File "markscheme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Topic 1 HTML/markscheme-SL-paper1html
File size: 484.44 KB
MIME-type: application/octet-stream
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">Which of the following will reduce random errors in an experiment?</div>
<div class="column">&nbsp;</div>
<div class="column">A. Using an instrument having a greater precision</div>
<div class="column">B. Checking the calibration of the instrument used</div>
<div class="column">C. Checking for zero error on the instrument used<br>D. Repeating readings</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The best estimate for the time it takes light to cross the nucleus of the hydrogen atom is</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({10^{ - 23}}{\text{ s}}\).</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({10^{ - 20}}{\text{ s}}\).</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({10^{ - 15}}{\text{ s}}\).</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({10^{ - 7}}{\text{ s}}\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a unit of force?</p>
<p>A.     J m</p>
<p>B.     J m<sup>–1</sup></p>
<p>C.     J m s<sup>–1</sup></p>
<p>D.     J m<sup>–1</sup> s</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is a derived unit?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Mole</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Kelvin</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Coulomb</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Ampere</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is equivalent to the joule?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{N}}\,{{\text{m}}^{\text{2}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{N}}\,{{\text{m}}^{ - 2}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{kg}}\,{\text{m}}\,{{\text{s}}^{ - 2}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{kg}}\,{{\text{m}}^{\text{2}}}{{\text{s}}^{ - 2}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A boy jumps from a wall 3m high. What is an estimate of the change in momentum of the boy when he lands without rebounding?</p>
<p>A. 5&times;10<sup>0&nbsp;</sup>kg m s<sup>&ndash;1</sup>&nbsp;</p>
<p>B. 5&times;10<sup>1&nbsp;</sup>kg m s<sup>&ndash;1</sup>&nbsp;</p>
<p>C. 5&times;10<sup>2&nbsp;</sup>kg m s<sup>&ndash;1</sup>&nbsp;</p>
<p>D. 5&times;10<sup>3&nbsp;</sup>kg m s<sup>&ndash;1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The acceleration of free fall <em>g</em> is determined by the relationship \(g = \frac{{4{\pi ^2}l}}{{{t^2}}}\). The uncertainty in the value of <em>l</em> is 2% and the uncertainty in the value of <em>t</em> is 5%. What is the uncertainty in <em>g</em>?</p>
<p>A. 3%<br>B. 7%<br>C. 8%<br>D. 12%</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Response B proved to be a popular distracter, particularly at SL, with candidates failing to spot that squaring the time doubles its uncertainty. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The resistive force <em>F</em> acting on a sphere of radius <em>r</em> travelling with speed <em>v</em> through a liquid is given by the equation</p>
<p>\[F = 6\pi \eta rv\]</p>
<p>where&nbsp;\(\eta \) is a constant. What are the SI units of \(\eta \)?</p>
<p>A. kgm<sup>&ndash;1</sup>s<sup>&ndash;2</sup><br>B. kgm<sup>2</sup>s<sup>&ndash;1</sup><br>C. kgm<sup>&ndash;1</sup>s<sup>&ndash;1</sup><br>D. kg<sup>&ndash;1</sup>s<sup>&ndash;3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The sides of a square are measured to be 5.0 &plusmn; 0.2 cm. Which of the following gives the area of the square and its uncertainty?</p>
<p>A. 25.0 &plusmn; 0.2 cm<sup>2</sup><br>B. 25.0 &plusmn; 0.4 cm<sup>2</sup><br>C. 25 &plusmn; 2 cm<sup>2</sup><br>D. 25 &plusmn; 4 cm<sup>2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">A number of candidates opted for B. Candidates appeared to have added the absolute uncertainty rather than adding the relative uncertainty as the approximation for finding the uncertainty in multiplication. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which of the following lists two vector quantities and one scalar quantity?</p>
<p>A. force, mass, time<br>B. acceleration, energy, momentum<br>C. distance, impulse, power<br>D. density, pressure, temperature</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A small object is attached to a string and rotated in a circle of constant radius in a horizontal plane. The tension <em>T</em> in the string is measured for different speeds <em>v</em>. Which of the following plots should give a straight-line graph?</p>
<p>A. <em>T</em> against <em>v</em></p>
<p>B. <em>T</em><sup>2</sup> against <em>v</em></p>
<p>C. <em>T</em> against <em>v</em><sup>2</sup></p>
<p>D.&nbsp;<em>T</em><sup>2</sup> against <em>v</em><sup>2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A stone falls from rest to the bottom of a water well of depth <em>d</em>. The time t taken to fall is 2.0 &plusmn;0.2 s.&nbsp;The depth of the well is calculated to be 20 m using <em>d</em> =&nbsp;\(\frac{1}{2}\)<em>at&thinsp;</em><sup>2</sup>. The uncertainty in a is negligible.</p>
<p>What is the absolute uncertainty in <em>d</em>?</p>
<p>A. &nbsp;&plusmn; 0.2 m</p>
<p>B. &nbsp;&plusmn; 1 m</p>
<p>C. &nbsp;&plusmn; 2 m</p>
<p>D. &nbsp;&plusmn; 4 m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The length of each side of a sugar cube is measured as 10 mm with an uncertainty of \( \pm 2{\text{ mm}}\). Which of the following is the absolute uncertainty in the volume of the sugar cube?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( \pm 6{\text{ m}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( \pm 8{\text{ m}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( \pm 400{\text{ m}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( \pm 600{\text{ m}}{{\text{m}}^{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">A majority of candidates clearly had not translated the absolute uncertainties into percentages.</p>
</div>
<br><hr><br><div class="question">
<p>Which of the following lists three vector quantities?</p>
<p>A. momentum, electric field strength, displacement<br>B. momentum, displacement, pressure<br>C. pressure, electric current, displacement<br>D. electric current, electric field strength, impulse</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>It should be noted that &lsquo;electric field strength&rsquo; is a vector quantity.</p>
</div>
<br><hr><br><div class="question">
<p>Which of the following expresses the watt in terms of fundamental units?</p>
<p>A. kg m<sup>2</sup> s</p>
<p>B. kg m<sup>2</sup> s<sup>-1</sup></p>
<p>C. kg m<sup>2</sup> s<sup>-2</sup></p>
<p>D. kg m<sup>2</sup> s<sup>-3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is a fundamental unit?</p>
<p>A. Ampere</p>
<p>B. Coulomb</p>
<p>C. Ohm</p>
<p>D. Volt</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The maximum acceleration <em>a</em><sub>max</sub> of an oscillator undergoing simple harmonic motion (SHM) has a percentage uncertainty of 12%. The amplitude <em>x</em><sub>0</sub> of the oscillation has a percentage uncertainty of 20%. If&nbsp;\(k = \sqrt {\frac{{{a_{\max }}}}{{{x_0}}}} \) what is the percentage uncertainty in the constant <em>k</em>?</p>
<p>A. 4%</p>
<p>B. 8%</p>
<p>C. 16%</p>
<p>D. 32%</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">It was surprising to see the number of candidates who clearly did not realise that the square root involves halving the percentage uncertainty. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>How many significant figures are there in the number 0.0450?</p>
<p>A. 2</p>
<p>B. 3</p>
<p>C. 4</p>
<p>D. 5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The radius of a sphere is measured with an uncertainty of 2%. What is the uncertainty in the volume of the sphere?<br>A. 2%<br>B. 4%<br>C. 6%<br>D. 8%</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Consideration of units leads to C. It is not necessary to know the formula for the volume of a sphere. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which of the following is a scalar quantity?</p>
<p>A. &nbsp;Velocity<br>B. &nbsp;Momentum<br>C. &nbsp;Kinetic energy<br>D. &nbsp;Acceleration</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student measures the radius <em>r </em>of a sphere with an absolute uncertainty Δ<em>r</em>. What is the fractional uncertainty in the volume of the sphere?</p>
<p>A.     \({\left( {\frac{{\Delta r}}{r}} \right)^3}\)</p>
<p>B.     \(3\frac{{\Delta r}}{r}\)</p>
<p>C.     \(4\pi \frac{{\Delta r}}{r}\)</p>
<p>D.     \(4\pi {\left( {\frac{{\Delta r}}{r}} \right)^3}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the unit of energy density?</p>
<p>A. J kg<sup>&minus;1</sup></p>
<p>B. J kg<sup>&minus;1</sup> m<sup>3</sup></p>
<p>C. J mol<sup>&minus;1</sup></p>
<p>D. J K<sup>&minus;1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A swimming pool contains 18&times;10<sup>6</sup> kg of pure water. The molar mass of water is 18gmol<sup>&ndash;1</sup>. What is the correct estimate of the number of water molecules in the swimming pool?</p>
<p>A. 10<sup>4</sup><br>B. 10<sup>24</sup><br>C. 10<sup>25</sup><br>D. 10<sup>33</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>An object is positioned in a gravitational field. The measurement of gravitational force acting&nbsp;on the object has an uncertainty of 3 % and the uncertainty in the mass of the object is 9 %.&nbsp;What is the uncertainty in the gravitational field strength of the field?</p>
<p>A. 3 %</p>
<p>B. 6 %</p>
<p>C. 12 %</p>
<p>D. 27 %</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A river flows north. A boat crosses the river so that it only moves in the direction east of its starting point.</p>
<p>What is the direction in which the boat must be steered?</p>
<p>                                                       <img src="images/Schermafbeelding_2018-08-10_om_15.46.12.png" alt="M18/4/PHYSI/SPM/ENG/TZ1/02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A car moves north at a constant speed of 3m s<sup>&ndash;1</sup> for 20s and then east at a constant speed of 4m s<sup>&ndash;1</sup> for 20s. What is the average speed of the car during this motion?</p>
<p>A. 7.0m s<sup>&ndash;1&nbsp;<br></sup>B. 5.0m s<sup>&ndash;1<br></sup>C. 3.5m s<sup>&ndash;1</sup>&nbsp;<br>D. 2.5m s<sup>&ndash;1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the correct SI unit for momentum?</p>
<p>A. kg m<sup>&ndash;1</sup>s<sup>&ndash;1</sup><br>B. kg m<sup>2</sup>s<sup>&ndash;1</sup><br>C. kg ms<sup>&ndash;1</sup><br>D. kg ms<sup>&ndash;2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram below shows the forces acting on a block of weight <em>W</em> as it slides down a slope. The angle between the slope and the horizontal is <em>&theta;</em>, the normal reaction force on the block from the slope is <em>N</em> and friction is negligible.</p>
<p><img src="" alt></p>
<p>Which of the following gives the resultant force on the block?</p>
<p>A. <em>W</em> sin <em>&theta;</em></p>
<p>B. <em>W</em> cos <em>&theta;</em></p>
<p>C. <em>N</em> sin <em>&theta;</em></p>
<p>D. <em>N</em> cos <em>&theta;</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the best estimate for the diameter of a helium nucleus?</p>
<p>A.     10<sup>–21</sup> m</p>
<p>B.     10<sup>–18</sup> m</p>
<p>C.     10<sup>–15</sup> m</p>
<p>D.     10<sup>–10</sup> m</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>Which of the following lists <strong>two</strong> scalar quantities?</p>
<ol style="list-style-type: upper-alpha;">
<li>
<p>emf, momentum</p>
</li>
<li>
<p>emf, weight</p>
</li>
<li>
<p>impulse, kinetic energy</p>
</li>
<li>
<p>temperature, kinetic energy</p>
</li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>D</p>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is a unit of energy?</p>
<p>A. kg m<sup>&ndash;1 </sup>s<sup>&ndash;1</sup><br>B. kg m<sup>2 </sup>s<sup>&ndash;2</sup><br>C. kg m s<sup>&ndash;2</sup><br>D. kg m<sup>2 </sup>s<sup>&ndash;1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>A body accelerates from rest with a uniform acceleration <em>a</em> for a time <em>t</em>. The uncertainty in <em>a</em> is 8% and the uncertainty in <em>t</em> is 4%. The uncertainty in the speed is</p>
<ol style="list-style-type: upper-alpha;">
<li>
<p>32%.</p>
</li>
<li>
<p>12%.</p>
</li>
<li>
<p>8%.</p>
</li>
<li>
<p>2%.</p>
</li>
</ol>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>B</p>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The force of air resistance <em>F</em> that acts on a car moving at speed <em>v</em> is given by <em>F</em>=<em>kv</em><sup>2</sup> where <em>k</em> is a constant. What is the unit of <em>k</em>?</p>
<p>A. kg m<sup>&ndash;1</sup><br>B. kg m<sup>&ndash;2</sup>s<sup>2</sup><br>C. kg m<sup>&ndash;2</sup><br>D. kg m<sup>&ndash;2</sup>s<sup>&ndash;2</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The masses and weights of different objects are independently measured. The graph is a plot of weight versus mass that includes error bars.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-11-07_om_17.47.55.png" alt="M09/4/PHYSI/SPM/ENG/TZ1/02"></p>
<p class="p1">These experimental results suggest that the</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;measurements show a significant systematic error but small random error.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;measurements show a significant random error but small systematic error.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;measurements are precise but not accurate.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;weight of an object is proportional to its mass.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">As the weights of different objects are plotted against the corresponding masses of those objects, it is expected that the data plotted would yield a best fitting straight line that passed through the origin. Given that the best fitting line for the data plotted is straight but does not pass through the origin and that the uncertainty bars are small, it is indicated that the measurements show a significant systematic error but a small random error.</p>
</div>
<br><hr><br><div class="question">
<p>An object slides down an inclined plane that makes an angle <em>&theta;</em>&nbsp;with the horizontal. The weight of the object is <em>W</em>.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Which of the following is the magnitude of the component of the weight parallel to the plane?</p>
<p style="text-align: left;">A.&nbsp;<em>W</em> sin <em>&theta;</em></p>
<p style="text-align: left;">B. \(\frac{W}{{\sin \theta }}\)</p>
<p style="text-align: left;">C. <em>W</em> cos <em>&theta;</em></p>
<p style="text-align: left;">D. \(\frac{W}{{\cos \theta }}\)</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>B and C were commonly chosen distractors. A simple teaching strategy for such situations is to invite the candidates to consider what happens if the angle is zero. Clearly the required component also becomes zero, in which case neither B nor C can be correct.</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of magnitude of the mass, in kg, of an apple?</p>
<p>A. 10<sup>-3</sup></p>
<p>B. 10<sup>-1</sup></p>
<p>C. 10<sup>+1</sup></p>
<p>D. 10<sup>+3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A volume is measured to be \({\text{52 m}}{{\text{m}}^{\text{3}}}\). This volume in \({{\text{m}}^{\text{3}}}\) is</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(5.2 \times {10^3}{\text{ }}{{\text{m}}^3}\).</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(5.2 \times {10^1}{\text{ }}{{\text{m}}^3}\).</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(5.2 \times {10^{ - 1}}{\text{ }}{{\text{m}}^3}\).</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(5.2 \times {10^{ - 8}}{\text{ }}{{\text{m}}^3}\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following is a fundamental SI unit?</p>
<p>A. Ampere<br>B. Joule<br>C. Newton<br>D. Volt</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The length of the side of a cube is 10.0 &plusmn;0.3cm. What is the uncertainty in the volume of the cube?</p>
<p><br>A. &plusmn;0.027 cm<sup>3</sup></p>
<p>B. &plusmn;2.7 cm<sup>3</sup></p>
<p>C. &plusmn;9.0 cm<sup>3</sup></p>
<p>D. &plusmn;90 cm<sup>3</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>The candidates found this question difficult with the statistics indicating that many may have been guessing. It is clear (also from paper 2) that many candidates are not comfortable with percentages. It may be a good idea for teachers to make sure their candidates can perform simple percentage calculations without recourse to a calculator.</p>
</div>
<br><hr><br><div class="question">
<p>The velocities <strong><em>v</em></strong><sub>X</sub> and <strong><em>v</em></strong><sub>Y</sub> of two boats, X and Y, are shown.</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.03.42.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/02_01"></p>
<p>Which arrow represents the direction of the vector <strong><em>v</em></strong><sub>X</sub> – <strong><em>v</em></strong><sub>Y</sub>?</p>
<p><img src="images/Schermafbeelding_2018-08-12_om_09.04.57.png" alt="M18/4/PHYSI/SPM/ENG/TZ2/02_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a vector quantity?</p>
<p>A. &nbsp;Pressure</p>
<p>B. &nbsp;Electric current</p>
<p>C. &nbsp;Temperature</p>
<p>D. &nbsp;Magnetic field</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Two pulses are travelling towards each other.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">What is a possible pulse shape when the pulses overlap?</p>
<p style="text-align: left;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Light of wavelength 400nm is incident on two slits separated by 1000&micro;m. The interference pattern from the slits is observed from a satellite orbiting 0.4Mm above the Earth. The distance between interference maxima as detected at the satellite is</p>
<p>A. 0.16Mm.<br>B. 0.16km.&nbsp;<br>C. 0.16m.&nbsp;<br>D. 0.16mm.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the unit of electrical energy in fundamental SI units?</p>
<p>A. &nbsp;kg m<sup>2</sup> C<sup>&ndash;1</sup> s<br>B. &nbsp;kg m s<sup>&ndash;2</sup><br>C. &nbsp;kg m<sup>2</sup> s<sup>&ndash;2</sup><br>D. &nbsp;kg m<sup>2</sup> s<sup>&ndash;1</sup> A</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">An object falls for a time of 0.25 s. The acceleration of free fall is \(9.81{\text{ m}}\,{{\text{s}}^{ - 2}}\). The displacement is calculated. Which of the following gives the correct number of significant digits for the calculated value of the displacement of the object?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A velocity of 5 m s<sup>&minus;1</sup> can be resolved along perpendicular directions XY and XZ.</p>
<p><img src="" alt></p>
<p>The component of the velocity in the direction XY is of magnitude 4 m s<sup>&minus;1</sup>. What is the magnitude of the component in the direction XZ?</p>
<p>A. 4 m s<sup>&minus;1</sup></p>
<p>B. 3 m s<sup>&minus;1</sup></p>
<p>C. 2 m s<sup>&minus;1</sup></p>
<p>D. 1 m s<sup>&minus;1</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagram shows an analogue meter with a mirror behind the pointer.</p>
<p style="text-align: center;"><img src=""></p>
<p>What is the main purpose of the mirror?</p>
<p>A. To provide extra light when reading the scale</p>
<p>B. To reduce the risk of parallax error when reading the scale</p>
<p>C. To enable the pointer to be seen from different angles</p>
<p>D. To magnify the image of the pointer</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows the relationship between two quantities <em>p</em> and <em>q</em>. The gradient of the graph is <em>r</em> and the intercept on the <em>p</em> axis is <em>s</em>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>Which of the following is the correct relationship between <em>p</em> and <em>q</em>?</p>
<p>A. <em>p = sq+r</em><br>B. <em>p = rq+s</em><br>C. <em>p = rq&minus;s</em><br>D. <em>p = rs+q</em></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of the following contains one fundamental and one derived unit?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The current <em>I</em> through a resistor is measured with a digital ammeter to be 0.10 A. The uncertainty in&nbsp;the calculated value of <em>I</em><sup>2</sup> will be</p>
<p>A. 1 %.<br>B. 2 %.<br>C. 5 %.<br>D. 20 %.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p>A stone attached to a string is moving in a horizontal circle. The constant speed of the stone is <em>v</em>. The diagram below shows the stone in two different positions, X and Y.</p>
<p><img src="" alt></p>
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<p>Which of the following shows the direction of the change of velocity of the stone when moving from position X to position Y?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">D</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The vector diagram shows two forces acting on a point object O. The forces are in the plane of the page.<img src="" alt></p>
<p>Another 5 N force is applied to O in the plane of the page. Which of the following gives the direction of this force to ensure that O is in equilibrium?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Aiming for the centre of a target, an archer fires arrows which produces a pattern of hits as shown below.</p>
<p><img src="" alt></p>
<p>The pattern suggests the presence of</p>
<p>A. random and systematic uncertainties.<br>B. random uncertainties but no systematic uncertainties.<br>C. systematic uncertainties but no random uncertainties.<br>D. neither random nor systematic uncertainties.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Option C was more popular than the correct response A. Candidates failed to recognize that the spread shown indicated that there were random errors in addition to the clear systematic error. </span></p>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The graph shows a set of experimental results to determine the density of oil. The results have systematic errors and random errors.</p>
<p><img src="" alt></p>
<p>Using the information on the graph, what can be said about the measurements used to find the density of oil?</p>
<p><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>A sphere fits inside a cube.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<div class="page" title="Page 2">
<div class="layoutArea">
<div class="column">
<p>The length of the cube and the diameter of the sphere are 10.0&plusmn;0.2cm.</p>
<p>What is the ratio&nbsp;\(\frac{{{\rm{percentage uncertainty of the volume of the sphere}}}}{{{\rm{percentage uncertainty of the volume of the cube}}}}\)?</p>
</div>
</div>
<div class="layoutArea">
<div class="column">
<p>A.\(\frac{3}{{4\pi }}\)</p>
<p>B. &nbsp;1</p>
<p>C. &nbsp;2</p>
<p>D. &nbsp;8</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>