File "markscheme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 3 HTML/markscheme-HL-paper1html
File size: 148.86 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>Q and R are two rigid containers of volume 3<em>V </em>and <em>V </em>respectively containing molecules of the same ideal gas initially at the same temperature. The gas pressures in Q and R are <em>p </em>and 3<em>p </em>respectively. The containers are connected through a valve of negligible volume that is initially closed.</p>
<p>                                                        <img src="images/Schermafbeelding_2018-08-13_om_18.30.51.png" alt="M18/4/PHYSI/HPM/ENG/TZ2/09"></p>
<p>The valve is opened in such a way that the temperature of the gases does not change. What is the change of pressure in Q?</p>
<p>A.     +<em>p</em></p>
<p>B.     \(\frac{{ + p}}{2}\)</p>
<p>C.     \(\frac{{ - p}}{2}\)</p>
<p>D.     –<em>p</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two containers, X and Y, are each filled by an ideal gas at the same temperature. The volume of Y is half the volume of X. The number of moles of gas in Y is three times the number of moles of the gas in X. The pressure of the gas in X is <em>P</em><sub>X</sub> and the pressure of the gas in Y is <em>P</em><sub>Y</sub>.</p>
<p>What is the ratio \(\frac{{{P_X}}}{{{P_Y}}}\)?</p>
<p>A. \(\frac{1}{6}\)</p>
<p>B. \(\frac{2}{3}\)</p>
<p>C. \(\frac{3}{2}\)</p>
<p>D. 6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There are two changes that are made in going from X to Y. A simple sketch, done while reading the stem, should show which way the proportionality works. As there are no squares in pV = nRT, the answer must be A.</p>
</div>
<br><hr><br><div class="question">
<p>What are the conditions of temperature and pressure at which the behaviour of a real gas approximates to the behaviour of an ideal gas?</p>
<p>A. Low pressure and low temperature<br>B. Low pressure and high temperature<br>C. High pressure and low temperature<br>D. High pressure and high temperature</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is numerically equal to the specific heat capacity of the substance of a solid body?</p>
<p>A. The thermal energy required to melt the body</p>
<p>B. The thermal energy required to increase the temperature of unit mass of the body by 1K</p>
<p>C. The thermal energy required to increase the temperature of the body by 1K</p>
<p>D. The total kinetic and potential energy of all the molecules in the body</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The graph shows the variation with absolute temperature \(T\) of the pressure \(p\) of a fixed mass of an ideal gas.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_14.15.23.png" alt="N10/4/PHYSI/HPM/ENG/TZ0/11_1"></p>
<p class="p1">Which of the following is correct concerning the volume and the density of the gas?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_14.16.08.png" alt="N10/4/PHYSI/HPM/ENG/TZ0/11_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ideal gas has a volume of 15 ml, a temperature of 20 &deg;C and a pressure of 100 kPa.&nbsp;The volume of the gas is reduced to 5 ml and the temperature is raised to 40 &deg;C. What is&nbsp;the new pressure of the gas?</p>
<p>A. 600 kPa</p>
<p>B. 320 kPa</p>
<p>C. 200 kPa</p>
<p>D. 35 kPa</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The molar mass of magnesium is 24g. 12g of magnesium contains the same number of particles as</p>
<p>A. 6 g of carbon-12.</p>
<p>B. 12 g of carbon-12.</p>
<p>C. 24 g of carbon-12.</p>
<p>D. 6.02&times;10<sup>23 </sup>g of carbon-12.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two objects are in thermal contact, initially at different temperatures. Which of the following determines the transfer of thermal energy between the objects?</p>
<p style="padding-left: 30px;">I. The mass of each object<br>II. The thermal capacity of the objects<br>III. The temperature of the objects</p>
<p>A. I only</p>
<p>B. I and II only</p>
<p>C. II and III only</p>
<p>D. III only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An ideal gas and a solid of the same substance are at the same temperature. The average kinetic energy of the gas molecules is \({E_{\text{g}}}\) and the average kinetic energy of the solid molecules is \({E_{\text{s}}}\). What is the comparison between \({E_{\text{g}}}\) and \({E_{\text{g}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({E_{\text{g}}}\) is less than \({E_{\text{s}}}\).</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({E_{\text{g}}}\) equals \({E_{\text{s}}}\).</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({E_{\text{g}}}\) is greater than \({E_{\text{s}}}\).</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The relationship between \({E_{\text{g}}}\) and \({E_{\text{s}}}\) cannot be determined.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A fixed mass of an ideal gas has a constant volume. Two quantities, <em>R</em> and <em>S</em>, of the gas vary as shown by the graph below.<br><img src="images/Screen_Shot_2016-08-01_at_1.21.04_PM.png" alt><br>What quantities do <em>R</em> and <em>S</em> represent?</p>
<p><img src="images/Screen_Shot_2016-08-01_at_1.21.20_PM.png" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A fixed mass of an ideal gas is at temperature <em>T</em>. The pressure is doubled and the volume is halved. What is the temperature after these changes?</p>
<p>A. \(\frac{T}{2}\)</p>
<p>B. <em>T</em></p>
<p>C. 2<em>T</em></p>
<p>D. 4<em>T</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The fraction of the internal energy that is due to molecular vibration varies in the different states&nbsp;of matter. What gives the order from highest fraction to lowest fraction of internal energy due to&nbsp;molecular vibration?</p>
<p>A. liquid &gt; gas &gt; solid</p>
<p>B. solid &gt; liquid &gt; gas</p>
<p>C. solid &gt; gas &gt; liquid</p>
<p>D. gas &gt; liquid &gt; solid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following correctly identifies the properties of the molecules of a substance that determine the substance&rsquo;s internal energy?</p>
<p>A. The total potential energy and random kinetic energy<br>B. The random kinetic energy<br>C. The total gravitational potential energy and random kinetic energy<br>D. The total potential energy</p>
<p>&nbsp;</p>
<p style="text-align: center;">&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div data-canvas-width="694.1737373513404">
<div data-canvas-width="694.3557484378152">&nbsp;</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Unpolarized light of intensity <em>I<sub>0</sub></em> is incident on a polarizing filter. Light from this filter is incident on&nbsp;a second filter, which has its axis of polarization at 30˚ to that of the first filter.</p>
<p>The value of cos 30˚ is \(\frac{{\sqrt 3 }}{2}\). What is the intensity of the light emerging through the second filter?</p>
<p>A.&nbsp;\(\frac{{\sqrt 3 }}{2}\)<em>I<sub>0</sub></em></p>
<p>B.&nbsp;\(\frac{3}{2}\)<em>I<sub>0</sub></em></p>
<p>C.&nbsp;\(\frac{3}{4}\)<em>I<sub>0</sub></em></p>
<p>D.&nbsp;\(\frac{3}{8}\)<em>I<sub>0</sub></em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A fixed mass of an ideal gas undergoes an isochoric (isovolumetric) change. This increases the pressure of the gas. Which describes the change of internal energy of the gas and the direction of transfer of thermal energy?</p>
<p><img src="images/Screen_Shot_2016-08-01_at_1.23.28_PM.png" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An ideal gas expands at constant pressure. The graph shows the relationship between pressure <em>P</em> and volume <em>V</em> for this change.</p>
<p><img src="" alt></p>
<p>The change in the internal energy of the gas during this expansion is 1800 J. What is the amount and the direction of thermal energy transferred?</p>
<p>A. 3000 J into the gas<br>B. 3000 J out of the gas<br>C. 600 J into the gas<br>D. 600 J out of the gas</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The behaviour of a monatomic gas such as helium will approximate to that of an ideal gas when it is kept at</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;a temperature close to absolute zero.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;low pressure.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;very high pressure.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;very high temperature.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">B is clearly the best response even though it does not read &lsquo;very low pressure&rsquo;.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Water at a temperature of 0 &deg;C is kept in a thermally insulated container. A lump of ice, also at 0 &deg;C, is placed in the water and completely submerged.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-08_om_06.12.07.png" alt="M10/4/PHYSI/HPM/ENG/TZ1/10_1"></p>
<p class="p1">Which of the following is true in respect of both the net amount of ice that will melt and the change in temperature of the water?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_06.12.46.png" alt="M10/4/PHYSI/HPM/ENG/TZ1/10_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An ice cube and an iceberg are both at a temperature of 0 &deg;<span class="s2">C</span>. Which of the following is a correct comparison of the average random kinetic energy and the total kinetic energy of the molecules of the ice cube and the iceberg?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-08_om_14.10.47.png" alt="N10/4/PHYSI/HPM/ENG/TZ0/09"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The behaviour of real gases is different from that predicted for ideal gases. Which of the following statements about real gases is <strong>not </strong>correct?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Gas molecules have potential energy.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Forces between gas molecules are always negligible.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Gas molecules have volume.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Real gases can liquefy.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>A container with 0.60kg of a liquid substance is placed on a heater at time <em>t</em><em>=0</em>. The specific latent heat of vaporization of the substance is 200kJkg<sup>&ndash;1</sup>. The graph shows the variation of the temperature <em>T</em> of the substance with time <em>t.</em></p>
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>What is the power of the heater?</p>
<p>A. 1200 W</p>
<p>B. 3000 W</p>
<p>C. 4800 W</p>
<p>D. 13 300 W</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>