File "markscheme-HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Option D HTML/markscheme-HL-paper3html
File size: 1.76 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p>Type Ia supernovae typically have a peak luminosity of around 5 × 10<sup>5</sup> L<sub>s</sub>, where L<sub>s</sub> is the luminosity of the Sun (3.8 × 10<sup>26</sup> W). A type Ia supernova is observed with an apparent peak brightness of 1.6 × 10<sup>–6</sup> W m<sup>–2</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the formation of a type Ia supernova.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the distance to the supernova is approximately 3.1 × 10<sup>18</sup> m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one </strong>assumption made in your calculation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a white dwarf accretes mass <strong>«</strong>from a binary partner<strong>»</strong></p>
<p>when the mass becomes more than the Chandrasekhar limit (1.4M<sub>s</sub>) <strong>«</strong>then asupernova explosion takes place<strong>»</strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>d = \(\sqrt {\frac{{\text{L}}}{{4\pi {\text{b}}}}} = \sqrt {\frac{{5 \times {{10}^5} \times 3.8 \times {{10}^{26}}}}{{4\pi \times 1.6 \times {{10}^{ - 6}}}}} \)</p>
<p>d = 3.07 × 10<sup>18</sup> <strong>«</strong><span class="Apple-converted-space">m</span><strong>»</strong></p>
<p> </p>
<p><em>At least 3 sig fig required for MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>type Ia supernova can be used as standard candles</p>
<p>there is no dust absorbing light between Earth and supernova</p>
<p>their supernova is a typical type Ia</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Derive, using the concept of the cosmological origin of redshift, the relation</p>
<p style="text-align: center;"><em>T</em> \( \propto \frac{1}{R}\)</p>
<p style="text-align: left;">between the temperature <em>T</em> of the cosmic microwave background (CMB) radiation and the cosmic scale factor <em>R</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The present temperature of the CMB is 2.8 K. This radiation was emitted when the universe was smaller by a factor of 1100. Estimate the temperature of the CMB at the time of its emission.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how the anisotropies in the CMB distribution are interpreted.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the cosmological origin of redshift implies that the wavelength is proportional to the scale factor: \(\lambda \) \( \propto \) <em>R</em></p>
<p>combining this with Wien’s law \(\lambda \) \( \propto \) \(\frac{1}{T}\)</p>
<p><em><strong>OR</strong></em></p>
<p>use of <em>kT</em> \( \propto \frac{{hc}}{\lambda }\)</p>
<p>«gives the result»</p>
<p> </p>
<p><em>Evidence of correct algebra is needed as relationship T</em> = \(\frac{k}{R}\) <em>is given.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>T</em> \( \propto \)\(\frac{1}{R}\)</p>
<p>= 2.8 x 1100 x 3080 ≈ 3100 «K»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CMB anisotropies are related to fluctuations in density which are the cause for the formation of structures/nebulae/stars/galaxies</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the evidence that indicates the location of dark matter in galaxies.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why a hypothesis of dark energy has been developed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>rotational<strong>» </strong>velocity of stars are expected to decrease as distance from centre of galaxy increases</p>
<p>the observed velocity of outer stars is constant/greater than predicted</p>
<p>implying large mass on the edge <strong>«</strong>which is dark matter<strong>»</strong></p>
<p> </p>
<p><em>OWTTE</em></p>
<p><em>1st and 2nd marking points can </em><em>be awarded from an annotated </em><em>sketch with similar shape as the </em><em>one below</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-14_om_10.48.40.png" alt="M18/4/PHYSI/HP3/ENG/TZ2/19.a/M"></em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>data from <span>type 1a supernovae</span> shows universe expanding at an accelerated rate</p>
<p> </p>
<p>gravity was expected to slow down the expansion of the universe</p>
<p><strong><em>OR</em></strong></p>
<p>this did not fit the hypotheses at that time</p>
<p> </p>
<p>dark energy counteracts/opposes gravity</p>
<p><strong><em>OR</em></strong></p>
<p>dark energy causes the acceleration</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Sun is a second generation star. Outline, with reference to the Jeans criterion (M<sub>J</sub>), how the Sun is likely to have been formed.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how fluctuations in the cosmic microwave background (CMB) radiation are linked to the observation that galaxies collide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the critical density of the universe is</p>
<p>\[\frac{{3{H^2}}}{{8\pi G}}\]</p>
<p>where <em>H</em> is the Hubble parameter and <em>G</em> is the gravitational constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>interstellar gas/dust «from earlier supernova»</p>
<p>gravitational attraction between particles</p>
<p>if the mass is greater than the Jean’s mass/M<sub>j</sub> the interstellar gas coalesces</p>
<p>as gas collapses temperature increases leading to nuclear fusion</p>
<p><em>MP3 can be expressed in terms of potential and kinetic energy</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>fluctuations in CMB due to differences in temperature/mass/density</p>
<p>during the inflationary period/epoch/early universe</p>
<p>leading to the formation of galaxies/stars/structures</p>
<p>gravitational interaction between galaxies can lead to collision</p>
<p><em><strong>[Max 3 Marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>kinetic energy of galaxy \(\frac{1}{2}\)<em>mv</em><sup>2</sup> = \(\frac{1}{2}\)<em>mH</em><sup>2</sup><em>r</em><sup>2</sup> «uses Hubble’s law»</p>
<p>potential energy = \(\frac{{GMm}}{r}\) = <em>G</em>\(\frac{4}{3}\)\(\pi \)<em>r</em><sup>3</sup>\(\rho \frac{m}{r}\) «introduces density»</p>
<p>KE=PE to get expression for critical \(\rho \)</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em></p>
<p>escape velocity of distant galaxy <em>v</em> = \(\sqrt {\frac{{2GM}}{r}} \)</p>
<p>where <em>H</em><sub>0</sub><em>r</em> = \(\sqrt {\frac{{2GM}}{r}} \)</p>
<p>substitutes <em>M</em> = \(\frac{4}{3}\)\(\pi \)<em>r</em><sup>3</sup>\(\rho \) to get result</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to the Jeans criterion, why a cold dense gas cloud is more likely to form new stars than a hot diffuse gas cloud.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how neutron capture can produce elements with an atomic number greater than iron.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>For a star to form<strong>»</strong>: magnitude of PE of gas cloud > KE of gas cloud</p>
<p><strong><em>OR</em></strong></p>
<p>Mass of cloud > Jean's mass</p>
<p><strong><em>OR</em></strong></p>
<p>Jean’s criterion is the critical mass</p>
<p> </p>
<p>hence a hot diffuse cloud could have KE which is too large/PE too small</p>
<p><strong><em>OR</em></strong></p>
<p>hence a cold dense cloud will have low KE/high PE</p>
<p><strong><em>OR</em></strong></p>
<p>a cold dense cloud is more likely to exceed Jeans mass</p>
<p><strong><em>OR</em></strong></p>
<p>a hot diffuse cloud is less likely to exceed the Jeans mass</p>
<p> </p>
<p>Accept <em>E</em><em><sub>p</sub> +</em> <em>E</em><em><sub>k</sub> <</em> <em>0</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Neutron capture creates heavier isotopes / heavier nuclei / more unstable nucleus</p>
<p><span>β</span><sup>–</sup><span> decay</span> of heavy elements/iron increases atomic number <strong>«</strong>by 1<strong>»</strong></p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A galaxy can be modelled as a sphere of radius <em>R</em><sub>0</sub>. The distance of a star from the centre of the galaxy is <em>r</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-13_om_16.21.46.png" alt="M18/4/PHYSI/HP3/ENG/TZ1/19"></p>
<p>For this model the graph is a simplified representation of the variation with <em>r </em>of the mass of <strong>visible matter </strong>enclosed inside <em>r</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of visible matter in the galaxy is <em>M</em>.</p>
<p>Show that for stars where <em>r </em>> <em>R</em><sub>0</sub> the velocity of orbit is<span class="Apple-converted-space"> <em>v</em> = \(\sqrt {\frac{{GM}}{r}} \).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the axes the observed variation with <em>r </em>of the orbital speed <em>v </em>of stars in a galaxy.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, using the equation in (a) and the graphs, why the presence of visible matter alone cannot account for the velocity of stars when <em>r </em>> <em>R</em><sub>0</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{m{v^2}}}{r} = \frac{{GMm}}{{{r^2}}}\) and correct rearranging</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>linear / rising until R<sub>0</sub><span class="Apple-converted-space"> </span></p>
<p>then <strong>«</strong>almost<strong>» </strong>constant</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for <em>v </em>to stay constant for <em>r </em>greater than <em>R</em><sub>0</sub>, <em>M </em>has to be proportional to <em>r</em></p>
<p> </p>
<p>but this contradicts the information from the <em>M-r </em>graph</p>
<p><strong><em>OR</em></strong></p>
<p>if <em>M </em>is constant for <em>r </em>greater than <em>R</em><sub>0</sub>, then we would expect <em>v</em> \( \propto {r^{\frac{{ - 1}}{2}}}\)</p>
<p> </p>
<p>but this contradicts the information from the <em>v-r </em>graph</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about Hubble’s law.</p>
<p class="p1">The spectrum of hydrogen from a source in the laboratory has a spectral line at wavelength 656 nm. The same line, viewed from Earth, in the spectrum of a distant galaxy has wavelength 682 nm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why the two wavelengths are different.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the distance to this galaxy from Earth using a Hubble constant of \({\text{74 km}}\,{{\text{s}}^{ - 1}}{\text{Mp}}{{\text{c}}^{ - {\text{1}}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the galaxy is moving away from the Earth and so the wavelength is Doppler/Red shifted;</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">the universe is expanding and so the space between galaxies is stretched/increases and this means that the wavelength of the received light will also be stretched/increased;</p>
<p class="p1"><em>Do not accept answers such as “the galaxy is red-shifted”. </em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(v = \left( {\frac{{\Delta \lambda }}{\lambda }c = \frac{{682 - 656}}{{656}} \times 3 \times {{10}^8} = 3.96 \times {{10}^{ - 2}} \times 3 \times {{10}^8} = } \right){\text{ }}1.2 \times {10^4}{\text{ (km}}\,{{\text{s}}^{ - 1}}{\text{)}}\);</p>
<p class="p1">\(d = \left( {\frac{v}{{{H_0}}} = \frac{{1.2 \times {{10}^4}}}{{74}} = } \right){\text{ }}160{\text{ (Mpc)}}\); <em>(allow 5 </em>\( \times \)<em> 10<sup>24</sup> (m))</em></p>
<p class="p1"><em>Allow ECF from first marking point for </em><strong><em>[1 max]</em></strong><em>.</em></p>
<p class="p1"><em>For example use of 682 in denominator also giving 160/155 (Mpc).</em></p>
<p class="p1"><em>Award </em><strong><em>[0] </em></strong><em>for second marking point if 160 pc, 160 kpc and 160 Gpc are given. These are power of ten errors, not unit errors.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (a) there were far too many vague responses that just stated 'galaxies are red-shifted'.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many correct answers were seen in (b), but there were also many power of ten errors where \({\text{km}}\,{{\text{s}}^{ - 1}}\) were not used in the calculation of distance. Another common mistake was to use the observed frequency in the denominator.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Hubble constant.</p>
<p class="p1">A recent estimate for the value of the Hubble constant is \({\text{70 k}}{{\text{m}}^{ - 1}}{\text{Mp}}{{\text{c}}^{ - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Estimate, in seconds, the age of the universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The wavelength of the lines in the absorption spectrum of hydrogen is 656.3 nm when measured on Earth. Analysis of light from a distant galaxy shows that the same line has a wavelength of 725.6 nm. Determine the recessional velocity of the distant galaxy.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(T = \frac{1}{H}{\text{ }}\left( { = \frac{1}{{70{\text{ km}}\,{{\text{s}}^{ - 1}}{\text{Mp}}{{\text{c}}^{ - 1}}}}} \right)\);</p>
<p class="p1">\(T = \left( {\frac{1}{{70\,000{\text{ }}{{\text{s}}^{ - 1}}}} \times {{10}^6} \times 9.46 \times {{10}^{15}} \times 3.26 = } \right){\text{ }}4.4 \times {10^{17}}{\text{ s}}\);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\left( {\frac{{\Delta \lambda }}{\lambda } = \frac{v}{c}} \right)\)</p>
<p class="p1">\(\frac{{\Delta \lambda }}{\lambda } = \frac{{725.6 - 656.3}}{{656}} = 0.106\);</p>
<p class="p1">\(v = \left( {\frac{{\Delta \lambda }}{\lambda } \times c = 0.106 \times 3 \times {{10}^8} = } \right){\text{ }}3.17 \times {10^7}{\text{ m}}\,{{\text{s}}^{ - 1}}\);</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">The majority of candidates answered both questions well.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The majority of candidates answered both questions well.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about cosmic microwave background (CMB) radiation.</p>
</div>
<div class="specification">
<p class="p1">A line in the hydrogen spectrum is measured in the laboratory to have a wavelength of 656 nm. The same line from a distant galaxy is measured to have a wavelength of 730 nm. Assuming that the Hubble constant \({H_0}\) is \({\text{69.3 km}}\,{{\text{s}}^{ - 1}}{\text{Mp}}{{\text{c}}^{ - 1}}\),</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">calculate the distance of this galaxy from Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">discuss why different measurements of the Hubble constant do not agree with each other.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\left( {\frac{{\Delta \lambda }}{\lambda } = \frac{v}{c} \Rightarrow } \right){\text{ }}v = \left( {\frac{{3.00 \times {{10}^8} \times 74}}{{656}} = } \right){\text{ }}3.38 \times {10^7}{\text{ (m}}{{\text{s}}^{ - 1}})\);</p>
<p class="p1">\(d = \frac{v}{{{H_0}}} = \frac{{3.38 \times {{10}^4}}}{{69.3}} = 488{\text{ Mpc}}\);</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">measurements from distant galaxies have large uncertainties;</p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by candidates, weaker candidates did not write their ideas clearly enough in (a)(ii). Part (b) was also quite well done, but only better candidates mentioned uncertainty in measurement of distances to galaxies.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by candidates, weaker candidates did not write their ideas clearly enough in (a)(ii). Part (b) was also quite well done, but only better candidates mentioned uncertainty in measurement of distances to galaxies.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph shows the observed orbital velocities of stars in a galaxy against their distance from the centre of the galaxy. The core of the galaxy has a radius of 4.0 kpc.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rotation velocity of stars 4.0 kpc from the centre of the galaxy. The average density of the galaxy is 5.0 × 10<sup>–21</sup> kg m<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the rotation curves are evidence for the existence of dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>v = «\(\sqrt {\frac{{4\pi G\rho }}{3}} r\)» \( = \sqrt {\frac{4}{3} \times \pi \times 6.67 \times {{10}^{ - 11}} \times 5.0 \times {{10}^{ - 21}}} \times \left( {4000 \times 3.1 \times {{10}^{16}}} \right)\)</p>
<p><em>v</em> is about 146000 «m s<sup>–1</sup>» <em><strong>or</strong></em> 146 «km s<sup>–1</sup>»<br><em>Accept answer in the range of 140000 to 160000 «m s<sup>–1</sup>».</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rotation curves/velocity of stars were expected to decrease outside core of galaxy</p>
<p>flat curve suggests existence of matter/mass that cannot be seen – now called dark matter</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how some white dwarf stars become type Ia supernovae.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, explain why a type Ia supernova is used as a standard candle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the observation of type Ia supernovae led to the hypothesis that dark energy exists.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>white dwarf must have companion «in binary system»</p>
<p>white dwarf gains material «from companion»</p>
<p>when dwarf reaches and exceeds the Chandrasekhar limit/1.4 M<sub>SUN</sub> supernova can occur</p>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a standard candle represents a «stellar object» with a known luminosity</p>
<p>this supernova occurs at an certain/known/exact mass so luminosity/energy released is also known</p>
<p><em>OWTTE</em></p>
<p><em>MP1 for indication of known luminosity, MP2 for any relevant supportive argument.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>distant supernovae were dimmer/further away than expected</p>
<p>hence universe is accelerating</p>
<p>dark energy «is a hypothesis to» explain this</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to star formation, what is meant by the Jeans criterion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the proton–proton cycle, four hydrogen nuclei fuse to produce one nucleus of helium releasing a total of 4.3 × 10<sup>–12</sup> J of energy. The Sun will spend 10<sup>10</sup> years on the main sequence. It may be assumed that during this time the Sun maintains a constant luminosity of 3.8 × 10<sup>26</sup> W.</p>
<p><br>Show that the total mass of hydrogen that is converted into helium while the Sun is on the main sequence is 2 × 10<sup>29</sup> kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Massive stars that have left the main sequence have a layered structure with different chemical elements in different layers. Discuss this structure by reference to the nuclear reactions taking place in such stars.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a star will form out of a cloud of gas</p>
<p>when the gravitational potential energy of the cloud exceeds the total random kinetic energy of the particles of the cloud<br><em><strong>OR</strong></em><br>the mass exceeds a critical mass for a particular <strong>radius and temperature</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>number of reactions is \(\frac{{{{10}^{10}} \times 365 \times 24 \times 3600 \times 3.8 \times {{10}^{26}}}}{{4.3 \times {{10}^{ - 12}}}} = 2.79 \times {10^{55}}\)</p>
<p>H mass used is \(2.79 \times {10^{55}} \times 4 \times 1.67 \times {10^{ - 27}} = 1.86 \times {10^{29}}\) «kg»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nuclear fusion reactions produce ever heavier elements depending on the mass of the star / temperature of the core</p>
<p>the elements / nuclear reactions arrange themselves in layers, heaviest at the core lightest in the envelope</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Hertzsprung–Russell (HR) diagram and the Sun.</p>
<p class="p1">A Hertzsprung–Russell (HR) diagram is shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_07.29.14.png" alt="N15/4/PHYSI/HP3/ENG/TZ0/02"></p>
</div>
<div class="specification">
<p class="p1">The Sun will remain on the main sequence of the HR diagram for about another five billion years. After this time it will become a red giant, following the evolutionary path shown in the diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_07.31.26.png" alt="N15/4/PHYSI/HP3/ENG/TZ0/02.e"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why the Sun will leave the main sequence, and describe the nuclear processes that occur as it becomes a red giant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>two </strong>physical changes that the Sun will undergo as it enters the red giant stage.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">insufficient hydrogen (to continue fusion);</p>
<p class="p1">star collapses (under gravity);</p>
<p class="p1">temperature increases;</p>
<p class="p1">initiated fusion of helium, (energy released causes) rapid expansion of star;</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">rapid expansion / increase of size;</p>
<p class="p1">decrease in temperature / cooler stars appear red in colour / increase of luminosity;</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well-prepared candidates (both HL and SL) only had a problem with the part related to the use of a non-linear temperature scale. Average prepared candidates displayed difficulty in the experimental measurement of the temperature of the distant star and also with details of nuclear processes occurring in the Sun during transformation to a red giant.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well-prepared candidates (both HL and SL) only had a problem with the part related to the use of a non-linear temperature scale. Average prepared candidates displayed difficulty in the experimental measurement of the temperature of the distant star and also with details of nuclear processes occurring in the Sun during transformation to a red giant.</p>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the characteristics of the stars Procyon A and Procyon B.</p>
</div>
<div class="specification">
<p class="p1">The star Betelgeuse is about five times the mass of Regulus. One possible outcome of the final stage of the evolution of Betelgeuse is for it to become a black hole. State the</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The luminosity of the main sequence star Regulus is \(150{\text{ }}{L_{\text{S}}}\). Assuming that, in the mass–luminosity relationship, \(n = 3.5\) show that the mass of Regulus is \(4.2{\text{ }}{M_{\text{S}}}\) where \({M_{\text{S}}}\) is the mass of the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>other possible outcome of the final stage of the evolution of Betelgeuse.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>reason why the final stage in (j)(i) is stable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{150}}{1} = {\left( {\frac{{{M_{\text{R}}}}}{1}} \right)^{3.5}}\)\(\,\,\,\,\,\)<strong>or</strong>\(\,\,\,\,\,\)\(150 = M_{\text{R}}^{3.5}\);</p>
<p class="p1">evidence of algebraic manipulation <em>e.g.</em> \({M_{\text{R}}} = {[150]^{\frac{1}{{3.5}}}}\);</p>
<p class="p1">\( = 4.2{\text{ }}{{\text{M}}_{\text{S}}}\)</p>
<p class="p1"><em>To award </em><strong><em>[2] </em></strong><em>there must be evidence of algebraic manipulation shown.</em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) neutron star;</p>
<p class="p1">(ii) (because of) neutron degeneracy pressure / Pauli exclusion principle excludes further collapse;</p>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some candidates struggle with the manipulation of logs.</p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A significantly large number of candidates in (j) recognised that Betelgeuse might become a neutron star and that neutron degeneracy pressure would account for its final stability.</p>
<div class="question_part_label">j.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Hubble’s law.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Measured values of the Hubble constant can vary between 40 kms<sup>–1 </sup>Mpc<sup>–1</sup> and 90 kms<sup>–1 </sup>Mpc<sup>–1</sup>. State the reason for this wide variation in values.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The blue line in the spectrum of atomic hydrogen as measured in the laboratory is 490 nm. The same line in the spectrum of light from a galaxy has a wavelength of 500 nm.</p>
<p>Determine the distance of the galaxy from Earth. You may assume that the Hubble constant=70 km s<sup>–1</sup> Mpc<sup>–1</sup>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the recessional speed of <span style="text-decoration: underline;">galaxies</span> is proportional to their distance from Earth/us/each other /<em> v</em> = <em>H</em><sub>0</sub><em>d</em> (with terms defined);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is a large uncertainty in the measurement of galactic distances / it is difficult to accurately determine galactic distances;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(v = c\frac{{\Delta \lambda }}{\lambda }\);<br>\( = \left( {3 \times 10^8 \times \frac{{10}}{{490}} = } \right)6.1 \times {10^3}{\rm{km}}{{\rm{s}}^{ - 1}}\);<br>\(d = \frac{v}{H}\left( { = \frac{{6100}}{{70}}} \right) = 87{\rm{Mpc}}\);</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about determining the distance to a nearby star.</p>
<p class="p1">Two photographs of the night sky are taken, one six months after the other. When the photographs are compared, one star appears to have shifted from position A to position B, relative to the other stars.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-30_om_07.21.57.png" alt="N15/4/PHYSI/HP3/ENG/TZ0/01"></p>
</div>
<div class="question">
<p class="p1">Discuss whether Hubble’s Law can be used to determine reliably the distance from Earth to this star.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">this star is less than 1000 pc away/in our galaxy;</p>
<p class="p1">Hubble's law is for galaxies (not local stars) / red-shift will be too small to measure / uncertainty in Hubble constant high for such measurement;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Well discriminating question, better candidates realized that the star is closer to Earth and drew the diagram. Many candidates made a mistake to present diameter and the angle, giving half of the proper values. The relationships were generally well explained. In the alternative pair of quantities many candidates stated only the quantity for distance, not for the angle. The HL question related to Hubble’s law was properly answered only by better candidates. The SL question was poorly answered with most confusing stellar and spectroscopic parallax.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Big Bang model and red-shift.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Many galaxies are a great distance from Earth. Explain, with reference to Hubble’s law, how the measurement of the red-shift of light from such galaxies enables their distance from Earth to be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> problem associated with using Hubble’s law to determine the distance of a galaxy a great distance from earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the amount of red-shift enables the recession speed of a galaxy to be determined;</p>
<p class="p1">Hubble’s law states that the recession speed is proportional to its distance from Earth/ \(v = {H_0}d\) with terms defined;</p>
<p class="p1">if the constant of proportionality/ \({H_0}\) is known then <em>d </em>can be determined;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">it is difficult to determine an accurate value of the Hubble constant / difficult to measure the red-shift / Hubble constant had different values in the past;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Too many candidates lost marks by not defining the symbols in the Hubble Law.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (d) was usually answered correctly.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A galaxy a distance <em>d</em> away emits light of wavelength <em>λ</em>. Show that the shift in wavelength Δ<em>λ</em>, as measured on Earth, is given by<br>\[\Delta \lambda = \frac{{{H_0}d\lambda }}{c}\]<br>where H<sub>0</sub> is the Hubble constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light of wavelength 620 nm is emitted from a distant galaxy. The shift in wavelength measured on Earth is 35 nm. Determine the distance to the galaxy using a Hubble constant of 68 km s<sup>–1</sup>Mpc<sup>–1</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">combining </span>\(\frac{{\Delta \lambda }}{\lambda } = \frac{v}{c}\) and <em>v</em>=<em>H</em><sub>0</sub><em>d;<br><span style="font-size: 11pt; font-family: 'Arial,Italic';">Answer given, check working. </span></em></p>
<p> </p>
</div>
</div>
</div>
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';"> </span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">\(d = \frac{{c\Delta \lambda }}{{\lambda {H_0}}} = \left( {\frac{{3 \times {{10}^5} \times 35}}{{620 \times 68}}} \right)\);
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">(mark is for rearrangement)<br></span></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">d=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">250(Mpc) </span><em><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">or </span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial';">7.7</span>×<span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">24 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(m);<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Allow only first marking point if incorrect value for λ</span> <span style="font-size: 11pt; font-family: 'Arial,Italic';">is used.<br>Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer</span><span style="font-size: 11pt; font-family: 'Arial';">. </span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (a) there were almost no incorrect answers. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (b) far too many candidates lost 1 mark because they used the wrong power of ten for velocity in Hubble’s constant. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about the Hertzsprung–Russell (HR) diagram and stellar evolution.</p>
<p class="p1">The star Phi-1 Orionis is a large star on the main sequence with a mass of approximately 18 solar masses.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_05.14.52.png" alt="N14/4/PHYSI/HP3/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the luminosity of Phi-1 Orionis in terms of the luminosity of the Sun. Assume that \(n = 3.5\) in the mass–luminosity relation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The Sun is expected to have a lifespan of around \({\text{1}}{{\text{0}}^{{\text{10}}}}\) years. With reference to the equilibrium between radiation pressure and gravitational pressure, discuss why Phi-1 Orionis will use up its hydrogen at a faster rate than the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the HR diagram on page 6, draw the evolutionary path of Phi-1 Orionis as it leaves the main sequence.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline, with reference to the Oppenheimer–Volkoff limit, the fate of Phi-1 Orionis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{L}{{{L_\odot }}} = \left( {{{\left[ {\frac{m}{{{m_\odot }}}} \right]}^{3.5}} = } \right){\left[ {\frac{{18{m_\odot }}}{{{m_\odot }}}} \right]^{3.5}}\);</p>
<p class="p1">\(L = 25000{\text{ }}{L_\odot }\);</p>
<p class="p1"><em>Answer must include </em>\({L_\odot }\) <em>in correct place.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Phi-1 Orionis has a larger mass so it has a larger <span style="text-decoration: underline;">gravitational pressure</span>;</p>
<p class="p1">to remain in equilibrium it requires (an equal) radiation pressure which is provided by burning (hydrogen) at a faster rate;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">line drawn starting from the top-left of the main sequence towards (red) super giants; } <em>(allow anywhere </em><em>within the grey </em><em>shaded regions)</em></p>
<p class="p1"><em><img src="images/Schermafbeelding_2016-09-02_om_06.13.46.png" alt="N14/4/PHYSI/HP3/ENG/TZ0/04.c.i/M"></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(mass of star is more than 15 solar masses so can be predicted, that) after supernova explosion it will be more than 3 solar masses/Oppenheimer-Volkoff limit and become a black hole;</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">if the mass after supernova explosion will be less than then Oppenheimer-Volkoff limit, it will become a neutron star;</p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was not easy. The majority of candidates calculated the luminosity of the star and used the balance between radiation pressure and gravitational pressure. Stronger candidates identified the evolution of the star on the HR diagram and showed the ability to distinguish between a black hole and neutron star.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was not easy. The majority of candidates calculated the luminosity of the star and used the balance between radiation pressure and gravitational pressure. Stronger candidates identified the evolution of the star on the HR diagram and showed the ability to distinguish between a black hole and neutron star.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was not easy. The majority of candidates calculated the luminosity of the star and used the balance between radiation pressure and gravitational pressure. Stronger candidates identified the evolution of the star on the HR diagram and showed the ability to distinguish between a black hole and neutron star.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was not easy. The majority of candidates calculated the luminosity of the star and used the balance between radiation pressure and gravitational pressure. Stronger candidates identified the evolution of the star on the HR diagram and showed the ability to distinguish between a black hole and neutron star.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar distances.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The star Sirius A is 3 pc from Earth. The apparent brightness of Sirius A is 1.2×10<sup>–7</sup>Wm<sup>–2</sup>. Determine the luminosity of Sirius A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The luminosity of the Sun is 3.8×10<sup>26</sup> W. Determine the mass of Sirius A relative to the mass of the Sun. (Assume that <em>n</em>=3.5 in the mass–luminosity relation.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(L\left( { = 4\pi b{d^2}} \right) = 4 \times {\rm{\pi }} \times 1.2 \times {10^{ - 7}} \times {\left[ {8.1 \times {{10}^{16}}} \right]^{^2}}\);<br>9.9×10<sup>27</sup>(W);<br><em>Allow 1.3×10<sup>28</sup>(W) if candidates use 3 (pc) from (a).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{{\rm{M}}_{{\rm{Sirius}}}}}}{{{{\rm{M}}_{{\rm{Sun}}}}}}\left( { = {{\left[ {\frac{{{{\rm{L}}_{{\rm{Sirius}}}}}}{{{{\rm{L}}_{{\rm{Sun}}}}}}} \right]}^{\frac{1}{{3.5}}}}} \right) = {\left[ {\frac{{9.9 \times {{10}^{27}}}}{{3.8 \times {{10}^{26}}}}} \right]^{\frac{1}{{3.5}}}}\);<br>\({{\rm{M}}_{{\rm{Sirius}}}} = 2.5{{\rm{M}}_{{\rm{Sun}}}}\);<br><em>Allow ECF from (b).</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Some candidates had difficulty in manipulating a logarithmic equation. (b) discriminated well. Many candidates used the equation from the data booklet value in non-SI unit and forgot to convert pc to meters. This was not a surprise to the examining team. Quite a high number forgot to square the distance. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">In (c), many candidates did not present their working in logical manner, especially those who did not understand mass-luminosity relations and incorrectly used the formula from data booklet. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar evolution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass of a main sequence star is two solar masses. Estimate, in terms of the solar luminosity, the range of possible values for the luminosity of this star.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The star in (a) will eventually leave the main sequence.</p>
<p>State</p>
<p>(i) the condition that must be satisfied for this star to eventually become a white dwarf.</p>
<p>(ii) the source of the energy that the white dwarf star radiates into space.</p>
<p>(iii) <strong>one</strong> likely element, other than hydrogen and helium, that may be found in a white dwarf.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a white dwarf maintains a constant radius.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{L}{{{L_ \odot }}} = {2^n}\) <span style="font-size: 11.000000pt; font-family: 'Arial';">with </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">n </span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">between 3 and 4;<br>so \(8{L_ \odot } < L < 16{L_ \odot }\);<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';"><strong>[2]</strong> </span><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer. </span></em></p>
<p><em><span style="font-size: 11pt; font-family: 'Arial';"> </span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p>(i) the core/remnant mass must be less than the Chandrasekhar limit/1.4 solar masses; } <em>(must see core or remnant or similar term)</em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) residual/thermal/internal energy of the star / </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">OWTTE</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';"><em>; <br></em></span><em><span style="font-size: 11pt; font-family: 'Arial';">Do not allow fusion.</span></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(iii) C/O/Ne/Mg; </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">(<em>accept no others</em>) </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">gravitational attraction/pressure is balanced by;<br> electron (degeneracy) pressure/repulsion / pressure/force due to Pauli exclusion principle;<br> </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award the first marking point independently of the second. </span></em></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In part (a) most candidates correctly referred to the mass–luminosity equation and used it to determine the luminosity range for the star. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">Part (b)(i) was answered well by many, but there were also many who did not refer to the remnant or core mass being below the Chandrasekhar limit. In (b)(ii) there were far too many candidates who referred to fusion continuing in a white dwarf. In part (b)(iii) carbon or oxygen were almost always correctly stated. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (c) it was expected that electron degeneracy pressure would be mentioned, many did so but fusion radiation pressure was also incorrectly mentioned. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the mass–luminosity relation.</p>
<p><br>Star X is 1.5×10<sup>5</sup> more luminous than the Sun and has a mass 30 times that of the Sun.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify whether star X is on the main sequence. Assume that <em>n</em> = 3.5 in the mass–luminosity relation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the evolution of star X.</p>
<p>(ii) Explain the eventual fate of star X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">luminosity=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">30</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">3.5</span>×<span style="font-size: 11.000000pt; font-family: 'Arial';">148 000 (times the luminosity of the Sun) </span><span style="font-size: 11.000000pt; font-family: 'Arial';"><em><strong>or</strong></em><br>mass</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">(1.5</span>×<span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 6.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">5</span><span style="font-size: 11.000000pt; font-family: 'Arial';">)</span><span style="font-size: 6.000000pt; font-family: 'Arial'; vertical-align: 3.000000pt;">3.5</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">30 (times the mass of the Sun);<br> (this is close to the quoted luminosity/mass and) so X must be on the main sequence; </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) red (super)giant goes supernova with core remaining;</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) Oppenheimer–Volkoff/mass of <span style="text-decoration: underline;">remnant</span> will determine final fate;<br>(to give) neutron star/black hole; </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the Jeans criterion for star formation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>three</strong> differences between type Ia and type II supernovae.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a gas cloud will collapse to form a star<br>if «the magnitude of» the gravitational potential energy of the particles is greater than the kinetic energy of the particles <em><strong>OR</strong></em> mass of the cloud is greater than the Jeans mass</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Ia have consistent maxima in their light curves but II vary<br>Ia has a strong ionized SiII line but II has hydrogen lines in their spectra<br>Ia was a white dwarf but II are massive stars<br>Ia form from binary systems but II are the result of core collapse of a star<br>Ia can be used as standard candles but II are not</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law and the age of the universe.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State Hubble’s law.</p>
<p>(ii) State why Hubble’s law cannot be used to determine the distance from Earth to nearby galaxies, such as Andromeda.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Show that \(\frac{1}{{{H_0}}}\)<sub> </sub>is an estimate of the age of the universe, where <em>H</em><sub>0</sub> is the Hubble constant.</p>
<p>(ii) Assuming <em>H</em><sub>0</sub> = 80 km s<sup>−1</sup>Mpc<sup>−1</sup>, estimate the age of the universe in seconds.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) recessional speed of a galaxy is directly proportional to distance from Earth/ <em>v</em>=<em>H</em><sub>0</sub><em>d</em> with symbols defined;</p>
<p>(ii) local velocity of Andromeda relative to Earth greater than (recessional) speed due to expansion of universe /<em> OWTTE</em>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) relative speed between two points in universe separated by distance <em>d</em> is<em> </em>\(v = \frac{d}{T}\) where <em>T</em> is the age of the universe;<br>\(v = \frac{d}{T}\)=<em>H</em><sub>0</sub><em>d</em> therefore \(T = \frac{1}{{{H_0}}}\);</p>
<p>(ii) \(T = \frac{1}{{80}} \times \frac{{{{10}^6} \times 3.26 \times 9.46 \times {{10}^{15}}}}{{1000}} = 4 \times {10^{17}}\left( {\rm{s}} \right)\);<br><em>Do not deduct unit mark if seconds not given, as question asks for answer in seconds.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about some of the properties of the star Aldebaran and also about galactic distances.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Betelgeuse in the constellation of Orion is a red supergiant star.</p>
<p>(i) Compare the fate of Aldebaran to that of Betelgeuse.</p>
<p>(ii) Outline, with reference to the Chandrasekhar limit, the circumstances under which the final state of Betelgeuse could be the same as the final state of Aldebaran.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distances to galaxies may be determined by using Cepheid variable stars.</p>
<p>By considering the nature and properties of Cepheid variable stars, explain how such stars are used to determine galactic distances.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>Aldebaran</em>:<br>it forms a planetary nebula which then becomes a white dwarf;<br><em>Betelgeuse</em>:<br>it forms a supernova which then becomes a neutron star/black hole/pulsar; <br><em>To award <strong>[2]</strong> both phases are required in both responses.</em><br><em>Award <strong>[1 max]</strong> if intermediate stages (planetary nebula, supernova) are omitted.</em></p>
<p>(ii) reference to 1.4 solar mass (Chandrasekhar limit for white dwarfs);<br>if Betelgeuse blows away sufficient mass (in the supernova stage);<br>and is left with a core mass below the Chandrasekhar limit;<br>the core can form a white dwarf</p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the (outer layers of the star) undergo a (periodic) expansion and contraction;<br>which produces a (periodic) variation in its luminosity/apparent brightness;<br>the (average) luminosity depends on the period of variation;<br>by measuring the period, the luminosity can be found;<br>by then measuring its apparent brightness, its distance from Earth can be found;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fractional change in the wavelength λ of light from the galaxy Hydra is \(\frac{{\Delta \lambda }}{\lambda }\)=0.204. The distance to Hydra is 820 Mpc.</p>
<p>Estimate in km s<sup>–1 </sup>Mpc<sup>–1</sup> a value for the Hubble constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An estimate of the age of the universe is \(\frac{1}{H}\) where <em>H</em> is the Hubble constant. Suggest why \(\frac{1}{H}\) overestimates the age of the universe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{\Delta \lambda }}{\lambda } = 0.204 = \frac{v}{c} \Rightarrow v = 6.12 \times {10^4}{\rm{km}}{{\rm{s}}^{ - 1}}\);<br>so \(H = \frac{v}{d} = \frac{{6.12 \times {{10}^4}}}{{820}} = 74.6{\rm{km}}{{\rm{s}}^{ - 1}}{\rm{Mp}}{{\rm{c}}^{ - 1}}\);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em><br><em>Award <strong>[1 max]</strong> if power of ten error in first marking point is carried forward.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>present value of expansion rate is used for estimate;<br>but in the past the expansion rate was greater;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the structure of the universe.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State, in terms of the arrangement of galaxies, the present large-scale distribution of mass in the universe.</p>
<p>(ii) State how the separation of distant galaxies is changing with time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the observational evidence for your answer to (a)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) galaxies arranged in clusters (that are themselves arranged in superclusters);<br>(ii) galaxies/clusters/superclusters move further apart / distance between galaxies/ clusters/superclusters increases;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>increase in wavelength / red-shift is observed in light from distant galaxies;<br>the red-shift increases with distance;<br>therefore (the metric of) space is expanding (with time) / the separation between galaxies is increasing;<br>following the Big Bang; <br><em>Galaxies are moving away from us or from Earth is not enough for the third mark.</em><br><em>Do not award mark for background radiation.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Candidates generally understood the distribution of galaxies in the universe and could clearly explain red-shift. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 25">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">Candidates generally understood the distribution of galaxies in the universe and could clearly explain red-shift. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the life history of stars.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to pressure, how a star on the main sequence maintains its stability.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A star with a mass equal to that of the Sun moves off the main sequence. Outline the main processes of nucleosynthesis that occur in the core of this star before and after this change.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the fate of the star in (b) with that of a star of much greater mass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>balance of two forces/pressures;<br>(balance) between radiation/pressure and gravitational force/pressure;<br>(radiation pressure is when) photons/radiation exert outwards force on nuclei/ particles;<br>(gravitational pressure is when) gravitational force between particles/layers of the star acts inwards;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>whilst on the main sequence hydrogen fusion/burning to give helium;<br>after leaving the main sequence helium fusion/burning to give carbon;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>star in (b) forms red giant, heavier star forms (red) supergiants; } <em>(do not allow “giant”)<br></em>star in (b) forms planetary nebula, heavier star goes supernova;<br>star in (b) forms white dwarf, heavier star forms neutron star/black hole;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">(a) There was evidence of superficial learning from the syllabus. Only a few of the best candidates wrote details of radiation and/or gravitational pressure, in response to the </span><span style="font-size: 10.000000pt; font-family: 'Arial';">“outline” </span><span style="font-size: 10.000000pt; font-family: 'Arial';">command term. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">There was evidence in (b) [HL only] that some candidates do not read the question carefully. Better candidates clearly outlined the processes before and after moving off the main sequence. Only a few demonstrated a good understanding of the term nucleosynthesis and answered this question clearly. These candidates referred to hydrogen to helium while in the main sequence and helium to carbon after leaving the main sequence. </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">In (c) [HL], quite a high number of candidates outlined only the fate of a star with much greater mass and did not compare this with the fate of a star with mass equal to mass of the Sun. Candidates who understood that comparison is required, often omitted planetary nebulae. The main issue here was the superficial reading of the questions. Many responded with memorized tracts of stellar evolution and did not answer the question. </span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Beta Centauri is a star in the southern skies with a parallax angle of 8.32×10<sup>−3</sup> arc-seconds. Calculate, in metres, the distance of this star from Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why astrophysicists use non-SI units for the measurement of astronomical distance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(d = \frac{1}{{8.32 \times {{10}^{ - 3}}}}\) <em><strong>OR</strong></em> 120«pc»</p>
<p>120×3.26×9.46×10<sup>15</sup>=3.70×10<sup>18</sup>m</p>
<p><em>Answer must be in metres, watch for POT.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>distances are so big/large <em><strong>OR</strong></em> to avoid using large powers of 10 <em><strong>OR</strong></em> they are based on convenient definitions</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the Hubble constant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the measurements that must be taken in order to determine a value for the Hubble constant.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One estimate of the Hubble constant is 60 km s<sup>–1 </sup>Mpc<sup>–1</sup>. Cygnus A is a radio galaxy at a distance of 6.0×10<sup>8 </sup>ly from Earth. Calculate, in km s<sup>–1</sup>, the recessional speed of Cygnus A relative to the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>red shift used to measure <span style="text-decoration: underline;">recessional</span> speed of galaxies;<br>named measurement to yield distance to galaxies (e.g. Cepheid variable, Supernova);<br>repeat for many galaxies/clusters of galaxies;<br>Hubble constant is gradient of speed–distance graph; {<em>(any symbols used must be </em><em>defined)</em></p>
<p><em>To award <strong>[3]</strong> reference must be made to galaxies in at least one of the marking points.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(v = 60 \times \frac{{6.0 \times {{10}^8}}}{{3.26 \times {{10}^6}}}\);<br>=1.1×10<sup>4 </sup>km s<sup>−1</sup>;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Hubble’s law.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of a line in the spectrum of atomic hydrogen, as measured in the laboratory, is 656 nm. The same line in the spectrum of light from a distant galaxy is measured to be 790 nm. The galaxy is 940 Mpc from Earth.</p>
<p>(i) Show that the recessional speed of the galaxy is 6.13×10<sup>4 </sup>km s<sup>–1</sup>.</p>
<p>(ii) Determine, using your answer to (b)(i), a value for the Hubble constant.</p>
<p>(iii) Show, using your answer to (b)(ii), that the age of the universe is of the order of 10<sup>17 </sup>s. (1 pc =3.1×10<sup>13</sup> km)</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the recessional speed of galaxies from Earth is proportional to their distance from Earth;</p>
<p><em><strong>or</strong></em></p>
<p><em>v</em>=<em>Hd</em>; <em>(with symbols defined)</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(v = c\frac{{\Delta \lambda }}{\lambda }\);<br>\( = 3.0 \times {10^5} \times \frac{{134}}{{656}}\);<br>\( = 6.13 \times {10^4}{\rm{km}}{{\rm{s}}^{ - 1}}\)</p>
<p>(ii) \(H = \frac{v}{d}\);<br>\( = \left( {\frac{{6.13 \times {{10}^4}}}{{940}} = } \right)65.1{\rm{km}}{{\rm{s}}^{ - 1}}{\rm{Mp}}{{\rm{c}}^{ - 1}}\);</p>
<p>(iii) \(T = \frac{1}{H}\);<br>\( = \frac{{3.1 \times {{10}^{19}}}}{{65.1}} = 4.76 \times {10^{17}}{\rm{s}}\);<br>≈10<sup>17</sup>s</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State</p>
<p>(i) Hubble’s law.</p>
<p>(ii) the significance of the reciprocal of the Hubble constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wavelength of a certain line in the hydrogen spectrum is measured to be 434 nm in the laboratory. The same line in the hydrogen spectrum of the galaxy 3C-273 is measured on Earth to be 504 nm.</p>
<p>Determine the distance of 3C-273 from Earth using a Hubble constant of 72 kms<sup>–1 </sup>Mpc<sup>–1</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) galaxies move away from each other/from Earth with a speed that is proportional to their separation/distance from Earth;<br><em>Accept answer in terms of equation with symbols defined.</em></p>
<p>(ii) it gives age of the universe/time since the Big Bang;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{v}{c} = \left( {\frac{{\Delta \lambda }}{{{\lambda _0}}} = \frac{{504 - 434}}{{434}} = } \right)0.161\);<br>\(d = \left( {\frac{v}{H} = \frac{{0.161 \times 3 \times {{10}^5}}}{{72}} = } \right)672{\rm{Mpc}} \approx 670{\rm{Mpc}}\);<br><em>Alward <strong>[1]</strong> for 578(Mpc) if 504 used in the denominator.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about stellar evolution.</p>
</div>
<div class="specification">
<p class="p1">Achernar may evolve to become a neutron star.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Achernar is a main sequence star with a mass that is eight times the mass of the Sun. Deduce that Achernar has a greater temperature than the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline why Achernar will spend less time on the main sequence than the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) State the condition relating to mass that must be satisfied for Achernar to become a neutron star.</p>
<p class="p1">(ii) Some neutron stars rotate about their axes and have strong magnetic fields. State how these stars may be detected.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">from the mass–luminosity relation, Achernar has a higher luminosity; { <em>(reference to mass–luminosity is essential)</em></p>
<p class="p1">so it is above/to the left of the Sun on the main sequence / temperature increases with luminosity in the main sequence;</p>
<p class="p1"><em>Ignore irrelevant statements that </em>\(L = \sigma A{T^4}\)<em>.</em></p>
<p class="p1"><em>Allow second marking point even if only mass is discussed.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Achernar has greater luminosity/temperature and so fuses hydrogen at a (disproportionately) higher rate than the Sun / <em>OWTTE</em>;</p>
<p class="p1">so it will run out of hydrogen/move to red giant region in less time than the Sun / <em>OWTTE</em>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span></span>the remnant mass/the mass of its core/the mass after the supernova stage; { <em>(do not allow “mass” bald)</em></p>
<p class="p1">must be between the Chandrasekhar and Oppenheimer limits / \(1.4{M_\square } < {M_{{\text{core}}}} < 3{M_\square }\); { <em>(allow answer in words or numerical values)</em></p>
<p class="p1"><em>Allow 2.5 </em>\({M_\square }\)<em> to 3 </em>\({M_\square }\)<em> as O–V limit.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>detection of EM radiation from pulsars/stars that pulsate / stars whose intensity varies rapidly / <em>OWTTE</em>;</p>
<p class="p1"><em>Accept answers that refer to any regions of the electromagnetic spectrum.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (a) most candidates correctly referred to the mass-luminosity equation, but then asserted that luminosity was proportional to temperature without consideration of a star’s surface area.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(b) was answered well by most.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (c)(i) the Chandrasekhar and Oppenheimer-Volkoff limits (or their values) were both expected but not often provided. Also it was common to refer to a star's 'mass' rather than 'remnant mass' or 'mass of the core'. Many candidates realised that a pulsar was being described in (c)(ii).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the evolution of stars.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the</p>
<p>(i) Chandrasekhar limit.</p>
<p>(ii) Oppenheimer–Volkoff limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how your answers in (a) can be used to predict the fate of a main sequence star.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) sets upper limit on mass of <span style="text-decoration: underline;">white dwarf</span>;<br>(ii) sets upper limit on mass of <span style="text-decoration: underline;">neutron star</span>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(if in the supernova phase) the mass blown leaves behind a mass of 1.4<em>M</em><sub>Sun</sub> / less than the Chandrasekhar limit;<br>the star will evolve to a white dwarf;<br>mass greater than about 1.4<em>M</em><sub>Sun</sub>, but less than the O–V limit, will evolve (because of the O–V limit) into a neutron star;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the main sequence star Khad (Phi Orionis).</p>
<p>The luminosity of Khad is 2.0×10<sup>4</sup> <em>L</em><sub>S</sub>, where <em>L</em><sub>S</sub> is the luminosity of the Sun.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the exponent <em>n</em> in the mass–luminosity relation is 3.5, show that the mass of Khad is about 17 solar masses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the likely evolution of the star Khad after it leaves the main sequence.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{L_{\rm{K}}}}}{{{L_{\rm{S}}}}} = {\left[ {\frac{{{m_{\rm{K}}}}}{{{m_{\rm{S}}}}}} \right]^{3.5}}\);<br>\(m = {\left[ {\frac{{{L_{\rm{K}}}}}{{{L_{\rm{S}}}}} \times {m_{\rm{S}}}^{3.5}} \right]^{\frac{1}{{3.5}}}} = {\left[ {2.0 \times {{10}^4}} \right]^{\frac{1}{{3.5}}}}{m_{\rm{S}}}{\rm{ = 16.9}}{{\rm{m}}_{\rm{S}}}\);<br>hence <em>m</em><sub>K</sub>≈17<em>m</em><sub>S</sub></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Khad will become a red supergiant/superred/superred giant;<br>a supernova will take place;<br>the core/remnant will form a neutron star or black hole;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Hubble’s law.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Light from the galaxy M31 received on Earth shows a blue-shift corresponding to a fractional wavelength shift \(\frac{{\Delta \lambda }}{\lambda }\) of 0.001.<br><br>(i) Calculate the velocity of M31 relative to Earth.</p>
<p>(ii) The distance to M31 from Earth is 0.77 Mpc. Estimate, using the answer to (b)(i), a value of the Hubble constant.</p>
<p>(iii) Comment on your answer to (b)(ii).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>recessional speed of (distant) <span style="text-decoration: underline;">galaxies</span> is proportional to their separation / <em>v = Hd;</em> <br><em>Symbols must be defined for the equation.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\left( {\frac{{\Delta \lambda }}{\lambda } = \frac{v}{c} \Rightarrow } \right)v = 3 \times {10^5}\left( {{\rm{m}}{{\rm{s}}^{ - 1}}} \right)\) <em><strong>or</strong></em> 3×10<sup>2</sup>(kms<sup>-1</sup>);<br><span style="text-decoration: underline;">towards</span> Earth;</p>
<p>(ii) 390 (kms<sup>-1</sup>Mpc<sup>-1</sup>); <em>(allow other units: 390000(ms<sup>-1</sup>Mpc<sup>-1</sup>) , 0.39(ms<sup>-1</sup> pc<sup>-1</sup>))</em></p>
<p>(iii) the value is wrong/cannot be used/cannot be relied upon / we cannot use this galaxy to calculate <em>H;</em><br>Hubble’s law only applies to galaxies moving away / more distant galaxies;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The statement of Hubble's law is a frequent question and was generally well answered. However too many candidates still mention planets or stars rather than galaxies or omit to mention recessional velocity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In (b)(i) the value of the velocity of M31 was almost always correct, but 'towards Earth' was usually missing. Hubble's constant calculations were done well in (b)(ii), with a variety of units used. It was expected that candidates would refer to the fact that M31 is not very distant and does not <span style="text-decoration: underline;">recede</span> as a reason for the value in (b)(ii) being invalid. Few did. Instead reference was often made to the reason for the general uncertainty in the value of H - probably because the latter has been a more usual question in recent past papers. In teaching this topic it is obvious that a range of values for H can be found in textbooks. These can easily become out of date, but the value obtained in (b)(ii) was about 5 times that currently accepted. Candidates are obviously expected to have some idea of this value.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about red-shift.</p>
<p>The wavelengths of radio signals from galaxy A are found to be red-shifted from the wavelengths that would be observed from sources at rest relative to Earth.</p>
</div>
<div class="question">
<p>The fractional change in wavelength of the radio signals from galaxy A is 9.4×10<sup>–3</sup>.</p>
<p>Calculate, in km s<sup>–1</sup>, the average velocity of galaxy A relative to Earth.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em>ν </em>=0.0094c;<br>2800 (km s<sup>-1</sup>) ;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>was very well done.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about red-shift.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) On the axes, sketch a graph to show how the recessional speed <em>v</em> of a galaxy varies with distance <em>d</em> from the Earth.</p>
<p><img src="" alt></p>
<p>(ii) Outline how the graph in (a)(i) can be used to determine the age of the universe.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Astronomers use the factor <em>z</em> to report the red-shift of an object relative to Earth where</p>
<p>\[z = \frac{{{\rm{shift in wavelength detected by Earth observer}}}}{{{\rm{wavelength of light emitted by object}}}}\]</p>
<p>Quasar 3C273 is thought to be the closest quasar to Earth and has <em>z</em>=0.18. Assuming that the Hubble constant is 70 kms<sup>–1 </sup>Mpc<sup>–1</sup>, determine the distance of this object from Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) straight line that passes through the origin (or would do so if extrapolated);</p>
<p>(ii) gradient is <em>H</em><sub>0</sub>/Hubble’s constant;<br>age of universe is \(\frac{1}{{{H_0}}}\) <em><strong>or</strong></em> age is \(\frac{1}{{{\rm{gradient}}}}\);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>v</em>=(0.18×<em>c</em>=)5.4×10<sup>7</sup>(ms<sup>-1</sup>) <em><strong>or</strong></em> 5.4×10<sup>4</sup>(kms<sup>-1</sup>);<br>\(d = \frac{v}{{70}} = 770\left( {{\rm{Mpc}}} \right)\) <em><strong>or</strong></em> 2.4×10<sup>25</sup>(m);<br><em>Award <strong>[1 max]</strong> if v is correctly calculated but left in ms<sup>–1</sup>, giving an answer of 770 000 (Mpc).</em><br><em>Award <strong>[1 max]</strong> ECF for an incorrect value of v used correctly in kms<sup>–1</sup>.</em><br><em>Award <strong>[0]</strong> for an incorrect value of v and failure to convert to kms<sup>–1</sup>.</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about Hubble’s law.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The light from distant galaxies is red-shifted. Explain how this red-shift arises.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation of recession speed with distance from Earth for some galactic clusters.</p>
<p><img src="" alt></p>
<p> </p>
<p>(i) Calculate, in s<sup>−1</sup>, the Hubble constant..</p>
<p>(ii) Estimate, in s, the age of the universe.</p>
<p>(iii) State the assumption that you made in your estimate in (b)(ii).</p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(fabric of the) universe is expanding;<br> so the wavelength of the light increases;<br> during the time it has traveled from emitter to detector; </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) correct substitution into </span><span style="font-size: 11.000000pt; font-family: 'Arial';">\({H_0} = \frac{v}{d}\);<br>2.7</span>×<span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">-</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">18 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(s</span><span style="font-size: 7.000000pt; font-family: 'SymbolMT'; vertical-align: 5.000000pt;">-</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">1</span><span style="font-size: 11.000000pt; font-family: 'Arial';">);</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) \(\frac{1}{{2.7 \times {{10}^{ - 18}}}} = 3.8 \times {10^{17}}\) </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(s)/3.7</span><span style="font-size: 11.000000pt; font-family: 'Arial';">×10</span><span style="font-size: 6.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">17</span><span style="font-size: 11.000000pt; font-family: 'Arial';">;<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Allow ECF from (b)(i).</span></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(iii) universe has always had a constant rate of expansion; </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar evolution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Hertzsprung–Russell (HR) diagram shows the Sun, a star A and the main sequence.</p>
<p><img src="" alt></p>
<p>Using the mass–luminosity relation <em>L</em> ∝ <em>M</em><sup>3.5</sup>, determine the ratio of the mass of star A to the mass of the Sun.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Star A will leave the main sequence and will evolve to become a neutron star. State the</p>
<p>(i) change in star A that marks its departure from the main sequence.</p>
<p>(ii) range of mass of a neutron star.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{L_{\rm{A}}}}}{{{L_{\rm{S}}}}} = 100 = {\left[ {\frac{{{M_{\rm{A}}}}}{{{M_{\rm{S}}}}}} \right]^{3.5}}\);<br>\(\left( {\frac{{{M_{\rm{A}}}}}{{{M_{\rm{S}}}}} = {{100}^{1/3.5}} = 3.7} \right) \approx 4\)<br><em>Award marks only if a ratio is calculated.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) depletion of hydrogen in the core / fusion moves to outer layers;</p>
<p>(ii) 1.4<em>M</em><sub>Θ</sub><M<3<em>M</em><sub>Θ</sub>; <br><em>Allow between 2M<sub>Θ</sub> and 3M<sub>Θ</sub> as the upper bound OV limit.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>(stellar mass ratio) was well answered, although sometimes the working was poorly presented. Hydrogen depletion was usually not specifically mentioned.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(b)(i) as the cause for a star to leave the main sequence. Many gave unnecessary information about the subsequent path to a neutron star. For (b)(ii) the upper or lower limits for the mass of a neutron star were known, but rarely both. The range 1.4Ms to 2.5Ms or 3Ms was allowed. Often the names of the limits were given, but not the values.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Recent evidence from the Planck observatory suggests that the matter density of the universe is <em>ρ</em><sub>m</sub> = 0.32 <em>ρ</em><sub>c</sub>, where <em>ρ</em><sub>c</sub> ≈ 10<sup>–26</sup> kg\(\,\)m<sup>–3</sup> is the critical density.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph shows the variation with time <em>t</em> of the cosmic scale factor <em>R</em> in the flat model of the universe in which dark energy is ignored.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_10.24.01.png" alt="M17/4/PHYSI/HP3/ENG/TZ1/17.a"></p>
<p>On the axes above draw a graph to show the variation of <em>R</em> with time, when dark energy is present.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of the observable matter in the universe is only 0.05 <em>ρ</em><sub>c</sub>. Suggest how the remaining 0.27 <em>ρ</em><sub>c</sub> is accounted for.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of dark energy is <em>ρ</em><sub>Λ</sub>c<sup>2</sup> where <em>ρ</em><sub>Λ</sub> = <em>ρ</em><sub>c</sub> – <em>ρ</em><sub>m</sub>. Calculate the amount of dark energy in 1 m<sup>3</sup> of space.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>curve starting earlier, touching at now and going off to infinity</p>
<p><img src=""></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there is dark matter that does not radiate / cannot be observed</p>
<p> </p>
<p><em>Unexplained mention of "dark matter" is not sufficient for the mark.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>ρ</em><sub>Λ</sub> = 0.68<em>ρ</em><sub>c</sub> = 0.68 × 10<sup>−26</sup> «kgm<sup>−3</sup>»</p>
<p>energy in 1 m<sup>3</sup> is therefore 0.68 × 10<sup>−26 </sup>× 9 × 10<sup>16</sup> ≈ 6 × 10<sup>−10</sup> «J»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The distribution of mass in a spherical system is such that the density <em>ρ</em> varies with distance <em>r</em> from the centre as</p>
<p style="text-align: center;"><em>ρ </em>= \(\frac{k}{{{r^2}}}\)</p>
<p style="text-align: left;">where <em>k</em> is a constant.</p>
<p style="text-align: left;">Show that the rotation curve of this system is described by</p>
<p style="text-align: center;"><em>v</em> = constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Curve A shows the actual rotation curve of a nearby galaxy. Curve B shows the predicted rotation curve based on the visible stars in the galaxy.</p>
<p style="text-align: center;"><img src=""></p>
<p>Explain how curve A provides evidence for dark matter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>dark matter is invisible/cannot be seen directly<br><em><strong>OR</strong></em><br>does not interact with EM force/radiate light/reflect light<br><br>interacts with gravitational force<br><em><strong>OR</strong></em><br>accounts for galactic rotation curves<br><em><strong>OR</strong></em><br>accounts for some of the “missing” mass/energy of galaxies/the universe</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«from data booklet formula» \(v = \sqrt {\frac{{4\pi G\rho }}{3}} r\) substitute to get \(v = \sqrt {\frac{{4\pi Gk}}{3}} \)</p>
<p> </p>
<p><em>Substitution of ρ must be seen.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve A shows that the outer regions of the galaxy are rotating faster than predicted</p>
<p>this suggests that there is more mass in the outer regions that is not visible<br><em><strong>OR</strong></em><br>more mass in the form of dark matter</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar evolution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A main sequence star has a mass of 2.2\({M_ \odot }\) where \({M_ \odot }\)= 1 solar mass. The lifetime of a star on the main sequence is proportional to \(\frac{M}{L}\) where <em>M</em> is the mass and <em>L</em> is the luminosity of the star.</p>
<p>Using the mass–luminosity relation <em>L</em>∝<em>M</em><sup>3.5</sup> show that the</p>
<p>(i) luminosity of the star is 16\({L_ \odot }\) where \({L_ \odot }\)=1 solar luminosity.</p>
<p>(ii) lifetime of this star on the main sequence will be approximately \(\frac{1}{7}\) of the lifetime of the Sun.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The star in (a) will evolve to become a white dwarf. The diagram represents the stages in the evolution of the star.</p>
<p><img src="" alt></p>
<p>(i) On the diagram, label the <strong>two</strong> intermediate stages.</p>
<p>(ii) State what may be deduced about the mass of this star when it is in the white dwarf stage.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>L</em>/luminosity=2.2<sup>3.5</sup> <em>L</em><sub>\( \odot \)</sub>;<br>(<em>L</em>≈16 <em>L</em><sub>\( \odot \)</sub>)<br><em>Some explanatory algebra required, not just 2.2<sup>3.5</sup>.</em></p>
<p>(ii) \(\left( {{\rm{since }}T \propto \frac{M}{L}} \right)\frac{T}{{{T_ \odot }}} = {\left[ {\frac{{{M_ \odot }}}{M}} \right]^{2.5}}\) <em><strong>or</strong></em> \(\frac{T}{{{T_ \odot }}} = {\left[ {\frac{{{M_ \odot }}}{M}} \right]^{ - 2.5}}\);<br>\(\frac{T}{{{T_ \odot }}} = \left( {\frac{1}{{{{2.2}^{2.5}}}} = } \right)\frac{1}{{7.2}}\);<br>(the lifetime will be approximately 7 times less than that of the Sun)</p>
<p><em><strong>or</strong></em></p>
<p>\(\frac{T}{{{T_ \odot }}} = \frac{M}{L} \times \frac{{{L_ \odot }}}{{{M_ \odot }}}\);<br>\( = \frac{{2.2}}{{16}} = 0.14\);<br>(the lifetime will be approximately 7 times less than that of the Sun)</p>
<p><em>Be careful to check that the working is valid for the value obtained.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <img src="" alt></p>
<p>(ii) less than the Chandrasekhar limit / less than 1.4\({M_ \odot }\);</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stars in the constellation Canis Minor.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(ii) Gomeisa has a radius four times that of the Sun. Use the data in (c) to show that the ratio</p>
<p>\[\frac{{{\rm{luminosity of Gomeisa}}}}{{{\rm{luminosity of Sun}}}}\]</p>
<p>is about 200.</p>
<p>(iii) Assuming the value of n in the mass–luminosity equation to be 3.5, calculate</p>
<p>\[\frac{{{\rm{mass of Gomeisa}}}}{{{\rm{mass of Sun}}}}\]</p>
<p>(iv) Outline, with reference to the Chandrasekhar limit, the likely eventual fate of Gomeisa.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><img src="" alt></p>
<p>On the HR diagram above, sketch the likely evolutionary path of Luyten’s star.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(2.9 = - 0.7 + 51{\rm{g}}\left( {\frac{d}{{10}}} \right)\);<br>\(\frac{d}{{10}} = {10^{\frac{{3.6}}{5}}}\);<br>52(pc);<br><em>Award <strong>[2 max]</strong> ECF if magnitudes are reversed giving 1.9 (pc).</em><br><em>Award <strong>[2 max]</strong> if data for Lutyen’s star is used and no credit for the </em><em>distance of 4 (pc) has already been given in (c)(i).</em><br><em>Award <strong>[3]</strong> for a bald correct answer.</em></p>
<p>(ii) \(\frac{{{L_{\rm{G}}}}}{{{L_{\rm{S}}}}} = {\left[ {\frac{{{R_{\rm{G}}}}}{{{R_{\rm{S}}}}}} \right]^2}{\left[ {\frac{{{T_{\rm{G}}}}}{{{T_{\rm{S}}}}}} \right]^4}\);<br>\( = {4^2} \times {\left[ {\frac{{11000}}{{5800}}} \right]^4}\);<br>=210; <em>(must see this answer to better than 1 significant figure)<br>Approximate answer of 200 is given in the question so correct steps in the working are required to award any marks.</em></p>
<p>(iii) \(\frac{{{m_{\rm{G}}}}}{{{m_{\rm{S}}}}} = {\left[ {\frac{{{L_{\rm{G}}}}}{{{L_{\rm{S}}}}}} \right]^{\frac{1}{{3.5}}}}\) / <em>OWTTE</em>;<br>allow values in the range of 4.3 to 4.6; [2]<br><em>Allow ECF from (d)(ii).</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>(iv) mentions value of (Chandrasekhar limit) 1.4 solar masses;<br>if (remnant) mass of G is greater than the Chandrasekhar limit, it would become a neutron star; { <em>(ignore any reference </em><em>to a black hole)</em><br>if (remnant) mass of G is less than the Chandrasekhar limit, it would become a white dwarf;<br><em>Do not award both second and third marking points.</em><br><em>Award second or third marking point for the general idea, consistent with </em><em>any value used for Chandrasekhar limit.</em><br><em>Allow ECF from (d)(iii).</em> <br><em>For masses of G, from (d)(iii), which are over 8 solar masses, allow reference </em><em>to a black hole as eventual fate.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>any anticlockwise path that goes above and right of the Sun and passes through/ends below and left of the Sun;</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar evolution.</p>
<p>In the HR diagram below, the Sun and another main sequence star, X, have been marked.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) On the diagram above, draw a line to show the evolutionary path of the Sun from its present position on the main sequence to the final stage in its evolution.</p>
<p>(ii) Explain, by reference to the Chandrasekhar limit, why the final stage in the evolution of the Sun is the one you indicated in (a)(i).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Show that the mass of star X is approximately 14 solar masses. (Assume that <em>n</em>=3.5 in the mass–luminosity relation.)</p>
<p>(ii) State the likely final stage of star X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) any line from the sun to red giants (anywhere above and right of the sun) and then anticlockwise to white dwarfs (anywhere below and left of the sun);</p>
<p>(ii) after the planetary nebula stage/red giants stage;<br>the remnant mass/core mass of the star will be less than the Chandrasekhar limit (and so will end up as a white dwarf);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\frac{{{M_X}}}{{{M_ \odot }}} = {\left[ {\frac{{{L_X}}}{{{L_ \odot }}}} \right]^{\frac{1}{{3.5}}}}\);<br>\(\frac{{{M_X}}}{{{M_ \odot }}} = \left( {{{10}^{\frac{4}{{3.5}}}} = } \right)13.9\);</p>
<p><em>Evidence of calculation required for second mark (i.e. 3 sf or more showing).</em><br><em>Award <strong>[2 max]</strong> for valid alternative route to this answer.</em></p>
<p>(ii) neutron star / black hole;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about the properties of a star.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The radius of star X is 4.5 <em>R</em><sub>S</sub> where <em>R</em><sub>S</sub> is the radius of the Sun. The surface temperature of the Sun is 5.7×10<sup>3</sup>K.</p>
<p>Determine the ratio \(\frac{{{\rm{luminosity of star X}}}}{{{\rm{luminosity of the Sun}}}}\).</p>
<p>(ii) Calculate, assuming that the power in the mass–luminosity relationship is 3.5, the ratio \(\frac{{{\rm{mass of star X}}}}{{{\rm{mass of Sun}}}}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the Hertzsprung–Russell diagram, label</p>
<p>(i) the position of star X with the letter X.<br>(ii) the position of the Sun with the letter S.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, with reference to the Chandrasekhar limit, whether or not star X will become a white dwarf.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\frac{{{L_X}}}{{{L_S}}} = \frac{{\sigma {r_X}^2{T_X}^4}}{{\sigma {r_S}^2{T_S}^4}}\);<br>\( = \frac{{{{4.5}^2} \times {{9700}^4}}}{{{{5700}^4}}}\);<br>=170;<br><span style="font-size: 12.000000pt; font-family: 'TimesNewRomanPS'; font-style: italic;">Accept answers that use T=10000 (K) to give an answer of 190. </span></p>
<p>(ii) \(\frac{{{M_X}}}{{{M_S}}} = {\left[ {\frac{{{L_X}}}{{{L_S}}}} \right]^{\frac{1}{{3.5}}}}\);<br>\( = {\left[ {170} \right]^{\frac{1}{{3.5}}}}\);<br>=4.3;<br><em>Award <strong>[3] </strong>for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p> </p>
<p> </p>
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p>(i) X marked correctly within range shown;<br>(ii) S marked correctly within range shown;</p>
<p><em>Allow ECF from (b)(ii).</em></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Chandrasekhar limit below which white dwarf stars can exist is 1.4 solar masses;<br>X is not going to form a white dwarf / X will not form a white dwarf if its final core/remnant mass is greater than the Chandrasekhar limit; <br><em>Allow ECF from (b)(ii).</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>There was a lot of poor algebra and messy working. There was a much poorer understanding of ratio in this question, in particular dealing with the inverse power of 3.5.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>was well done in general.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>was well done in general, but many candidates thought that the Chandrasekhar limit was 4 M<sub>S</sub>. The question was slightly confusing because the mass worked out in (b)(ii) is for a main sequence star, not a remnant after a supernova. The markscheme was flexible enough to allow for candidates who took the calculated mass to be the mass of a remnant, or those who said that the star would form a white dwarf if the remnant mass was less than the Chandrasekhar limit.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about stellar distances and stellar properties.</p>
<p><img src="" alt></p>
</div>
<div class="question">
<p>On the HR diagram on page 2, draw the evolutionary path of Barnard’s star after it leaves the main sequence.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="" alt></p>
<p>approximate starting position [10<sup>–1</sup>→10<sup>–3</sup>, 3000→4000];<br>line to region of red giants;<br>line from red giants to white dwarfs;<br><em>The shaded areas are the limits within which the lines must be drawn.</em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The Hot Big Bang model suggests several outcomes for the universe. There is now evidence that dark energy and dark matter exist.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the axes, sketch a graph of the variation of cosmic scale factor with time for</p>
<p>(i) a closed universe without dark energy. Label this curve C.</p>
<p>(ii) an accelerating universe with dark energy. Label this curve A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain <strong>one</strong> experimental observation that supports the presence of dark <strong>matter</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) curve beginning on <em>R</em>=0 before present time and ending after present time on <em>R</em>=0</p>
<p><img src="" alt></p>
<p>(ii) curve starting earlier than C with general shape shown above<br>coincides with curve C at present time<br><em>Judge by eye.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rotation speeds of galaxies is greater at the edges than expected<br>so the density at the edges must be greater than that supplied by luminous matter alone</p>
<p><em>Accept any other valid piece of evidence, eg gravitational lensing, which provides a good measure of galactic cluster masses.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>