File "SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 12 HTML/SL-paper3html
File size: 401.5 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
</div>
<div class="specification">
<p class="p1">The half-life of Au-189 is 8.84 minutes. A freshly prepared sample of the isotope has an activity of 124Bq.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A nucleus of a radioactive isotope of gold (Au-189) emits a neutrino in the decay to a nucleus of an isotope of platinum (Pt).</p>
<p class="p1">In the nuclear reaction equation below, state the name of the particle X and identify the nucleon number \(A\) and proton number \(Z\) of the nucleus of the isotope of platinum.</p>
<p class="p1">\[_{\;79}^{189}Au \to _Z^APt + X + v\]</p>
<p class="p1">X:</p>
<p class="p1"><em>A</em>:</p>
<p class="p1"><em>Z</em>:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the decay constant of Au-189.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the activity of the sample after 12.0 min.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
<p class="p1">In a particular nuclear medical imaging technique, carbon-11 \((_{\;6}^{11}{\text{C}})\) is used. It is radioactive and decays through \({\beta ^ + }\) decay to boron (B).</p>
</div>
<div class="specification">
<p class="p1">The half-life of carbon-11 is 20.3 minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the numbers and the particle to complete the decay equation.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-04_om_15.09.19.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/07.a.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the nature of the \({\beta ^ + }\) particle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline a method for measuring the half-life of an isotope, such as the half-life of carbon-11.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the law of radioactive decay.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Derive the relationship between the half-life \({T_{\frac{1}{2}}}\) and the decay constant <span class="s1">\(\lambda \) </span>, using the law of radioactive decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the number of nuclei of carbon-11 that will produce an activity of \(4.2 \times {10^{20}}{\text{ Bq}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about wave–particle duality.</p>
</div>
<div class="specification">
<p class="p1">A particle of mass \({\text{6.4}} \times {\text{1}}{{\text{0}}^{ - {\text{27}}}}{\text{ kg}}\) and charge \(3.2 \times {10^{ - 19}}{\text{ C}}\) is accelerated from rest through a potential difference of 25 kV.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the de Broglie hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate the kinetic energy of the particle.</p>
<p class="p1">(ii) Determine the de Broglie wavelength of the particle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about nuclear physics and radioactive decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>decay constant.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A sample of 1.6 mol of the radioactive nuclide radon-210 \(\left( {{}_{86}^{210}{\rm{Rn}}} \right)\) decays into polonium-206 \(\left( {{}_{84}^{206}{\rm{Po}}} \right)\) with the production of one other particle.</p>
<p>\[{}_{86}^{210}{\rm{Rn}} \to {}_{84}^{206}{\rm{Po + X}}\]</p>
<p>(i) Identify particle X.<br>(ii) The radioactive decay constant of radon-210 is 8.0×10<sup>–5</sup>s<sup>–1</sup>. Determine the time required to produce 1.1 mol of polonium-206.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Particle X has an initial kinetic energy of 6.2MeV after the decay in (b). In a scattering experiment, particle X is aimed head-on at a stationary gold-197 \(\left( {{}_{76}^{197}{\rm{Au}}} \right)\) nucleus.</p>
<p>Determine the distance of closest approach of particle X to the Au nucleus.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
<p>A nucleus of magnesium-23 decays forming a nucleus of sodium-23 with the emission of an electron neutrino and a β<sup>+</sup> particle.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the existence of neutrinos was hypothesized to account for the energy spectrum of beta decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The decay constant for magnesium-23 is 0.061 s<sup>−1</sup>. Calculate the time taken for the number of magnesium-23 nuclei to fall to 12.5% of its initial value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the wave nature of matter.</p>
</div>
<div class="specification">
<p class="p1">In 1927 Davisson and Germer tested the de Broglie hypothesis. They directed a beam of electrons onto a nickel crystal as shown in the diagram. The experiment was carried out in a vacuum.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_15.34.04.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/05.b"></p>
<p class="p1"> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe wave-particle duality in relation to the de Broglie hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The electrons were accelerated through a potential difference of 54 V. Show that the associated de Broglie wavelength for the electrons is about \(2 \times {10^{ - 10}}{\text{ m}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The electron detector recorded a large number of electrons at a particular scattering angle \(\theta \). Explain why a maximum in the number of scattered electrons is observed at a particular angle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
<p>In a photoelectric experiment, light of wavelength 450 nm is incident on a sodium surface. The work function for sodium is 2.4 eV.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate, in eV, the maximum kinetic energy of the emitted electrons.</p>
<p>(ii) The number of electrons leaving the sodium surface per second is 2 \( \times \) 10<sup>15</sup>. Calculate the current leaving the sodium surface.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of the light incident on the sodium surface is decreased without changing its intensity. Explain why the number of electrons emitted from the sodium will decrease.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quantum physics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the de Broglie hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An electron is accelerated from rest through a potential difference of 5.0 kV.</p>
<p>(i) Calculate the momentum of the electron after acceleration.<br>(ii) Calculate the wavelength of the electron.<br>(iii) Determine the energy of a photon that has the same wavelength as the electron in (b)(ii).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The momentum of the electron is known precisely. Deduce that all the information on its position is lost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to Schrödinger’s model, state the meaning of the amplitude of the wavefunction for the electron.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the photoelectric effect.</p>
<p class="p1">When light is incident on a clean metal surface, electrons can be emitted through the photoelectric effect.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_09.55.29.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/05"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how the Einstein model is used to explain the photoelectric effect.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State why, although the incident light is monochromatic, the energies of the emitted electrons vary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why no electrons are emitted if the frequency of the incident light is less than a certain value, no matter how intense the light.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For monochromatic light of wavelength 620 nm a stopping potential of 1.75 V is required. Determine the minimum energy required to emit an electron from the metal surface.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about energy level transitions.</p>
<p class="p1">Some of the electron energy levels for a hydrogen atom are shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_10.12.30.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/06"></p>
</div>
<div class="specification">
<p class="p1">A hydrogen atom is excited to the \( - 1.51{\text{ eV}}\) level.</p>
</div>
<div class="specification">
<p class="p1">Monochromatic radiation is incident on gaseous hydrogen. All the hydrogen atoms are in the ground state. Describe what could happen to the radiation and to the hydrogen atoms if the incident photon energy is equal to</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the diagram, label using arrows all the possible transitions that might occur as the hydrogen atom returns to the ground state.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the energy in eV of the maximum wavelength photon emitted as the hydrogen atom returns to the ground state.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">10.2 eV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">9.0 eV.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the <em>decay constant </em>of a radioactive isotope.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the decay constant \(\lambda \) is related to the half-life \({T_{\frac{1}{2}}}\) by the expression</p>
<p class="p1">\[\lambda {T_{\frac{1}{2}}} = \ln 2.\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Strontium-90 is a radioactive isotope with a half-life of 28 years. Calculate the time taken for 65% of the strontium-90 nuclei in a sample of the isotope to decay.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about wave–particle duality.</p>
</div>
<div class="specification">
<p class="p1">In the photoelectric effect, electrons are not emitted from the surface of a metal if the frequency of the incident light is below a certain value called the threshold frequency.</p>
</div>
<div class="specification">
<p class="p1">Light of frequency \(1.0 \times {10^{15}}{\text{ Hz}}\) is incident on the surface of a metal. The work function of the metal is \(3.2 \times {10^{ - 19}}{\text{ J}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Explain, with reference to the Einstein model of the photoelectric effect, the existence of the threshold frequency.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State, with reference to your answer in (a)(i), the reason why the threshold frequency is different for different metals.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Show that the maximum kinetic energy of the emitted electrons is \(3.4 \times {10^{ - 19}}{\text{ J}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the de Broglie wavelength of the electrons in (b)(i).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about nuclear energy levels and nuclear decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The isotope bismuth-212 undergoes α-decay to an isotope of thallium. In this decay a gamma-ray photon is also produced. The isotope potassium-40 undergoes β<sup>+</sup> decay to an isotope of argon.</p>
<p>Outline how the</p>
<p>(i) α particle spectrum and the gamma spectrum of the decay of bismuth-212 give evidence for the existence of discrete nuclear energy levels.</p>
<p>(ii) β<sup>+</sup> spectrum of the decay of potassium-40 led to the existence of the neutrino being postulated.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The isotope potassium-40 occurs naturally in many rock formations. In a particular sample of rock it is found that, out of the total number of argon plus potassium-40 atoms, 23% are potassium-40 atoms.</p>
<p>Determine the age of the rock sample. The decay constant for potassium-40 is 5.3×10<sup>–10</sup>yr<sup>–1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about plutonium as a power source.</p>
<p>Plutonium (\({}_{94}^{238}{\rm{Pu}}\)) decays by alpha emission. The energy of the alpha particle emitted is 8.8×10<sup>–13</sup>J. The decay constant of plutonium-238 is 8.1×10<sup>–3</sup>yr<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>decay constant</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plutonium-238 is to be used as a power source in a space probe.</p>
<p>(i) Determine the initial activity of plutonium such that the power released by plutonium is 6.0 W.</p>
<p>(ii) The power source becomes useless when the power released decreases to 4.0 W. Determine the time, in years, for which the power source can be used in the space probe.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A nuclide of the isotope potassium-40 \(\left( {{}_{19}^{40}{\rm{K}}} \right)\) decays into a stable nuclide of the isotope<br>argon-40 \(\left( {{}_{18}^{40}{\rm{Ar}}} \right)\). Identify the particles X and Y in the nuclear equation below.</p>
<p>\[{}_{19}^{40}{\rm{K}} \to {}_{18}^{40}{\rm{Ar + X + Y}}\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The half-life of potassium-40 is 1.3×10<sup>9</sup>yr. In a particular rock sample it is found that 85 % of the original potassium-40 nuclei have decayed. Determine the age of the rock.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the quantities that need to be measured in order to determine the half-life of a long-lived isotope such as potassium-40.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about radioactive decay.</span></p>
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">Sodium-22 undergoes </span><em><span style="font-size: 12pt; font-family: 'SymbolMT';">β</span></em><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">+ </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">decay. </span></p>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing entries in the following nuclear reaction.</p>
<p>\[{}_{11}^{22}{\rm{Na}} \to {}_ \ldots ^{22}{\rm{Ne}} + {}_ \ldots ^0e + {}_0^0 \ldots \]</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>half-life</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sodium-22 has a decay constant of 0.27 yr<sup>–1</sup>.</p>
<p>(i) Calculate, in years, the half-life of sodium-22.</p>
<p>(ii) A sample of sodium-22 has initially 5.0 × 10<sup>23</sup> atoms. Calculate the number of sodium-22 atoms remaining in the sample after 5.0 years.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the concept of a photon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the photoelectric effect there exists a threshold frequency below which no emission of photoelectrons takes place.</p>
<p>Outline how the</p>
<p>(i) wave theory of light is unable to account for this observation.</p>
<p>(ii) concepts of the photon and work function are able to account for this observation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light of wavelength 420 nm is incident on a clean metal surface. The work function of the metal is 2.0 eV.</p>
<p>Determine the</p>
<p>(i) threshold frequency for this metal.</p>
<p>(ii) maximum kinetic energy in eV of the emitted electrons.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect and the de Broglie hypothesis.</p>
<p>When photons are incident on a lithium surface photoelectrons are emitted. The work function <em>φ</em> of lithium is 2.9 eV.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>work function.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum wavelength of the photons that can cause photoemission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the momentum of an electron that has the same de Broglie wavelength as the wavelength of the photons in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
<p>Nitrogen-13 \(\left( {{}_7^{13}{\rm{N}}} \right)\) is an isotope that is used in medical diagnosis. The decay constant of nitrogen-13 is 1.2×10<sup>–3</sup>s<sup>–1</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define <em>decay constant</em>.</p>
<p>(ii) A sample of nitrogen-13 has an initial activity of 800 Bq. The sample cannot be used for diagnostic purposes if its activity becomes less than 150 Bq. Determine the time it takes for the activity of the sample to fall to 150 Bq.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the half-life of nitrogen-13.</p>
<p>(ii) Outline how the half-life of a sample of nitrogen-13 can be measured in a laboratory.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen-13 undergoes β+ decay. Outline the experimental evidence that suggests another particle, the neutrino, is also emitted in the decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about radioactive decay.</p>
<p class="p1">Meteorites contain a small proportion of radioactive aluminium-26 \(\left( {_{{\text{13}}}^{{\text{26}}}{\text{Al}}} \right)\) in the rock.</p>
<p class="p1">The amount of \(_{{\text{13}}}^{{\text{26}}}{\text{Al}}\) is constant while the meteorite is in space due to bombardment with cosmic rays.</p>
</div>
<div class="specification">
<p class="p1">After reaching Earth, the number of radioactive decays per unit time in a meteorite sample begins to diminish with time. The half-life of aluminium-26 is \(7.2 \times {10^5}\) years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aluminium-26 decays into an isotope of magnesium (Mg) by \({\beta ^ + }\) decay.</p>
<p class="p1">\[_{{\text{13}}}^{{\text{26}}}{\text{Al}} \to _{\text{Y}}^{\text{X}}{\text{Mg}} + {\beta ^ + } + {\text{Z}}\]</p>
<p class="p1">Identify X, Y and Z in this nuclear decay process.</p>
<p class="p2"> </p>
<p class="p1">X:</p>
<p class="p1">Y:</p>
<p class="p1">Z:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the beta particles emitted from the aluminium-26 have a continuous range of energies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by half-life.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A meteorite which has just fallen to Earth has an activity of 36.8 Bq. A second meteorite of the same mass, which arrived some time ago, has an activity of 11.2 Bq. Determine, in years, the time since the second meteorite arrived on Earth.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the de Broglie hypothesis.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the de Broglie hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the de Broglie wavelength of a proton that has been accelerated from rest through a potential difference of 1.2 kV.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a precise knowledge of the de Broglie wavelength of the proton implies that its position cannot be observed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the photoelectric effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light of frequency 8.7×10<sup>14</sup>Hz is incident on the surface of a metal in a photocell. The surface area of the metal is 9.0×10<sup>–6</sup>m<sup>2</sup> and the intensity of the light is 1.1×10<sup>–3</sup>Wm<sup>–2</sup>.</p>
<p>(i) Deduce that the maximum possible photoelectric current in the photocell is 2.7 nA.</p>
<p>(ii) The maximum kinetic energy of photoelectrons released from the metal surface is 1.2 eV. Calculate the value of the work function of the metal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>This question is about neutrinos.</p>
<p>The spectrum of electron energies emitted in a typical β-decay is continuous. Describe how this observation led physicists to propose the existence of the particles now called neutrinos.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
<p>Nuclide X has a half-life that is estimated to be in the thousands of years.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the half-life of X can be determined experimentally.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A pure sample of X has a mass of 1.8 kg. The half-life of X is 9000 years. Determine the mass of X remaining after 25000 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Potassium-40 (K-40) is a radioactive isotope that occurs naturally in many different types of rock. A very small percentage of the isotope undergoes β<sup>+</sup> decay to form an isotope of argon (Ar). Construct and complete the nuclear reaction equation for this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Overall about 10% of a sample of K-40 will decay to argon. In a particular rock sample it is found that there are 1.6×10<sup>22</sup> atoms of K-40 and 8.4×10<sup>21</sup> atoms of argon. The half-life of K-40 is 1.2×10<sup>9</sup> yr. Estimate the time elapsed since the rock sample was formed.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>This question is about the photoelectric effect.</p>
<p>In an experiment to investigate the photoelectric effect, light of frequency ƒ is incident on the metal surface A, shown in the diagram below. A potential difference is applied between A and B. The photoelectric current is measured by a sensitive ammeter. (Note: the complete electrical circuit is not shown.)</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">When the frequency of the light is reduced to a certain value, the current measured by the ammeter becomes zero. Explain how Einstein’s photoelectric theory accounts for this observation.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Monochromatic light of different frequencies is incident on a metal surface placed in a vacuum. As the frequency is increased a value is reached at which electrons are emitted from the surface. Below this frequency, no matter how intense the light, no electrons are emitted. Outline how the</p>
<p>(i) wave theory of light is unable to account for these observations.</p>
<p>(ii) Einstein model of the photoelectric effect is able to account for these observations.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows how the maximum kinetic energy <em>E</em><sub>K</sub> of the ejected electrons in (a) varies with the frequency <em>f</em> of the incident light.</p>
<p><img src="" alt></p>
<p>Use the graph to determine the</p>
<p>(i) Planck constant.</p>
<p>(ii) work function of the metal.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that electrons of energy 0.50 eV have a de Broglie wavelength of about 1.7×10<sup>–9</sup>m.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about quarks and interactions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how interactions in particle physics are understood in terms of exchange particles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether or not strangeness is conserved in this decay.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total energy of the particle represented by the dotted line is 1.2 GeV more than what is allowed by energy conservation. Determine the time interval from the emission of the particle from the s quark to its conversion into the d \({\rm{\bar d}}\) pair.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pion is unstable and decays through the weak interaction into a neutrino and an anti-muon.</p>
<p>Draw a Feynman diagram for the decay of the pion, labelling all particles in the diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
<p>The diagram shows apparatus used to investigate the photoelectric effect.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When red light is incident on the metallic surface M the microammeter registers a current. Explain how a current is established in this circuit even though nothing joins M to C inside the tube.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with voltage <em>V</em> of the current <em>I</em> in the circuit.</p>
<p><img src="" alt></p>
<p>The work function of the metallic surface M is 0.48 eV.</p>
<p>(i) Define <em>work function</em>.</p>
<p>(ii) State the maximum kinetic energy of an electron immediately after it has been emitted from M.</p>
<p>(iii) Calculate the energy of a photon incident on M.</p>
<p>(iv) The red light incident on M is now replaced by blue light. The number of photons incident on M per second is the same as in (b).</p>
<p>On the axes opposite, sketch a graph to show the variation with <em>V</em> of the current <em>I</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the photoelectric effect.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram shows the set up of an experiment designed to verify the Einstein model of the photoelectric effect.</p>
<p><img src="" alt></p>
<p>The tungsten electrode is positive.</p>
<p>Explain how the maximum kinetic energy of electrons ejected from the positive electrode is determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light of frequency <em>f</em> is shone onto the tungsten electrode in (a). The potential <em>V</em><sub>s</sub> for which the photoelectric current is zero is recorded for different values of <em>f</em>.</p>
<p>(i) Using the axes below, sketch a graph of how you might expect <em>V</em><sub>s</sub> to vary with <em>f</em>.</p>
<p><img src="" alt></p>
<p>(ii) State the Einstein photoelectric equation in a form that relates <em>V</em><sub>s</sub> and <em>f</em>. Define, other than the electron charge, any other symbols that you might use.</p>
<p>(iii) Outline how a graph of <em>V</em><sub>s</sub> against <em>f</em> can be used to find the Planck constant and work function of tungsten.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The work function of tungsten is 4.5eV. Show that the de Broglie wavelength of an electron that has this energy is about 0.6nm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about radioactive decay.</p>
<p>Iodine-124 (I-124) is an unstable radioisotope with proton number 53. It undergoes beta plus decay to form an isotope of tellurium (Te).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reaction for the decay of the I-124 nuclide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph below shows how the activity of a sample of iodine-124 changes with time.</p>
<p><img src="" alt></p>
<p>(i) State the half-life of iodine-124.</p>
<p>(ii) Calculate the activity of the sample at 21 days.</p>
<p>(iii) A sample of an unknown radioisotope has a half-life twice that of iodine-124 and the same initial activity as the sample of iodine-124. On the axes opposite, draw a graph to show how the activity of the sample would change with time. Label this graph X.</p>
<p>(iv) A second sample of iodine-124 has half the initial activity as the original sample of iodine-124. On the axes opposite, draw a graph to show how the activity of this sample would change with time. Label this graph Y.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about atomic energy levels. </span></p>
</div>
</div>
</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how atomic spectra provide evidence for the quantization of energy in atoms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the de Broglie hypothesis explains the existence of a <strong>discrete</strong> set of wavefunctions for electrons confined in a box of length<em> L</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows the shape of two allowed wavefunctions <em>ѱ<sub>A</sub></em> and <em>ѱ<sub>B</sub></em> for an electron confined in a one-dimensional box of length<em> L</em>.</p>
<p><img src="" alt></p>
<p>(i) With reference to the de Broglie hypothesis, suggest which wavefunction corresponds to the larger electron energy.</p>
<p>(ii) Predict and explain which wavefunction indicates a larger probability of finding the electron near the position \(\frac{L}{2}\) in the box.</p>
<p>(iii) On the graph in (c) on page 7, sketch a possible wavefunction for the <strong>lowest</strong> energy state of the electron.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>