File "markscheme-SL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Option D HTML/markscheme-SL-paper3html
File size: 2.21 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>Data from distant galaxies are shown on the graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_17.19.55.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/12"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the data, the age of the universe. Give your answer in seconds.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the assumption that you made in your answer to (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, one galaxy is labelled A. Determine the size of the universe, relative to its present size, when light from the galaxy labelled A was emitted.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use of gradient or any coordinate pair to find <em>H</em><sub>0</sub> <strong>«</strong><span class="Apple-converted-space">= \(\frac{v}{d}\)</span><strong>»</strong> or \(\frac{1}{{{H_0}}}\) <strong>«</strong><span class="Apple-converted-space">= \(\frac{d}{v}\)</span><strong>»</strong></p>
<p>convert Mpc to m and km to m <strong>«</strong>for example \(\frac{{82 \times {{10}^3}}}{{{{10}^6} \times 3.26 \times 9.46 \times {{10}^{15}}}}\)<strong>»</strong></p>
<p>age of universe <strong>«</strong><span class="Apple-converted-space">= \(\frac{1}{{{H_0}}}\)</span><strong>»</strong> = 3.8 × 10<sup>17</sup> <strong>«</strong><span class="Apple-converted-space">s</span><strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Allow final answers between</em></p>
<p><em> 3.7 </em>× <em>10</em><sup><em>17 </em></sup><em>and 3.9 </em>× <em>10</em><sup><em>17 </em></sup><strong>«</strong><em>s</em><strong>» </strong><em>or 4 </em>× <em>10</em><sup><em>17 </em></sup><strong>«</strong><em>s</em><strong>»</strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>non-accelerated/uniform rate of expansion</p>
<p><strong><em>OR</em></strong></p>
<p><em>H</em><sub>0</sub> constant over time</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>z</em> <strong>«</strong><span class="Apple-converted-space"> = \(\frac{v}{c}\)</span><strong>»</strong> = \(\frac{{4.6 \times {{10}^4} \times {{10}^3}}}{{3.00 \times {{10}^8}}}\) = 0.15</p>
<p>\(\frac{R}{{{R_0}}}\) = <strong>«</strong><span class="Apple-converted-space"><em>z</em> + 1</span><strong>»</strong> = 1.15</p>
<p> </p>
<p>\(\frac{{{R_0}}}{R}\) = <strong>«</strong><span class="Apple-converted-space">\(\frac{1}{{1.15}}\) =</span><strong>»</strong> 0.87</p>
<p><strong><em>OR</em></strong></p>
<p>87% of the present size</p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between the solar system and a galaxy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between a planet and a comet.<span class="Apple-converted-space"> </span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a galaxy is much larger in size than a solar system</p>
<p>a galaxy contains more than one star system / solar system</p>
<p>a galaxy is more luminous</p>
<p><em>Any other valid statement.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a comet is a small icy body whereas a planet is mostly made of rock or gas</p>
<p>a comet is often accompanied by a tail/coma whereas a planet is not</p>
<p>comets (generally) have larger orbits than planets</p>
<p>a planet must have cleared other objects out of the way in its orbital neighbourhood</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Theta 1 Orionis is a main sequence star. The following data for Theta 1 Orionis&nbsp;are available.</p>
<table style="width: 677px; margin-left: 60px;">
<tbody>
<tr>
<td style="width: 197px;">Luminosity</td>
<td style="width: 495px;"><em>L</em> = 4 &times; 10<sup>5</sup> <em>L</em>\(_ \odot \)</td>
</tr>
<tr>
<td style="width: 197px;">Radius</td>
<td style="width: 495px;"><em>R</em> = 13<em>R\(_ \odot \)</em></td>
</tr>
<tr>
<td style="width: 197px;">Apparent brightness</td>
<td style="width: 495px;"><em>b</em> = 4 &times; 10<sup>&ndash;11</sup> <em>b\(_ \odot \)</em>&nbsp;</td>
</tr>
</tbody>
</table>
<p>&nbsp;</p>
<p>where <em>L\(_ \odot \)</em>, <em>R\(_ \odot \)</em>&nbsp;and <em>b\(_ \odot \)</em>&nbsp;are the luminosity, radius and apparent brightness of the Sun.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a main sequence star.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the mass of Theta 1 Orionis is about 40 solar masses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The surface temperature of the Sun is about 6000 K. Estimate the surface temperature of Theta 1 Orionis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance of Theta 1 Orionis in AU.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how Theta 1 Orionis does not collapse under its own weight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Sun and Theta 1 Orionis will eventually leave the main sequence. Compare and contrast the different stages in the evolution of the two stars.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>stars fusing hydrogen &laquo;into helium&raquo;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(M = {M_ \odot }{\left( {4 \times {{10}^5}} \right)^{\frac{1}{{3.5}}}} = 39.86{M_ \odot }\)</p>
<p>&laquo;\(M \approx 40{M_ \odot }\)&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept reverse working.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(4 \times {10^5} = {13^2} \times \frac{{{T^4}}}{{{{6000}^4}}}\)</p>
<p>\(T \approx 42\,000\)&nbsp;&laquo;K&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept use of substituted values into \(L = \sigma \)4\(\pi \)R<sup>2</sup>T<sup>4</sup>.</em></p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(4 \times {10^{ - 11}} = 4 \times {10^5} \times \frac{{1{\text{A}}{{\text{U}}^2}}}{{{d^2}}}\)</p>
<p>\(d = 1 \times {10^8}\)&nbsp;&laquo;AU&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept use of correct values into</em> \(b = \frac{L}{{4\pi {d^2}}}\).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the gravitation &laquo;pressure&raquo; is balanced by radiation &laquo;pressure&raquo;</p>
<p>that is created by the production of energy due to fusion in the core / OWTTE</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> if pressure and force is inappropriately mixed in the answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for unexplained "hydrostatic equilibrium is reached".</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super giant</p>
<p>the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a supernova</p>
<p>the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the observed spectrum from star X.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.55.52.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/11_01"></p>
<p>The second graph shows the hydrogen emission spectrum in the visible range.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.56.45.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/11_02"></p>
</div>

<div class="specification">
<p>The following diagram shows the main sequence.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.58.57.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/11.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, using the graphs, why star X is most likely to be a main sequence star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the temperature of star X is approximately 10 000 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the luminosity of star X (<em>L</em><sub>X</sub>) in terms of the luminosity of the Sun (<em>L</em><sub>s</sub>).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the radius of star X (<em>R</em><sub>X</sub>) in terms of the radius of the Sun (<em>R</em><sub>s</sub>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the mass of star X (<em>M</em><sub>X</sub>) in terms of the mass of the Sun (<em>M</em><sub>s</sub>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Star X is likely to evolve into a stable white dwarf star.</p>
<p>Outline why the radius of a white dwarf star reaches a stable value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the wavelengths of the dips correspond to the wavelength in the emission spectrum</p>
<p> </p>
<p>the absorption lines in the spectrum of star X suggest it contains predominantly hydrogen</p>
<p><strong><em>OR</em></strong></p>
<p>main sequence stars are rich in hydrogen</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>peak wavelength: 290 ± 10 <strong>«</strong>nm<strong>»</strong></p>
<p><em>T</em> = \(\frac{{2.9 \times {{10}^{-3}}}}{{290 \times {{10}^{ - 9}}}}\) = <strong>«</strong>10 000 ± 400 K<strong>»</strong></p>
<p> </p>
<p><em>Substitution in equation must be seen.</em></p>
<p><em>Allow ECF from MP1.</em></p>
<p><em><strong>[2 marks]</strong>[</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>35 ± 5<em>L<sub>s</sub></em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{L_{\text{X}}}}}{{{L_{\text{s}}}}} = \frac{{R_{\text{X}}^2 \times {\text{T}}_{\text{X}}^4}}{{R_{\text{s}}^2 \times {\text{T}}_{\text{s}}^4}}\)</p>
<p><strong><em>OR</em></strong></p>
<p>\({R_{\text{X}}} = \sqrt {\frac{{{L_{\text{X}}}{\text{T}}_{\text{s}}^4}}{{{L_s}{\text{T}}_{\text{X}}^4}}}  \times {R_{\text{s}}}\)</p>
<p> </p>
<p>\({R_{\text{X}}} = \sqrt {\frac{{35 \times {{6000}^4}}}{{10\,{{000}^4}}}}  \times {R_{\text{s}}}\) (mark for correct substitution)</p>
<p><em>R</em><sub>X</sub> = 2.1<em>R</em><sub>s</sub></p>
<p> </p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><em>Accept values in the range: 2.0 to 2.3R<sub>s</sub>.</em></p>
<p><em>Allow T</em><em>S </em><em>in the range: 5500 K to 6500 K.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>M</em><sub>X</sub> = \({(35)^{\frac{1}{{3.5}}}}\)<em>M</em><sub>s</sub></p>
<p><em>M</em><sub>X</sub> = 2.8<em>M</em><sub>s</sub></p>
<p> </p>
<p><em>Allow ECF from (b)(i).</em></p>
<p><em>Do not accept M<sub>X</sub> = (35)</em>\(^{\frac{1}{{3.5}}}\)<em> for first marking point.</em></p>
<p><em>Accept values in the range: 2.6 to 2.9M<sub>s</sub>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the star <strong>«</strong>core<strong>» </strong>collapses until the <strong>«</strong>inward and outward<strong>» </strong>forces / pressures are balanced</p>
<p>the outward force / pressure is due to electron degeneracy pressure <strong>«</strong>not radiation pressure<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the density of the universe.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the possible fate of the universe, the significance of the critical density of matter in the universe.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> reason why it is difficult to estimate the density of matter in the universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>if less than critical density, universe expands without limit;<br>if equal to critical density universe stops expanding after an infinite amount of time;<br>if greater than critical density, universe expands first then contracts;<br><em>Award <strong>[1 max]</strong> if terms open, flat and closed are used and not defined.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is matter that cannot be detected;<br>which is likely to consist of dark matter/neutrinos;</p>
<p><em><strong>or</strong></em></p>
<p>difficulty of measuring volume accurately;<br>because of difficulty of measuring distances accurately;</p>
<p><em><strong>or</strong></em></p>
<p>matter is not evenly distributed;<br>so density may vary from place to place;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particular emission line in a distant galaxy shows a redshift <em>z</em> = 0.084.</p>
<p>The Hubble constant is <em>H</em><sub>0</sub> = 68 km s<sup>&ndash;1</sup> Mpc<sup>&ndash;1</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by the Big Bang model of the universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> features of the cosmic microwave background (CMB) radiation which are&nbsp;consistent with the Big Bang model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance to the galaxy in Mpc.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how type Ia supernovae could be used to measure the distance to&nbsp;this galaxy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>theory in which all space/time/energy/matter were created at a point/singularity</p>
<p>at enormous temperature</p>
<p>with the volume of the universe increasing ever since <em><strong>or</strong> </em>the universe expanding</p>
<p>&nbsp;</p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CMB has a black-body spectrum</p>
<p>wavelength stretched by expansion</p>
<p>is highly isotropic/homogenous</p>
<p>but has minor anisotropies predicted by BB model</p>
<p><em>T</em> &laquo;= 2.7 K&raquo; is close to predicted value</p>
<p>&nbsp;</p>
<p><em> For MP4 and MP5 idea of &ldquo;prediction&rdquo;&nbsp;is needed</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{v}{c} = z \Rightarrow v = 0.084 \times 3 \times {10^5} = 2.52 \times {10^4}\)&nbsp;&laquo;km\(\,\)s<sup>&ndash;1</sup>&raquo;</p>
<p>\(d = \frac{v}{{{H_0}}} = \frac{{2.52 \times {{10}^4}}}{{68}} = 370.6 \approx 370\)&nbsp;&laquo;Mpc&raquo;</p>
<p>&nbsp;</p>
<p><em>Allow ECF from MP1 to MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>type Ia have a known luminosity/are standard candles</p>
<p>measure apparent brightness</p>
<p>determine distance from&nbsp;<em>d</em> =&nbsp;\(\sqrt {\frac{L}{{4\pi b}}} \)</p>
<p>&nbsp;</p>
<p><em>Must refer to type Ia. Do not accept&nbsp;other methods (parallax, Cepheids)</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A spectral line in the light received from a distant galaxy shows a redshift of <em>z</em> = 0.16.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> characteristics of the cosmic microwave background (CMB) radiation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The present temperature of the CMB is 2.8 K. Calculate the peak wavelength of the CMB.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the CMB provides evidence for the Hot Big Bang model of the universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance to this galaxy using a value for the Hubble constant&nbsp;of H<sub>0</sub> = 68 km s<sup>&ndash;1</sup>\(\,\)Mpc<sup>&ndash;1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the size of the Universe relative to its present size when the light was&nbsp;emitted by the galaxy in (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>black body radiation / 3 K</p>
<p>highly isotropic / uniform throughout<br><em><strong>OR</strong></em><br>filling the universe</p>
<p>&nbsp;</p>
<p><em>Do not accept: CMB provides evidence for the Big Bang model.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(\lambda &nbsp;= \frac{{2.9 \times {{10}^{ - 3}}}}{{2.8}}\)&raquo;&nbsp;&asymp; 1.0&nbsp;&laquo;mm&raquo;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the universe is <strong>expanding</strong> and so the wavelength of the CMB in the past was much smaller</p>
<p>indicating a very high temperature at the beginning</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(z = \frac{v}{c} \Rightarrow \)&raquo; <em>v</em> = 0.16 &times; 3 &times; 10<sup>5&nbsp;</sup>&laquo;= 0.48 &times; 10<sup>5&nbsp;</sup>km\(\,\)s<sup>&minus;1</sup>&raquo;</p>
<p>&laquo;\(d = \frac{v}{{{H_0}}} \Rightarrow v = \frac{{0.48 \times {{10}^5}}}{{68}} = 706\)&raquo; &asymp; 710 &laquo;Mpc&raquo;</p>
<p>&nbsp;</p>
<p><em>Award <strong>[1 max]</strong> for POT error.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(z = \frac{R}{{{R_0}}} - 1 \Rightarrow \frac{R}{{{R_0}}} = 1.16\)</p>
<p>\(\frac{{{R_0}}}{R} = 0.86\)</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The Hubble constant is accepted to be 70 km s<sup>&ndash;1</sup> Mpc<sup>&ndash;1</sup>. This value of the Hubble constant gives an age for the universe of 14.0 billion years.</p>
<p>The accepted value of the Hubble constant has changed over the past decades.</p>
</div>

<div class="specification">
<p>The redshift of a galaxy is measured to be <em>z </em>= 0.19.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how international collaboration has helped to refine this value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, in Mpc, the distance between the galaxy and the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, in years, the approximate age of the universe at the instant when the detected light from the distant galaxy was emitted.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>experiments and collecting data are extremely costly</p>
<p>data from many projects around the world can be collated</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em> = <strong>«</strong><em>zc</em> = 0.19 × 3 × 10<sup>8</sup> =<strong>»</strong> 5.7 × 10<sup>7</sup> <strong>«</strong>ms<sup>–1</sup><strong>»</strong></p>
<p><em>d</em> = <strong>«</strong>\(\frac{v}{{{H_0}}} = \frac{{5.7 \times {{10}^4}}}{{70}}\)<strong>»</strong> = 810Mpc     <em><strong>OR</strong></em>     8.1× 10<sup>8</sup> pc</p>
<p> </p>
<p><em>Correct units must be present for MP2 to be awarded.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for BCA.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>\(\frac{{{R_{{\text{now}}}}}}{{{R_{{\text{then}}}}}}\) = 1 + <em>z</em> = 1.19</p>
<p>so (assuming constant expansion rate) \(\frac{{{t_{{\text{now}}}}}}{t}\) = 1.19</p>
<p><em>t</em> = \(\frac{{14}}{{1.19}}\) = 11.7By = 12<strong>«</strong>By (billion years)<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>light has travelled a distance: (810 × 10<sup>6</sup> × 3.26 =) 2.6 × 10<sup>9</sup>ly</p>
<p>so light was emitted: 2.6 billion years ago</p>
<p>so the universe was 11.4 billion years old</p>
<p> </p>
<p><em>MP1 can be awarded if MP2 clearly seen.</em></p>
<p><em>Accept 2.5 × 10<sup>25</sup> m for mp1.</em></p>
<p><em>MP1 can be awarded if MP2 clearly seen.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about determining the distance to a nearby star.</p>
<p class="p1">Two photographs of the night sky are taken, one six months after the other. When the photographs are compared, one star appears to have shifted from position A to position B, relative to the other stars.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_15.13.47.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/14"></p>
</div>

<div class="specification">
<p class="p1"><span class="s1">The observed angular displacement of the star is \(\theta \) </span>and the diameter of the Earth&rsquo;s orbit is \(d\). The distance from the Earth to the star is \(D\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why the star appears to have shifted from position A to position B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a diagram showing \(d\), \(D\) <span class="s1">and \(\theta \)</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the relationship between \(d\), \(D\) <span class="s1">and \(\theta \)</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One consistent set of units for \(D\) <span class="s1">and \(\theta \) </span>are parsecs and arc-seconds. State <strong>one </strong>other consistent set of units for this pair of quantities.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest whether the distance from Earth to this star can be determined using spectroscopic parallax.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the star is (much) closer than the other star (and close enough to Earth) / parallax effect has been observed;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-08-31_om_15.48.35.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/14.b.i/M"></p>
<p class="p2"><em>Award </em><strong><em>[1] </em></strong><em>if all three (d, D, </em>\(\theta \)<em>) are shown correctly.</em></p>
<p class="p2"><em>Do not allow d shown as the radius.</em></p>
<p class="p2"><em>Accept D as a line from Earth to the star.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sin \frac{\theta }{2} = \frac{d}{{2D}}\) <strong><em>or</em></strong> \(\tan \frac{\theta }{2} = \frac{d}{{2D}}\) <strong><em>or</em></strong> \(\theta&nbsp; = \frac{d}{D}\);</p>
<p>consistent explanation, <em>eg</em>: small angle of approximation yields \(\theta&nbsp; = \frac{d}{D}\);</p>
<p><em>Allow ECF from (b)(i), eg: if d shown as radius.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">any angular unit quoted for \(\theta \) and any linear unit quoted for \(D\);</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(yes) star is close enough (in local galaxy) to determine spectral characteristics;</p>
<p class="p1"><strong><em>Note</em></strong><em>: not the same question as HL.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble&rsquo;s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble&rsquo;s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble&rsquo;s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble&rsquo;s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble&rsquo;s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Big Bang model and red-shift.</p>
</div>

<div class="specification">
<p class="p1">In the 1960s, Penzias and Wilson discovered a uniform cosmic background radiation (CMB) in the microwave region of the electromagnetic spectrum.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the Big Bang model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain how the CMB is consistent with the Big Bang model.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State why the red-shift of light from galaxies supports the Big Bang model.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span style="text-decoration: underline;">space and time</span> originated from a single point in a large explosion / an expanding universe that originated from a single point / <em>OWTTE</em>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;temperature of the universe immediately after the Big Bang was very high;</p>
<p class="p1">as it expanded it cooled down;</p>
<p class="p1">the wavelength of the CMB corresponds to a temperature consistent with this cooling down / <em>OWTTE</em>;</p>
<p class="p1">red shift is due to expansion of universe;</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;indicates that the universe is expanding;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates knew what is meant by the Big Bang Model.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">An understanding of CMB in and its relevance to the Big Bang Model was only demonstrated by a minority of candidates. In (b) (ii) it was not sufficient to say that galaxies are moving away from Earth; a statement to the effect that the universe is expanding was required.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The collision of two galaxies is being studied. The wavelength of a particular spectral line&nbsp;from the galaxy measured from Earth is 116.04 nm. The spectral line when measured from&nbsp;a source on Earth is 115.00 nm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> reason for the difference in wavelength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the velocity of the galaxy relative to Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>galaxies are moving away</p>
<p><em><strong>OR</strong></em></p>
<p>space &laquo;between galaxies&raquo; is expanding</p>
<p><em>Do not accept just red-shift</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(\frac{{\Delta \lambda }}{\lambda } = \)&raquo;&nbsp;\(\frac{{1.04}}{{115}} = \frac{v}{c}\)</p>
<p>0.009<em>c</em></p>
<p><em>Accept 2.7&times;10<sup>6</sup> &laquo;m s<sup>&ndash;1</sup>&raquo;</em></p>
<p><em>Award <strong>[0]</strong> if 116 is used for&nbsp;\(\lambda \)</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the development of the universe.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light from distant galaxies, as seen by an observer on Earth, shows a red-shift. Outline why this observation suggests that the universe is expanding.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The future development of the universe is determined by the relationship between the apparent density of the universe and the critical density.</p>
<p>(i) Define the term <em>critical density</em>.</p>
<p>(ii) Discuss how the density of the universe determines its future development. Your discussion should include <strong>one</strong> problem associated with determining the density of the universe.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>because of the Doppler effect;<br>light from sources moving away from an observer is observed to have a lower frequency than from the sources when stationary / redshift indicates motion away from observer/Earth;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) this is the value of density for which the universe will begin to contract after an infinite amount of time;<br><em>Do not accept &ldquo;density at which universe is flat&rdquo;.</em></p>
<p>(ii) if the density of the universe is less than the critical density it will continue expanding forever;<br>if the density is greater than the critical density then it will after a certain amount of time begin to contract;<br>the behaviour of galaxies suggests that there is more matter in the universe than is actually observed; { <em>(allow other relevant</em> <em>comment about</em> <em>dark matter)</em><br>without knowing the mass of this matter the density cannot be determined;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the night sky.</p>
</div>

<div class="question">
<p class="p1">Distinguish between a stellar cluster and a constellation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">stars of stellar clusters are close together (in space)/bounded gravitationally;</p>
<p class="p1">stars of constellations are not bounded gravitationally/appear to be close together (from Earth);</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">(a) was generally well answered.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about objects in the universe.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>difference between</p>
<p class="p1">(i)&nbsp; &nbsp; &nbsp;a main sequence star and a planet.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;a stellar cluster and a constellation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State how</p>
<p class="p1">(i)&nbsp; &nbsp; &nbsp;it is known that main sequence stars are made predominantly of hydrogen.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;a main sequence star remains in equilibrium despite it having a great mass.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph shows the variation with wavelength of the intensity of a main sequence star.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-12_om_07.53.34.png" alt="M14/4/PHYSI/SP3/ENG/TZ2/12.c"></p>
<p class="p1">Calculate the surface temperature of this star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) stars, and not planets, have cores undergoing fusion;</p>
<p class="p1">stars have much greater mass/luminosity/absolute magnitude/temperature than planets;</p>
<p class="p1">planets reflect starlight rather than emit;</p>
<p class="p1">planets in our solar system can show retrograde motion, stars cannot;</p>
<p class="p1"><em>Allow other sensible answers.</em></p>
<p class="p1">(ii) stars in a stellar cluster are close to each other/kept together by gravitation, the stars in a constellation are not;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;the lines in the (absorption) spectrum of the star (correspond to hydrogen wavelengths);</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;the gravitational force that tends to collapse the star is balanced by a force due to radiation pressure;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">peak wavelength is at 400 (nm); <em>(accept answers in the range of 380 to 420 (nm))</em></p>
<p class="p1">\(T = \left( {\frac{{{\text{2.9}} \times {\text{1}}{{\text{0}}^{ - 3}}}}{{{\text{400}} \times {\text{1}}{{\text{0}}^{ - 9}}}} = } \right){\text{ 7250 (K)}}\); <em>(accept answers in the range of 6900 to 7600 (K))</em></p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light reaching Earth from quasar 3C273 has <em>z</em>=0.16.</p>
<p>(i) Outline what is meant by <em>z</em>.</p>
<p>(ii) Calculate the ratio of the size of the universe when the light was emitted by the quasar to the present size of the universe.</p>
<p>(iii) Calculate the distance of 3C273 from Earth using <em>H</em><sub>o</sub>=68kms<sup>&minus;1</sup>Mpc<sup>&minus;1</sup>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how cosmic microwave background (CMB) radiation provides support for the Hot Big Bang model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)\(z = \frac{{\Delta \lambda }}{{{\lambda _o}}}\) where &Delta;&lambda; is the redshift of a wavelength and <em>&lambda;</em><sub>0</sub> is the wavelength measured at rest on Earth <em><strong>OR</strong></em> it is a measure of cosmological redshift</p>
<p><em>Do not allow just &ldquo;redshift&rdquo;.</em></p>
<p>(ii) \( \ll z = \frac{R}{{{R_o}}} - 1,\frac{R}{{{R_o}}} = \frac{1}{{z + 1}} \gg {\rm{so }}\frac{R}{{{R_o}}} =&nbsp; \ll \frac{1}{{1.16}} \gg&nbsp; = 0.86\)<br><em>Do not accept answer 1.16.</em></p>
<p>(iii) <em>v</em>=<em>zc</em>=0.16&times;3&times;10<sup>8</sup>=4.8&times;10<sup>4</sup>kms<sup>-1</sup><br>\(d = \frac{v}{{{H_o}}} = \frac{{4.8 \times {{10}^4}}}{{68}} = 706{\rm{Mpc}}\) <em><strong>OR</strong></em> 2.2&times;10<sup>25</sup>m</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>as the universe expanded it cooled/wavelength increased</p>
<p>the temperature dropped to the present approximate 3K <em><strong>OR</strong></em> wavelength stretched to the present approximate 1mm</p>
<p><em>Value is required for MP2.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Cepheid stars.</p>
</div>

<div class="question">
<p>A Cepheid star and non-Cepheid star both belong to the same distant galaxy. Explain, stating the quantities that need to be measured, how the luminosity of the non-Cepheid star may be determined.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>measure period and average apparent brightness/magnitude of the Cepheid to determine its distance;<br>measuring the apparent brightness of the star gives the luminosity (since distance is now known) from <em>L</em>=4&pi;<em>d</em><sup>2</sup><em>b</em>;</p>
<p><em><strong>or</strong></em></p>
<p>measure period of Cepheid to determine its (average) luminosity;<br>compare the apparent brightness of the star and Cepheid to find <em>L</em> using <em>L</em>&prop;<em>b</em>;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The peak wavelength of the cosmic microwave background (CMB) radiation spectrum corresponds to a temperature of 2.76 K.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>two</strong> other characteristics of the CMB radiation that are predicted from the Hot Big Bang theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A spectral line in the hydrogen spectrum measured in the laboratory today has a wavelength of 21cm. Since the emission of the CMB radiation, the cosmic scale factor has changed by a factor of 1100. Determine the wavelength of the 21cm spectral line in the CMB radiation when it is observed today.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>isotropic/appears the same from every viewing angle</p>
<p>homogenous/same throughout the universe</p>
<p>black-body radiation</p>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>23 100 &laquo;cm&raquo;<br><em><strong>OR</strong></em><br> 231 &laquo;m&raquo;</p>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> key characteristic of a nebula.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beta Centauri is a star in the southern skies with a parallax angle of 8.32&times;10<sup>&minus;3</sup> arc-seconds. Calculate, in metres, the distance of this star from Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why astrophysicists use non-SI units for the measurement of astronomical distance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>made of dust and/or gas<br>formed from supernova<br>can form new stars<br>some radiate light from enclosed stars<br>some absorb light from distant stars</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(d = \frac{1}{{8.32 \times {{10}^{ - 3}}}}\) <em><strong>OR</strong></em> 120pc<br>120&times;3.26&times;9.46&times;10<sup>15</sup>=3.70&times;10<sup>18</sup>m</p>
<p><em>Answer must be in metres, watch for POT.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>distances are so big/large <em><strong>OR</strong></em> to avoid using large powers of 10 <em><strong>OR</strong></em> they are based on convenient definitions</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>This question is about comets.</p>
<p>Outline the nature of a comet.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>icy/dusty object;<br>moving around the Sun on a (highly) elliptical orbit;<br>when <span style="text-decoration: underline;">close to Sun</span> likely to display atmosphere (coma)/tail;<br>when <span style="text-decoration: underline;">far from Sun</span> (ice re-freezes and) atmosphere no longer present;</p>
<p><em>Award<strong> [2]</strong> only if it is clearly stated that the object is a part of a Solar system.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">HL Candidates scored well. Some candidates did not refer to the Sun or other star. Only a few candidates outlined the nature of another body instead of comet, sometimes an asteroid. Some weaker answers mentioned a body just moving in space. At SL, many answers demonstrated a poor understanding of comets, ranging from parts of dead stars to asteroids to meteors and meteorites. </span></p>
</div>
<br><hr><br><div class="specification">
<p>This question is about the expanding universe.</p>
<p>Since 1929 it has been thought that the universe is expanding.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the expansion of the universe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Red-shift of light from distant galaxies provides evidence for an expanding universe.</p>
<p>(i) State <strong>one</strong> other piece of evidence in support of an expanding universe.</p>
<p>(ii) Explain how your answer in (b)(i) is evidence for the Big Bang model of the universe.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(distant) galaxies are all moving away from each other/Earth;<br> the distance between galaxies is increasing;<br> the volume/diameter/radius/scale factor of the universe is increasing;<br> space itself is stretching with time;<br> </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Do not accept answers such as &ldquo;everything is moving away from everything else&rdquo; as this is clearly not true. </span></em></p>
</div>
</div>
</div>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">&nbsp;</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) cosmic microwave background/CMB/CBR;<br> helium/hydrogen ratio/abundance;<br> darkness of night sky (Olbers&rsquo; paradox);<br> </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Do not accept answers that refer to Hubble&rsquo;s law/red-shift of galaxies. </span></em></p>
</div>
<span style="font-size: 11.000000pt; font-family: 'Arial,Bold';">(ii) CMB was a prediction of the Big Bang model;</span></div>
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';"> radiation present in the early universe was at a high temperature/short wavelength;<br> as the universe expanded it cooled/wavelength increased;<br> so the radiation present today is in the microwave region / has temperature of 2.7 K; </span></p>
<p><em><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">or </span></strong></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">the early universe contained high energy neutrons/protons;<br> as the universe expanded and cooled (to 10</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 3.000000pt;">9 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">K) nucleosynthesis could start, producing helium;<br> as the temperature dropped further, nucleosynthesis stopped leaving an excess of protons/hydrogen;<br> the current abundance of hydrogen and helium is consistent with the predictions of the Big Bang/expansion; </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial,BoldItalic';"><em><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">or</span></strong></em> </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">Olbers&rsquo; paradox asks &ldquo;why is the night sky dark?&rdquo;;<br> this cannot be explained if universe is infinite and static / </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">OWTTE</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">;<br> in an expanding universe some light is red-shifted out of visible range;<br> in a Big Bang universe some light from distant galaxies has not reached us yet; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (a) far too many candidates just repeated the question rather than stating that expansion refers to galaxies moving further apart. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">CMB radiation was usually mentioned in (b)(i). The fact that CMB was a specific prediction of the Big Bang model, long before its discovery, was sometimes mentioned in (b)(ii). Most were able to refer to cooling and wavelength increase of CMB as being consistent with the Big Bang model. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aldebaran is a red giant star with a peak wavelength of 740 nm and a mass of 1.7 solar masses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the surface temperature of Aldebaran is about 4000 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of Aldebaran is 3.1&times;10<sup>10 </sup>m. Determine the luminosity of Aldebaran.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the light from Aldebaran gives evidence of its composition.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the element that is fusing in Aldebaran&rsquo;s core at this stage in its evolution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the likely future evolution of Aldebaran.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(T = \frac{{2.9 \times {{10}^{ - 3}}}}{{740 \times {{10}^{ - 9}}}}\)<br>3900 K<br><em>Answer must be to at least 2SF.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em>=5.67&times;10<sup>-8</sup>&times;4&pi;&times;(3.1&times;10<sup>10</sup>)<sup>2</sup>&times;4000<sup>4</sup></p>
<p>=1.8&times;10<sup>29</sup>W</p>
<p><em>Accept use of 3900<sup>4</sup> to give 1.6&times;10<sup>29</sup>W.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>absorption lines in spectra</p>
<p>are specific to particular elements</p>
<p><em>Accept &ldquo;emission lines in spectra&rdquo;.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>helium</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>helium flash<br>expansion of outer shell <em><strong>OR</strong></em> surface temperature increase<br>planetary nebula phase<br>only the core remains<br>if below 1.4M<sub>S</sub>/Chandrasekhar limit then white dwarf</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about cosmology.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the observed red-shift of many galaxies is explained.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the cosmic microwave background (CMB) radiation is consistent with the&nbsp;Big Bang model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the temperature of the universe when the peak wavelength of the CMB was&nbsp;equal to the wavelength of red light (7.0&times;10<sup>&minus;7</sup>m).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the universe is expanding / many galaxies are moving away from us;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the CMBR fills all of space / is uniform / is distributed equally, consistent with an&nbsp;&ldquo;explosion&rdquo; (at start of universe);<br>the temperature of the radiation (2.7 K) is consistent with cooling due to&nbsp;expansion/redshift;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\lambda _{\max }} = \frac{{2.9 \times 10 - 3}}{T} \Rightarrow T = \frac{{2.9 \times {{10}^{ - 3}}}}{{7.0 \times {{10}^{ - 7}}}}\);<br><em>T</em> = 4100K;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about some of the properties of the star Aldebaran and also about galactic&nbsp;distances.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aldebaran is a red giant star in the constellation of Taurus.</p>
<p>(i) Describe the differences between a constellation and a stellar cluster.</p>
<p>(ii) Define the <em>luminosity</em> of a star.</p>
<p>(iii) The apparent brightness of Aldebaran is 3.3 &times;10<sup>&ndash;8</sup> W m<sup>&ndash;2</sup> and the luminosity of the&nbsp;Sun is 3.9 &times;10<sup>26</sup> W. The luminosity of Aldebaran is 370 times that of the Sun. Show&nbsp;that Aldebaran is at a distance of 19 pc from Earth. (1 pc=3.1 &times; 10<sup>16</sup> m)</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distances to galaxies may be determined by using Cepheid variable stars.</p>
<p>By considering the nature and properties of Cepheid variable stars, explain how such&nbsp;stars are used to determine galactic distances.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) a constellation is a collection of stars that form a (recognizable) pattern&nbsp;(as viewed from Earth);<br>the distances between the stars may be very large;<br>a stellar cluster is a group of stars held together by (mutual) gravitational&nbsp;attraction/gravity/are physically relatively close;<br>there can be many thousands of stars in the cluster;<br>all stars in the cluster were created about the same time;</p>
<p>(ii) the (total) power radiated/emitted/produced (by the star);</p>
<p>(iii) luminosity of Aldebaran = 370&times;3.9&times;10<sup>26</sup>=1.44&times;10<sup>29</sup> W;<br>\( = \sqrt {\frac{{1.44 \times {{10}^{29}}}}{{4\pi&nbsp; \times 3.3 \times {{10}^{ - 8}}}}}&nbsp; = 5.9 \times {10^{17}}\);<br>\( = \frac{{5.9 \times {{10}^{17}}}}{{3.1 \times {{10}^{16}}}} = 19{\rm{pc}}\);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (outer layers of the star) undergo a (periodic) expansion and contraction;<br>which produces a (periodic) variation in its luminosity/apparent brightness;<br>the (average) luminosity depends on the period of variation;<br>by measuring the period, the luminosity can be found;<br>by then measuring its apparent brightness, its distance from Earth can be found;</p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about cosmology.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Theoretical studies indicate that the universe may be open, closed or flat.</p>
<p>(i) State, by reference to critical density, the condition that must be satisfied for the universe to be flat.</p>
<p>(ii) In a flat universe, the rate of expansion would be slowing down. Suggest a reason for this.</p>
<p>(iii) Outline why it has been difficult to determine whether the universe is open, closed or flat.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>one</strong> piece of experimental evidence that supports the fact that the universe is expanding.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) a universe whose density is equal to the critical density;</p>
<p>(ii) the mutual gravitational attraction would slow the expansion down;</p>
<p>(iii) the density of the universe needs to be determined;<br>this involves many uncertainties related to measurement of distances/volume;<br>this involves many uncertainties related to presence of dark matter;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>light from galaxies is observed to be red-shifted/to have a longer wavelength than that emitted;<br>indicating that the distance between galaxies is getting bigger/galaxies move away from each other/from us;<br><em>Award <strong>[1 max]</strong> if galaxies are not mentioned.</em></p>
<p><em><strong>or</strong></em></p>
<p>the presence of the cosmic microwave background radiation;<br>is evidence of cooling of the universe/increase in wavelength/red-shift due to expansion;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about cosmology.</p>
<p class="p1">Newton assumed that the universe was infinite, uniform and static. The Big Bang model suggests space and time originated at one point around 14 billion years ago. At this time the temperature was very high.</p>
</div>

<div class="question">
<p class="p1">In 1965, Penzias and Wilson discovered cosmic radiation with a wavelength that corresponded to a temperature of around 3 K. Outline how cosmic radiation in the microwave region is consistent with the Big Bang model.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">the temperature has cooled considerably since the Big Bang / the Big Bang model predicted cooling and the present temperature;</p>
<p class="p1">this cooling was caused by the expansion of the universe/the stretching of spacetime;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Most could not link the CBR causatively with the Big Bang in (b).</p>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 22">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about variable stars and supernovae. </span></p>
</div>
</div>
</div>
<p>Cepheid variable stars are used as &ldquo;standard candles&rdquo; by astronomers.</p>
</div>

<div class="question">
<p>(i) State what is meant by a standard candle.</p>
<p>(ii) Outline the properties of a Cepheid star that allow it to be used as a standard candle.</p>
<p>(iii) Explain how astronomers use their observations of a Cepheid star to determine the&nbsp;distance from the star to Earth.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>(i) object of known luminosity/power;</p>
<p>(ii) luminosity varies with time in a regular way;<br>(average) luminosity related to period of variation;<br>high luminosity so visible from great distances;</p>
<p>(iii) the period of the variation of luminosity/apparent brightness/apparent magnitude is measured;<br>the luminosity/absolute magnitude is determined from period;<br>apparent magnitude/brightness is measured (on Earth);<br><em>m</em>-<em>M</em>=51g\(\left( {\frac{d}{{10}}} \right)\) <strong>or</strong>&nbsp;\(b = \frac{L}{{4\pi {d^2}}}\) is used to compute <em>d</em>;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;(i) was very poorly done. Some candidates described a standard candle as a star that changes brightness, i.e. a Cepheid variable.</p>
<p>(ii) most candidates knew that Cepheid variables change luminosity in a periodic way, but few mentioned that their luminosity is high and so they are visible from great distances.</p>
<p>Often the general concept seemed known to the candidate in (iii) but the actual practical procedure was not specified.&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about cosmic microwave background (CMB) radiation.</p>
<p class="p1">One of Newton&rsquo;s assumptions was that the universe is static. The peak intensity of the cosmic microwave background (CMB) radiation has a wavelength of 1.06 mm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that this corresponds to a temperature around 3 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest how the discovery of the CMB in the microwave region contradicts Newton&rsquo;s assumption of the static universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(T = \frac{{2.90 \times {{10}^{ - 3}}}}{{{\lambda _{\max }}}} = \frac{{2.90 \times {{10}^{ - 3}}}}{{1.06 \times {{10}^{ - 3}}}}\);</p>
<p class="p1">\( = 2.7{\text{ K}}\);</p>
<p class="p2"><em>Must show 2 sig figs or more, as 3 K is given.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">current low temperature observed is a result of expansion;</p>
<p class="p1">(expansion) has caused cooling from high temperatures;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by candidates, weaker candidates did not write their ideas clearly enough in (a)(ii). Part (b) was also quite well done, but only better candidates mentioned uncertainty in measurement of distances to galaxies. At SL the calculation of the temperature of the CMB was successful for most candidates, however, relating it to Newton&rsquo;s static universe polarised candidates into non-answers or correct answers.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by candidates, weaker candidates did not write their ideas clearly enough in (a)(ii). Part (b) was also quite well done, but only better candidates mentioned uncertainty in measurement of distances to galaxies. At SL the calculation of the temperature of the CMB was successful for most candidates, however, relating it to Newton&rsquo;s static universe polarised candidates into non-answers or correct answers.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the characteristics of the stars Procyon A and Procyon B.</p>
</div>

<div class="question">
<p class="p1">The stars Procyon A and Procyon B are both located in the same stellar cluster in the constellation Canis Minor. Distinguish between a constellation and a stellar cluster.</p>
<p class="p1">Constellation:</p>
<p class="p1">Stellar cluster:</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><em>constellation</em>:</p>
<p class="p1">a collection/group of stars that form a recognizable pattern (as viewed from Earth) / a group/pattern of stars not close together (in space);</p>
<p class="p1"><em>stellar cluster</em>:</p>
<p class="p1">a group of stars (including gas and dust) held together by gravity/forming a globular/open arrangement / a group of stars close to each other (in space);</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">A&nbsp;large number of candidates were able to correctly distinguish between a constellation and a stellar cluster.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about a particular star called Barnard&rsquo;s star.</p>
<p>The peak wavelength in the spectrum of Barnard&rsquo;s star is 940 nm. The following data are available.</p>
<p>\[\frac{{{\text{apparent brightness of Barnard's star}}}}{{{\text{apparent brightness of the Sun}}}} = 2.5 \times {10^{ - 14}}\]</p>
<p>\[\frac{{{\text{luminosity of Barnard's star}}}}{{{\text{luminosity of the Sun}}}} = 3.8 \times {10^{ - 3}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Show that the surface temperature of Barnard&rsquo;s star is about 3000 K.</p>
<p>(ii) Suggest why Barnard&rsquo;s star is not likely to be either a white dwarf or a red giant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine, in astronomical units (AU), the distance between Earth and Barnard&rsquo;s star.</p>
<p>(ii) Calculate the parallax angle for Barnard&rsquo;s star as observed from Earth.</p>
<p>(iii) Outline how the parallax angle is measured.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) \(T = \frac{{0.0029}}{\lambda }\);<br>3080/3090 (K);<em> (more than 1 SD must be shown)</em></span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) temperature too low for white dwarf;<br></span><span style="font-size: 11.000000pt; font-family: 'Arial';">not luminous enough for red giant; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(L = 4\pi {d^2}b\);<br>\(\frac{{{d_B}}}{{{d_S}}}\left( { = \sqrt {\frac{{{L_B}}}{{{L_S}}}\frac{{{b_S}}}{{{b_B}}}} } \right) = \sqrt {\frac{{3.8 \times {{10}^{ - 3}}}}{{2.5 \times {{10}^{ - 14}}}}} \);<br>3.9&times;10<sup>5</sup> AU;</p>
<p>(ii) conversion of AU to 1.89 pc;<br>0.53 (arc-seconds);</p>
<div class="column">(iii) <span style="font-size: 11.000000pt; font-family: 'Arial';">measure position of star;<br></span><span style="font-size: 11.000000pt; font-family: 'Arial';">with respect to fixed background;<br></span><span style="font-size: 11.000000pt; font-family: 'Arial';">with six months between readings;<br></span><span style="font-size: 11.000000pt; font-family: 'Arial';">parallax angle is half the total angle / </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">OWTTE</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">;<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">May be shown in a diagram.&nbsp; <br></span></em></div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the cosmic microwave background (CMB) radiation.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>characteristics of the cosmic microwave background (CMB) radiation.</p>
<p class="p1">&nbsp;</p>
<p class="p1">1.</p>
<p class="p1">&nbsp;</p>
<p class="p1">&nbsp;</p>
<p class="p1">&nbsp;</p>
<p class="p1">2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how CMB radiation is evidence for the Big Bang model of an expanding universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span style="text-decoration: underline;">electromagnetic radiation</span> in the microwave region;</p>
<p class="p1">black body radiation (at a temperature of about 3 K);</p>
<p class="p1">(almost) isotropic/uniform radiation;</p>
<p class="p1">radiation that fills the universe/exists everywhere/has no obvious point of origin;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">CMB radiation was a prediction of the Big Bang model;</p>
<p class="p1">CMB &ldquo;temperature&rdquo; is consistent with a universe that has cooled from an initial hot state;</p>
<p class="p1">CMB wavelength is consistent with a universe that has expanded from an initial hot, dense state;</p>
<p class="p1">CMB isotropy/uniformity is consistent with its origin in the very early universe;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about stellar radiation and stellar types.</p>
<p class="p1">Alnilam and Bellatrix are two stars in the constellation of Orion. The table gives information on each of these stars.&nbsp;\({L_ \odot }\) is the luminosity of the Sun and&nbsp;\({R_ \odot }\) is the radius of the Sun.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_16.49.55.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/15"></p>
</div>

<div class="specification">
<p class="p1">Using a telescope based on Earth, an observer estimates the distance to Alnilam using the stellar parallax method.</p>
</div>

<div class="question">
<p class="p1">Describe the stellar parallax method.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">the position of the star (relative to the fixed background) is measured six months apart/January to July;</p>
<p class="p1">the parallax angle <em>p</em> can be used to determine the distance using <em>d</em> = \(\frac{1}{p}\);<br><br></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">(b)(i) was mostly well answered.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Hertzsprung&ndash;Russell (HR) diagram and the Sun.</p>
<p class="p1">A Hertzsprung&ndash;Russell (HR) diagram is shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_15.22.57.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/15"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The following data are given for the Sun and a star Vega.</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Luminosity of the Sun <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( = 3.85 \times {10^{26}}{\text{ W}}\)</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Luminosity of Vega <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( = 1.54 \times {10^{28}}{\text{ W}}\)</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Surface temperature of the Sun <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( = 5800{\text{ K}}\)</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Surface temperature of Vega <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( = 9600{\text{ K}}\)</p>
<p class="p1">Determine, using the data, the radius of Vega in terms of solar radii.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how observers on Earth can determine experimentally the temperature of a distant star.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{L_{\text{V}}}}}{{{L_{\text{S}}}}} = \left( {\frac{{\sigma {A_{\text{V}}}{{[{T_{\text{V}}}]}^4}}}{{\sigma {A_{\text{S}}}{{[{T_{\text{S}}}]}^4}}} = } \right)\frac{{\sigma {{[{r_{\text{V}}}]}^2}{{[{T_{\text{V}}}]}^4}}}{{\sigma {{[{r_{\text{S}}}]}^2}{{[{T_{\text{S}}}]}^4}}}\);</p>
<p class="p1">\(\frac{{1.54 \times {{10}^{28}}}}{{3.85 \times {{10}^{26}}}} = \frac{{{{[{r_{\text{V}}}]}^2}}}{{{{[{r_S}]}^2}}} \times \frac{{{{9600}^4}}}{{{{5800}^4}}}\);</p>
<p class="p1">\({r_{\text{V}}} = \left( {\sqrt {\frac{{1.54 \times {{10}^{28}}}}{{3.85 \times {{10}^{26}}}} \times \frac{{{{5800}^4}}}{{{{9600}^4}}}} {r_S} = } \right){\text{ 2.3 }}{r_{\text{S}}}\);</p>
<p class="p1"><em>Do not award third marking point if radius of the Sun is lost. </em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">obtain the spectrum of the star;</p>
<p class="p1">measure the position of the wavelength corresponding to maximum intensity;</p>
<p class="p2"><span class="s1">use Wien&rsquo;s law (to determine temperature); } </span><em>(allow quotation of Wien&rsquo;s equation if symbols defined)</em></p>
<p class="p2"><em>Award </em><strong><em>[3 max] </em></strong><em>for referring to identification of temperature via different ionizations of different elements.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">candidates notably addressed absolute magnitude without referring to apparent magnitude as the question asked. Well-prepared candidates (both HL and SL) only had a problem with the part related to the use of a non-linear temperature scale. Average prepared candidates displayed difficulty in the experimental measurement of the temperature of the distant star and also with details of nuclear processes occurring in the Sun during transformation to a red giant.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">candidates notably addressed absolute magnitude without referring to apparent magnitude as the question asked. Well-prepared candidates (both HL and SL) only had a problem with the part related to the use of a non-linear temperature scale. Average prepared candidates displayed difficulty in the experimental measurement of the temperature of the distant star and also with details of nuclear processes occurring in the Sun during transformation to a red giant.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the development of the universe.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define, with reference to the flat model of the universe, <em>critical density</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram represents how the universe might develop if its density were greater than&nbsp;the critical density.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">The dotted line represents the development of the universe if the density of the universe&nbsp;were zero.</p>
<p style="text-align: left;">On the diagram above,</p>
<p style="text-align: left;">(i) label with the letter N the present time.</p>
<p style="text-align: left;">(ii) draw a line labelled F to represent the development of the universe corresponding&nbsp;to a flat universe.</p>
<p style="text-align: left;">(iii) draw a line labelled O to represent the development of the universe corresponding&nbsp;to the universe if its density were less than the critical density.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>critical density is the density for which the universe stops expanding;<br>after an infinite amount of time;</p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>radius of the universe&nbsp;<img src="" alt></p>
<p>(i) the time corresponding to where the two lines touch; {<em>(labelled N on the time&nbsp;axis or the graph)</em></p>
<p>(ii) a slightly curved line between the dotted line and the closed universe line;&nbsp;<br>(<em>labelled F</em>)</p>
<p>(iii) a slightly curved line between the dotted line and the flat universe line;&nbsp;<br>(<em>labelled O</em>)</p>
<p><br><em>Allow an accelerating universe graph labelled either F or O.</em></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the structure of a typical main sequence star.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Star X is likely to evolve into a neutron star.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the most abundant element in the core and the most abundant element in the&nbsp;outer layer.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Hertzsprung&ndash;Russell (HR) diagram shows two main sequence stars X and Y and&nbsp;includes lines of constant radius. <em>R</em> is the radius of the Sun.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_09.35.17.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/11b"></p>
<p>Using the mass&ndash;luminosity relation and information from the graph, determine the ratio&nbsp;\(\frac{{{\text{density of star X}}}}{{{\text{density of star Y}}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the HR diagram in (b), draw a line to indicate the evolutionary path of star X.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the neutron star that is left after the supernova stage does not&nbsp;collapse under the action of gravitation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of a typical neutron star is 20 km and its surface temperature is 10<sup>6</sup> K.&nbsp;Determine the luminosity of this neutron star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the region of the electromagnetic spectrum in which the neutron star in&nbsp;(c)(iii) emits most of its energy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>core:</em> helium</p>
<p><em>outer layer:</em> hydrogen</p>
<p>&nbsp;</p>
<p><em>Accept no other elements.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of masses is&nbsp;\({\left( {\frac{{{{10}^4}}}{{{{10}^{ - 3}}}}} \right)^{\frac{1}{{3.5}}}} = {10^2}\)</p>
<p>ratio of volumes is&nbsp;\({\left( {\frac{{10}}{{{{10}^{ - 1}}}}} \right)^3} = {10^6}\)</p>
<p>so ratio of densities is&nbsp;\(\frac{{{{10}^2}}}{{{{10}^6}}} = {10^{ - 4}}\)</p>
<p>&nbsp;</p>
<p><em>Allow ECF for MP3 from earlier MPs</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line to the right of X, possibly undulating, very roughly horizontal</p>
<p>&nbsp;</p>
<p><em>Ignore any paths beyond this as the star disappears&nbsp;from diagram.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gravitation is balanced by a pressure/force due to neutrons/neutron&nbsp;degeneracy/pauli exclusion principle</p>
<p>&nbsp;</p>
<p><em>Do not accept electron degeneracy.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L</em>&nbsp;=&nbsp;\(\sigma \)<em>AT&thinsp;</em><sup>4</sup>&nbsp;= 5.67&nbsp;x 10<sup>&ndash;8</sup>&nbsp;x 4\(\pi \)&nbsp;x (2.0&nbsp;x 10<sup>4</sup>)<sup>2</sup>&nbsp;x (10<sup>6</sup>)<sup>4</sup></p>
<p><em>L</em> =&nbsp;3&nbsp;x 10<sup>26</sup>&nbsp;&laquo;W&raquo;<br><em><strong>OR</strong></em><br><em>L</em> =&nbsp;2.85 x 10<sup>26</sup> &laquo;W&raquo;</p>
<p>&nbsp;</p>
<p><em>Allow ECF for <strong>[1 max]</strong> if \(\pi \)r&thinsp;<sup>2</sup> used (gives 7 x&nbsp;10<sup>26&nbsp;</sup>&laquo;W &raquo;)</em></p>
<p><em>Allow ECF for a POT error in MP1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\lambda &nbsp;= \frac{{2.9 \times {{10}^{ - 3}}}}{{{{10}^6}}} = 2.9 \times {10^{ - 9}}\)&nbsp;&laquo;m&raquo;</p>
<p>this is an X-ray wavelength</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="question">
<p>This question is about the life history of stars.</p>
<p>Outline, with reference to pressure, how a star on the main sequence maintains its stability.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>balance of two forces/pressures;<br>(balance) between radiation/pressure and gravitational force/pressure;<br>(radiation pressure is when) photons/radiation exert outwards force on nuclei/ particles;<br>(gravitational pressure is when) gravitational force between particles/layers of the star acts inwards;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>(a) There was evidence of superficial learning from the syllabus. Only a few of the best candidates wrote details of radiation and/or gravitational pressure, in response to the &ldquo;outline&rdquo; command term.</p>
</div>
<br><hr><br><div class="specification">
<p>The following data apply to the star Gacrux.</p>
<p>\[\begin{array}{*{20}{l}}<br> {{\text{Radius}}}&amp;{ = 58.5 \times {{10}^9}{\text{ m}}} \\ <br> {{\text{Temperature}}}&amp;{ = 3600{\text{ K}}} \\ <br> {{\text{Distance}}}&amp;{ = 88{\text{ ly}}} <br>\end{array}\]</p>
</div>

<div class="specification">
<p>A Hertzsprung&ndash;Russell (HR) diagram is shown.</p>
<p><img src=""></p>
<p>On the HR diagram,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Main sequence stars are in equilibrium under the action of forces. Outline how this equilibrium is achieved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A main sequence star P, is 1.3 times the mass of the Sun. Calculate the luminosity of P relative to the Sun.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The luminosity of the Sun <em>L</em>\(_ \odot \) is 3.85 × 10<sup>26</sup> W. Determine the luminosity of Gacrux relative to the Sun.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distance to Gacrux can be determined using stellar parallax. Outline why this method is not suitable for all stars.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>draw the main sequence.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>plot the position, using the letter P, of the main sequence star P you calculated in (b).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>plot the position, using the letter G, of Gacrux.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss, with reference to its change in mass, the evolution of star P from the main sequence until its final stable phase.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>photon/fusion/radiation force/pressure balances gravitational force/pressure</p>
<p>gives both directions correctly (outwards radiation, inwards gravity)</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>L</em> \( \propto \) <em>M</em><sup>35</sup> for main sequence<strong>»</strong></p>
<p>luminosity of <em>P</em> = 2.5 <strong>«</strong>luminosity of the Sun<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>L<sub>Gacrux</sub></em> = 5.67 × 10<sup>–8</sup> × 4<em>π</em> × (58.5 × 10<sup>9</sup>)<sup>2</sup> × 3600<sup>4</sup></p>
<p><em>L<sub>Gacrux</sub></em> = 4.1 × 10<sup>–29 </sup><strong>«</strong><span class="Apple-converted-space">W</span><strong>»</strong></p>
<p>\(\frac{{{L_{Gacrux}}}}{{{L_ \odot }}}\) <strong>«</strong><span class="Apple-converted-space">= \(\frac{{4.1 \times {{10}^{29}}}}{{3.85 \times {{10}^{26}}}}\)</span><strong>»</strong> = 1.1 × 10<sup>3</sup></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if the star is too far then the parallax angle is too small to be measured</p>
<p><strong><em>OR</em></strong></p>
<p>stellar parallax is limited to closer stars</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line or area roughly inside shape shown – judge by eye</p>
<p> </p>
<p><em>Accept straight line or straight area at roughly 45°</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-13_om_09.32.24.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/11.d.i/M"></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>P between \(1{L_ \odot }\) and \({10^1}{L_ \odot }\) on main sequence drawn</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at \({10^3}{L_ \odot }\), further to right than 5000 K and to the left of 2500 K (see shaded region)</p>
<p> </p>
<p><img src="images/Schermafbeelding_2018-08-13_om_09.40.07.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/11.d.iii/M"></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>Main sequence to red giant</p>
<p> </p>
<p><span>planetary nebula</span> with <span>mass</span> reduction/loss</p>
<p><strong><em>OR</em></strong></p>
<p><span>planetary nebula</span> with mention of remnant <span>mass</span></p>
<p> </p>
<p>white dwarf</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>Main sequence to red supergiant region</p>
<p> </p>
<p><span>Supernova</span> with <span>mass</span> reduction/loss</p>
<p><strong><em>OR</em></strong></p>
<p><span>Supernova</span> with mention of remnant <span>mass</span></p>
<p> </p>
<p>neutron star</p>
<p><strong><em>OR</em></strong></p>
<p>Black hole</p>
<p> </p>
<p><em>OWTTE for both alternatives</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The first graph shows the variation of apparent brightness of a Cepheid star with time.</p>
<p style="text-align: center;"><img src=""></p>
<p>The second graph shows the average luminosity with period for Cepheid stars.</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the distance from Earth to the Cepheid star in parsecs. The luminosity of the Sun is 3.8 &times; 10<sup>26&nbsp;</sup>W. The average apparent brightness of the Cepheid star is 1.1 &times; 10<sup>&ndash;9&nbsp;</sup>W m<sup>&ndash;2</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why Cephids are used as standard candles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>from first graph period=5.7 &laquo;days&raquo; &plusmn;0.3 &laquo;days&raquo;</p>
<p>from second graph \(\frac{L}{{{L_{{\text{SUN}}}}}} = 2300\)&nbsp;&laquo;\( \pm {\text{200}}\)&raquo;</p>
<p><em>d</em> =&nbsp;&laquo;\(\sqrt {\frac{{2500 \times 3.8 \times {{10}^{26}}}}{{4\pi &nbsp;\times 1.1 \times {{10}^{ - 9}}}}} &nbsp;= 8.3 \times {10^{18}}{\text{m}}\)&raquo; =250 &laquo;pc&raquo;</p>
<p><em>Accept answer from interval 240 to 270 pc If unit omitted, assume pc.</em><br><em>Watch for ECF from mp1</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 22">&nbsp;</div>
<p>Cepheids have a definite/known &laquo;average&raquo; luminosity</p>
<p>which is determined from &laquo;measurement of&raquo; period<br> <em><strong>OR</strong></em><br> determined from period-luminosity graph</p>
<p>Cepheids can be used to estimate the distance of galaxies</p>
<p><em>Do not accept brightness for luminosity.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<div class="page" title="Page 20">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">This question is about the properties of a star.<br> </span></p>
</div>
</div>
</div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The peak in the radiation spectrum of a star X is at a wavelength of 300 nm.</p>
<p>Show that the surface temperature of star X is about 10000 K.&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The radius of star X is 4.5 <em>R</em><sub>S</sub> where <em>R</em><sub>S</sub> is the radius of the Sun. The surface temperature&nbsp;of the Sun is 5.7&times;10<sup>3</sup> K.</p>
<div class="page" title="Page 21">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPSMT';">Determine the ratio </span>\(\frac{{{\rm{luminosity of star X}}}}{{{\rm{luminosity of the Sun}}}}\).</p>
</div>
</div>
</div>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the Hertzsprung&ndash;Russell diagram, label the position of star X with the letter X.</p>
<p><img src="" alt></p>
<p>&nbsp;</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(T = \frac{{2.9 \times {{10}^{ - 3}}}}{{3.0 \times {{10}^{ - 7}}}}\);<br>9700 (K);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{L_X}}}{{{L_S}}} = \frac{{\sigma {r_x}^2{T_x}^4}}{{\sigma {r_S}^2{T_S}^4}}\);<br>=\(\frac{{{{4.5}^2} \times {{9700}^4}}}{{{{5700}^4}}}\);<br>=170;</p>
<p><em>Accept answers that use T = 10000(K) to give an answer of 190.</em></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>&nbsp;</p>
<p>X marked correctly within range shown;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;Was very well done in general.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>&nbsp;Many answered (b) well, but a large minority made mistakes with powers or tried to evaluate both luminosities then find the ratio and failed in the process. A lot of poor algebra and messy working was evident.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>Was&nbsp;well done in general.</p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the Hertzsprung&ndash;Russell (HR) diagram and using it to determine some&nbsp;properties of stars.</p>
<p>The diagram below shows the grid of a HR diagram, on which the positions of selected stars are&nbsp;shown. (<em>L</em><sub>S</sub> = luminosity of the Sun.)</p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a circle around the stars that are red giants. Label this circle R.</p>
<p>(ii) Draw a circle around the stars that are white dwarfs. Label this circle W.</p>
<p>(iii) Draw a line through the stars that are main sequence stars.</p>
<p style="text-align: left;">&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, without doing any calculation, how astronomers can deduce that star B has a&nbsp;larger diameter than star A.</p>
<p style="text-align: left;">&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the following data and information from the HR diagram, show that star A is at a&nbsp;distance of about 800 pc from Earth.</p>
<p style="text-align: center;">Apparent brightness of the Sun =1.4&times;10<sup>3</sup>Wm<sup>&minus;2</sup><br>Apparent brightness of star A = 4.9&times;10<sup>&minus;9</sup>Wm<sup>&minus;2</sup><br>Mean distance of Sun from Earth =1.0 AU<br>1 pc = 2.1&times;10<sup>5</sup>AU</p>
<p style="text-align: left;">&nbsp;</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the distance of star A from Earth cannot be determined by the method of&nbsp;stellar parallax.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p style="text-align: left;">(i) circle labelled R as shown above;&nbsp;<br><em>Accept answers that include the star B within the circle.</em></p>
<p style="text-align: left;">(ii) circle labelled W as shown above;</p>
<p style="text-align: left;">(iii) any line (not necessarily straight) going from top left to bottom right, through or near all or most of stars;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>star B has lower temperature;<br>star B has (slightly) larger luminosity / stars have approximately same luminosity;<br>surface area calculated from <em>L</em>=&sigma;<em>AT</em><sup>4</sup>, so star B has larger surface area/diameter /&nbsp;to give the same/similar luminosity at lower temperature, star B must have bigger&nbsp;diameter/surface area;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(from HR diagram) <em>L</em><sub>A</sub> =10<sup>5</sup><em>L</em><sub>S</sub>;<br>\(b = \frac{L}{{4\pi {d^2}}}\) used;<br>to give&nbsp;\(\frac{{{d_{\rm{A}}}}}{{{d_{\rm{S}}}}} = \sqrt {\frac{{{L_{\rm{A}}}}}{{{L_{\rm{S}}}}} \times \frac{{{b_{\rm{S}}}}}{{{b_{\rm{A}}}}}}&nbsp; = \sqrt {{{10}^5} \times \frac{{1.4 \times {{10}^3}}}{{4.9 \times {{10}^{ - 9}}}}} \);<br>hence <em>d<sub>A</sub></em> =1.7&times;10<sup>8</sup> AU;<br>= 800 pc&nbsp;<br><em>Do not award a mark for the conversion from AU to pc.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the parallax angle is too small to be measured accurately / the distance is greater&nbsp;than the limit for stellar parallax, which is 100 pc;&nbsp;<br><em>Accept any value from 100&ndash;800 pc for limit. Do not accept &ldquo;it&rsquo;s too far away&rdquo;.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Alpha Centauri A and B is a binary star system in the main sequence.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a binary star system.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate \(\frac{{{b_{\text{A}}}}}{{{b_{\text{B}}}}} = \frac{{{\text{apparent brightness of Alpha Centauri A}}}}{{{\text{apparent brightness of Alpha Centauri B}}}}\).</p>
<p>(ii) The luminosity of the Sun is 3.8 &times; 10<sup>26</sup> W. Calculate the radius of Alpha Centauri A.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show, without calculation, that the radius of Alpha Centauri B is smaller than the radius of Alpha Centauri A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Alpha Centauri A is in equilibrium at constant radius. Explain how this equilibrium is maintained.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A standard Hertzsprung&ndash;Russell (HR) diagram is shown.</p>
<p><img src=""></p>
<p>Using the HR diagram, draw the present position of Alpha Centauri A and its expected evolutionary path.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>two stars orbiting about a common centre &laquo;of mass/gravity&raquo; <br><em>Do not accept two stars orbiting each other.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i<br>stars are roughly at the same distance from Earth<br><em><strong>OR</strong></em><br><em>d</em> is constant for binaries</p>
<p>\(\frac{{{L_{\rm{A}}}}}{{{L_{\rm{B}}}}} = \frac{{1.5}}{{0.5}} = 3.0\)</p>
<p>Award <strong>[2]</strong> for a bald correct answer.</p>
<p>&nbsp;</p>
<p>ii<br>\(r = \sqrt {\frac{{1.5 \times 3.8 \times {{10}^{26}}}}{{5.67 \times {{10}^{ - 8}} \times 4\pi&nbsp; \times {{5800}^4}}}} \)</p>
<p>= 8.4 &times; 10<sup>8&nbsp;</sup>&laquo;m&raquo;</p>
<p><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 20">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold;">&laquo;</span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-style: italic;">A</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=\(\frac{L}{{\sigma {T^4}}}\)</span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold;">&raquo; </span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">B and A have similar temperatures</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'ArialMT';">so areas are in ratio of luminosities</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold;">&laquo;</span><span style="font-size: 11.000000pt; font-family: 'ArialMT';">so B radius is less than A</span><span style="font-size: 11.000000pt; font-family: 'Arial'; font-weight: bold;">&raquo; </span></p>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div title="Page 20">
<div>
<div>
<div>
<p>radiation pressure/force outwards</p>
<p>gravitational pressure/force inwards</p>
<p>forces/pressures balance</p>
</div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Alpha Centauri A within allowable region</p>
<p>some indication of star moving right and up then left and down ending in white dwarf region as indicated</p>
<p><img src=""></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stars in the constellation Canis Minor.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Using the data in (c), calculate, in parsecs, the distance from Earth to Gomeisa.</p>
<p>(ii) Gomeisa has a radius four times that of the Sun. Use the data in (c) to show that the ratio</p>
<p>\[\frac{{{\rm{luminosity of Gomeisa}}}}{{{\rm{luminosity of Sun}}}}\]</p>
<p>is about 200.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Gomeisa, Luyten&rsquo;s star and the Sun are main sequence stars. On the grid of the Hertzsprung&ndash;Russell (HR) diagram, identify the position of</p>
<p>(i) Gomeisa, with the letter G.</p>
<p>(ii) Luyten&rsquo;s star, with the letter L.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(2.9 =&nbsp; - 0.7 + 51{\rm{g}}\left( {\frac{d}{{10}}} \right)\);<br>\(\frac{d}{{10}} = {10^{\frac{{{\rm{3.6}}}}{{\rm{5}}}}}\);<br>52 (pc);<br><em>Award <strong>[2 max]</strong> ECF if magnitudes are reversed giving 1.9 (pc).</em><br><em>Award <strong>[2 max]</strong> if data for Lutyen&rsquo;s star is used and no credit for the </em><em>distance of 4 (pc) has already been given in (c)(i).</em><br><em>Award <strong>[3]</strong> for a bald correct answer.</em><br>(ii) \(\frac{{{L_{\rm{G}}}}}{{{L_{\rm{S}}}}} = {\left[ {\frac{{{R_{\rm{G}}}}}{{{R_{\rm{S}}}}}} \right]^2}{\left[ {\frac{{{T_{\rm{G}}}}}{{{T_{\rm{S}}}}}} \right]^4}\);<br>\( = {4^2} \times {\left[ {\frac{{11000}}{{5800}}} \right]^4}\);<br>=210; <em>(must see this answer to better than 1 significant figure)</em><br><em>Approximate answer of 200 is given in the question so correct steps in the </em><em>working are required to award any marks.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>(i) G correct within region shown;</p>
<p>(ii) L correct within region shown;</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Sirius is a binary star. It is composed of two stars, Sirius A and Sirius B. Sirius A is a&nbsp;main sequence star.</p>
</div>

<div class="specification">
<p>The Sun&rsquo;s surface temperature is about 5800 K.</p>
</div>

<div class="specification">
<p>The image shows a Hertzsprung&ndash;Russell (HR) diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The mass of Sirius A is twice the mass of the Sun. Using the Hertzsprung&ndash;Russell&nbsp;(HR) diagram,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a binary star.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The peak spectral line of Sirius B has a measured wavelength of 115 nm. Show that&nbsp;the surface temperature of Sirius B is about 25&thinsp;000 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of Sirius B is about the same mass as the Sun. The luminosity of Sirius B&nbsp;is 2.5 % of the luminosity of the Sun. Show, with a calculation, that Sirius B is <strong>not</strong> a&nbsp;main sequence star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the radius of Sirius B in terms of the radius of the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the star type of Sirius B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>draw the approximate positions of Sirius A, labelled A and Sirius B, labelled B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>sketch the expected evolutionary path for Sirius A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>two stars orbiting a common centre &laquo;of mass&raquo;</p>
<p><em>Do not accept &ldquo;stars which orbit each other&rdquo;</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(\lambda \) x <em>T&nbsp;</em>= 2.9 x 10<sup>&ndash;3</sup>&raquo;</p>
<p><em>T</em> =&nbsp;\(\frac{{2.9 \times {{10}^{ - 3}}}}{{115 \times {{10}^{ - 9}}}}\) = 25217 &laquo;K&raquo;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of the mass-luminosity relationship <em><strong>or</strong></em>&nbsp;\({\left( {\frac{{{M_{{\text{Sirius}}}}}}{{{M_{{\text{Sun}}}}}}} \right)^{3.5}}\) = 1</p>
<p>if Sirius B is on the main sequence then&nbsp;\(\left( {\frac{{{L_{\,{\text{Sirius}}\,{\text{B}}}}}}{{L{\,_{{\text{Sun}}}}}}} \right)\) = 1&nbsp;&laquo;which it is not&raquo;</p>
<p><em>Conclusion is given, justification must be stated</em></p>
<p><em>Allow reverse argument beginning with luminosity</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {\frac{{{L_{\,{\text{Sirius}}\,{\text{B}}}}}}{{L{\,_{{\text{Sun}}}}}}} \right)\) = 0.025</p>
<p><em>r&thinsp;</em><sub>Sirius</sub> =&nbsp;&laquo;\(\sqrt {0.025 \times {{\left( {\frac{{5800}}{{25000}}} \right)}^4}} \) =&raquo; 0.0085&nbsp;<em>r&thinsp;</em><sub>Sun</sub></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>white dwarf</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Sirius A on the main sequence above and to the left of the Sun <em><strong>AND</strong> </em>Sirius B on white dwarf area as shown</p>
<p><em>Both positions must be labelled&nbsp;</em></p>
<p><em>Allow the position anywhere within the limits shown.</em></p>
<p><em><img src=""></em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>arrow goes up and right and then loops to white dwarf area</p>
<p><img src=""></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the star Naos (Zeta Puppis).</p>
<p>The following data are available for the star Naos.</p>
<p style="padding-left: 30px;">Surface temperature = 4.24&times;10<sup>4</sup>K<br>Radius = 7.70&times;10<sup>9</sup>m<br>Apparent magnitude = +2.21<br>Parallax angle = 3.36&times;10<sup>&ndash;3</sup> arcseconds</p>
</div>

<div class="question">
<p>The distance to Naos may be determined by the method of stellar parallax. The diagram shows the star Naos and the Earth in its orbit around the Sun.</p>
<p><img src="" alt></p>
<p>(i) Draw lines on the diagram above in order to indicate the parallax angle of Naos.</p>
<p>(ii) Outline how the parallax angle of Naos may be measured.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>(i) either angle <em>p</em> as shown;</p>
<p><img src="" alt></p>
<p>(ii) the star&rsquo;s position is observed at two times, six months apart;<br>the shift in the star&rsquo;s position relative to the distant stars is (twice) the parallax angle;</p>
<p><em>Accept correct answers which are clear from annotations on the diagram.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>This question is about stars.</p>
<p>The Hertzsprung&ndash;Russell (HR) diagram shows the Sun, a star labelled A and the main sequence.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Star A is part of a binary star system. The diagram shows the orbit of star A and the orbit of its companion, star B.</p>
<p><img src="" alt></p>
<p>The temperature of star A is <em>T</em><sub>A</sub>, the temperature of star B is&nbsp;<em>T</em><sub>B</sub> and \(\frac{{{T_A}}}{{{T_B}}} = 0.60\). The radius of star A is <em>R</em><sub>A</sub>, the radius of star B is&nbsp;<em>R</em><sub>B</sub> and \(\frac{{{R_A}}}{{{R_B}}} = 270\).</p>
<p>Show that the luminosity of star A is 9.4&times;10<sup>3</sup> times greater than the luminosity of star B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram below shows the spectrum of the stars as observed from Earth. The spectrum shows one line from star A and one line from star B, when the stars are in the position shown in the diagram (b).</p>
<p><img src="" alt></p>
<p>On the spectrum draw lines to show the approximate positions of these spectral lines after the stars have completed one quarter of a revolution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{L_{\rm{A}}}}}{{{L_{\rm{B}}}}} = \frac{{\sigma 4\pi R_{\rm{A}}^2T_{\rm{A}}^4}}{{\sigma 4\pi R_{\rm{B}}^2T_{\rm{B}}^4}}\);<br>\(\frac{{{L_{\rm{A}}}}}{{{L_{\rm{B}}}}} = {0.60^4} \times {270^2}\) <em><strong>or</strong></em> look for 3 or more sig fig <em>eg</em> 9.45&times;10<sup>3</sup>;<br>\(\left( {\frac{{{L_{\rm{A}}}}}{{{L_{\rm{B}}}}} = 9.4 \times {{10}^3}} \right)\)</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em>Award <strong>[1]</strong> for each correct line.</em><br><em>The shifted lines are light grey in the diagram above. Ignore magnitude of shift.</em><br><em>Award <strong>[0]</strong> if more than two lines are drawn unless it is clear which lines are to be marked.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar distances and stellar properties.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the grid of the Hertzsprung&ndash;Russell (HR) diagram shown, draw a line to represent the approximate position of the main sequence.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Barnard&rsquo;s star is a main sequence star that is 1.8 pc from Earth.</p>
<p>(i) Define the <em>parsec</em>.</p>
<p>(ii) Calculate the parallax angle of Barnard&rsquo;s star as measured from Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using your answer to (b)(ii) and a labelled diagram, how the distance of Barnard&rsquo;s star from Earth is measured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The apparent brightness of Barnard&rsquo;s star is 3.6&times;10<sup>&ndash;12</sup>Wm<sup>&ndash;2</sup> and its surface temperature is 3800 K.</p>
<p>Given that 1 pc=3.1&times;10<sup>16</sup>m, show for Barnard&rsquo;s star</p>
<p>(i) that its luminosity is of the order of 10<sup>23</sup>W.</p>
<p>(ii) that its surface area is of the order of 10<sup>16</sup>m<sup>2</sup>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>any suitable line from anywhere in top left-hand quadrant;<em> (accept a straight line)</em><br>to bottom right-hand quadrant;<br><em>The shaded areas are the limits within which the line must be drawn.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) distance at which 1 AU subtends an angle of 1 arcsec / distance at which the angle subtended by the radius of Earth&rsquo;s orbit is 1 arcsec;</p>
<p>(ii) \(p = \left( {\frac{1}{d} = } \right)0.56{\mathop{\rm arcsec}\nolimits} \);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>&nbsp;</p>
<p><em>Labelled diagram should relate to the following points:</em><br>measure against the fixed stars the angle Barnard&rsquo;s star subtends at Earth in June and again in December;<br>difference between the two angles is twice the parallax angle;<br>orbital radius of Earth about Sun is 1 AU so distance to star is computed from \(d = \frac{1}{p}\);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>L</em>=4&pi;<em>bd</em><sup>2</sup>;<br>=4&times;3.14&times;3.6&times;10<sup>-12</sup>&times;[1.8&times;3.1]<sup>2</sup>&times;10<sup>32</sup>;<br>=1.4&times;10<sup>23</sup>W;<br>&asymp;10<sup>23</sup>W</p>
<p>(ii) \(A = \frac{L}{{\sigma {T^4}}}\);<br>\( = \frac{{1.4 \times {{10}^{23}}}}{{5.67 \times {{10}^{ - 8}} \times {{3.8}^4} \times {{10}^{12}}}}\); <em>(allow ECF from (d)(i))</em><br>=1.184&times;10<sup>16</sup>m\(^2\);<br>&asymp;10<sup>16</sup>m<sup>2</sup></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the development of the universe.</p>
<p>The graph shows one possible way in which the universe is thought to change with time. This type of universe is known as a fl at universe.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the graph, draw lines to show the variation with time of the size of the universe for both a closed universe and an open universe. Label your line for the closed universe C and your line for the open universe O.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the open and closed outcomes for the universe depend on the critical density of matter in the universe.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> reason why it is difficult to determine the density of the universe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">after present, open universe curve drawn above flat curve <strong>and</strong></span> <span style="font-size: 11.000000pt; font-family: 'Arial';">closed universe curve drawn under flat curve; </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>(both needed for mark)</em><br> </span><span style="font-size: 11.000000pt; font-family: 'Arial';">all meet at &ldquo;present time&rdquo;;</span><span style="font-size: 11.000000pt; font-family: 'Arial,Bold';"><br></span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>Ignore curves before present time.</em> </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><img src="" alt></span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">if density less than critical density/too low the universe will expand forever; <br>if greater than critical density the universe contracts;<br> after an initial expansion;</span><span style="font-size: 11.000000pt; font-family: 'Arial,Bold';"><br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">If critical density not mentioned award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1 max]</span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>.</em> </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>presence of dark matter / WIMPS / MACHOS <em><span style="font-size: 11pt; font-family: 'Arial,Italic';">etc</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">; </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">&nbsp;</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the properties of a star.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by a</p>
<p>(i) constellation.</p>
<p>(ii) stellar cluster.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><img src="" alt></p>
<p>On the Hertzsprung&ndash;Russell diagram above,</p>
<p>(i) label the position of Betelgeuse with the letter B.</p>
<p>(ii) sketch the position of main sequence stars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) a collection of stars that form a recognizable group (as viewed from Earth);<br>that need not be/are not close to each other/gravitationally bound;</p>
<p>(ii) stars that are gravitationally bound/forming an open arrangement/close to each other (in space);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>(i) position labelled B within shaded area;<br><em>Award <strong>[1]</strong> if label B is missing but point is clear.</em></p>
<p>(ii) generally the correct shape; <em>(allow broad line)</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stars.</p>
<p>The Hertzsprung&ndash;Russell (HR) diagram shows the position of the Sun and three stars labelled A, B and C.</p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the star type for A, B and C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the ratio \(\frac{{{\rm{radius of B}}}}{{{\rm{radius of A}}}}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The apparent brightness of C is 3.8 \( \times \) 10<sup>&ndash;10 </sup>Wm<sup>&ndash;2</sup>. The luminosity of the Sun is 3.9 \( \times \) 10<sup>26 </sup>W.</p>
<p>(i) State what is meant by apparent brightness and luminosity.</p>
<p>Apparent brightness:<br>Luminosity:</p>
<p>(ii) Determine the distance of C from Earth.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with wavelength&nbsp;<em>&lambda;</em> of the intensity <em>I</em> of the radiation emitted by 1.0m<sup>2</sup> of the surface of the Sun. The curve of the graph has been adjusted so that the maximum intensity is 1.</p>
<p><img src="" alt></p>
<p>On the grid, draw a corresponding graph for star C. Your curve should have a maximum intensity of 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">A</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>:</em> white dwarf;</span></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">B</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>:</em> main sequence / blue giant / blue supergiant;</span></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">C</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>:</em> red giant / red supergiant; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">\(\frac{{{L_B}}}{{{L_A}}} = \left( {\frac{{\sigma 4\pi {R_B}^2{T^4}}}{{\sigma 4\pi {R_A}^2{T^4}}} = } \right){10^6}\);<br>\(\frac{{{R_B}}}{{{R_A}}} = {10^3}\);<br>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer. </span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">apparent brightness</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>:</em> (total) power received per unit area/per m<sup>2 </sup></span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">} <em>(accept luminosity for </em></span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>power)<br>luminosity</em></span><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>:</em> (total) power radiated;<br> </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">Accept energy per second instead of power. </span></p>
</div>
</div>
</div>
(ii) \(d = \sqrt {\frac{L}{{4\pi b}}} \left( { = \sqrt {\frac{{{{10}^4} \times 3.9 \times {{10}^{26}}}}{{4\pi&nbsp; \times 3.8 \times {{10}^{ - 10}}}}} } \right)\);<em><em> (<span style="font-size: 11pt; font-family: 'Arial,Italic';">mark is for rearrangement)<br></span></em></em>
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">d</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">2.9</span> \( \times \) <span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">19 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(m);<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for 2.9</span><span style="font-size: 11pt; font-family: 'Arial,Italic';">&times;10</span><span style="font-size: 7pt; font-family: 'Arial,Italic'; vertical-align: 5pt;">17 </span><span style="font-size: 11pt; font-family: 'Arial,Italic';">(misses factor of 10000).<br>Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer. </span></em></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial';">&nbsp;</span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">same shape as curve in graph and displaced to right;<br>peak at 10 </span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&plusmn; </span><span style="font-size: 11.000000pt; font-family: 'Arial';">2</span> \( \times \) <span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">-</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">7 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">m with intensity&nbsp;</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">&le;</span><span style="font-size: 11.000000pt; font-family: 'Arial';">1; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (a) nearly everyone could name the types of stars. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (b) the ratio of star radii was usually correct, with the square root missed by many candidates. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">The apparent brightness and power of a star in (c)(i) were usually correctly stated. Mistakes usually involved stating power per second or energy. Part (c)(ii) was done well also, although arithmetic errors were common. In (d) nearly all candidates found the star&rsquo;s peak wavelength and drew a suitable graph. Overall a very well answered question. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (d) nearly all candidates found the star&rsquo;s peak wavelength and drew a suitable graph. Overall a very well answered question. </span></p>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>