File "markscheme-SL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Physics/Option A HTML/markscheme-SL-paper3html
File size: 1.76 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/ib-qb-46-logo-683ef0176708d789b2acbf6ece48c55de4cd5ddac781fb455afe3540d22d050e.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>Observer A detects the creation (event 1) and decay (event 2) of a nuclear particle. After creation, the particle moves at a constant speed relative to A. As measured by A, the distance between the events is 15 m and the time between the events is 9.0 × 10<sup>–8</sup> s.</p>
<p>Observer B moves with the particle.</p>
<p>For event 1 and event 2,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by the statement that the spacetime interval is an invariant quantity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>calculate the spacetime interval.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the time between them according to observer B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the observed times are different for A and B.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>quantity that is the same/constant in all inertial frames</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>spacetime interval = 27<sup>2</sup> – 15<sup>2</sup> = 504 <strong>«</strong>m<sup>2</sup><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>Evidence of <em>x</em>′ = 0</p>
<p><em>t</em>′ <strong>«</strong><span class="Apple-converted-space">\(\frac{{\sqrt {504} }}{c}\)</span><strong>»</strong> = 7.5 × 10<sup>–8</sup> <strong>«</strong>s<strong>»</strong></p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><em>γ</em> = 1.2</p>
<p><em>t</em>′ <strong>«</strong><span class="Apple-converted-space">= \(\frac{{9 \times {{10}^{ - 8}}}}{{1.2}}\)<strong>»</strong> = 7.5 × 10<sup>–8</sup> <strong>«</strong>s<strong>»</strong></span></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>observer B measures the proper time and this is the shortest time measured</p>
<p><strong><em>OR</em></strong></p>
<p>time dilation occurs <strong>«</strong>for B's journey<strong>» </strong>according to A</p>
<p><strong><em>OR</em></strong></p>
<p>observer B is stationary relative to the particle, observer A is not</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rocket A and rocket B are travelling in opposite directions from the Earth along the same straight line.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-12_om_16.33.49.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/03"></p>
<p>In the reference frame of the Earth, the speed of rocket A is 0.75<em>c </em>and the speed of rocket B is 0.50<em>c</em>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the Galilean transformation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, for the reference frame of rocket A, the speed of rocket B according to the Lorentz transformation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, with reference to special relativity, which of your calculations in (a) is more likely to be valid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>1.25<em>c</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>\(u' = \frac{{(0.50 + 0.75)}}{{1 + 0.5 \times 0.75}}c\)</p>
<p>0.91<em>c</em></p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>\(u' = \frac{{ - 0.50 - 0.75}}{{1 - ( - 0.5 \times 0.75)}}c\)</p>
<p>–0.91<em>c</em></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>nothing can travel faster than the speed of light (therefore (a)(ii) is the valid answer)</p>
<p> </p>
<p><em>OWTTE</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows the motion of the electrons in a metal wire carrying an electric current as seen by an observer X at rest with respect to the wire. The distance between adjacent positive charges is <em>d</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-11_om_06.22.52.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/03"></p>
</div>
<div class="specification">
<p>Observer Y is at rest with respect to the electrons.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the field around the wire according to observer X is electric, magnetic or a combination of both.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the change in <em>d </em>according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce whether the overall field around the wire is electric, magnetic or a combination of both according to observer Y.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>magnetic field</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>according to Y<strong>» </strong>the positive charges are moving <strong>«</strong>to the right<strong>»</strong></p>
<p><em>d decreases</em></p>
<p> </p>
<p><em>For MP1, movement of positive charges must be mentioned explicitly.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>positive charges are moving, so there is a magnetic field</p>
<p>the density of positive charges is higher than that of negative charges, so there is an electric field</p>
<p> </p>
<p><em>The reason must be given for each point to be awarded.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Identical twins, A and B, are initially on Earth. Twin A remains on Earth while twin B leaves the Earth at a speed of 0.6<em>c</em> for a return journey to a point three light years from Earth.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the time taken for the journey in the reference frame of twin A as measured on Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time taken for the journey in the reference frame of twin B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, for the reference frame of twin A, a spacetime diagram that represents the worldlines for both twins.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the twin paradox arises and how it is resolved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>«0.6 <em>ct</em> = 6 ly» so <em>t</em> = 10 «years»</p>
<p> <em>Accept: If the 6 ly are considered to be measured from B, then the answer is 12.5 years.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>10<sup>2 </sup>− 6<sup>2 </sup>= <em>t</em><sup>2 </sup>− 0<sup>2</sup></p>
<p>so <em>t</em> is 8 «years»<em><br>Accept: If the 6 ly are considered to be measured from B, then the answer is 10 years.</em></p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>gamma is \(\frac{5}{4}\)</p>
<p>10 × \(\frac{4}{5}\) = 8 «years»</p>
<p><em>Allow ECF from a<br>Allow ECF for incorrect γ in mp1<br></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three world lines as shown</p>
<p><img src=""></p>
<p><em>Award mark only if axes <strong>OR</strong> world lines are labelled.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>according to both twins, it is the other one who is moving fast therefore clock should run slow</p>
<p><em>Allow explanation in terms of spacetime diagram.</em></p>
<p>«it is not considered a paradox as» twin B is not always in the same inertial frame of reference</p>
<p><em><strong>OR</strong></em></p>
<p>twin B is actually accelerating «and decelerating»</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Muons are created in the upper atmosphere of the Earth at an altitude of 10 km above the surface. The muons travel vertically down at a speed of 0.995<em>c </em>with respect to the Earth. When measured at rest the average lifetime of the muons is 2.1 μs.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to Galilean relativity, the time taken for a muon to travel to the ground.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce why only a small fraction of the total number of muons created is expected to be detected at ground level according to Galilean relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the theory of special relativity, the time taken for a muon to reach the ground in the reference frame of the muon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how your result in (b)(i) and the outcome of the muon decay experiment support the theory of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>\(\frac{{{{10}^4}}}{{0.995 \times 3 \times {{10}^8}}} = \)<strong>»</strong> 34 <strong>«</strong><em>μ</em>s<strong>»</strong></p>
<p> </p>
<p><em>Do not accept 10</em><sup><em>4</em></sup><em>/c = 33 μ</em><em>s</em><em>.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>time is much longer than 10 times the average life time <strong>«</strong>so only a small proportion would not decay<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma = 10\)</p>
<p>\(\Delta {t_0} = \) <strong>«</strong>\(\frac{{\Delta t}}{\gamma } = \frac{{34}}{{10}} = \)<strong>»</strong> 3.4<strong> «</strong><em>μs</em><strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the value found in (b)(i) is of similar magnitude to average life time</p>
<p>significant number of muons are observed on the ground</p>
<p><strong>«</strong>therefore this supports the special theory<strong>»</strong></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about simultaneity.</p>
<p class="p1">Daniela is standing in the middle of a train that is moving at a constant velocity relative to Jaime, who is standing on the platform. At the moment the train passes Jaime, two beams of light, X and Y, are emitted simultaneously from a device held by Daniela. Both beams are reflected by mirrors at the end of the train and then return to Daniela.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-02_om_16.30.41.png" alt="N14/4/PHYSI/SP3/ENG/TZ0/11"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the order of arrival of X and Y at the mirrors according to Jaime.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline whether the return of X and Y to Daniela are simultaneous according to Jaime.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">beam X will reach the mirror first;</p>
<p class="p1">the speed of light of each beam is constant for all inertial observers;</p>
<p class="p1">the left mirror moves towards the beam X while the right mirror moves away from the beam Y;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">the beams returning to Daniela occur at one point in space;</p>
<p class="p1">if this is simultaneous to Daniela, the event will also be simultaneous to Jaime;</p>
<p class="p1"><strong><em>or</em></strong></p>
<p class="p1">beam X has less to go to the mirror and then longer to Daniela, whilst beam Y has longer to the mirror and less to Daniela;</p>
<p class="p1">the sum of the times are the same because Daniela is in the middle so they arrive at the same time;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Usually candidates gave acceptable answers to (a) but forgot that the speed of light must be constant for their statements to be true.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very few answered (b) well.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A long current-carrying wire is at rest in the reference frame S of the laboratory. A positively charged particle P outside the wire moves with velocity <em>v</em> relative to S. The electrons making up the current in the wire move with the same velocity<em> v</em> relative to S.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by a reference frame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in reference frame S.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the force experienced by P is magnetic, electric or both, in the rest frame of P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a set of coordinate axes and clocks used to measure the position «in space/time of an object at a particular time»<br><em><strong>OR</strong></em><br>a coordinate system to measure x,y,z, and t / OWTTE</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>magnetic only</p>
<p>there is a current but no «net» charge «in the wire»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>electric only</p>
<p>P is <strong>stationary</strong> so experiences no magnetic force</p>
<p>relativistic contraction will increase the density of protons in the wire</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about a Galilean transformation and time dilation.</p>
<p class="p1">Ben is in a spaceship that is travelling in a straight-line with constant speed \(v\) as measured by Jill who is in a space station.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_13.51.29.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D1"></p>
<p class="p1">Ben switches on a light pulse that bounces vertically (as observed by Ben) between two horizontal mirrors \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{2}}}\) separated by a distance \(d\). At the instant that the mirrors are opposite Jill, the pulse is just leaving the mirror \({{\text{M}}_{\text{2}}}\). The speed of light in air is \(c\).</p>
</div>
<div class="specification">
<p class="p1">The time for the light pulse to travel from \({{\text{M}}_{\text{2}}}\) to \({{\text{M}}_{\text{1}}}\) as measured by Jill is \(\Delta t\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the diagram, sketch the path of the light pulse between \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{2}}}\) as observed by Jill.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-10_om_17.16.38.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D1.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State, according to Jill, the distance moved by the spaceship in time \(\Delta t\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Using a Galilean transformation, derive an expression for the length of the path of the light between \({{\text{M}}_{\text{2}}}\) and \({{\text{M}}_{\text{1}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State, according to special relativity, the length of the path of the light between \({{\text{M}}_{\text{1}}}\) and \({{\text{M}}_{\text{1}}}\) as measured by Jill in terms of \(c\) and \(\Delta t\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The time for the pulse to travel from \({{\text{M}}_{\text{2}}}\) to \({{\text{M}}_{\text{1}}}\) as measured by Ben is \(\Delta t'\). Use your answer to (b)(i) and (c) to derive a relationship between <span class="s3">\(\Delta t\) </span>and \(\Delta t'\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">According to a clock at rest with respect to Jill, a clock in the spaceship runs slow by a factor of 2.3. Show that the speed \(v\)<em> </em>of the spaceship is 0.90c.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">any diagonal line as shown;</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-10_om_17.18.26.png" alt="N10/4/PHYSI/SP3/ENG/TZ0/D1.a/M"></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(v\Delta t\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>speed of pulse \({({c^2} + {v^2})^{\frac{1}{2}}}\);</p>
<p class="p1">distance \( = {({c^2} + {v^2})^{\frac{1}{2}}}\Delta t\);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(c\Delta t\);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(d = c\Delta t'\);</p>
<p class="p1">from Pythagoras \({d^2} = {c^2}\Delta {t'^2} = {c^2}\Delta {t^2} - {v^2}\Delta {t^2}\);</p>
<p class="p1">\(\Delta t = \frac{{\Delta t'}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\);</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">recognize that \(2.3 = \frac{1}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\);</p>
<p class="p1">some evidence of rearranging <em>e.g.</em> \(v = \sqrt {\frac{{{{[2.3]}^2} - 1}}{{{{[2.3]}^2}}}} \);</p>
<p class="p1">\( = 0.90{\text{c}}\)</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to draw the correct path of the light.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b), (c) and (d) effectively dealt with the derivation of the time dilation formula and here many candidates had problems often relying on guesswork and half-remembered proofs rather than follow the logical development of the questions. The calculation was often done well but with the usual confusion between the times.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b), (c) and (d) effectively dealt with the derivation of the time dilation formula and here many candidates had problems often relying on guesswork and half-remembered proofs rather than follow the logical development of the questions. The calculation was often done well but with the usual confusion between the times.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b), (c) and (d) effectively dealt with the derivation of the time dilation formula and here many candidates had problems often relying on guesswork and half-remembered proofs rather than follow the logical development of the questions. The calculation was often done well but with the usual confusion between the times.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about relativistic kinematics.</p>
</div>
<div class="specification">
<p class="p1">A spacecraft is flying in a straight line above a base station at a speed of 0.8<em>c</em>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-31_om_10.29.59.png" alt="N15/4/PHYSI/SP3/ENG/TZ0/12.b"></p>
<p class="p1">Suzanne is inside the spacecraft and Juan is on the base station.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
[N/A]
<div class="marks">[[N/A]]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
[N/A]
<div class="marks">[[N/A]]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">While moving away from the base station, Suzanne observes another spacecraft travelling towards her at a speed of 0.8<em>c</em>. Using Galilean transformations, calculate the relative speed of the two spacecraft.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the postulates of special relativity, state and explain why Galilean transformations cannot be used in this case to find the relative speeds of the two spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using relativistic kinematics, the relative speeds of the two spacecraft is shown to be 0.976<em>c</em>. Suzanne measures the other spacecraft to have a length of 8.00 m. Calculate the proper length of the other spacecraft.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suzanne’s spacecraft is on a journey to a star. According to Juan, the distance from the base station to the star is 11.4 ly. Show that Suzanne measures the time taken for her to travel from the base station to the star to be about 9 years.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">1.6<em>c</em>;</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(one of the) postulates states that the speed of light in a vacuum is the same for all inertial observers;</p>
<p class="p1">Galilean transformation will give a relative speed greater than the speed of light;</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma = \frac{1}{{\sqrt {1 - {{0.976}^2}} }}{\text{ }}( = 4.59)\);</p>
<p>\({l_0} = (4.56 \times 8.00 = ){\text{ 36.7 (m)}}\);</p>
<p><strong><em>Note</em></strong><em>: the final answer for SP3 is different to the HP3.</em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(t = \frac{s}{v} = \frac{{11.4}}{{0.8}} = 14.25{\text{ (years)}}\);</p>
<p class="p1">\(\Delta {t_0} = \frac{{\Delta t}}{\gamma } = \frac{{14.25}}{{1.67}} = 8.6{\text{ (years)}}\);</p>
<p class="p1"><em>Allow ECF from (b).</em></p>
<p class="p1"><em>Accept length contraction with the same result.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only HL Questions 12(a), (b)(i) and (c) were common with SL questions 12(a), (b)(i) and (c). Many did not address “frame of reference”, only explaining “inertial”. Most could identify the postulate relevant to Galilean transformations but few could earn full marks. The calculation was well done by those who attempted the question.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Muons are unstable particles with a proper lifetime of 2.2 μs. Muons are produced 2.0 km above ground and move downwards at a speed of 0.98<em>c</em> relative to the ground. For this speed \(\gamma \) = 5.0. Discuss, with suitable calculations, how this experiment provides evidence for time dilation.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><em><strong>ALTERNATIVE 1</strong> — for answers in terms of time</em><br>overall idea that more muons are detected at the ground than expected «without time dilation»</p>
<p>«Earth frame transit time = \(\frac{{2000}}{{0.98c}}\)» = 6.8 «μs»</p>
<p>«Earth frame dilation of proper half-life = 2.2 μs x 5» = 11 «μs»<br><em><strong>OR</strong></em><br>«muon’s proper transit time = \(\frac{{6.8\mu s}}{5}\)» = 1.4 «μs»</p>
<p> </p>
<p><em><strong>ALTERNATIVE 2</strong></em> <em>– for answers in terms of distance</em><br>overall idea that more muons are detected at the ground than expected «without time dilation»</p>
<p>«distance muons can travel in a proper lifetime = 2.2 μs x 0.98<em>c</em>» = 650 «m»</p>
<p>«Earth frame lifetime distance due to time dilation = 650 m x 5» = 3250 «m»<br><em><strong>OR</strong></em><br>«muon frame distance travelled = \(\frac{{2000}}{5}\)» = 400 «m»</p>
<p> </p>
<p><em>Accept answers from <strong>one</strong> of the alternatives.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>An electron is emitted from a nucleus with a speed of 0.975<em>c</em> as observed in a laboratory. The electron is detected at a distance of 0.800m from the emitting nucleus as measured in the laboratory.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the electron, calculate the distance travelled by the detector.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the laboratory, calculate the time taken for the electron to reach the detector after its emission from the nucleus.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the electron, calculate the time between its emission at the nucleus and its detection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the answer to (c) represents a proper time interval.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>γ</em>=4.503</p>
<p>\( \ll \frac{{0.800}}{{4.50}} = \gg 0.178{\rm{m}}\)</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\rm{time}} = \frac{{0.800}}{{2.94 \times {{10}^8}}}\)</p>
<p>2.74 ns</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{2.74}}{{4.5}}\) <em><strong>OR</strong></em> \(\frac{{0.178}}{{2.94 \times {{10}^8}}}\)</p>
<p>0.608 ns</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it is measured in the frame of reference in which both events occur at the same position<br><em><strong>OR</strong></em><br>it is the shortest time interval possible</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define<em> proper length.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A charged pion decays spontaneously in a time of 26 ns as measured in the frame of reference in which it is stationary. The pion moves with a velocity of 0.96<em>c</em> relative to the Earth. Calculate the pion’s lifetime as measured by an observer on the Earth.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the pion reference frame, the Earth moves a distance X before the pion decays. In the Earth reference frame, the pion moves a distance Y before the pion decays. Demonstrate, with calculations, how length contraction applies to this situation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the length of an object in its rest frame</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{{\sqrt {\left( {1 - {{0.96}^2}} \right)} }}\) <em><strong>OR </strong></em>\(\gamma = 3.6\)<br><em>ECF for wrong </em>\(\gamma\)</p>
<p>93 «ns»<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«X is» 7.5 «m» in frame on pion</p>
<p>«Y is» 26.8 «m» in frame on Earth </p>
<p>identifies proper length as the Earth measurement<br><em><strong>OR<br></strong></em>identifies Earth distance according to pion as contracted length<br><em><strong>OR<br></strong></em>a statement explaining that one of the length is shorter than the other one</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Outline the conclusion from Maxwell’s work on electromagnetism that led to one of the postulates of special relativity.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>light is an EM wave</p>
<p>speed of light is independent of the source/observer</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>One of the postulates of special relativity states that the laws of physics are the same in all inertial frames of reference.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by inertial in this context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An observer is travelling at velocity <em>v</em> towards a light source. Determine the value the observer would measure for the speed of light emitted by the source according to</p>
<p>(i) Maxwell’s theory.</p>
<p>(ii) Galilean transformation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>not being accelerated<br><em><strong>OR</strong></em><br>not subject to an unbalanced force<br><em><strong>OR</strong></em><br>where Newton’s laws apply</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <em>c</em></p>
<p>(ii) <em>c</em>+<em>v</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about relativistic kinematics.</p>
<p class="p1">The diagram shows a spaceship as it moves past Earth on its way to a planet P. The planet is at rest relative to Earth.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-11_om_10.50.39.png" alt="M14/4/PHYSI/SP3/ENG/TZ2/10"></p>
<p class="p1">The distance between the Earth and planet P is 12 ly as measured by observers on Earth. The spaceship moves with speed 0.60c relative to Earth.</p>
<p class="p1">Consider two events:</p>
<p class="p1"> Event 1: when the spaceship is above Earth</p>
<p class="p1"> Event 2: when the spaceship is above planet P</p>
<p class="p1">Judy is in the spaceship and Peter is at rest on Earth.</p>
</div>
<div class="specification">
<p class="p1">Judy considers herself to be at rest. According to Judy, the Earth and planet P are moving to the left.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the reason why the time interval between event 1 and event 2 is a proper time interval as measured by Judy.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate the time interval between event 1 and event 2 according to Peter.</p>
<p class="p1">(ii) Calculate the time interval between event 1 and event 2 according to Judy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Calculate, according to Judy, the distance separating the Earth and planet P.</p>
<p class="p1">(ii) Using your answers to (b)(ii) and (c)(i), determine the speed of planet P relative to the spaceship.</p>
<p class="p1">(iii) Comment on your answer to (c)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine, according to Judy in the spaceship, which signal is emitted first.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">because the events occur at the same place/point in space for this observer;</p>
<p class="p1"><em>Do not allow “events within the same reference frame”.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(t = \left( {\frac{{12}}{{0.60{\text{c}}}} = } \right){\text{ 20(yr)}}\);</p>
<p>(ii) \(\gamma = \left( {\frac{1}{{\sqrt {1 - {{0.60}^2}} }} = } \right){\text{ 1.25}}\); <em>(allow implicit value)</em></p>
<p>\({t_{{\text{rocket}}}} = \left( {\frac{{20 {\text{yr}}}}{\gamma } = } \right){\text{ 16(yr)}}\); (<em>allow ECF)</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for a bald correct answer.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(L = \left( {\frac{{12{\text{ly}}}}{\gamma } = } \right){\text{ 9.6(ly)}}\); <em>(allow ECF from (b)(ii))</em></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(v = \left( {\frac{{9.6{\text{ly}}}}{{16{\text{y}}}} = } \right){\text{ 0.60c}}\); <em>(allow ECF from (b)(ii) and (c)(i))</em></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>(by principle of relativity this should be the) same as the speed of the spaceship relative to Earth;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">both signals travel at the same speed c;</p>
<p class="p1">Judy must agree that the signals arrive at S simultaneously / <em>OWTTE</em>;</p>
<p class="p1">for Judy, observer S moves away from the signal traveling from P/towards the signal traveling from Earth;</p>
<p class="p1">for Judy the signal from P has further to travel to reach S – so was emitted first;</p>
<p class="p1"><em>Do not accept explanations based on Judy approaching P or seeing/receiving the signal from P first as this is irrelevant.</em></p>
<p class="p1"><em>Award </em><strong><em>[0] </em></strong><em>for a bald correct answer. </em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">This question is about a light clock.</p>
</div>
<div class="question">
<p class="p1">One of the postulates of special relativity refers to the speed of light. State the other postulate of special relativity.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">the laws of physics are the same for all inertial observers;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">(a) was well answered.</p>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An observer at rest relative to Earth observes two spaceships. Each spaceship is moving with a speed of 0.85 <em>c</em> but in opposite directions. The observer measures the rate of increase of distance between the spaceships to be 1.7 <em>c</em>. Outline whether this observation contravenes the theory of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The observer on Earth in (a) watches one spaceship as it travels to a distant star at a speed of 0.85 <em>c</em>. According to observers on the spaceship, this journey takes 8.0 years.</p>
<p>(i) Calculate, according to the observer on Earth, the time taken for the journey to the star.</p>
<p>(ii) Calculate, according to the observer on Earth, the distance from Earth to the star.</p>
<p>(iii) At the instant when the spaceship passes the star, the observer on the spaceship sends a radio message to Earth. The spaceship continues to move at a speed of 0.85 <em>c</em>. Determine, according to the spaceship observer, the time taken for the message to arrive on Earth.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">theory suggests that no object can travel faster than light;<br>the 1.7</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">c </span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">is not the speed of a physical object;<br>so is not in violation of the theory; </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 12.000000pt; font-family: 'SymbolMT';">(i) <em>y</em> \( = \) </span><span style="font-size: 11.000000pt; font-family: 'Arial';">1.90;<br>interval on Earth<span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span><em>y</em>\( \times \)</span><span style="font-size: 11.000000pt; font-family: 'Arial';">interval on spaceship; <br>(interval on Earth 1.90</span>\( \times \)<span style="font-size: 11.000000pt; font-family: 'Arial';">8 years<span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span></span><span style="font-size: 11.000000pt; font-family: 'Arial';">)15 years;<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[3] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer.</span></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) observer on Earth thinks spaceship has travelled for 15 years;<br>so distance is 0.85</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">c</span></em><span style="font-size: 11pt; font-family: 'Arial,Italic';">\( \times \)</span><span style="font-size: 11.000000pt; font-family: 'Arial';">15</span><span style="font-size: 11.000000pt; font-family: 'Arial';"><span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span>12.8</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">≈</span><span style="font-size: 11.000000pt; font-family: 'Arial';">13ly;<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer</span></em></p>
<p><em><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">or</span></strong></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">the spaceship observer observes the distance moved by the Earth<span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span></span><span style="font-size: 11.000000pt; font-family: 'Arial';">0.85</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">c</span></em><span style="font-size: 11.000000pt; font-family: 'SymbolMT';"><span style="font-size: 11.000000pt; font-family: 'Arial';">×</span></span><span style="font-size: 11.000000pt; font-family: 'Arial';">8.0 yr;<br> proper distance</span><span style="font-size: 11.000000pt; font-family: 'Arial';"><span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span>1.90</span>\( \times \)<span style="font-size: 11.000000pt; font-family: 'Arial';">0.85</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">c</span></em>\( \times \)<span style="font-size: 11.000000pt; font-family: 'Arial';">8.0yr<span style="font-size: 12.000000pt; font-family: 'SymbolMT';"> \( = \) </span></span><span style="font-size: 11.000000pt; font-family: 'Arial';">12.9</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">≈</span><span style="font-size: 11.000000pt; font-family: 'Arial';">13ly ;<br> </span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2] </span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">for a bald correct answer</span></em></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(iii)<em> </em></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">(take time for message to arrive at Earth in spaceship frame to be T)<br></span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">distance moved by Earth in spaceship frame before message arrives </span><span style="font-size: 12.000000pt; font-family: 'TimesNewRoman';">= </span><span style="font-size: 11.000000pt; font-family: 'Arial';">0.85</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">cT</span></em><span style="font-size: 11.000000pt; font-family: 'Arial';">;<br>distance of Earth from spaceship when message sent</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRoman';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">0.85</span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">c</span></em>\( \times \)<span style="font-size: 11.000000pt; font-family: 'Arial';">8.0</span><span style="font-size: 12.000000pt; font-family: 'TimesNewRoman';">=</span><span style="font-size: 11.000000pt; font-family: 'Arial';">6.8(ly);</span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">\(\left( {cT = 0.85cT + 6.8} \right){\text{so }}T = \frac{{6.8}}{{0.15}} = 45.3{\text{ years}}\)</span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> prediction of Maxwell’s theory of electromagnetism that is consistent with special relativity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A current is established in a long straight wire that is at rest in a laboratory.</p>
<p style="text-align: center;"><img src=""></p>
<p>A proton is at rest relative to the laboratory and the wire.</p>
<p>Observer X is at rest in the laboratory. Observer Y moves to the right with constant speed relative to the laboratory. Compare and contrast how observer X and observer Y account for any non-gravitational forces on the proton.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the speed of light is a universal constant/invariant<br><em><strong>OR</strong></em><br><em>c</em> does not depend on velocity of source/observer</p>
<p>electric and magnetic fields/forces unified/frame of reference dependant</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>observer X will measure zero «magnetic or electric» force</p>
<p>observer Y must measure both electric and magnetic forces</p>
<p>which must be equal and opposite so that observer Y also measures zero force</p>
<p> </p>
<p><em>Allow <strong>[2 max]</strong> for a comment that both X and Y measure zero resultant force even if no valid explanation is given.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Two protons are moving with the same velocity in a particle accelerator.<br><img src="" alt><br>Observer X is at rest relative to the accelerator. Observer Y is at rest relative to the protons.</p>
<p>Explain the nature of the force between the protons as observed by observer X <strong>and</strong> observer Y.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>Y measures electrostatic <span style="text-decoration: underline;">repulsion</span> only<br>protons are moving relative to X «but not Y» <em><strong>OR</strong></em> protons are stationary relative to Y<br>moving protons create magnetic fields around them according to X<br>X also measures an <span style="text-decoration: underline;">attractive</span> magnetic force <em><strong>OR</strong></em> relativistic/Lorentz effects also present</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>This question is about simultaneity.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the postulate of special relativity that is related to the speed of light.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A rocket moving at a relativistic speed passes an observer who is at rest on the ground equidistant from two trees L and R. At the moment that an observer in the rocket is opposite the ground observer, lightning strikes L and R at the same time according to the<br>ground observer. Light from the strikes reaches the observer in the rocket as well as the observer on the ground.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) Explain why, according to the observer in the rocket, light from the two strikes will reach the ground observer at the same time.</p>
<p style="text-align: left;">(ii) Using your answer to (a) and (b)(i), outline why, according to the rocket observer, tree R was hit by lightning before tree L.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the speed of light in a <span style="text-decoration: underline;">vacuum</span> is the same for all inertial observers/observers in uniform motion;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) ground observer measures a zero proper time interval for the two arrivals;<br>all other observers measure a time interval of <em>γ</em>×0=0;<br>hence the arrivals are simultaneous for all observers, including rocket <br><em>Award <strong>[1]</strong> for statement that “events that are simultaneous for one observer</em><br><em>and occur at the same place are simultaneous for all observers”.</em></p>
<p>(ii) according to the rocket observer, the ground observer moves towards the signal from tree L and away from the signal from tree R;<br>since the signals move at the same speed and they arrive at the same time according to the rocket observer;<br>signal from tree R must have been emitted first</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A train is passing through a tunnel of proper length 80 m. The proper length of the train is 100 m. According to an observer at rest relative to the tunnel, when the front of the train coincides with one end of the tunnel, the rear of the train coincides with the other end of the tunnel.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what is meant by proper length.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a spacetime diagram for this situation according to an observer at rest relative to the tunnel.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the train, according to an observer at rest relative to the tunnel, at which the train fits the tunnel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an observer on the train, it is the tunnel that is moving and therefore will appear length contracted. This seems to contradict the observation made by the observer at rest to the tunnel, creating a paradox. Explain how this paradox is resolved. You may refer to your spacetime diagram in (b).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the length of an object in its rest frame</p>
<p><em><strong>OR</strong></em></p>
<p>the length of an object measured when at rest relative to the observer</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>world lines for front and back of tunnel parallel to <em>ct</em> axis</p>
<p>world lines for front and back of train</p>
<p>which are parallel to <em>ct′</em> axis</p>
<p><img src=""></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>realizes that gamma = 1.25</p>
<p>0.6<em>c</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1</strong></em></p>
<p>indicates the two simultaneous events for <em>t</em> frame</p>
<p>marks on the diagram the different times «for both spacetime points» on the <em>ct′</em> axis «shown as Δ<em>t′</em> on each diagram»</p>
<p><img src=""></p>
<p><em><strong>ALTERNATIVE 2: (no diagram reference)</strong></em></p>
<p>the two events occur at different points in space</p>
<p>statement that the two events are not simultaneous in the <em>t′</em> frame</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about time dilation.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two space stations X and Y are at rest relative to each other. The separation of X and Y as measured in their frame of reference is 1.80×10<sup>11</sup>m.</p>
<p><img src="" alt></p>
<p>State what is meant by a frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A radio signal is sent to both space stations in (a) from a point midway between them. On receipt of the signal a clock in X and a clock in Y are each set to read zero. A spaceship S travels between X and Y at a speed of 0.750c as measured by X and Y. In the frame of reference of S, station X passes S at the instant that X’s clock is set to zero. A clock in S is also set to zero at this instant.</p>
<p>(i) Calculate the time interval, as measured by the clock in X, that it takes S to travel from X to Y.</p>
<p>(ii) Calculate the time interval, as measured by the clock in S, that it takes S to travel from X to Y.</p>
<p>(iii) Explain whether the clock in X <strong>or</strong> the clock in S measures the proper time.</p>
<p>(iv) Explain why, according to S, the setting of the clock in X and the setting of the clock in Y does not occur simultaneously.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a set of coordinates that can be used to locate events/position of objects;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\frac{{1.80 \times {{10}^{11}}}}{{0.750 \times 3 \times {{10}^8}}}\);<em><br></em>=800(s);<em><br>Award <strong>[2]</strong> for a bald correct answer.<br></em><em><br></em></p>
<p>(ii) \(\gamma = \left( {\frac{1}{{\sqrt {1 - {{0.750}^2}} }} = } \right)1.51\);<br>\({\rm{time}} = \left( {\frac{{800}}{{1.51}} = } \right)530\left( {\rm{s}} \right)\);</p>
<p><em>Watch for ECF from (b)(i) or first marking point in (b)(ii).</em><br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>(iii) only S’s clock measures proper time;<br>because S’s clock is at both events / events occur at same place in S’s frame;</p>
<p>(iv) according to S, Y moves towards/X moves away from the radio signal;<br>the signal travels at the same speed/at the speed of light in each direction;<br>therefore according to S’s clock the signal reaches Y before it reaches X/X after reaching Y;</p>
<p><em><strong>or</strong></em></p>
<p>S’s frame is different/moving relative to the X and Y frame;<br>the two events/arrival of signals are separated in space;<br>so if simultaneous for XY, cannot be simultaneous for S;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Two rockets, A and B, are moving towards each other on the same path. From the frame of reference of the Earth, an observer measures the speed of A to be 0.6<em>c</em> and the speed of B to be 0.4<em>c</em>. According to the observer on Earth, the distance between A and B is 6.0 x 10<sup>8</sup> m.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, according to the observer on Earth, the time taken for A and B to meet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the terms in the formula.</p>
<p style="text-align: center;"><em>u′</em> = \(\frac{{u - v}}{{1 - \frac{{uv}}{{{c^2}}}}}\)</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the velocity of B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine, according to an observer in A, the time taken for B to meet A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, without further calculation, how the time taken for A to meet B, according to an observer in B, compares with the time taken for the same event according to an observer in A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a co-ordinate system in which measurements «of distance and time» can be made</p>
<p><em>Ignore any mention to inertial reference frame.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>closing speed = <em>c</em></p>
<p>2 «s»</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>u</em> and <em>v</em> are velocities with respect to the same frame of reference/Earth <em><strong>AND</strong> u′</em> the relative velocity</p>
<p><em>Accept 0.4c and 0.6c for u and v</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{ - 0.4 - 0.6}}{{1 + 0.24}}\)</p>
<p>«–» 0.81<em>c</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma \) = 1.25</p>
<p>so the time is <em>t </em>= 1.6 «s»</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gamma is smaller for B</p>
<p>so time is greater than for A</p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativity.</p>
<p>Carrie is in a spaceship that is travelling towards a star in a straight-line at constant velocity as observed by Peter. Peter is at rest relative to the star.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carrie measures her spaceship to have a length of 100m. Peter measures Carrie’s spaceship to have a length of 91m.</p>
<p><img src="" alt></p>
<p>(i) Explain why Carrie measures the proper length of the spaceship.</p>
<p>(ii) Show that Carrie travels at a speed of approximately 0.4 c relative to Peter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>According to Carrie, it takes the star ten years to reach her. Using your answer to (a)(ii), calculate the distance to the star as measured by Peter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>According to Peter, as Carrie passes the star she sends a radio signal. Determine the time, as measured by Carrie, for the message to reach Peter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) proper length is measured by observer at rest relative to object / Carrie is at rest relative to spaceship;</p>
<p>(ii) \(\gamma = \left( {\frac{{100}}{{91}} = } \right)1.1\);<br>evidence of algebraic manipulation <em>e.g. </em>\(\frac{{{v^2}}}{{{c^2}}} = 1 - \frac{1}{{{{1.1}^2}}}\) to give <em>v</em>=0.42c;<br>≈0.4c</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>travel time measured by Peter = (10×γ=)11years;<br>4.6ly <em><strong>or</strong></em> 4.4ly <em>(if 0.4 c used)</em>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>moves away at 0.42 c so is 4.2ly away when signal emitted; <em>(allow ECF from (a)(ii))</em><br>signal travel time <em>t</em> where <em>ct</em>=4.2+0.42<em>ct</em>;<br>7.2y <em><strong>or</strong></em> 7y <em>(if 0.4 c used)</em>;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>A source of light S and a detector of light D are placed on opposite walls of a box as shown in the diagram.</p>
<p><img src="" alt></p>
<p>According to an observer in the box the distance <em>L</em> between S and D is 6.0m. The box moves with speed <em>v</em>= 0.80c relative to the ground.</p>
<p>Consider the following events.</p>
<p style="padding-left: 30px;">Event 1: a photon is emitted by S towards D<br>Event 2: the photon arrives at D</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of the theory of relativity, state what is meant by an event.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the time interval <em>t</em> between event 1 and event 2 according to an observer in the box.</p>
<p>(ii) According to an observer on the ground the time interval between event 1 and event 2 is <em>T</em>. One student claims that \(T = \frac{t}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}\) and another that \(T = t\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} \).</p>
<p>Explain why both students are wrong.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Relative to an observer on the <strong>ground</strong>,</p>
<p>(i) calculate the distance between S and D.</p>
<p>(ii) state the speed of the photon leaving S.</p>
<p>(iii) state an expression for the distance travelled by detector D in the time interval <em>T</em> (<em>T</em> is the interval in (b)(ii)).</p>
<p>(iv) determine <em>T</em>, using your answers to (c)(i), (ii) and (iii).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a point in spacetime / something happening at a particular time and a particular point in space;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(t = \frac{{6.0}}{{3.0 \times {{10}^8}}} = 2.0 \times {10^{ - 8}}{\rm{s}}\);</p>
<p>(ii) for either formula to be used one of the time intervals must be a proper time interval;<br>the two events occur at different points in space and so neither observer measures a proper time interval;<br>the proper time interval is that of the photons;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\gamma = \frac{1}{{\sqrt {1 - {{0.80}^2}} }} = \frac{5}{3} = 1.67\);<br>\(l = \frac{L}{\gamma } = \frac{{6.0}}{{1.67}} = 3.6{\rm{m}}\);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<p>(ii) <em>c</em>;</p>
<p>(iii) <em>vT <strong>or</strong></em> 0.80<em>cT</em>;</p>
<p>(iv) <em>cT</em>=0.80<em>cT</em>+3.6;<br>\(T = \frac{{3.6}}{{0.20 \times 3.0 \times {{10}^8}}} = 6.0 \times {10^{ - 8}}{\rm{s}}\);<br><em>Award <strong>[2]</strong> for a bald correct answer.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about length contraction and simultaneity.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>proper length</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A spaceship is travelling to the right at speed 0.75 c, through a tunnel which is open at both ends. Observer A is standing at the centre of one side of the tunnel. Observer A, for whom the tunnel is at rest, measures the length of the tunnel to be 240 m and the length of the spaceship to be 200 m. The diagram below shows this situation from the perspective of observer A.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Observer B, for whom the spaceship is stationary, is standing at the centre of the spaceship.</p>
<p style="text-align: left;">(i) Calculate the Lorentz factor, γ, for this situation.</p>
<p style="text-align: left;">(ii) Calculate the length of the tunnel according to observer B.</p>
<p style="text-align: left;">(iii) Calculate the length of the spaceship according to observer B.</p>
<p style="text-align: left;">(iv) According to observer A, the spaceship is completely inside the tunnel for a short time. State and explain whether or not, according to observer B, the spaceship is ever completely inside the tunnel.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two sources of light are located at each end of the tunnel. The diagram below shows this situation from the perspective of observer A.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">According to observer A, at the instant when observer B passes observer A, the two sources of light emit a flash. Observer A sees the two flashes simultaneously. Discuss whether or not observer B sees the two flashes simultaneously.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the length of an object as measured by an observer who is at rest relative to the object;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\gamma = \frac{1}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }} = \frac{1}{{\sqrt {1 - {{0.75}^2}} }} = 1.5\);</p>
<p>(ii) \(L = \frac{{{L_0}}}{\gamma } = \frac{{240}}{{1.5}} = 160{\rm{m}}\);<br><br>(iii) \({L_0} = \gamma L = 1.5 \times 200 = 300{\rm{m}}\); </p>
<p>(iv) the spaceship is never completely inside the tunnel;<br>because (according to observer B) the spaceship is longer than the tunnel;<br><em>Apply ECF in all parts of question (b)</em>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>observer B will not see the two flashes simultaneously;<br>according to B, light 2 is moving to the left/towards observer B;<br>since the speed of light is the same for both sources;<br>the flash from light 2 reaches B before the flash from light 1;</p>
<p><strong><em>or</em></strong></p>
<p>according to B, the two flashes arrive at A simultaneously;<br>according to B, A is moving to the left/away from light 2;<br>since light from both sources moves with the same speed;<br>for the flashes to be received by A at the same time, the flash from light 2 must be emitted first; <br><em>Accept any equivalent discussion.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A spaceship S leaves the Earth with a speed <em>v </em>= 0.80<em>c</em>. The spacetime diagram for the Earth is shown. A clock on the Earth and a clock on the spaceship are synchronized at the origin of the spacetime diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle between the worldline of S and the worldline of the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw, on the diagram, the <em>x′</em>-axis for the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An event Z is shown on the diagram. Label the co-ordinates of this event in the reference frame of S.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>angle = tan<sup>–1 </sup>«\(\frac{{0.8}}{1}\)» = 39 «<sup>o</sup>» <em><strong>OR</strong></em> 0.67 «rad»</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>adds <em>x</em>′-axis as shown</p>
<p><img src=""></p>
<p><em>Approximate same angle to v = c as for ct′. </em></p>
<p><em>Ignore labelling of that axis.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>adds two lines parallel to <em>ct</em>′ and <em>x</em>′ as shown indicating coordinates</p>
<p><img src=""></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer on Earth watches rocket A travel away from Earth at a speed of 0.80<em>c</em>. The spacetime diagram shows the worldline of rocket A in the frame of reference of the Earth observer who is at rest at <em>x </em>= 0.</p>
<p style="text-align: left;"><img src=""></p>
<p>Another rocket, B, departs from the same location as A but later than A at <em>ct </em>= 1.2 km according to the Earth observer. Rocket B travels at a constant speed of 0.60<em>c </em>in the opposite direction to A according to the Earth observer.</p>
</div>
<div class="specification">
<p>Rocket A and rocket B both emit a flash of light that are received simultaneously by the Earth observer. Rocket A emits the flash of light at a time coordinate <em>ct </em>= 1.8 km according to the Earth observer.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw on the spacetime diagram the worldline of B according to the Earth observer and label it B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, showing your working on the spacetime diagram, the value of <em>ct </em>according to the Earth observer at which the rocket B emitted its flash of light.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain whether or not the arrival times of the two flashes in the Earth frame are simultaneous events in the frame of rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of rocket B relative to rocket A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>straight line with negative gradient with vertical intercept at <em>ct</em> = 1.2 «km»</p>
<p>through (–0.6, 2.2) <em>ie </em>gradient = –1.67</p>
<p><img src="images/Schermafbeelding_2018-08-11_om_10.02.40.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/05.a/M"></p>
<p> </p>
<p><em>Tolerance: Allow gradient from interval –2.0 to –1.4, (at ct =</em> <em>2.2, x from interval 0.5 to 0.7).</em></p>
<p><em>If line has positive gradient from interval 1.4 to 2.0 and intercepts at ct =</em> <em>1.2 km then allow </em><strong><em>[1 max]</em></strong><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line for the flash of light from A correctly drawn</p>
<p>line for the flash of light of B correctly drawn</p>
<p>correct reading taken for time of intersection of flash of light and path of B, <em>ct =</em> 2.4 <strong>«</strong>km<strong>»</strong></p>
<p><img src="images/Schermafbeelding_2018-08-11_om_10.10.53.png" alt="M18/4/PHYSI/SP3/ENG/TZ1/05.b/M"></p>
<p> </p>
<p><em>Accept values in the range: 2.2 to 2.6.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the two events take place in the same point in space at the same time</p>
<p><span>so</span> all observers will observe the two events to be simultaneous / <span>so</span> zero difference</p>
<p> </p>
<p><em>Award the second MP only if the first MP is awarded.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(u' = \frac{{ - 0.6 - 0.8}}{{1 - ( - 0.6) \times 0.8}}\)</p>
<p>= <strong>«</strong>–<strong>»</strong>0.95<strong> «</strong><em>c</em><strong>»</strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A rocket of proper length 450 m is approaching a space station whose proper length is 9.0 km. The speed of the rocket relative to the space station is 0.80<em>c</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p>X is an observer at rest in the space station.</p>
<p> </p>
</div>
<div class="specification">
<p>Two lamps at opposite ends of the space station turn on at the same time according to X. Using a Lorentz transformation, determine, according to an observer at rest in the rocket,</p>
</div>
<div class="specification">
<p>The rocket carries a different lamp. Event 1 is the flash of the rocket’s lamp occurring at the origin of <strong>both</strong> reference frames. Event 2 is the flash of the rocket’s lamp at time<em> ct'</em> = 1.0 m according to the rocket. The coordinates for event 2 for observers in the space station are <em>x</em> and <em>ct</em>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-27_om_07.57.21.png" alt="M17/4/PHYSI/SP3/ENG/TZ2/05c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of the rocket according to X.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A space shuttle is released from the rocket. The shuttle moves with speed 0.20<em>c</em> <strong>to the right</strong> according to X. Calculate the <strong>velocity</strong> of the shuttle relative to the rocket.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the time interval between the lamps turning on.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>which lamp turns on first.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram label the coordinates <em>x</em> and <em>ct</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the <em>ct</em> coordinate in (c)(i) is less than, equal to <strong>or </strong>greater than 1.0 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>c</em> <sup>2</sup><em>t </em><sup>2</sup> – <em>x </em><sup>2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the gamma factor is \(\frac{5}{3}\) <em><strong>or</strong></em> 1.67</p>
<p><em>L</em> = \(\frac{{450}}{{\frac{5}{3}}}\) = 270 «m»</p>
<p> </p>
<p><em>Allow ECF from MP1 to MP2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>u'</em> = «\(\frac{{u - v}}{{1 - \frac{{uv}}{{{c^2}}}}} = \)» \(\frac{{0.20c - 0.80c}}{{1 - 0.20 \times 0.80}}\)<br><em><strong>OR<br></strong></em>0.2<em>c = </em>\( = \frac{{0.80c + u'}}{{1 + 0.80u'}}\)</p>
<p><em>u'</em> = «–»0.71<em>c</em></p>
<p> </p>
<p><em>Check signs and values carefully.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Δt'</em> = «\(\gamma \left( {\Delta t - \frac{{v\Delta x}}{{{c^2}}}} \right) = \)» \(\frac{5}{3} \times \left( {0 - \frac{{\left( {0.80c \times 9000} \right)}}{{{c^2}}}} \right)\)</p>
<p><em>Δt' = </em>«–»4.0 x 10<sup>–5</sup> «s»</p>
<p> </p>
<p><em>Allow ECF for use of wrong \(\gamma \) from (a)(i).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lamp 2 turns on first</p>
<p><em>Ignore any explanation</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>x</em> coordinate as shown</p>
<p><em>ct</em> coordinate as shown</p>
<p><img src=""></p>
<p> </p>
<p><em>Labels must be clear and unambiguous.</em></p>
<p><em>Construction lines are optional.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>«in any other frame» <em>ct</em> is greater</p>
<p>the interval <em>ct'</em> = 1.0 «m» is proper time<br><em><strong>OR</strong></em><br><em>ct</em> is a dilated time<br><em><strong>OR</strong></em><br><em>ct</em> = \(\gamma \)<em>ct'</em> «= \(\gamma \)»</p>
<p> </p>
<p><em>MP1 is a statement</em></p>
<p><em>MP2 is an explanation</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of <em>c</em> <sup>2</sup><em>t </em><sup>2</sup> – <em>x </em><sup>2<em> </em></sup>= <em>c</em> <sup>2</sup><em>t' </em><sup>2</sup> – <em>x'</em> <sup>2</sup><br><br><em>c</em> <sup>2</sup><em>t </em><sup>2</sup> – <em>x </em><sup>2<em> </em></sup>= 1<sup>2</sup> – 0<sup>2 </sup>= 1 «m<sup>2</sup>»</p>
<p> </p>
<p><em>for MP1 equation must be used.</em></p>
<p><em>Award <strong>[2]</strong> for correct answer that first finds x (1.33 m) and ct (1.66 m)</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>An electron X is moving parallel to a current-carrying wire. The positive ions and the wire are fixed in the reference frame of the laboratory. The drift speed of the free electrons in the wire is the same as the speed of the external electron X.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define <em>frame of reference.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the reference frame of the laboratory the force on X is magnetic.</p>
<p>(i) State the nature of the force acting on X in this reference frame where X is at rest.</p>
<p>(ii) Explain how this force arises.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a coordinate system<br><em><strong>OR<br></strong></em>a system of clocks and measures providing time and position relative to an observer</p>
<p><em>OWTTE</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>electric<br><em><strong>OR<br></strong></em>electrostatic</p>
<p> </p>
<p>ii</p>
<p>«as the positive ions are moving with respect to the charge,» there is a length contraction</p>
<p>therefore the charge density on ions is larger than on electrons</p>
<p>so net positive charge on wire attracts X</p>
<p><em>For candidates who clearly interpret the question to mean that X is now at rest in the Earth frame accept this alternative MS for bii<br>the magnetic force on a charge exists only if the charge is moving <br>an electric force on X , if stationary, only exists if it is in an electric field <br>no electric field exists in the Earth frame due to the wire <br>and look back at b i, and award mark for there is no electric or magnetic force on X</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about special relativity, simultaneity and length contraction.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the two postulates of special relativity may be stated as:</p>
<p style="padding-left: 30px;">“The laws of physics are the same for all observers in inertial reference frames.”</p>
<p>State</p>
<p>(i) what is meant by an inertial frame of reference.</p>
<p>(ii) the other postulate of special relativity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a thought experiment to illustrate the concept of simultaneity, Vladimir is standing on the ground close to a straight, level railway track. Natasha is in a railway carriage that is travelling along the railway track with constant speed <em>v</em> in the direction shown.</p>
<p><img src="" alt></p>
<p>Natasha is sitting on a chair that is equidistant from each end of the carriage. At either end of the carriage are two clocks C<sub>1</sub> and C<sub>2</sub>. Next to Natasha is a switch that, when operated, sends a signal to each clock. The clocks register the time of arrival of the signals. At the instant that Natasha and Vladimir are opposite each other, Natasha operates the switch. According to Natasha, C<sub>1</sub> and C<sub>2</sub> register the same time of arrival of each signal.</p>
<p>Explain, according to Vladimir, whether or not C<sub>1</sub> and C<sub>2</sub> register the same time of arrival for each signal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The speed <em>v</em> of the carriage is 0.70c. Vladimir measures the length of the table at which Natasha is sitting to be 1.0 m.</p>
<p>(i) Calculate the length of the table as measured by Natasha.</p>
<p>(ii) Explain which observer measures the proper length of the table.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) (a reference frame) in which Newton’s first law holds true/that is not accelerating/that is moving with constant velocity;</p>
<p>(ii) the speed of light in a vacuum/free space is the same for all inertial observers;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Look for these main points:</em><br>signal from switch travels at same speed <em>c</em> to each lamp;<br>but during signal transfer C<sub>1</sub> moves closer to/C<sub>2</sub> moves away from source of signal;<br>since speed of light is independent of speed of source, signal reaches C<sub>1</sub> before C<sub>2</sub>/C<sub>2</sub> after C<sub>1</sub>;<br>according to Vladamir C<sub>1</sub> registers arrival of signal before C<sub>2</sub>/C<sub>2</sub> registers arrival of signal after C<sub>1</sub>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\gamma = \frac{1}{{\sqrt {1 - {{\left( {0.70} \right)}^2}} }} = 1.4\);<br><em>L</em><sub>0</sub>=γ<em>L</em>;<br>=1.4m;</p>
<p>(ii) Natasha<br>since proper length is defined as the length of the object measured by the observer at rest with respect to the object;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>When a spaceship passes the Earth, an observer on the Earth and an observer on the spaceship both start clocks. The initial time on both clocks is 12 midnight. The spaceship is travelling at a constant velocity with <em>γ</em> = 1.25. A space station is stationary relative to the Earth and carries clocks that also read Earth time.</p>
</div>
<div class="specification">
<p>Some of the radio signal is reflected at the surface of the Earth and this reflected signal is later detected at the spaceship. The detection of this signal is event B. The spacetime diagram is shown for the Earth, showing the space station and the spaceship. Both axes are drawn to the same scale.</p>
<p style="text-align: left;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the velocity of the spaceship relative to the Earth.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spaceship passes the space station 90 minutes later as measured by the spaceship clock. Determine, for the reference frame of the Earth, the distance between the Earth and the space station.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As the spaceship passes the space station, the space station sends a radio signal back to the Earth. The reception of this signal at the Earth is event A. Determine the time on the Earth clock when event A occurs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct event A and event B on the spacetime diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate, using the spacetime diagram, the time at which event B occurs for the spaceship.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0.60<em>c</em></p>
<p><strong><em>OR</em></strong></p>
<p>1.8 × 10<sup>8</sup> <strong>«</strong>m s<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p>time interval in the Earth frame = 90 × <em>γ</em> = 112.5 minutes</p>
<p><strong>«</strong>in Earth frame it takes 112.5 minutes for ship to reach station<strong>»</strong></p>
<p>so distance = 112.5 × 60 × 0.60<em>c</em></p>
<p>1.2 × 10m<sup>12</sup> <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p>Distance travelled according in the spaceship frame = 90 × 60 × 0.6<em>c</em></p>
<p>= 9.72 × 10<sup>11</sup> <strong>«</strong>m<strong>»</strong></p>
<p>Distance in the Earth frame <strong>«</strong>= 9.72 × 10<sup>11</sup> × 1.25<strong>»</strong> = 1.2 × 10<sup>12</sup> <strong>«</strong>m<strong>»</strong></p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>signal will take <strong>«</strong><span class="Apple-converted-space">112.5 × 0.60 =</span><strong>»</strong> 67.5 <strong>«</strong><span class="Apple-converted-space">minutes</span><strong>»</strong> to reach Earth <strong>«</strong>as it travels at <em>c</em><strong>»</strong></p>
<p><strong>OR</strong></p>
<p>signal will take <strong>«</strong><span class="Apple-converted-space">\(\frac{{1.2 \times {{10}^{12}}}}{{3 \times {{10}^8}}}\) =</span><strong>»</strong> 4000 <strong>«</strong><span class="Apple-converted-space"><em>s</em></span><strong>»</strong></p>
<p> </p>
<p>total time <strong>«</strong><span class="Apple-converted-space">= 67.5 + 112.5</span><strong>»</strong> = 180 minutes <strong><em>or </em></strong>3.00 h or 3:00am</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>line from event E to A, upward and to left with A on <em>ct </em>axis (approx correct)</p>
<p>line from event A to B, upward and to right with B on <em>ct' </em>axis (approx correct)</p>
<p>both lines drawn with ruler at 45 (judge by eye)</p>
<p> </p>
<p><em>eg:</em></p>
<p><img src="images/Schermafbeelding_2018-08-13_om_06.36.34.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/04.d.i/M"></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1</em></strong></p>
<p><strong>«</strong>In spaceship frame<strong>»</strong></p>
<p>Finds the ratio \(\frac{{OB}}{{OE}}\) (or by similar triangles on <em>x </em>or <em>ct </em>axes), value is approximately 4</p>
<p>hence time elapsed ≈ 4 × 90 mins ≈ 6h <strong>«</strong>so clock time is ≈ 6:00<strong>»</strong></p>
<p> </p>
<p><strong><em>Alternative 1:</em></strong></p>
<p><img src="images/Schermafbeelding_2018-08-13_om_06.33.50.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/04.d.ii/M"></p>
<p><em>Allow similar triangles using </em><em>x</em><em>-axis or ct-axis, such as </em>\(\frac{{distance\,2}}{{distance\,1}}\)<em> from diagrams below</em></p>
<p><em><img src="images/Schermafbeelding_2018-08-13_om_06.52.27.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/04.d.ii_02/M"></em></p>
<p> </p>
<p><strong><em>ALTERNATIVE 2</em></strong></p>
<p><strong>«</strong>In Earth frame<strong>»</strong></p>
<p>Finds the ratio</p>
<p>\(\frac{{ct{\text{ coordinate of B}}}}{{ct{\text{ coordinate of A}}}}\), value is approximately 2.5</p>
<p>hence time elapsed ≈ \(\frac{{2.5 \times 3{\text{h}}}}{{1.25}}\) ≈ 6h</p>
<p><strong>«</strong>so clocktime is ≈ 6:00<strong>»</strong></p>
<p> </p>
<p> </p>
<p><strong><em>ALTERNATIVE 2:</em></strong></p>
<p> <img src="images/Schermafbeelding_2018-08-13_om_06.53.38.png" alt="M18/4/PHYSI/SP3/ENG/TZ2/04.d.ii_03/M"></p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by an inertial frame of reference.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A spaceship travels from space station Alpha to space station Zebra at a constant speed of 0.90c relative to the space stations. The distance from Alpha to Zebra is 10ly according to space station observers. At this speed <em>γ</em>=2.3.</p>
<p><img src="" alt></p>
<p>Calculate the time taken to travel between Alpha and Zebra in the frame of reference of an observer</p>
<p>(i) on the Alpha space station.</p>
<p>(ii) on the spaceship.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which of the time measurements in (b)(i) and (b)(ii) is a proper time interval.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spaceship arrives at Zebra and enters an airlock at constant speed. O is an observer at rest relative to the airlock. Two lamps P and Q emit a flash simultaneously according to the observer S in the spaceship. At that instant, O and S are opposite each other and midway between the lamps.</p>
<p><img src="" alt></p>
<p>Discuss whether the lamps flash simultaneously according to observer O.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a co-ordinate system (in which measurements of distance and time can be made);<br>which is not accelerating;<br>in which Newton’s laws are valid;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\left( {\frac{{10}}{{0.90{\rm{c}}}} = } \right)11{\rm{yr}}\);<br>\(\left( { = 3.5 \times {{10}^8}{\rm{s}}} \right)\);<br><em>This is a question testing units for this option. Do not award mark for an incorrect or missing unit.</em></p>
<p>(ii) distance according to spaceship observer \( = \frac{{10}}{{2.3}}\left( { = 4.3{\rm{ly}}} \right)\);<br>so time for spaceship \( = \frac{{4.3}}{{0.90}} = 4.8\left( {{\rm{yr}}} \right)\);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>between two events occurring at the same point in space / shortest time measured;<br>so proper time interval measured by observer on spaceship;<br><em>Do not award second marking point unless a reason has been attempted.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>speed of light is the same for both observers O and S / events simultaneous in stationary reference frame are not (necessarily) simultaneous in moving reference frame;<br>S is moving so PS will be longer than QS when light reaches S;<br>so if light arrives simultaneously then light from P will have been in transit for longer than Q;<br>therefore P emits a flash before Q;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 26">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">There were a large variety of answers to (a). Many candidates stated that the frame of reference is not accelerated. M</span><span style="font-size: 10.000000pt; font-family: 'Arial';">any candidates did not explain the term “frame of reference” </span><span style="font-size: 10.000000pt; font-family: 'Arial';">in terms of </span><span style="font-size: 10.000000pt; font-family: 'Arial';">a “co</span><span style="font-size: 10.000000pt; font-family: 'Arial';">-</span><span style="font-size: 10.000000pt; font-family: 'Arial';">ordinate system”. </span><span style="font-size: 10.000000pt; font-family: 'Arial';">It was a rare answer that earned more than one mark. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 26">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">In (b)(i), the majority of candidates properly calculated the time. Some wrote the incorrect unit (ly) instead of y or s. There is room for improvement in responses to (b)(ii). The vast majority of candidates used the formula for time dilation. They did not notice that it is not normal for the observer on the spaceship to know the time measured on the space station. The correct calculation, length and speed measured, appeared only very rarely. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">There was a good variety of answers to (c). Many candidates still do not know the term proper time interval, clearly defined in relativity. Many incorrectly referred to both events occurring in one frame of reference rather than one point in space in their answer. Most did attempt a reason. </span></p>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 27">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'Arial';">In (d) many candidates proved that they understood the concept of simultaneity. However, many did not respond to the command term </span><span style="font-size: 10.000000pt; font-family: 'Arial';">“discuss”. </span><span style="font-size: 10.000000pt; font-family: 'Arial';">Many candidates were confused between object (in a specific frame of reference) and event. </span></p>
</div>
</div>
</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>Speedy is in a spacecraft being chased by Police Officer Sylvester. In Officer Sylvester’s frame of reference, Speedy is moving directly towards Officer Sylvester at 0.25c.</p>
<p><img src="" alt></p>
<p> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe what is meant by a frame of reference.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a later time the police spacecraft is alongside Speedy’s spacecraft. The police spacecraft is overtaking Speedy’s spacecraft at a constant velocity.</p>
<p>Officer Sylvester is at a point midway between the flashing lamps, both of which he can see. At the instant when Officer Sylvester and Speedy are opposite each other, Speedy observes that the blue lamps flash simultaneously.</p>
<p><img src="" alt></p>
<p>State and explain which lamp is observed to flash first by Officer Sylvester.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The police spacecraft is travelling at a constant speed of 0.5c relative to Speedy’s frame of reference. The light from a flash of one of the lamps travels across the police spacecraft and is reflected back to the light source. Officer Sylvester measures the time taken for<br>the light to return to the source as 1.2 × 10<sup>–8</sup>s.</p>
<p>(i) Outline why the time interval measured by Officer Sylvester is a proper time interval.</p>
<p>(ii) Determine, as observed by Speedy, the time taken for the light to travel across the police spacecraft and back to its source.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a coordinate system / set of rulers / clocks;<br>in which measurements of distance/position and time can be made;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>light travels at same speed for both observers;<br>during transit time Officer Sylvester moves towards point of emission at front/away from point of emission at back;<br>light from front arrives first as distance is less / light from back arrives later as distance is more;<br>Officer Sylvester observes the front lamp flashes first;</p>
<p><em>Award <strong>[0]</strong> for a bald correct answer without correct explanation</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) the two events occur at the same place (in the same frame of reference) / shortest measured time;</p>
<p>(ii) \(y = \left( {\frac{1}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }} = } \right)1.15\);<br>Δ<em>t</em>=1.15 x Δ<em>t</em><sub>0</sub>;<br>1.48 x 10<sup>-8</sup>(s);</p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p> There were some good, clear answers to (a) but there were many vague statements about “point of view”. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>There were also some good answers to (b) but most candidates struggled. It was rarely stated that light travels at the same speed for all observers. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 1">
<div class="layoutArea">
<div class="column">
<p>(i) was well done and</p>
<p>(ii) was very well done. </p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>A spacecraft leaves Earth and moves towards a planet. The spacecraft moves at a speed 0.60c relative to the Earth. The planet is a distance of 12ly away according to the observer on Earth.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the time, in years, that it takes the spacecraft to reach the planet according to the</p>
<p>(i) observer on Earth.</p>
<p>(ii) observer in the spacecraft.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The spacecraft passes a space station that is at rest relative to the Earth. The proper length of the space station is 310 m.</p>
<p>(i) State what is meant by proper length.</p>
<p>(ii) Calculate the length of the space station according to the observer in the spacecraft.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>F and B are two flashing lights located at the ends of the space station, as shown. As the spacecraft approaches the space station in (b), F and B turn on. The lights turn on simultaneously according to the observer on the space station who is midway between the lights.</p>
<p><img src="" alt></p>
<p>State and explain which light, F <strong>or</strong> B, turns on first according to the observer in the <strong>spacecraft</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(\left( {\frac{{12{\rm{ly}}}}{{0.60{\rm{c}}}} = } \right)20\left( {{\rm{yr}}} \right)\) <em><strong>or</strong></em> 6.3×<span style="font-size: 11.000000pt; font-family: 'Arial';">10</span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">8 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(s); </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(ii) \(y = \left( {\frac{1}{{\sqrt {1 - {{0.60}^2}} }} = } \right)1.25\);<br>\(\Delta {t_0} = \left( {\frac{{\Delta t}}{y} = \frac{{20}}{{1.25}} = } \right)16\left( {{\rm{yr}}} \right)\) <em><strong>or</strong></em> 5.0</span><span style="font-size: 11.000000pt; font-family: 'SymbolMT';">×</span><span style="font-size: 11.000000pt; font-family: 'Arial';">10 </span><span style="font-size: 7.000000pt; font-family: 'Arial'; vertical-align: 5.000000pt;">8 </span><span style="font-size: 11.000000pt; font-family: 'Arial';">(s); </span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>(allow ECF from (a)(i))</em>;<br> </span></p>
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">This question is worth </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2]</span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">, but it is easy to accidentally award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1]</span></strong></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>.</em> </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">(i) the length of a body in the rest frame of the body;<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">Do not accept “event” instead of “object/body”. <br></span></em><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>Do not accept “in the same frame” unless rest (OWTTE) is mentioned.</em> </span></p>
<p><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';">(ii) \(l = \frac{{310}}{{1.25}}\); <em>(allow ECF from (a)(ii))</em><br>=250(m);<br></span><em><span style="font-size: 11pt; font-family: 'Arial,Italic';">This question is worth </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[2]</span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">, but it is easy to accidently award </span><strong><span style="font-size: 11pt; font-family: 'Arial,BoldItalic';">[1]</span></strong><span style="font-size: 11pt; font-family: 'Arial,Italic';">. </span></em></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 11.000000pt; font-family: 'Arial';">according to the spacecraft observer, the space station observer receives light from B and F at the same time;<br> for the spacecraft observer the space station observer moves away from the waves from B/towards the waves from F;<br>but the speed of light is constant;<br> according to the spacecraft observer light from B must be emitted first;<br></span><span style="font-size: 11.000000pt; font-family: 'Arial,Italic';"><em>Do not award second marking point for answers that refer to light the spacecraft </em><em>observer SEES or to distances to the spacecraft.</em> </span></p>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 29">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">Part (a) was answered very well. This year almost nobody worked in seconds and so the answers were easily obtained. As usual there were candidates who got time dilation the wrong way round. The time interval for the Earth clocks is dilated (longer) but some candidates think that the time interval on the “moving” clock is dilated. It is best not to think of motion, but to realise that the single clock at both events records the shortest time interval. </span></p>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 29">
<div class="layoutArea">
<div class="column">
<p><span style="font-size: 10.000000pt; font-family: 'ArialMT';">In (b) a very common misconception with proper length is to just say that the object must be measured in the same frame of reference as the observer. Well this is always true of course, but only if the object is at rest in the observer’s frame is it proper length. Everything is in everything else’s frame. Gradually more and more candidates are answering simultaneity questions correctly. This year almost 3% could correctly explain why light B emits waves before light F as perceived from the spacecraft frame. The other 97% thought that the question was asking about which light the spacecraft observer sees first. </span></p>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about relativistic kinematics.</p>
<p>In a thought experiment, a train is moving at a speed of 0.950c relative to the ground. A pendulum attached to the ceiling of the train is set into oscillation.</p>
<p><img src="" alt></p>
<p>An observer T on the train and an observer G on the ground measure the period of oscillation of the pendulum.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain whether the pendulum period is a proper time interval for observer T, observer G <strong>or</strong> both T and G.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Observer T measures the period of oscillations of the pendulum to be 0.850s. Calculate the period of oscillations according to observer G.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Observer T is standing in the middle of a train watched by observer G at the side of the track. Two lightning strikes hit the ends of<br>the train. The strikes are simultaneous <strong>according to observer T.</strong></p>
<p><strong><img src="" alt></strong></p>
<p> </p>
<p>Light from the strikes reaches both observers.</p>
<p>(i) Explain why, according to observer G, light from the two strikes reaches observer T at the same time.</p>
<p>(ii) Using your answer to (i), explain why, according to observer G, end X of the train was hit by lightning first.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>only T measures the proper time interval;<br>for T the pendulum is (a single clock) at rest/same point in space;<br><em>Do NOT simply allow that the pendulum is in the same frame as T.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma = \left( {\frac{1}{{\sqrt {1 - {{0.95}^2}} }} = } \right)3.20\);<br>\(T = \left( {\gamma {T_0} = 3.20 \times 0.85 = } \right)2.72{\rm{s}}\);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) the arrivals at T of the light from the two strikes occurs at the same point in space for T and are simultaneous for T;<br>so the arrivals of the light are simultaneous for all other observers as well;</p>
<p><em><strong>or</strong></em></p>
<p>T measures a zero proper time interval for the arrivals of the light;<br>so G measures a time interval equal to \(\gamma \)×0=0 also;</p>
<p>(ii) according to G, T is moving away from the light from the left strike and yet receives the light at the same time as the light from the right strike;<br>since <span style="text-decoration: underline;">the speed of light is the same</span> for light from both strikes;<br>the left strike occurred first<br><em>No marks for just stating left strike is first. Given.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer P sitting in a train moving at a speed <em>v</em> measures that his journey takes a time Δ<em>t</em><sub>P</sub>. An observer Q at rest with respect to the ground measures that the journey takes a time Δ<em>t</em><sub>Q</sub>.</p>
</div>
<div class="specification">
<p>According to Q there is an instant at which the train is completely within the tunnel.</p>
<p>At that instant two lights at the front and the back of the train are turned on simultaneously according to Q.</p>
<p style="text-align: center;"><img src=""></p>
<p>The spacetime diagram according to observer Q shows event B (back light turns on) and event F (front light turns on).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-26_om_14.55.20.png" alt="M17/4/PHYSI/SP3/ENG/TZ1/4d_02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which of the two time intervals is a proper time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the speed <em>v</em> of the train for the ratio \(\frac{{\Delta {t_{\text{P}}}}}{{\Delta {t_{\text{Q}}}}} = 0.30\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Later the train is travelling at a speed of 0.60c. Observer P measures the length of the train to be 125 m. The train enters a tunnel of length 100 m according to observer Q.</p>
<p>Show that the length of the train according to observer Q is 100 m.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the time \(ct'\) and space \(x'\) axes for observer P’s reference frame on the spacetime diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, using the spacetime diagram, which light was turned on first according to observer P.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply a Lorentz transformation to show that the time difference between events B and F according to observer P is 2.5 × 10<sup>–7</sup> s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Demonstrate that the spacetime interval between events B and F is invariant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second train is moving at a velocity of –0.70c with respect to the ground.</p>
<p style="text-align: center;"><img src=""></p>
<p>Calculate the speed of the second train relative to observer P.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>t</em><sub>P</sub> / observer sitting in the train</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma = \frac{{\Delta {t_{\text{Q}}}}}{{\Delta {t_{\text{P}}}}} = \) «\( = \frac{1}{{0.30}}\)» = 3.3</p>
<p>to give<em> v</em> = 0.95c</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\gamma \) = 1.25</p>
<p>«length of train according Q» = 125/1.25</p>
<p>«giving 100m»</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>axes drawn with correct gradients of \(\frac{5}{3}\) for \(ct'\) and 0.6 for \(x'\)</p>
<p> </p>
<p><em>Award <strong>[1]</strong> for one gradient correct <strong>and</strong> another approximately correct.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>lines parallel to the \(x'\) axis and passing through B and F</p>
<p>intersections on the \(ct'\) axis at \({\text{B'}}\) and \({\text{F'}}\) shown</p>
<p>light at the front of the train must have been turned on first</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\Delta t' = 1.25 \times \frac{{0.6 \times 100}}{{3 \times {{10}^8}}}\)</p>
<p>«2.5 × 10<sup>−7</sup>»</p>
<p> </p>
<p><em>Allow ECF for gamma from (c).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>according to P: \({\left( {3 \times {{10}^8} \times 2.5 \times {{10}^{ - 7}}} \right)^2} - {125^2} = \) «−» 10000</p>
<p>according to Q: \({\left( {3 \times {{10}^8} \times 0} \right)^2} - {100^2} = \) «−» 10000</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(u' = \frac{{ - 0.7 - 0.6}}{{1 + 0.7 \times 0.6}}\) <strong>c</strong></p>
<p>= «−» 0.92c</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>An observer on Earth watches a rocket A. The spacetime diagram shows part of the motion of A in the reference frame of the Earth observer. Three flashing light beacons, X, Y and Z, are used to guide rocket A. The flash events are shown on the spacetime diagram.<br>The diagram shows the axes for the reference frames of Earth and of rocket A. The Earth observer is at the origin.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the reference frame of the Earth observer, calculate the speed of rocket A in terms of the speed of light <em>c</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph opposite, deduce the order in which</p>
<p>(i) the beacons <strong>flash</strong> in the reference frame of rocket A.</p>
<p>(ii) the Earth observer <strong>sees</strong> the beacons flash.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Δ<em>ct</em>=2.0km <em><strong>AND</strong></em> Δ<em>x</em>=0.8km</p>
<p>\(v = \ll \frac{{\Delta x}}{{\Delta ct}} = \frac{{0.8}}{{2.0}} = \gg 0.4c\)</p>
<p><em>Allow any correct read-off from graph.</em><br><em>Accept answers from 0.37c to 0.43c.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) events at same perpendicular distance from <em>x</em>′ axis of rocket are simultaneous <em><strong>OR</strong></em> line joining X to Y is parallel to <em>x</em>′ axis</p>
<p>X and Y simultaneously then Z</p>
<p><img src="" alt></p>
<p><em>MP1 may be present on spacetime diagram.</em></p>
<p>(ii) constructs light cones to intersect worldline of observer</p>
<p>X first followed by Y and Z simultaneously</p>
<p><img src="" alt></p>
<p><em>Only Y and Z light cones need to be seen.</em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br>