>23</sup> atoms of carbon-12.</p>
<p>B. The amount of substance that contains as many nuclei as the number of nuclei in 12 g of carbon-12.</p>
<p>C. The amount of substance that has the same mass as one atom of carbon-12.</p>
<p>D. The amount of substance that contains as many elementary entities as the number of atoms in 12 g of carbon-12.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is an assumption made in the kinetic model of ideal gases?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Molecules have zero mass.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Forces between molecules are attractive.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Collisions between molecules are elastic.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Molecules move at high speed.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Equal masses of water at 80&deg;C and paraffin at 20&deg;C are mixed in a container of negligible thermal capacity. The specific heat capacity of water is twice that of paraffin. What is the final temperature of the mixture?</p>
<p>A. 30&deg;C</p>
<p>B. 40&deg;C</p>
<p>C. 50&deg;C</p>
<p>D. 60&deg;C</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In the kinetic model of an ideal gas, which of the following is <strong>not</strong> assumed?</p>
<p>A. The molecules collide elastically.</p>
<p>B. The kinetic energy of a given molecule is constant.</p>
<p>C. The time taken for a molecular collision is much less than the time between collisions.</p>
<p>D. The intermolecular potential energy of the molecules is zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Thermal energy is transferred to a solid. Three properties of the solid are</p>
<p style="padding-left: 30px;">I. volume<br>II. mass<br>III. specific heat capacity.</p>
<p>Which of the above properties determine the rise in temperature of the solid?</p>
<p>A. I and III only<br>B. II and III only<br>C. II only<br>D. III only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Tanya heats 100 g of a liquid with an electric heater which has a constant power output of 60 W. After 100 s the rise in temperature is 40 K. The specific heat capacity of the liquid in \({\text{J}}\,{\text{k}}{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\) is calculated from which of the following?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{60 \times 100}}{{0.1 \times 40}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{60 \times 0.1}}{{40}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{0.1 \times 40}}{{60}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{60}}{{40}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Molar mass is defined as</p>
<p>A. the number of particles in one mole of a substance.<br>B. \(\frac{1}{{12}}\) the mass of one atom of carbon-12.<br>C. the mass of one mole of a substance.<br>D. the number of particles in \(\frac{1}{{12}}\) of a mole of carbon-12</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is equivalent to a temperature of 350 K?</p>
<p>A. &ndash;623&deg;C<br>B. &ndash;77&deg;C<br>C. +77&deg;C<br>D. +623&deg;C</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A liquid-in-glass thermometer is in thermal equilibrium with some hot water. The thermometer is left in the water. The water cools to the temperature of the surroundings. Which of the following is <strong>unlikely to be true</strong> for the thermometer?</p>
<p>A. It is in thermal equilibrium with the water.<br>B. It is in thermal equilibrium with the surroundings.<br>C. It is at the same temperature as the water.<br>D. It has the same thermal capacity as the water.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A solid of mass <em>m</em> is initially at temperature &Delta;<em>T</em> below its melting point. The solid has specific heat capacity <em>c</em> and specific latent heat of fusion <em>L</em>. How much thermal energy must be transferred to the solid in order to melt it completely?</p>
<p>A. <em>mL</em>+<em>mc</em><br>B. <em>mc</em>+<em>mL</em>&Delta;<em>T</em><br>C. <em>mc</em>&Delta;<em>T</em>+<em>L</em>&Delta;<em>T</em><br>D. <em>mc</em>&Delta;<em>T</em>+<em>mL</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A pure solid is heated at its melting point. While it is melting the</p>
<p>A. mean kinetic energy of the molecules of the solid increases.<br>B. mean potential energy of the molecules of the solid increases.<br>C. temperature of the solid increases.<br>D. temperature of the solid decreases.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is an assumption of the kinetic model of an ideal gas?</p>
<p>A. The gas is at high pressure.</p>
<p>B. There are weak forces of attraction between the particles in the gas.</p>
<p>C. The collisions between the particles are elastic.</p>
<p>D. The energy of the particles is proportional to the absolute temperature.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A container holds 40 g of argon-40 \(\left( {_{{\text{18}}}^{{\text{40}}}{\text{Ar}}} \right)\) and 8 g of helium-4 \(\left( {_{\text{2}}^{\text{4}}{\text{He}}} \right)\).</p>
<p class="p1">What is the \(\frac{{{\text{number of atoms of argon}}}}{{{\text{number of atoms of helium}}}}\) in the container?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{2}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{2}{9}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{2}{1}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{9}{2}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The following can be determined for a solid substance.</p>
<p style="padding-left: 30px;">I. The average kinetic energy&nbsp;\({E_{{{\rm{K}}_{{\rm{ave}}}}}}\) of the molecules<br>II. The total kinetic energy&nbsp;\({E_{{{\rm{K}}_{{\rm{tot}}}}}}\) of the molecules<br>III. The total potential energy&nbsp;\({E_{{{\rm{P}}_{{\rm{tot}}}}}}\) of the molecules</p>
<p>Which is/are equal to the internal energy of this solid substance?</p>
<p>A. I only<br>B. I and III only<br>C. II only<br>D. II and III only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Energy is supplied at a constant rate to a fixed mass of a material. The material begins as a solid. The graph shows the variation of the temperature of the material with time.&nbsp;</p>
<p style="text-align: center;"><img src="" alt></p>
<p>The specific heat capacities of the solid, liquid and gaseous forms of the material are c<sub>s</sub> c<sub>l</sub> and c<sub>g</sub>&nbsp;respectively. What can be deduced about the values of c<sub>s</sub> c<sub>l</sub> and c<sub>g</sub>?&nbsp;</p>
<p>A. c<sub>s</sub> &gt; c<sub>g</sub> &gt; c<sub>l</sub>&nbsp;<br>B. c<sub>l</sub> &gt; c<sub>s</sub> &gt; c<sub>g&nbsp;<br></sub>C. c<sub>l</sub> &gt; c<sub>g</sub> &gt; c<sub>s</sub>&nbsp;<br>D. c<sub>g</sub> &gt; c<sub>s</sub> &gt; c<sub>l</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The mole is defined as</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{{12}}\) the mass of an atom of the isotope carbon-12.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>the amount of a substance that contains as many elementary entities as the number of atoms in 12 g of the isotope carbon-12.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>the mass of one atom of the isotope carbon-12.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>the amount of a substance that contains as many nuclei as the number of nuclei in 12 g of the isotope carbon-12.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">D was a common distracter indicating that many candidates were unfamiliar with expressions such as &lsquo;a mole of water&rsquo; or &lsquo;a mole of marbles&rsquo;.</p>
</div>
<br><hr><br><div class="question">
<p>An ideal gas of <em>N </em>molecules is maintained at a constant pressure <em>p</em>. The graph shows how the volume <em>V </em>of the gas varies with absolute temperature <em>T</em>.</p>
<p style="text-align: center;"><img src="" alt></p>
<p>What is the gradient of the graph?</p>
<p>A. \(\frac{N}{p}\)</p>
<p>B. \(\frac{NR}{p}\)</p>
<p>C. \(\frac{{N{k_{\rm{B}}}}}{p}\)</p>
<p>D. \(\frac{N}{{Rp}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A temperature of 23 K is equivalent to a temperature of</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 300\) &deg;C.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 250\) &deg;C.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 250\) &deg;C.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 300\) &deg;C.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A block of iron of mass 10 kg and temperature 10&deg;C is brought into contact with a block of iron of mass 20 kg and temperature 70&deg;C. No energy transfer takes place except between the two blocks. What will be the final temperature of both blocks?</p>
<p>A. 30&deg;C<br>B. 40&deg;C<br>C. 50&deg;C<br>D. 60&deg;C</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>What are the units of the ratio<span class="Apple-converted-space"> \(\frac{{{\text{specific heat capacity of copper}}}}{{{\text{specific latent heat of vaporization of copper}}}}\)?</span></p>
<p><span class="Apple-converted-space">A.     </span>no units</p>
<p><span class="Apple-converted-space">B.     k</span></p>
<p><span class="Apple-converted-space">C.     k<sup>–1</sup></span></p>
<p><span class="Apple-converted-space">D.     k<sup>–2</sup></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Two objects are in thermal contact and are at different temperatures. What is/are determined by the temperatures of the two objects?</p>
<p class="p1">I.&nbsp; &nbsp; &nbsp;The direction of thermal energy transfer between the objects</p>
<p class="p1">II.&nbsp; &nbsp; &nbsp;The quantity of internal energy stored by each object</p>
<p class="p1">III.&nbsp; &nbsp; &nbsp;The process by which energy is transferred between the objects</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;II only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Many candidates seemed to think that when two bodies of different temperatures are placed in thermal contact, then the &ldquo;process&rdquo; of energy transferral depends upon the temperatures involved. However, thermal contact involves thermal energy transfer by conduction only so cannot depend upon the temperatures.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">When 1800 J of energy is supplied to a mass <em>m </em>of liquid in a container, the temperature of the liquid and the container changes by 10 K. When the mass of the liquid is doubled to 2<em>m</em>, 3000 J of energy is required to change the temperature of the liquid and container by 10 K. What is the specific heat capacity of the liquid in \({\text{J}}\,{\text{k}}{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{60}}{m}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{120}}{m}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{180}}{m}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{240}}{m}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Think units.</p>
<p class="p1">The units of the answer are given as \({\text{J}}\,{\text{k}}{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\), which means that we need to divide energy by temperature (and mass, but that is already present in each response). C was the most popular option, but this is 120 (obtained by dividing 1800 J by 10 K and totally ignoring the container) so it must be incorrect. Thus it would be reasonable to subtract the energies given before dividing by 10 K &ndash; giving the correct answer B.</p>
<p class="p1">Alternatively the candidate can write down the two relevant heat exchange equations and subtract them, but this takes longer.</p>
</div>
<br><hr><br><div class="question">
<p>Under what conditions of density and pressure is a real gas best described by the equation of state for an ideal gas?</p>
<p>A. Low density and low pressure</p>
<p>B. Low density and high pressure</p>
<p>C. High density and low pressure</p>
<p>D. High density and high pressure</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sealed container contains a mixture of oxygen and nitrogen gas.<br>The ratio&nbsp;\(\frac{{{\text{mass of an oxygen molecule}}}}{{{\text{mass of a nitrogen molecule}}}}\)&nbsp;is&nbsp;\(\frac{8}{7}\).</p>
<p>The ratio \(\frac{{{\text{average kinetic energy of oxygen molecules}}}}{{{\text{average kinetic energy of nitrogen molecules}}}}\) is</p>
<p>A. &nbsp;1.</p>
<p>B.&nbsp; \(\frac{7}{8}\).</p>
<p>C. &nbsp;\(\frac{8}{7}\).</p>
<p>D. &nbsp;dependent on the concentration of each gas.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">In the kinetic model of an ideal gas, it is assumed that</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;the forces between the molecules of the gas and the container are always zero.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;the intermolecular potential energy of the molecules of the gas is constant.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;the kinetic energy of a given molecule of the gas is constant.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;the momentum of a given molecule of the gas is constant.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The intermolecular potential energy of the molecules in an ideal gas is assumed to be zero at all times i.e. constant.</p>
</div>
<br><hr><br><div class="question">
<p>The specific latent heat of a substance is defined as the energy required at constant temperature to</p>
<p>A. change the phase.<br>B. change the phase of 1 kg.<br>C. change the phase of 1 m<sup>3</sup>.<br>D. change the phase of 1 kg every second.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A fixed mass of an ideal gas in a closed container with a movable piston initially occupies a&nbsp;volume <em>V</em>. The position of the piston is changed, so that the mean kinetic energy of the particles in the gas is doubled and the pressure remains constant.</p>
<p>What is the new volume of the gas?</p>
<p>A.&nbsp; \(\frac{V}{4}\)</p>
<p>B.&nbsp; \(\frac{V}{2}\)</p>
<p>C. &nbsp;2<em>V</em></p>
<p>D. &nbsp;4<em>V</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A sealed cylinder of length <em>l </em>and cross-sectional area <em>A </em>contains <em>N </em>molecules of an ideal gas at kelvin temperature <em>T</em>.</p>
<p>                                                             <img src="images/Schermafbeelding_2018-08-10_om_16.26.56.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/12"></p>
<p>What is the force acting on the area of the cylinder marked <em>A </em>due to the gas?</p>
<p>A.<span class="Apple-converted-space">     \(\frac{{NRT}}{l}\)</span></p>
<p>B.<span class="Apple-converted-space">     \(\frac{{NRT}}{{lA}}\)</span></p>
<p>C.<span class="Apple-converted-space">     \(\frac{{N{k_B}T}}{{lA}}\)</span></p>
<p>D.<span class="Apple-converted-space">     \(\frac{{N{k_B}T}}{l}\)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is equivalent to a temperature of &ndash;100&deg;C?</p>
<p>A. &ndash;373 K</p>
<p>B. &ndash;173 K</p>
<p>C. 173 K</p>
<p>D. 373 K</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the temperature, in K, that is equivalent to 57&deg;C?</p>
<p>A. 220<br>B. 273<br>C. 330<br>D. 430</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p>The volume of an ideal gas in a container is increased at constant temperature. Which of the following statements is/are correct about the molecules of the gas?</p>
<p style="padding-left: 30px;">I. &nbsp; Their average speed remains constant.<br>II. &nbsp;The frequency of collisions of molecules with unit area of the container wall decreases.<br>III. The force between them decreases.</p>
<p>A. I only<br>B. I and II only<br>C. I and III only<br>D. II and III only</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">B</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;As many teachers noted there was no correct answer to this question as the word &lsquo;average&rsquo; was omitted from the stem leading a significant number of candidates to opt for D. This question was, therefore, discounted from both SL and HL.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A container that contains a fixed mass of an ideal gas is at rest on a truck. The truck now moves away horizontally at a constant velocity. What is the change, if any, in the internal energy of the gas and the change, if any, in the temperature of the gas when the truck has been travelling for some time?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.27.13.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mass of 0.20 kg of water at 20&deg;C is mixed with 0.40 kg of water at 80&deg;C. No thermal energy is transferred to the surroundings. What is the final temperature of the mixture?</p>
<p>A. 30&deg;C<br>B. 40&deg;C<br>C. 50&deg;C<br>D. 60&deg;C</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows how the temperature of a liquid varies with time when energy is supplied to the liquid at a constant rate <em>P</em>. The gradient of the graph is <em>K </em>and the liquid has a specific heat capacity <em>c</em>.</p>
<p>                                                             <img src="images/Schermafbeelding_2018-08-12_om_09.24.20.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/11"></p>
<p>What is the mass of the liquid?</p>
<p>A.     \(\frac{P}{{cK}}\)</p>
<p>B.     \(\frac{{PK}}{c}\)</p>
<p>C.     \(\frac{{Pc}}{K}\)</p>
<p>D.     \(\frac{{cK}}{P}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Oil with volume <em>V</em> has specific&nbsp;heat capacity <em>c</em> at temperature <em>T</em>. The density of oil is <em>&rho;</em>. Which of the following is the thermal capacity of the oil?</p>
<p>A. <em>&rho;cV<br></em></p>
<p>B. \(\frac{{cV}}{\rho }\)</p>
<p>C. <em>&rho;cVT</em></p>
<p>D. \(\frac{{cV}}{{\rho T}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">A</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>What is the mass of carbon-12 that contains the same number of atoms as 14 g of silicon-28?</p>
<p>A. 6 g<br>B. 12 g<br>C. 14 g<br>D. 24 g</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What does the constant <em>n</em> represent in the equation of state for an ideal gas <em>pV = nRT</em>?</p>
<p>A. The number of atoms in the gas</p>
<p>B. The number of moles of the gas</p>
<p>C. The number of molecules of the gas</p>
<p>D. The number of particles in the gas</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The temperature of an object is -153&deg;C. Its temperature is raised to 273&deg;C. What is the temperature change of the object?</p>
<p>A. 699 K<br>B. 426 K<br>C. 153 K<br>D. 120 K</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Carbon has a relative atomic mass of 12 and oxygen has a relative atomic mass of 16. A sample of 6 g of carbon has twice as many atoms as</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;32 g of oxygen.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;8 g of oxygen.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;4 g of oxygen.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;3 g of oxygen.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">In the table below, which row shows the correct conversion between the Kelvin and Celsius temperature scales?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_11.09.53.png" alt="N09/4/PHYSI/SPM/ENG/TZ0/09"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is a possible pulse shape when the pulses overlap?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ideal gas is contained in a thermally insulated cylinder by a freely moving piston.</p>
<p><img src="" alt></p>
<p>The gas is compressed by the piston and as a result the temperature of the gas increases. What is the explanation for the temperature rise?</p>
<p>A. The rate of collision between the molecules increases.<br>B. Energy is transferred to the molecules by the moving piston.<br>C. The molecules of the gas are pushed closer together.<br>D. The rate of collision between the molecules and the walls of the cylinder increases.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The weaker candidates were opting for D. But D does not answer the question which asks for an explanation for the temperature rise.</p>
</div>
<br><hr><br><div class="question">
<p>An ideal gas has an absolute temperature <em>T</em>. The average random kinetic energy of the molecules of the gas is</p>
<p>A. independent of <em>T</em>.</p>
<p>B. equal to <em>T</em>.</p>
<p>C. proportional to <em>T</em>.</p>
<p>D. inversely proportional to <em>T</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The total potential energy and random kinetic energy of the molecules of an object is equal to the</p>
<p>A. heat energy in the object.</p>
<p>B. internal energy of the object.</p>
<p>C. thermal energy in the object.</p>
<p>D. work stored in the object.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This is a question straight from the Guide which states that internal energy consists of the<br>intermolecular potential energy of the molecules of a substance plus their random kinetic<br>energy.</p>
</div>
<br><hr><br><div class="question">
<p>Two objects are in thermal contact, initially at different temperatures. Which of the following determines the transfer of thermal energy between the objects?</p>
<p style="padding-left: 30px;">I. The mass of each object<br>II. The thermal capacity of the objects<br>III. The temperature of the objects</p>
<p>A. I only</p>
<p>B. I and II only</p>
<p>C. II and III only</p>
<p>D. III only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A 1.0 kW heater supplies energy to a liquid of mass 0.50 kg. The temperature of the liquid changes&nbsp;by 80 K in a time of 200 s. The specific heat capacity of the liquid is 4.0 kJ kg<sup>&ndash;1</sup> K<sup>&ndash;1</sup>. What is the&nbsp;average power lost by the liquid?</p>
<p>A. 0</p>
<p>B. 200 W</p>
<p>C. 800 W</p>
<p>D. 1600 W</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Under what conditions of pressure and temperature does a real gas approximate to an ideal gas?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the variation with time <em>t</em> of the temperature <em>T</em> of two samples, X and Y.&nbsp;X and Y have the same mass and are initially in the solid phase. Thermal energy is being&nbsp;provided to X and Y at the same constant rate.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the correct comparison of the specific latent heats <em>L</em><sub>X</sub> and <em>L</em><sub>Y</sub> and specific heat capacities in the liquid phase <em>c</em><sub>X</sub> and <em>c</em><sub>Y</sub> of X and Y?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is <strong>not</strong> an assumption of the kinetic model of ideal gases?</p>
<p>A. All particles in the gas have the same mass.</p>
<p>B. All particles in the gas have the same speed.</p>
<p>C. The duration of collisions between particles is very short.</p>
<p>D. Collisions with the walls of the container are elastic.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The pressure of a fixed mass of an ideal gas in a container is decreased at constant temperature. For the molecules of the gas there will be a decrease in&nbsp;</p>
<p>A. the mean square speed.<br>B. the number striking the container walls every second.&nbsp;<br>C. the force between them.&nbsp;<br>D. their diameter.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A solid piece of tungsten melts into liquid without a change in temperature. Which of the following&nbsp;is correct for the molecules in the liquid phase compared with the molecules in the solid phase?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Thermal energy is added at a constant rate to a substance which is solid at time \(t = 0\). The graph shows the variation with \(t\) of the temperature \(T\).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_17.33.00.png" alt="N10/4/PHYSI/SPM/ENG/TZ0/10"></p>
<p class="p1">Which of the statements are correct?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The specific latent heat of fusion is greater than the specific latent heat of vaporization.</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The specific heat capacity of the solid is less than the specific heat capacity of the liquid.</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Neither I nor II</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>The energy of the molecules of an ideal gas is</p>
<ol style="list-style-type: upper-alpha;">
<li>
<p>thermal only.</p>
</li>
<li>
<p>thermal and potential.</p>
</li>
<li>
<p>potential and kinetic.</p>
</li>
<li>
<p>kinetic only.</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>Many candidates opted for C. It should be stressed that the molecules of an ideal gas are regarded as having zero potential energy. This caught out many candidates in paper two as well and clearly needs to be reiterated to the candidates.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The internal energy of any substance is made up of the</p>
<p>A. total random kinetic and potential energy of its molecules.<br>B. total potential energy of its molecules.<br>C. total random kinetic energy of its molecules.<br>D. total vibrational energy of its molecules.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">A minority of candidates at both levels opted for response C believing that internal energy is only the kinetic energy of any substance; this is only true for ideal gases. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A liquid is initially at its freezing point. Energy is removed at a uniform rate from the liquid until it freezes completely.<br>Which graph shows how the temperature <em>T</em> of the liquid varies with the energy <em>Q</em> removed from&nbsp;the liquid?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A thin-walled cylinder of weight <em>W</em>, open at both ends, rests on a flat surface. The cylinder has a height <em>L</em>, an average radius <em>R</em> and a thickness <em>x</em> where <em>R</em> is much greater than <em>x</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is the pressure exerted by the cylinder walls on the flat surface?</p>
<p style="text-align: left;">A.&nbsp; \(\frac{W}{{2\pi Rx}}\)</p>
<p style="text-align: left;">B.&nbsp; \(\frac{W}{{\pi {R^2}x}}\)</p>
<p style="text-align: left;">C.&nbsp; \(\frac{W}{{\pi {R^2}}}\)</p>
<p style="text-align: left;">D.&nbsp; \(\frac{W}{{\pi {R^2}L}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A heater of constant power heats a liquid of mass <em>m</em> and specific heat capacity <em>c</em>. The graph below&nbsp;shows how the temperature of the liquid varies with time.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The gradient of the graph is k and no energy is lost to the surroundings. What is the power of the&nbsp;heater?<br>A. <em>kmc</em></p>
<p style="text-align: left;">B. \(\frac{k}{{mc}}\)</p>
<p style="text-align: left;">C. \(\frac{mc}{{k}}\)</p>
<p style="text-align: left;">D. \(\frac{1}{{kmc}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p>A substance is heated at constant power. The graph shows how the temperature <em>T</em> of the substance varies with time <em>t</em> as the state of the substance changes from liquid to gas.</p>
<p>&nbsp;<img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>&nbsp;</p>
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p>What can be determined from the graph?</p>
<p>A. The specific heat capacity of the gas is smaller than the specific heat capacity of the liquid.</p>
<p>B. The specific heat capacity of the gas is larger than the specific heat capacity of the liquid.</p>
<p>C. The specific latent heat of fusion of the substance is less than its specific latent heat of vaporization.</p>
<p>D. The specific latent heat of fusion of the substance is larger than its specific latent heat of vaporization.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A fixed mass of water is heated by an electric heater of unknown power <em>P</em>. The following quantities are measured</p>
<p>I. mass of water<br>II. increase in water temperature<br>III. time for which water is heated.</p>
<p>In order to calculate <em>P</em>, the specific heat capacity of the water is required. Which are also required?</p>
<p>A. I and II only<br>B. I and III only<br>C. II and III only<br>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The specific latent heat is the energy required to change the phase of</p>
<p>A. one kilogram of a substance.<br>B. a substance at constant temperature.<br>C. a liquid at constant temperature.<br>D. one kilogram of a substance at constant temperature.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Candidates are required to learn definitions. There are conditions (such as changing pressure) where the temperature of a body changing phase may alter. If this is the case then the specific latent heat does not apply. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A sample of solid copper is heated beyond its melting point. The graph shows the variation of temperature with time.</p>
<p><img src="" alt></p>
<p>During which stage(s) is/are there an increase in the internal energy of the copper?</p>
<p>A. P, Q and R</p>
<p>B. Q only</p>
<p>C. P and R only</p>
<p>D. Q and R only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="text-align: left;">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Molecules leave a boiling liquid to form a vapour. The vapour and the liquid have the same temperature.</p>
<p>What is the change of the average potential energy and the change of the average random kinetic energy of these molecules when they move from the liquid to the vapour?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>