File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 9/markSceme-HL-paper3html
File size: 1.92 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{{x + {x^2}}}\) ;</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\mathop {\lim }\limits_{x \to 1} \frac{{1 - {x^2} + 2{x^2}\ln x}}{{1 - \sin \frac{{\pi x}}{2}}}\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{{x + {x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\sec }^2}x}}{{1 + 2x}}\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{\tan x}}{{x + {x^2}}} = \frac{1}{1} = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks] </em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \frac{{1 - {x^2} + 2{x^2}\ln x}}{{1 - \sin \frac{{\pi x}}{2}}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2x + 2x + 4x\ln x}}{{ - \frac{\pi }{2}\cos \frac{{\pi x}}{2}}}\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 1} \frac{{4 + 4\ln x}}{{\frac{{{\pi ^2}}}{4}\sin \frac{{\pi x}}{2}}}\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \frac{{1 - {x^2} + 2{x^2}\ln x}}{{1 - \sin \frac{{\pi x}}{2}}} = \frac{4}{{\frac{{{\pi ^2}}}{4}}} = \frac{{16}}{{{\pi ^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was accessible to the vast majority of candidates, who recognised that L’Hopital’s rule was required. A few of the weaker candidates did not realise that it needed to be applied twice in part (b). Many fully correct solutions were seen.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was accessible to the vast majority of candidates, who recognised that L’Hopital’s rule was required. A few of the weaker candidates did not realise that it needed to be applied twice in part (b). Many fully correct solutions were seen.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2{{\text{e}}^x} + y\tan x\) , given that <em>y</em> = 1 when <em>x</em> = 0 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The domain of the function <em>y</em> is \(\left[ {0,\frac{\pi }{2}} \right[\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By finding the values of successive derivatives when <em>x</em> = 0 , find the Maclaurin series for <em>y</em> as far as the term in \({x^3}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Differentiate the function \({{\text{e}}^x}(\sin x + \cos x)\) and hence show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c} .\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find an integrating factor for the differential equation and hence find the solution in the form \(y = f(x)\) .</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we note that \(y(0) = 1\) and \(y'(0) = 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'' = 2{{\text{e}}^x} + y'\tan x + y{\sec ^2}x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y''(0) = 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y''' = 2{{\text{e}}^x} + y''\tan x + 2y'{\sec ^2}x + 2y{\sec ^2}x\tan x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'''(0) = 6\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the maclaurin series solution is therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 1 + 2x + \frac{{3{x^2}}}{2} + {x^3} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(\frac{{\text{d}}}{{{\text{d}}x}}\left( {{{\text{e}}^x}(\sin x + \cos x)} \right) = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2{{\text{e}}^x}\cos x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\text{e}}^x}\cos x{\text{d}}x = \frac{1}{2}{{\text{e}}^x}(\sin x + \cos x) + c} \) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the differential equation can be written as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x = 2{{\text{e}}^x}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{IF}} = {{\text{e}}^{\int { - \tan x{\text{d}}x} }} = {{\text{e}}^{\ln \cos x}} = \cos x\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\sin x = 2{{\text{e}}^x}\cos x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">integrating,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y\cos x = {{\text{e}}^x}(\sin x + \cos x) + C\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>y</em> = 1 when <em>x</em> = 0 gives <em>C</em> = 0 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {{\text{e}}^x}(1 + \tan x)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(\int_1^\infty {\frac{1}{{x(x + p)}}{\text{d}}x,{\text{ }}p \ne 0} \) is convergent if <em>p </em>> −1 and find its value in terms of <em>p</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that the following series is convergent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{1}{{1 \times 0.5}} + \frac{1}{{2 \times 1.5}} + \frac{1}{{3 \times 2.5}} + ...\]</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine, for each of the following series, whether it is convergent or divergent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(\sum\limits_{n = 1}^\infty {\sin \left( {\frac{1}{{n(n + 3)}}} \right)} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(\sqrt {\frac{1}{2}} + \sqrt {\frac{1}{6}} + \sqrt {\frac{1}{{12}}} + \sqrt {\frac{1}{{20}}} + …\)</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the integrand is non-singular on the domain if <em>p</em> > –1 with the latter assumed, consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^R {\frac{1}{{x(x + p)}}} {\text{d}}x = \frac{1}{p}\int_1^R {\frac{1}{x} - \frac{1}{{x + p}}{\text{d}}x} \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{p}\left[ {\ln \left( {\frac{x}{{x + p}}} \right)} \right]_1^R,{\text{ }}p \ne 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this evaluates to</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{p}\left( {\ln \frac{R}{{R + p}} - \ln \frac{1}{{1 + p}}} \right),{\text{ }}p \ne 0\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \to \frac{1}{p}\ln (1 + p)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">because \(\frac{R}{{R + p}} \to 1{\text{ as }}R \to \infty \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the integral is convergent <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the given series is \(\sum\limits_{n = 1}^\infty {f(n),{\text{ }}f(n) = \frac{1}{{n(n - 0.5)}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the integral test and <em>p</em> = –0.5 in (i) establishes the convergence of the series <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) as we have a series of positive terms we can apply the comparison test, limit form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">comparing with \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{\sin \left( {\frac{1}{{n(n + 3)}}} \right)}}{{\frac{1}{{{n^2}}}}} = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(\sin \theta \approx \theta {\text{ for small }}\theta \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(\frac{{{n^2}}}{{n(n + 3)}} \to 1\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(so as the limit (of 1) is finite and non-zero, both series exhibit the same behavior)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges, so this series converges <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the general term is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt {\frac{1}{{n(n + 1)}}} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt {\frac{1}{{n(n + 1)}}} > \sqrt {\frac{1}{{(n + 1)(n + 1)}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt {\frac{1}{{(n + 1)(n + 1)}}} = \frac{1}{{n + 1}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the harmonic series diverges <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so by the comparison test so does the given series <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part(a)(i) caused problems for some candidates who failed to realize that the integral can only be tackled by the use of partial fractions. Even then, the improper integral only exists as a limit – too many candidates ignored or skated over this important point. Candidates must realize that in this type of question, rigour is important, and full marks will only be awarded for a full and clearly explained argument. This applies as well to part(b), where it was also noted that some candidates were confusing the convergence of the terms of a series to zero with convergence of the series itself.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part(a)(i) caused problems for some candidates who failed to realize that the integral can only be tackled by the use of partial fractions. Even then, the improper integral only exists as a limit – too many candidates ignored or skated over this important point. Candidates must realize that in this type of question, rigour is important, and full marks will only be awarded for a full and clearly explained argument. This applies as well to part(b), where it was also noted that some candidates were confusing the convergence of the terms of a series to zero with convergence of the series itself.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \ln \left( {\frac{1}{{1 - x}}} \right).\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Write down the value of the constant term in the Maclaurin series for \(f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the first three derivatives of \(f(x)\) and hence show that the Maclaurin series for \(f(x)\) up to and including the \({x^3}\) term is \(x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Use this series to find an approximate value for ln 2 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Use the Lagrange form of the remainder to find an upper bound for the error in this approximation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) How good is this upper bound as an estimate for the actual error?</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Constant term = 0 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(f'(x) = \frac{1}{{1 - x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{1}{{{{(1 - x)}^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(x) = \frac{2}{{{{(1 - x)}^3}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0) = 1;{\text{ }}f''(0) = 1;{\text{ }}f'''(0) = 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">on their derivatives.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = 0 + \frac{{1 \times x}}{{1!}} + \frac{{1 \times {x^2}}}{{2!}} + \frac{{2 \times {x^3}}}{{3!}} + …\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) \(\frac{1}{{1 - x}} = 2 \Rightarrow x = \frac{1}{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln 2 \approx \frac{1}{2} + \frac{1}{8} + \frac{1}{{24}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{2}{3}{\text{ (0.667)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Lagrange error \({\text{ = }}\frac{{{f^{(n + 1)}}(c)}}{{(n + 1)!}} \times {\left( {\frac{1}{2}} \right)^{n + 1}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{6}{{{{(1 - c)}^4}}} \times \frac{1}{{24}} \times {\left( {\frac{1}{2}} \right)^4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( < \frac{6}{{{{\left( {1 - \frac{1}{2}} \right)}^4}}} \times \frac{1}{{24}} \times \frac{1}{{16}}\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">giving an upper bound of 0.25. <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) Actual error \( = \ln 2 - \frac{2}{3} = 0.0265\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The upper bound calculated is much larger that the actual error therefore cannot be considered a good estimate. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), some candidates appeared not to understand the term ‘constant term’. In (b), many candidates found the differentiation beyond them with only a handful realising that the best way to proceed was to rewrite the function as \(f(x) = - \ln (1 - x)\). In (d), many candidates were unable to use the Lagrange formula for the upper bound so that (e) became inaccessible.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"> </p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain \(\left] { - \frac{\pi }{2},\frac{\pi }{2}} \right[{\text{ by }}f(x) = \ln (1 + \sin x)\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(x) = - \frac{1}{{(1 + \sin x)}}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the Maclaurin series for \(f(x)\) up to and including the term in \({x^4}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Explain briefly why your result shows that <em>f</em> is neither an even function nor an odd function.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{\cos x}}{{1 + \sin x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{ - \sin x(1 + \sin x) - \cos x\cos x}}{{{{(1 + \sin x)}^2}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - \sin x - ({{\sin }^2}x + {{\cos }^2}x)}}{{{{(1 + \sin x)}^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{1}{{1 + \sin x}}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(f'''(x) = \frac{{\cos x}}{{{{(1 + \sin x)}^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{(4)}}(x) = \frac{{ - \sin x{{(1 + \sin x)}^2} - 2(1 + \sin x){{\cos }^2}x}}{{{{(1 + \sin x)}^4}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) = 0,{\text{ }}f'(0) = 1,{\text{ }}f''(0) = - 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(0) = 1,{\text{ }}{f^{(4)}}(0) = - 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} - \frac{{{x^4}}}{{12}} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the series contains even and odd powers of <em>x</em> <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{\ln (1 + \sin x) - x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} + \ldots - x}}{{{x^2}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{ - 1}}{2} + \frac{x}{6} + \ldots }}{1}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Use of l’Hopital’s Rule is also acceptable.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The exponential series is given by \({{\text{e}}^x} = \sum\limits_{n = 0}^\infty {\frac{{{x^n}}}{{n!}}} \) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>x</em> for which the series is convergent.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show, by comparison with an appropriate geometric series, that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{{\text{e}}^x} - 1 < \frac{{2x}}{{2 - x}},{\text{ for }}0 < x < 2{\text{.}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that \({\text{e}} < {\left( {\frac{{2n + 1}}{{2n - 1}}} \right)^n}\), for \(n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Write down the first three terms of the Maclaurin series for \(1 - {{\text{e}}^{ - x}}\) and explain why you are able to state that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[1 - {{\text{e}}^{ - x}} > x - \frac{{{x^2}}}{2},{\text{ for }}0 < x < 2.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Deduce that \({\text{e}} > {\left( {\frac{{2{n^2}}}{{2{n^2} - 2n + 1}}} \right)^n}\), for \(n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Letting <em>n</em> = 1000, use the results in parts (b) and (c) to calculate the value of e correct to as many decimal places as possible.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">using a ratio test,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {\frac{{{T_{n + 1}}}}{{{T_n}}}} \right| = \left| {\frac{{{x^{n + 1}}}}{{(n + 1)!}}} \right| \times \left| {\frac{{n!}}{{{x^n}}}} \right| = \frac{{\left| x \right|}}{{n + 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Condone omission of modulus signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \to 0{\text{ as }}n \to \infty \) for all values of <em>x</em> <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">the series is therefore convergent for \(x \in \mathbb{R}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({{\text{e}}^x} - 1 = x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{{2 \times 3}} + …\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( < x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{{2 \times 2}} + ...\,\,\,\,\,({\text{for }}x > 0)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{1 - \frac{x}{2}}}\,\,\,\,\,({\text{for }}x < 2)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2x}}{{2 - x}}\,\,\,\,\,({\text{for }}0 < x < 2)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \({{\text{e}}^x} < 1 + \frac{{2x}}{{2 - x}} = \frac{{2 + x}}{{2 - x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{e}} < {\left( {\frac{{2 + x}}{{2 - x}}} \right)^{\frac{1}{x}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">replacing <em>x</em> by \(\frac{1}{n}\) (and noting that the result is true for \(n > \frac{1}{2}\) and therefore \({\mathbb{Z}^ + }\) ) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{e}} < {\left( {\frac{{2n + 1}}{{2n - 1}}} \right)^n}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(1 - {{\text{e}}^{ - x}} = x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} + …\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(0 < x < 2\), the series is alternating with decreasing terms so that the sum is greater than the sum of an even number of terms <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 - {{\text{e}}^{ - x}} > x - \frac{{{x^2}}}{2}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \({{\text{e}}^{ - x}} < 1 - x + \frac{{{x^2}}}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} > \frac{1}{{\left( {1 - x + \frac{{{x^2}}}{2}} \right)}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{e}} > {\left( {\frac{2}{{2 - 2x + {x^2}}}} \right)^{\frac{1}{x}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">replacing <em>x</em> by \(\frac{1}{n}\) (and noting that the result is true for \(n > \frac{1}{2}\) and therefore \({\mathbb{Z}^ + }\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> )</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{e}} > {\left( {\frac{{2{n^2}}}{{2{n^2} - 2n + 1}}} \right)^n}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from (b) and (c), \({\text{e}} < 2.718282…\) and \({\text{e}} > 2.718281…\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we conclude that e = 2.71828 correct to 5 decimal places <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (a) were generally good although some candidates failed to reach the correct conclusion from correct application of the ratio test. Solutions to (b) and (c), however, were generally disappointing with many candidates unable to make use of the signposting in the question. Candidates who were unable to solve (b) and (c) often picked up marks in (d).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (a) were generally good although some candidates failed to reach the correct conclusion from correct application of the ratio test. Solutions to (b) and (c), however, were generally disappointing with many candidates unable to make use of the signposting in the question. Candidates who were unable to solve (b) and (c) often picked up marks in (d).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (a) were generally good although some candidates failed to reach the correct conclusion from correct application of the ratio test. Solutions to (b) and (c), however, were generally disappointing with many candidates unable to make use of the signposting in the question. Candidates who were unable to solve (b) and (c) often picked up marks in (d).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (a) were generally good although some candidates failed to reach the correct conclusion from correct application of the ratio test. Solutions to (b) and (c), however, were generally disappointing with many candidates unable to make use of the signposting in the question. Candidates who were unable to solve (b) and (c) often picked up marks in (d).</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not the following series converge.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(\sum\limits_{n = 0}^\infty {\left( {\sin \frac{{n\pi }}{2} - \sin \frac{{(n + 1)\pi }}{2}} \right)} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(\sum\limits_{n = 1}^\infty {\frac{{{{\text{e}}^n} - 1}}{{{\pi ^n}}}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) \(\sum\limits_{n = 2}^\infty {\frac{{\sqrt {n + 1} }}{{n(n - 1)}}} \)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(\sum\limits_{n = 0}^\infty {\left( {\sin \frac{{n\pi }}{2} - \sin \frac{{(n + 1)\pi }}{2}} \right)} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {\sin 0 - \sin \frac{\pi }{2}} \right) + \left( {\sin \frac{\pi }{2} - \sin \pi } \right) + \left( {\sin \pi - \sin \frac{{3\pi }}{2}} \right) + \left( {\sin \frac{{3\pi }}{2} - \sin 2\pi } \right) + \ldots \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the \({n^{{\text{th}}}}\) term is ±1 for all <em>n</em>, <em>i.e.</em> the \({n^{{\text{th}}}}\) term does not tend to 0 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the series does not converge <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the ratio test <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{{a_{n + 1}}}}{{{a_n}}} = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{{\text{e}}^{n + 1}}}}{{{\pi ^{n + 1}}}}} \right)\left( {\frac{{{\pi ^n}}}{{{{\text{e}}^n} - 1}}} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{{{\text{e}}^{n + 1}} - 1}}{{{{\text{e}}^n} - 1}}} \right)\left( {\frac{{{\pi ^n}}}{{{\pi ^{n + 1}}}}} \right) = \frac{{\text{e}}}{\pi }\,\,\,\,\,( \approx 0.865)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{e}}}{\pi } < 1\), hence the series converges <strong><em>R1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{{{{\text{e}}^n} - 1}}{{{\pi ^n}}} = \sum\limits_{n = 1}^\infty {{{\left( {\frac{{\text{e}}}{\pi }} \right)}^n} - {{\left( {\frac{1}{\pi }} \right)}^n} = \sum\limits_{n = 1}^\infty {{{\left( {\frac{{\text{e}}}{\pi }} \right)}^n} - \sum\limits_{n = 1}^\infty {{{\left( {\frac{{\text{1}}}{\pi }} \right)}^n}} } } } \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the series is the difference of two geometric series, with \(r = \frac{{\text{e}}}{\pi }\,\,\,\,\,( \approx 0.865)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(\frac{1}{\pi }\,\,\,\,\,( \approx 0.318)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for both \(\left| r \right| < 1\), hence the series converges <strong><em>R1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\forall n,{\text{ }}0 < \frac{{{{\text{e}}^n} - 1}}{{{\pi ^n}}} < \frac{{{{\text{e}}^n}}}{{{\pi ^n}}}\) <strong><em>(M1)A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the series \(\frac{{{{\text{e}}^n}}}{{{\pi ^n}}}\) converges since it is a geometric series such that \(\left| r \right| < 1\) <strong><em>A1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore, by the comparison test, \(\frac{{{{\text{e}}^n} - 1}}{{{\pi ^n}}}\) converges <strong><em>R1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) by limit comparison test with \(\frac{{\sqrt n }}{{{n^2}}}\), <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{\frac{{\sqrt {n + 1} }}{{n(n - 1)}}}}{{\frac{{\sqrt n }}{{{n^2}}}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {\frac{{\sqrt {n + 1} }}{{n(n - 1)}} \times \frac{{{n^2}}}{{\sqrt n }}} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{n - 1}}\sqrt {\frac{{n + 1}}{n}} = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence both series converge or both diverge <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by the <em>p</em>-test \(\sum\limits_{n = 1}^\infty {\frac{{\sqrt n }}{{{n^2}}} = {n^{\frac{{ - 3}}{2}}}} \) converges, hence both converge <strong><em>R1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [16 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the least successfully answered question on the paper. Candidates often did not know which convergence test to use; hence very few full successful solutions were seen. The communication of the method used was often quite poor.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a) Many candidates failed to see that this is a telescoping series. If this was recognized then the question was fairly straightforward. Often candidates unsuccessfully attempted to apply the standard convergence tests.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">b) Many candidates used the ratio test, but some had difficulty in simplifying the expression. Others recognized that the series is the difference of two geometric series, and although the algebraic work was done correctly, some failed to communicate the conclusion that since the absolute value of the ratios are less than 1, hence the series converges. Some candidates successfully used the comparison test.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">c) Although the limit comparison test was attempted by most candidates, it often failed through an inappropriate selection of a series.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \cos {x^6}}}{{{x^{12}}}}} \right)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) = \frac{0}{0}\), hence using l’Hôpital’s Rule, <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = 1 - \cos ({x^6}),{\text{ }}h(x) = {x^{12}};{\text{ }}\frac{{g'(x)}}{{h'(x)}} = \frac{{6{x^5}\sin ({x^6})}}{{12{x^{11}}}} = \frac{{\sin ({x^6})}}{{2{x^6}}}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{g'(0)}}{{h'(0)}} = \frac{0}{0}\), using l’Hôpital’s Rule again, <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{g''(x)}}{{h''(x)}} = \frac{{6{x^5}\cos ({x^6})}}{{12{x^5}}} = \frac{{\cos ({x^6})}}{2}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{g''(0)}}{{h''(0)}} = \frac{1}{2}\), hence the limit is \(\frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So \(\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 30px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 30px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{\text{ since }}\mathop {\lim }\limits_{x \to 0} \frac{{\sin {x^6}}}{{2{x^6}}} = 1\) <strong><em>A1 (R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \({{x^6}}\) for <em>x</em> in the expansion \(\cos x = 1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} \ldots \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \frac{{1 - \left( {1 - \frac{{{x^{12}}}}{2} + \frac{{{x^{24}}}}{{24}}} \right) \ldots }}{{{x^{12}}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 30px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2} - \frac{{{x^{12}}}}{{24}} + ...\) <em><strong>A1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos {x^6}}}{{{x^{12}}}} = \frac{1}{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept solutions using Maclaurin expansions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, some weaker candidates were more successful in answering this question than stronger candidates. If candidates failed to simplify the expression after the first application of L’Hôpital’s rule, they generally were not successful in correctly differentiating the expression a \({2^{{\text{nd}}}}\) time, hence could not achieve the final three A marks.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Given that \(y = \ln \cos x\) , show that the first two non-zero terms of the Maclaurin series for <em>y </em>are \( - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{12}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Use this series to find an approximation in terms of \(\pi {\text{ for }}\ln 2\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(f(x) = \ln \cos x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{ - \sin x}}{{\cos x}} = - \tan x\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = - {\sec ^2}x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(x) = - 2\sec x\sec x\tan x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{iv}}(x) = - 2{\sec ^2}x({\sec ^2}x) - 2\tan x(2{\sec ^2}x\tan x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - 2{\sec ^4}x - 4{\sec ^2}x{\tan ^2}x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = f(0) + xf'(0) + \frac{{{x^2}}}{{2!}}f''(0) + \frac{{{x^3}}}{{3!}}f'''(0) + \frac{{{x^4}}}{{4!}}{f^{iv}}(0) + …\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) = 0,\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0) = 0,\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(0) = - 1,\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(0) = 0,\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{iv}}(0) = - 2,\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes: </strong>Award the <strong><em>A1 </em></strong>if all the substitutions are correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Allow <strong><em>FT </em></strong>from their derivatives.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln (\cos x) \approx - \frac{{{x^2}}}{{2!}} - \frac{{2{x^4}}}{{4!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{{{x^2}}}{2} - \frac{{{x^4}}}{{12}}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Some consideration of the manipulation of ln 2 <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempt to find an angle <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Taking \(x = \frac{\pi }{3}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln \frac{1}{2} \approx - \frac{{{{\left( {\frac{\pi }{3}} \right)}^2}}}{{2!}} - \frac{{2{{\left( {\frac{\pi }{3}} \right)}^4}}}{{4!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - \ln 2 \approx - \frac{{\frac{{{\pi ^2}}}{9}}}{{2!}} - \frac{{2\frac{{{\pi ^4}}}{{81}}}}{{4!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln 2 \approx \frac{{{\pi ^2}}}{{18}} + \frac{{{\pi ^4}}}{{972}} = \frac{{{\pi ^2}}}{9}\left( {\frac{1}{2} + \frac{{{\pi ^2}}}{{108}}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Taking \(x = \frac{\pi }{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln \frac{1}{{\sqrt 2 }} \approx - \frac{{{{\left( {\frac{\pi }{4}} \right)}^2}}}{{2!}} - \frac{{2{{\left( {\frac{\pi }{4}} \right)}^4}}}{{4!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - \frac{1}{2}\ln 2 \approx - \frac{{\frac{{{\pi ^2}}}{{16}}}}{{2!}} - \frac{{2\frac{{{\pi ^4}}}{{256}}}}{{4!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln 2 \approx \frac{{{\pi ^2}}}{{16}} + \frac{{{\pi ^4}}}{{1536}} = \frac{{{\pi ^2}}}{8}\left( {\frac{1}{2} + \frac{{{\pi ^2}}}{{192}}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates had difficulty organizing the derivatives but most were successful in getting the series. Using the series to find the approximation for \(\ln 2\) in terms of \(\pi \) was another story and it was rare to see a good solution.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {x^2} + {y^2}\) where <em>y</em> =1 when <em>x</em> = 0 .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Euler’s method with step length 0.1 to find an approximate value of <em>y</em> when <em>x</em> = 0.4.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down, giving a reason, whether your approximate value for <em>y</em> is greater than or less than the actual value of <em>y</em> .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of \(y \to y + h\frac{{{\text{d}}y}}{{{\text{d}}x}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">approximate value of <em>y</em> = 1.57 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept values in the tables correct to 3 significant figures.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the approximate value is less than the actual value because it is assumed that \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) remains constant throughout each interval whereas it is actually an increasing function <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were familiar with Euler’s method. The most common way of losing marks was either to round intermediate answers to insufficient accuracy or simply to make an arithmetic error. Many candidates were given an accuracy penalty for not rounding their answer to three significant figures. Few candidates were able to answer (b) correctly with most believing incorrectly that the step length was a relevant factor.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were familiar with Euler’s method. The most common way of losing marks was either to round intermediate answers to insufficient accuracy or simply to make an arithmetic error. Many candidates were given an accuracy penalty for not rounding their answer to three significant figures. Few candidates were able to answer (b) correctly with most believing incorrectly that the step length was a relevant factor.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \sin (p\arcsin x),{\text{ }} - 1 < x < 1\) and \(p \in \mathbb{R}\).</p>
</div>
<div class="specification">
<p>The function \(f\) and its derivatives satisfy</p>
<p style="text-align: center;">\((1 - {x^2}){f^{(n + 2)}}(x) - (2n + 1)x{f^{(n + 1)}}(x) + ({p^2} - {n^2}){f^{(n)}}(x) = 0,{\text{ }}n \in \mathbb{N}\)</p>
<p>where \({f^{(n)}}(x)\) denotes the \(n\) th derivative of \(f(x)\) and \({f^{(0)}}(x)\) is \(f(x)\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f’(0) = p\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({f^{(n + 2)}}(0) = ({n^2} - {p^2}){f^{(n)}}(0)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For \(p \in \mathbb{R}\backslash \{ \pm 1,{\text{ }} \pm 3\} \), show that the Maclaurin series for \(f(x)\), up to and including the \({x^5}\) term, is</p>
<p style="text-align: center;">\(px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \frac{{p(9 - {p^2})(1 - {p^2})}}{{5!}}{x^5}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If \(p\) is an odd integer, prove that the Maclaurin series for \(f(x)\) is a polynomial of degree \(p\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f’(x) = \frac{{p\cos (p\arcsin x)}}{{\sqrt {1 - {x^2}} }}\) <strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempting to use the chain rule.</p>
<p> </p>
<p>\(f’(0) = p\) <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\({f^{(n + 2)}}(0) + ({p^2} - {n^2}){f^{(n)}}(0) = 0\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>for <em>eg</em>, \((1 - {x^2}){f^{(n + 2)}}(x) = (2n + 1)x{f^{(n + 1)}}(x) - ({p^2} - {n^2}){f^{(n)}}(x)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for <em>eg</em>, \((1 - {x^2}){f^{(n + 2)}}(x) - (2n + 1)x{f^{(n + 1)}}(x) = - ({p^2} - {n^2}){f^{(n)}}(x)\).</p>
<p> </p>
<p><strong>THEN</strong></p>
<p>\({f^{(n + 2)}}(0) = ({n^2} - {p^2}){f^{(n)}}(0)\) <strong><em>AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>considering \(f\) and its derivatives at \(x = 0\) <strong><em>(M1)</em></strong></p>
<p>\(f(0) = 0\) and \(f’(0) = p\) from (a) <strong><em>A1</em></strong></p>
<p>\(f’’(0) = 0,{\text{ }}{f^{(4)}}(0) = 0\) <strong><em>A1</em></strong></p>
<p>\({f^{(3)}}(0) = (1 - {p^2}){f^{(1)}}(0) = (1 - {p^2})p\),</p>
<p>\({f^{(5)}}(0) = (9 - {p^2}){f^{(3)}}(0) = (9 - {p^2})(1 - {p^2})p\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only award the last <strong><em>A1</em></strong> if either \({f^{(3)}}(0) = (1 - {p^2}){f^{(1)}}(0)\) and \({f^{(5)}}(0) = (9 - {p^2}){f^{(3)}}(0)\) have been stated or the general Maclaurin series has been stated and used.</p>
<p> </p>
<p>\(px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \frac{{p(9 - {p^2})(1 - {p^2})}}{{5!}}{x^5}\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{px + \frac{{p(1 - {p^2})}}{{3!}}{x^3} + \ldots }}{3}\) <strong><em>M1</em></strong></p>
<p>\( = p\) <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>by l’Hôpital’s rule \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin (p\arcsin x)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{p\cos (p\arcsin x)}}{{\sqrt {1 - {x^2}} }}\) <strong><em>M1</em></strong></p>
<p>\( = p\) <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the coefficients of all even powers of \(x\) are zero <strong><em>A1</em></strong></p>
<p>the coefficient of \({x^p}\) for (\(p\) odd) is non-zero (or equivalent <em>eg</em>,</p>
<p>the coefficients of all odd powers of \(x\) up to \(p\) are non-zero) <strong><em>A1</em></strong></p>
<p>\({f^{(p + 2)}}(0) = ({p^2} - {p^2}){f^{(p)}}(0) = 0\) and so the coefficient of \({x^{p + 2}}\) is zero <strong><em>A1</em></strong></p>
<p>the coefficients of all odd powers of \(x\) greater than \(p + 2\) are zero (or equivalent) <strong><em>A1</em></strong></p>
<p>so the Maclaurin series for \(f(x)\) is a polynomial of degree \(p\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \(n > {\text{ln}}\,n\) for \(n > 0\), use the comparison test to show that the series \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} \) is divergent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interval of convergence for \(\sum\limits_{n = 0}^\infty {\frac{{{{\left( {3x} \right)}^n}}}{{{\text{ln}}\left( {n + 2} \right)}}} \).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({\text{ln}}\left( {n + 2} \right) < n + 2\) <em><strong>(A1)</strong></em></p>
<p>\( \Rightarrow \frac{1}{{{\text{ln}}\left( {n + 2} \right)}} > \frac{1}{{n + 2}}\) (for \(n \geqslant 0\)) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award A0 for statements such as \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} > \sum\limits_{n = 0}^\infty {\frac{1}{{n + 2}}} \). However condone such a statement if the above <em><strong>A1</strong> </em>has already been awarded.</p>
<p>\(\sum\limits_{n = 0}^\infty {\frac{1}{{n + 2}}} \) (is a harmonic series which) diverges <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> The <em><strong>R1</strong> </em>is independent of the <em><strong>A1</strong></em>s.</p>
<p>Award <em><strong>R0</strong> </em>for statements such as "\(\frac{1}{{n + 2}}\) diverges".</p>
<p>so \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} \) diverges by the comparison test <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{1}{{{\text{ln}}\,n}} > \frac{1}{n}\) (for \(n \geqslant 2\)) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A0</strong></em> for statements such as \(\sum\limits_{n = 2}^\infty {\frac{1}{{{\text{ln}}\,n}}} > \sum\limits_{n = 2}^\infty {\frac{1}{n}} \). However condone such a statement if the above <em><strong>A1</strong> </em>has already been awarded.</p>
<p>a correct statement linking \(n\) and \(n + 2\) <em>eg</em>,</p>
<p>\(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} = \sum\limits_{n = 2}^\infty {\frac{1}{{{\text{ln}}\,n}}} \) or \(\sum\limits_{n = 0}^\infty {\frac{1}{{n + 2}}} = \sum\limits_{n = 2}^\infty {\frac{1}{n}} \) <strong>A1</strong></p>
<p><strong>Note:</strong> Award <em><strong>A0</strong> </em>for \(\sum\limits_{n = 0}^\infty {\frac{1}{n}} \)</p>
<p>\(\sum\limits_{n = 2}^\infty {\frac{1}{n}} \) (is a harmonic series which) diverges</p>
<p>(which implies that \(\sum\limits_{n = 2}^\infty {\frac{1}{{{\text{ln}}\,n}}} \) diverges by the comparison test) <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> The <em><strong>R1</strong> </em>is independent of the <em><strong>A1</strong></em>s.</p>
<p>Award <em><strong>R0</strong> </em>for statements such as \(\sum\limits_{n = 0}^\infty {\frac{1}{n}} \) deiverges and "\({\frac{1}{n}}\) diverges".</p>
<p>Award <em><strong>A1A0R1</strong> </em>for arguments based on \(\sum\limits_{n = 1}^\infty {\frac{1}{n}} \).</p>
<p>so \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} \) diverges by the comparison test <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>applying the ratio test \(\mathop {{\text{lim}}}\limits_{n \to \infty } \left| {\frac{{{{\left( {3x} \right)}^{n + 1}}}}{{{\text{ln}}\left( {n + 3} \right)}} \times \frac{{{\text{ln}}\left( {n + 2} \right)}}{{{{\left( {3x} \right)}^n}}}} \right|\) <em><strong>M1</strong></em></p>
<p>\( = \left| {3x} \right|\) (as \(\mathop {{\text{lim}}}\limits_{n \to \infty } \left| {\frac{{{\text{ln}}\left( {n + 2} \right)}}{{{\text{ln}}\left( {n + 3} \right)}}} \right| = 1\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone the absence of limits and modulus signs.</p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong> </em>for \(3{x^n}\). Subsequent marks can be awarded.</p>
<p>series converges for \( - \frac{1}{3} < x < \frac{1}{3}\)</p>
<p>considering \(x = - \frac{1}{3}\) and \(x = \frac{1}{3}\) <em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>to candidates who consider one endpoint.</p>
<p>when \(x = \frac{1}{3}\), series is \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} \) which is divergent (from (a)) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award this <em><strong>A1</strong> </em>if \(\sum\limits_{n = 0}^\infty {\frac{1}{{{\text{ln}}\left( {n + 2} \right)}}} \) is not stated but reference to part (a) is.</p>
<p>when \(x = - \frac{1}{3}\), series is \(\sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{\text{ln}}\left( {n + 2} \right)}}} \) <em><strong>A1</strong></em></p>
<p>\(\sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{\text{ln}}\left( {n + 2} \right)}}} \) converges (conditionally) by the alternating series test <em><strong>R1</strong></em></p>
<p>(strictly alternating, \(\left| {{u_n}} \right| > \left| {{u_{n + 1}}} \right|\) for \(n \geqslant 0\) and \(\mathop {{\text{lim}}}\limits_{n \to \infty } \left( {{u_n}} \right) = 0\))</p>
<p>so the interval of convergence of <em>S</em> is \( - \frac{1}{3} \leqslant x < \frac{1}{3}\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> The final <em><strong>A1</strong> </em>is dependent on previous <em><strong>A1</strong></em>s – <em>ie</em>, considering correct series when \(x = - \frac{1}{3}\) and \(x = \frac{1}{3}\) and on the final <em><strong>R1</strong></em>.</p>
<p>Award as above to candidates who firstly consider \(x = - \frac{1}{3}\) and then state conditional convergence implies divergence at \(x = \frac{1}{3}\).</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let the Maclaurin series for \(\tan x\) be</p>
<p>\[\tan x = {a_1}x + {a_3}{x^3} + {a_5}{x^5} + \ldots \]</p>
<p>where \({a_1}\), \({a_3}\) and \({a_5}\) are constants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find series for \({\sec ^2}x\), in terms of \({a_1}\), \({a_3}\) and \({a_5}\), up to and including the \({x^4}\) term</p>
<p>by differentiating the above series for \(\tan x\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find series for \({\sec ^2}x\), in terms of \({a_1}\), \({a_3}\) and \({a_5}\), up to and including the \({x^4}\) term</p>
<p>by using the relationship \({\sec ^2}x = 1 + {\tan ^2}x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, by comparing your two series, determine the values of \({a_1}\), \({a_3}\) and \({a_5}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(({\sec ^2}x = ){\text{ }}{a_1} + 3{a_3}{x^2} + 5{a_5}{x^4} + \ldots \) <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\sec ^2}x = 1 + {({a_1}x + {a_3}{x^3} + {a_5}{x^5} + \ldots )^2}\)</p>
<p>\( = 1 + a_1^2{x^2} + 2{a_1}{a_3}{x^4} + \ldots \) <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Condone the presence of terms with powers greater than four.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equating constant terms: \({a_1} = 1\) <strong><em>A1</em></strong></p>
<p>equating \({x^2}\) terms: \(3{a_3} = a_1^2 = 1 \Rightarrow {a_3} = \frac{1}{3}\) <strong><em>A1</em></strong></p>
<p>equating \({x^4}\) terms: \(5{a_5} = 2{a_1}{a_3} = \frac{2}{3} \Rightarrow {a_5} = \frac{2}{{15}}\) <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{x}{y} - xy\) where \(y > 0\) and \(y = 2\) when \(x = 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that putting \(z = {y^2}\) </span>transforms the differential equation into \(\frac{{{\text{d}}z}}{{{\text{d}}x}} + 2xz = 2x\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By solving this differential equation in \(z\)<span class="s1">, obtain an expression for </span>\(y\) <span class="s1">in terms of </span>\(x\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">\(z = {y^2} \Rightarrow y = {z^{1/2}}\)</p>
<p class="p1"><span class="Apple-converted-space">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{{2{z^{1/2}}}}\frac{{{\text{d}}z}}{{{\text{d}}x}}\) </span><strong><em>M1A1</em></strong></p>
<p class="p1">substituting, \(\frac{1}{{2{z^{1/2}}}}\frac{{{\text{d}}z}}{{{\text{d}}x}} = \frac{x}{{{z^{1/2}}}} - x{z^{1/2}}\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{\text{d}}z}}{{{\text{d}}x}} + 2xz = 2x\) </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">\(z = {y^2}\)</p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2x - 2x{y^2}\) </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2xz = 2x\) </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">integrating factor \( = {{\text{e}}^{\int {2x{\text{d}}x} }} = {{\text{e}}^{{x^2}}}\) <span class="Apple-converted-space"> </span><strong><em>(M1)A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({{\text{e}}^{{x^2}}}\frac{{{\text{d}}z}}{{{\text{d}}x}} + 2x{{\text{e}}^{{x^2}}}z = 2x{{\text{e}}^{{x^2}}}\) </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(z{{\text{e}}^{{x^2}}} = \int {2x{{\text{e}}^{{x^2}}}{\text{d}}x} \) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( = {{\text{e}}^{{x^2}}} + C\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">substitute \(y = 2\) therefore \(z = 4\) when \(x = 0\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p3">\(4 = 1 + C\)</p>
<p class="p3"><span class="Apple-converted-space">\(C = 3\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">the solution is \(z = 1 + 3{{\text{e}}^{ - {x^2}}}\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p4"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>This line may be seen before determining the value of \(C\).</p>
<p class="p4"> </p>
<p class="p1">so that \(y = \sqrt {1 + 3{{\text{e}}^{ - {x^2}}}} \) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p5"><strong>METHOD 2</strong></p>
<p class="p6">\(\frac{{{\text{d}}z}}{{{\text{d}}x}} = 2x(1 - z)\)</p>
<p class="p6"><span class="Apple-converted-space">\(\int {\frac{1}{{1 - z}}{\text{d}}z = \int {2x{\text{d}}x} } \) </span><span class="s2"><strong><em>M1</em></strong></span></p>
<p class="p6"><span class="Apple-converted-space">\( - \ln (1 - z) = {x^2} + C\) </span><span class="s2"><strong><em>A1A1</em></strong></span></p>
<p class="p7">\(1 - z = {{\text{e}}^{ - {x^2} - c}}\) (or \(1 - z = B{{\text{e}}^{ - {x^2}}}\)) <strong><em>M1A1</em></strong></p>
<p class="p5">solving for \(z\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p7">\(z = 1 + A{{\text{e}}^{ - {x^2}}}\)</p>
<p class="p5"><span class="s3">\(z = 4\) </span>when \(x = 0\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p5">so \(A = 3\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p5">the solution is \(z = 1 + 3{{\text{e}}^{ - {x^2}}}\)</p>
<p class="p5">so \(y = \sqrt {1 + 3{{\text{e}}^{ - {x^2}}}} \) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p5"><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Several misconceptions were identified that showed poor understanding of the chain rule. Although many candidates were successful in establishing the result the presentation of their work was far from what is expected in a show that question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was well attempted using both method 1 (integration factor) and 2 (separation of variables). The most common error was omission of the constant of integration or errors in finding its value. Candidates that used method 2 often had difficulties in integrating \(\frac{1}{{(1 - z)}}\) correctly and making \(z\) the subject often losing out on accuracy marks.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the infinite spiral of right angle triangles as shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-01_om_17.00.25.png" alt="N16/5/MATHL/HP3/ENG/TZ0/SE/03b"></p>
<p class="p1">The \(n{\text{th}}\) triangle in the spiral has central angle \({\theta _n}\), hypotenuse of length \({a_n}\) and opposite side of length <span class="s1">1</span>, as shown in the diagram. The first right angle triangle is isosceles with the two equal sides being of length <span class="s1">1</span>.</p>
</div>
<div class="specification">
<p class="p1">Consider the series \(\sum\limits_{n = 1}^\infty {{\theta _n}} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using l’Hôpital’s rule, find \(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\arcsin \left( {\frac{1}{{\sqrt {(x + 1)} }}} \right)}}{{\frac{1}{{\sqrt x }}}}} \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Find \({a_1}\) and \({a_2}\) and hence write down an expression for \({a_n}\).</p>
<p class="p1">(ii) Show that \({\theta _n} = \arcsin \frac{1}{{\sqrt {(n + 1)} }}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using a suitable test, determine whether this series converges or diverges.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">\(\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{\arcsin \left( {\frac{1}{{\sqrt {(x + 1)} }}} \right)}}{{\frac{1}{{\sqrt x }}}}} \right)\) </span>is of the form \(\frac{0}{0}\)</p>
<p class="p1">and so will equal the limit of \(\frac{{\frac{{\frac{{ - 1}}{2}{{(x + 1)}^{ - \frac{3}{2}}}}}{{\sqrt {1 - \left( {\frac{1}{{x + 1}}} \right)} }}}}{{\frac{{ - 1}}{2}{x^{ - \frac{3}{2}}}}}\)<span class="s1"> <span class="Apple-converted-space"> </span></span><strong><em>M1M1A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <em>M1 </em></strong>for attempting differentiation of the top and bottom, <strong><em>M1A1 </em></strong>for derivative of top (only award <strong><em>M1 </em></strong>if chain rule is used), <strong><em>A1 </em></strong>for derivative of bottom.</p>
<p class="p2"> </p>
<p class="p3"><span class="Apple-converted-space">\( = \mathop {\lim }\limits_{x \to \infty } \frac{{{{\left( {\frac{x}{{(x + 1)}}} \right)}^{\frac{3}{2}}}}}{{\sqrt {\frac{x}{{x + 1}}} }} = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{x}{{x + 1}}} \right)\) </span><span class="s2"><strong><em>M1</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept any intermediate tidying up of correct derivative for the method mark.</p>
<p class="p2"> </p>
<p class="p3"><span class="Apple-converted-space">\( = 1\) </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> \({a_1} = \sqrt 2 ,{\text{ }}{a_2} = \sqrt 3 \)</span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({a_n} = \sqrt {n + 1} \) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="s1">(ii) <span class="Apple-converted-space"> \(\sin {\theta _n} = \frac{1}{{{a_n}}} = \frac{1}{{\sqrt {n + 1} }}\)</span></span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong><span class="s1">Allow \({\theta _n} = \arcsin \left( {\frac{1}{{{a_n}}}} \right)\)</span> if \({a_n} = \sqrt {n + 1} \) <span class="s1">in b(i).</span></p>
<p class="p3"> </p>
<p class="p1"><span class="s1">so \({\theta _n} = \arcsin \frac{1}{{\sqrt {(n + 1)} }}\)</span> <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">for \(\sum\limits_{n = 1}^\infty {\arcsin \frac{1}{{\sqrt {(n + 1)} }}} \) apply the limit comparison test (since both series of positive terms) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">with \(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt n }}} \) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="s1">from (a) \(\mathop {\lim }\limits_{n \to \infty } \frac{{\arcsin \frac{1}{{\sqrt {(n + 1)} }}}}{{\frac{1}{{\sqrt n }}}} = 1\)</span>, so the two series either both converge or both diverge <span class="Apple-converted-space"> </span><strong><em>M1R1</em></strong></p>
<p class="p1">\(\sum\limits_{n = 1}^\infty {\frac{1}{{\sqrt 2 }}} \) diverges (as is a \(p\)<span class="s1">-series with \(p = \frac{1}{2}\)</span>) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">hence \(\sum\limits_{n = 1}^\infty {{\theta _n}} \) diverges <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">The sequence \(\{ {u_n}\} \) is defined by \({u_n} = \frac{{3n + 2}}{{2n - 1}}\), for \(n \in {\mathbb{Z}^ + }\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the sequence converges to a limit <em>L </em>, the value of which should be stated.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the least value of the integer <em>N </em>such that \(\left| {{u_n} - L} \right| < \varepsilon \)<span style="font: 12.5px Helvetica;"> </span>, for all <em>n </em>> <em>N </em>where</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(\varepsilon = 0.1\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(\varepsilon = 0.00001\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For each of the sequences \(\left\{ {\frac{{{u_n}}}{n}} \right\},{\text{ }}\left\{ {\frac{1}{{2{u_n} - 2}}} \right\}\) and \(\left\{ {{{( - 1)}^n}{u_n}} \right\}\) , determine whether or not it converges.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that the series \(\sum\limits_{n = 1}^\infty {({u_n} - L)} \) diverges.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} = \frac{{3 + \frac{2}{n}}}{{2 - \frac{1}{n}}}\) or \(\frac{3}{2} + \frac{A}{{2n - 1}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">using \(\mathop {\lim }\limits_{n \to \infty } \frac{1}{n} = 0\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\mathop {\lim }\limits_{n \to \infty } {u_n} = \frac{3}{2} = L\) <strong><em>A1 N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} - L = \frac{7}{{2(2n - 1)}}\) <strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {{u_n} - L} \right| < \varepsilon \Rightarrow n > \frac{1}{2}\left( {1 + \frac{7}{{2\varepsilon }}} \right)\) <strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(\varepsilon = 0.1 \Rightarrow N = 18\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(\varepsilon = 0.00001 \Rightarrow N = 175000\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} \to L\) and \(\frac{1}{n} \to 0\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{u_n}}}{n} \to (L \times 0) = 0\) , hence converges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{u_n} - 2 \to 2L - 2 = 1 \Rightarrow \frac{1}{{2{u_n} - 2}} \to 1\) , hence converges <strong><em>M1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>To award <strong><em>A1 </em></strong>the value of the limit and a statement of convergence must be clearly seen for each sequence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({( - 1)^n}{u_n}\) does not converge <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The sequence alternates (or equivalent wording) between values close to \( \pm L\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} - L > \frac{7}{{4n}}\) (re: harmonic sequence) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \sum\limits_{n = 1}^\infty {({u_n} - L)} \) diverges by the comparison theorem <strong><em>R1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept alternative methods.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The “show that” in part (a) of this problem was not adequately dealt with by a significant minority of candidates and simply stating the limit and not demonstrating its existence lost marks. Part (b), whilst being possible without significant knowledge of limits, seemed to intimidate some candidates due to its unfamiliarity and the notation. Part (c) was somewhat disappointing as many candidates attempted to apply rules on the convergence of series to solve a problem that was dealing with the limits of sequences. The same confusion was seen on part (d) where also some errors in algebra prevented candidates from achieving full marks. </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The “show that” in part (a) of this problem was not adequately dealt with by a significant minority of candidates and simply stating the limit and not demonstrating its existence lost marks. Part (b), whilst being possible without significant knowledge of limits, seemed to intimidate some candidates due to its unfamiliarity and the notation. Part (c) was somewhat disappointing as many candidates attempted to apply rules on the convergence of series to solve a problem that was dealing with the limits of sequences. The same confusion was seen on part (d) where also some errors in algebra prevented candidates from achieving full marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The “show that” in part (a) of this problem was not adequately dealt with by a significant minority of candidates and simply stating the limit and not demonstrating its existence lost marks. Part (b), whilst being possible without significant knowledge of limits, seemed to intimidate some candidates due to its unfamiliarity and the notation. Part (c) was somewhat disappointing as many candidates attempted to apply rules on the convergence of series to solve a problem that was dealing with the limits of sequences. The same confusion was seen on part (d) where also some errors in algebra prevented candidates from achieving full marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The “show that” in part (a) of this problem was not adequately dealt with by a significant minority of candidates and simply stating the limit and not demonstrating its existence lost marks. Part (b), whilst being possible without significant knowledge of limits, seemed to intimidate some candidates due to its unfamiliarity and the notation. Part (c) was somewhat disappointing as many candidates attempted to apply rules on the convergence of series to solve a problem that was dealing with the limits of sequences. The same confusion was seen on part (d) where also some errors in algebra prevented candidates from achieving full marks.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The function \(f\) is defined by</p>
<p>\[f(x) = \left\{ {\begin{array}{*{20}{l}} {{x^2} - 2,}&{x < 1} \\ {ax + b,}&{x \geqslant 1} \end{array}} \right.\]</p>
<p>where \(a\) and \(b\) are real constants.</p>
<p>Given that both \(f\) and its derivative are continuous at \(x = 1\), find the value of \(a\) and the value of \(b\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>considering continuity \(\mathop {\lim }\limits_{x \to {1^ - }} ({x^2} - 2) = - 1\) <strong><em>(M1)</em></strong></p>
<p>\(a + b = - 1\) <strong><em>(A1)</em></strong></p>
<p>considering differentiability \(2x = a\) when \(x = 1\) <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow a = 2\) <strong><em>A1</em></strong></p>
<p>\(b = - 3\) <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">Let \(f(x)\) </span>be a function whose first and second derivatives both exist on the closed interval \([0,{\text{ }}h]\).</p>
<p class="p2">Let \(g(x) = f(h) - f(x) - (h - x)f'(x) - \frac{{{{(h - x)}^2}}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the mean value theorem for a function that is continuous on the closed interval \([a,{\text{ }}b]\) and differentiable on the open interval \(]a,{\text{ }}b[\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find \(g(0)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find \(g(h)\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Apply the mean value theorem to the function \(g(x)\) <span class="s1">on the closed interval \([0,{\text{ }}h]\)</span> to show that there exists \(c\) <span class="s1">in the open interval \(]0,{\text{ }}h[\) </span>such that \(g'(c) = 0\).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Find \(g'(x)\).</p>
<p class="p2">(v) <span class="Apple-converted-space"> </span>Hence show that \( - (h - c)f''(c) + \frac{{2(h - c)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = 0\).</p>
<p class="p1">(vi) <span class="Apple-converted-space"> </span>Deduce that \(f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}{\text{ }}f''(c)\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that, for \(h > 0\)</p>
<p class="p1">\(1 - \cos (h) \leqslant \frac{{{h^2}}}{2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">there exists \(c\) in the open interval \(]a,{\text{ }}b[\) such that <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{f(b) - f(a)}}{{b - a}} = f'(c)\) </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Open interval is required for the <strong><em>A1</em></strong>.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> \(g(0) = f(h) - f(0) - hf'(0) - \frac{{{h^2}}}{{{h^2}}}\left( {{\text{ }}f(h) - f(0) - hf'(0)} \right)\)</span></p>
<p class="p1"><span class="Apple-converted-space">\( = 0\) </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> \(g(h) = f(h) - f(h) - 0 - 0\)</span></p>
<p class="p1"><span class="Apple-converted-space">\( = 0\) </span><strong><em>A1</em></strong></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>(\(g(x)\) is a differentiable function since it is a combination of other differentiable functions \(f\), \({f'}\) and polynomials.)</p>
<p class="p1">there exists \(c\) in the open interval \(]0,{\text{ }}h[\) such that</p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{g(h) - g(0)}}{h} = g'(c)\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{g(h) - g(0)}}{h} = 0\) </span><strong><em>A1</em></strong></p>
<p class="p1">hence \(g'(c) = 0\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1">(iv) <span class="Apple-converted-space"> \(g'(x) = - f'(x) + f'(x) - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\)</span> <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <em>A1 </em></strong>for the second and third terms and <strong><em>A1 </em></strong>for the other terms (all terms must be seen).</p>
<p class="p2"> </p>
<p class="p1">\( = - (h - x)f''(x) + \frac{{2(h - x)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right)\)</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>putting \(x = c\) and equating to zero <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( - (h - c)f''(c) + \frac{{2(h - c)}}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = g'(c) = 0\) </span><strong><em>AG</em></strong></p>
<p class="p1">(vi) <span class="Apple-converted-space"> \( - f''(c) + \frac{2}{{{h^2}}}\left( {f(h) - f(0) - hf'(0)} \right) = 0\)</span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">since \(h - c \ne 0\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\(\frac{{{h^2}}}{2}f''(c) = f(h) - f(0) - hf'(0)\)</p>
<p class="p1"><span class="Apple-converted-space">\(f(h) = f(0) + hf'(0) + \frac{{{h^2}}}{2}f''(c)\) </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">letting \(f(x) = \cos (x)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(f'(x) = - \sin (x)\) \(f''(x) = - \cos (x)\)</span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\cos (h) = 1 + 0 - \frac{{{h^2}}}{2}\cos (c)\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(1 - \cos (h) = \frac{{{h^2}}}{2}\cos (c)\) </span><strong><em>(A1)</em></strong></p>
<p class="p1">since \(\cos (c) \leqslant 1\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(1 - \cos (h) \leqslant \frac{{{h^2}}}{2}\) </span><strong><em>AG</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Allow \(f(x) = a \pm b\cos x\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Given that \(f(x) = \ln x\)</span>, use the mean value theorem to show that, for \(0 < a < b\), \(\frac{{b - a}}{b} < \ln \frac{b}{a} < \frac{{b - a}}{a}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(\ln (1.2)\) lies between \(\frac{1}{m}\) and \(\frac{1}{n}\), where \(m\)<span class="s1">, \(n\) </span>are consecutive positive integers to be determined.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(f'(x) = \frac{1}{x}\) </span><strong><em>(A1)</em></strong></p>
<p class="p1"><span class="s1">using the MVT \(f'(c) = \frac{{f(b) - f(a)}}{{b - a}}\) </span>(where \(c\) lies between \(a\) and \(b\)) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(f'(c) = \frac{{\ln b - \ln a}}{{b - a}}\) </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\(\ln \frac{b}{a} = \ln b - \ln a\) </span><span class="s2"><strong><em>(M1)</em></strong></span></p>
<p class="p3">\(f'(c) = \frac{{\ln \frac{b}{a}}}{{b - a}}\)</p>
<p class="p1">since \(f'(x)\) is a decreasing function or \(a < c < b \Rightarrow \frac{1}{b} < \frac{1}{c} < \frac{1}{a}\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\(f'(b) < f'(c) < f'(a)\) </span><span class="s2"><strong><em>(M1)</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\frac{1}{b} < \frac{{\ln \frac{b}{a}}}{{b - a}} < \frac{1}{a}\) </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\frac{{b - a}}{b} < \ln \frac{b}{a} < \frac{{b - a}}{a}\) </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">putting \(b = 1.2,{\text{ }}a = 1\), or equivalent <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{1}{6} < \ln 1.2 < \frac{1}{5}\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\((m = 6,{\text{ }}n = 5)\)</p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although many candidates achieved at least a few marks in this question, the answers revealed difficulties in setting up a proof. The Mean value theorem was poorly quoted and steps were often skipped. The conditions under which the Mean value theorem is valid were largely ignored, as were the reasoned steps towards the answer.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">There were inequalities everywhere, without a great deal of meaning or showing progress. A number of candidates attempted to work backwards and presented the work in a way that made it difficult to follow their reasoning; in part (b) many candidates ignored the instruction ‘hence’ and just used GDC to find the required values; candidates that did notice the link to part a) answered this question well in general. A number of candidates guessed the answer and did not present an analytical derivation as required.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the radius of convergence of the series \(\sum\limits_{n = 0}^\infty {\frac{{{{( - 1)}^n}{x^n}}}{{(n + 1){3^n}}}} \).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether the series \(\sum\limits_{n = 0}^\infty {\left( {\sqrt[3]{{{n^3} + 1}} - n} \right)} \) is convergent or divergent.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The ratio test gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{u_{n + 1}}}}{{{u_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{( - 1)}^{n + 1}}{x^{n + 1}}(n + 1){3^n}}}{{(n + 2){3^{n + 1}}{{( - 1)}^n}{x^n}}}} \right|\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{(n + 1)x}}{{3(n + 2)}}} \right|\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\left| x \right|}}{3}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So the series converges for \( \frac{{\left| x \right|}}{3} < 1,\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">the radius of convergence is 3 <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Do not penalise lack of modulus signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} = \sqrt[3]{{{n^3} + 1}} - n\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = n\left( {\sqrt[3]{{1 + \frac{1}{{{n^3}}} - 1}}} \right)\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = n\left( {1 + \frac{1}{{3{n^3}}} - \frac{1}{{9{n^6}}} + \frac{5}{{8{\text{l}}{n^9}}} - ... - 1} \right)\) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using \({v_n} = \frac{1}{{{n^2}}}\) as the auxilliary series, <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n}}}{{{v_n}}} = \frac{1}{3}{\text{ and }}\frac{1}{{{1^2}}} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + …\) converges <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then \(\sum {{u_n}} \) converges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1A1A1M0M0A0A0 </em></strong>to candidates attempting to use the integral test.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some corners were cut in applying the ratio test and some candidates tried to use the comparison test. With careful algebra finding the radius of convergence was not too difficult. Often the interval of convergence was given instead of the radius.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was done only by the best candidates. A little algebraic manipulation together with an auxiliary series soon gave the answer.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some corners were cut in applying the ratio test and some candidates tried to use the comparison test. With careful algebra finding the radius of convergence was not too difficult. Often the interval of convergence was given instead of the radius.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was done only by the best candidates. A little algebraic manipulation together with an auxiliary series soon gave the answer.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{x} + \frac{{{y^2}}}{{{x^2}}}\) (where x > 0 )</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that <em>y</em> = 2 when <em>x</em> = 1 . Give your answer in the form \(y = f(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">put <em>y</em> = <em>vx</em> so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation becomes \(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = v + {v^2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">leading to \(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = {v^2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">separating variables, \(\int {\frac{{{\text{d}}x}}{x} = \int {\frac{{{\text{d}}v}}{{{v^2}}}} } \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(\ln x = - {v^{ - 1}} + C\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting for <em>v</em>, \(\ln x = \frac{{ - x}}{y} + C\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalise absence of <em>C</em> at the above stages.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting the boundary conditions,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 = - \frac{1}{2} + C\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(C = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \(\ln x = \frac{{ - x}}{y} + \frac{1}{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">leading to \(y = \frac{{2x}}{{1 - 2\ln x}}\) (or equivalent form) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Candidates are not required to note that \(x \ne \sqrt {\text{e}} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[13 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to make a reasonable attempt at this question with many perfect solutions seen.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>k </em>for which the improper integral \(\int_2^\infty {\frac{{{\text{d}}x}}{{x{{(\ln x)}^k}}}} \) converges.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the series \(\sum\limits_{r = 2}^\infty {\frac{{{{( - 1)}^r}}}{{r\ln r}}} \) is convergent but not absolutely convergent.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">consider the limit as \(R \to \infty \) of the (proper) integral</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_2^R {\frac{{{\text{d}}x}}{{x{{(\ln x)}^k}}}} \) <strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">substitute \(u = \ln x,{\text{ d}}u = \frac{1}{x}{\text{d}}x\) (<strong><em>M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\int_{\ln 2}^{\ln R} {\frac{1}{{{u^k}}}{\text{d}}u = \left[ { - \frac{1}{{k - 1}}\frac{1}{{{u^{k - 1}}}}} \right]_{\ln 2}^{\ln R}} \) <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Ignore incorrect limits or omission of limits at this stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">or \([\ln u]_{\ln 2}^{\ln R}\) if <em>k</em> = 1 <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Ignore incorrect limits or omission of limits at this stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">because \(\ln R{\text{ }}({\text{and }}\ln \ln R) \to \infty {\text{ as }}R \to \infty \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">converges in the limit if <em>k</em> > 1 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">C: \({\text{terms}} \to 0{\text{ as }}r \to \infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {{u_{r + 1}}} \right| < \left| {{u_r}} \right|\) for all <em>r </em><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">convergence by alternating series test <strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">AC: \({(x\ln x)^{ - 1}}\) is positive and decreasing on \([2,\,\infty )\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">not absolutely convergent by integral test using part (a) for <em>k</em> = 1 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A good number of candidates were able to find the integral in part (a) although the vast majority did not consider separately the integral when <em>k</em> = 1. Many candidates did not explicitly set a limit for the integral to let this limit go to infinity in the anti – derivative and it seemed that some candidates were “substituting for infinity”. This did not always prevent candidates finding a correct final answer but the lack of good technique is a concern. In part (b) many candidates seemed to have some knowledge of the relevant test for convergence but this test was not always rigorously applied. In showing that the series was not absolutely convergent candidates were often not clear in showing that the function being tested had to meet a number of criteria and in so doing lost marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A good number of candidates were able to find the integral in part (a) although the vast majority did not consider separately the integral when <em>k</em> = 1. Many candidates did not explicitly set a limit for the integral to let this limit go to infinity in the anti – derivative and it seemed that some candidates were “substituting for infinity”. This did not always prevent candidates finding a correct final answer but the lack of good technique is a concern. In part (b) many candidates seemed to have some knowledge of the relevant test for convergence but this test was not always rigorously applied. In showing that the series was not absolutely convergent candidates were often not clear in showing that the function being tested had to meet a number of criteria and in so doing lost marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether the series \(\sum\limits_{n = 1}^\infty {\frac{{{n^{10}}}}{{{{10}^n}}}} \) is convergent or divergent.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{(n + 1)}^{10}}}}{{{{10}^{n + 1}}}} \times \frac{{{{10}^n}}}{{{n^{10}}}}\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{10}}{\left( {1 + \frac{1}{n}} \right)^{10}}\) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \to \frac{1}{{10}}{\text{ as }}n \to \infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{10}} < 1\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So by the Ratio Test the series is convergent. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates used the Ratio Test successfully to establish convergence. Candidates who attempted to use Cauchy’s (Root) Test were often less successful although this was a valid method.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows part of the graph of \(y = \frac{1}{{{x^3}}}\) together with line segments parallel to the coordinate axes.</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using the diagram, show that \(\frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + \frac{1}{{{6^3}}} + ... < \int_3^\infty {\frac{1}{{{x^3}}}{\text{d}}x < \frac{1}{{{3^3}}} + \frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + ...} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>Hence </strong>find upper and lower bounds for \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) The area under the curve is sandwiched between the sum of the areas of the lower rectangles and the upper rectangles. <strong><em>M2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 \times \frac{1}{{{4^3}}} + 1 \times \frac{1}{{{5^3}}} + 1 \times \frac{1}{{{6^3}}} + ... < \int_3^\infty {\frac{{{\text{d}}x}}{{{x^3}}} < 1 \times \frac{1}{{{3^3}}} + 1 \times \frac{1}{{{4^3}}} + 1 \times \frac{1}{{{5^3}}} + ...} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">which leads to the printed result.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) We note first that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_3^\infty {\frac{{{\text{d}}x}}{{{x^3}}} = \left[ { - \frac{1}{{2{x^2}}}} \right]_3^\infty = \frac{1}{{18}}} \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider first</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} = 1 + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + \left( {\frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + \frac{1}{{{6^3}}} + ...} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( < 1 + \frac{1}{8} + \frac{1}{{27}} + \frac{1}{{18}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{263}}{{216}}{\text{ (1.22)}}\) (which is an upper bound) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^3}}}} = 1 + \frac{1}{{{2^3}}} + \left( {\frac{1}{{{3^3}}} + \frac{1}{{{4^3}}} + \frac{1}{{{5^3}}} + ...} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( > 1 + \frac{1}{8} + \frac{1}{{18}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{85}}{{72}}\left( {\frac{{255}}{{216}}} \right){\text{ (1.18)}}\) (which is a lower bound) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[12 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [15 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates failed to give a convincing argument to establish the inequality. In (b), few candidates progressed beyond simply evaluating the integral.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="text-align: center;"><img src="images/Figure_1.png" alt></p>
<p style="text-align: center;">Figure 1</p>
</div>
<div class="specification">
<p style="text-align: center;"><img src="images/Figure_2.png" alt></p>
<p style="text-align: center;">Figure 2</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Figure 1 shows part of the graph of \(y = \frac{1}{x}\) together with line segments parallel to the coordinate axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) By considering the areas of appropriate rectangles, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{2a + 1}}{{a(a + 1)}} < \ln \left( {\frac{{a + 1}}{{a - 1}}} \right) < \frac{{2a - 1}}{{a(a - 1)}}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find lower and upper bounds for \(\ln (1.2)\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">An improved upper bound can be found by considering Figure 2 which again shows part of the graph of \(y = \frac{1}{x}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) By considering the areas of appropriate regions, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\ln \left( {\frac{a}{{a - 1}}} \right) < \frac{{2a - 1}}{{2a(a - 1)}}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find an upper bound for \(\ln (1.2)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the area under the curve between <em>a</em> – 1 and <em>a</em> + 1</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_{a - 1}^{a + 1} {\frac{{{\text{d}}x}}{x}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = [\ln x]_{a - 1}^{a + 1}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \left( {\frac{{a + 1}}{{a - 1}}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">lower sum \( = \frac{1}{a} + \frac{1}{{a + 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2a + 1}}{{a(a + 1)}}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">upper sum \( = \frac{1}{{a - 1}} + \frac{1}{a}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2a - 1}}{{a(a - 1)}}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{2a + 1}}{{a(a + 1)}} < \ln \left( {\frac{{a + 1}}{{a - 1}}} \right) < \frac{{2a - 1}}{{a(a - 1)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">because the area of the region under the curve lies between the areas of the regions defined by the lower and upper sums <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) putting</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\frac{{a + 1}}{{a - 1}} = 1.2} \right) \Rightarrow a = 11\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore, \({\text{UB}} = \frac{{21}}{{110}}( = 0.191),{\text{ LB}} = \frac{{23}}{{132}}( = 0.174)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[9 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the area under the curve between <em>a</em> – 1 and <em>a</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_{a - 1}^a {\frac{{{\text{d}}x}}{x}} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = [\ln x]_{a - 1}^a = \ln \left( {\frac{a}{{a - 1}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to find area of trapezium <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">area of trapezoidal “upper sum” \( = \frac{1}{2}\left( {\frac{1}{{a - 1}} + \frac{1}{a}} \right)\) or equivalent <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2a - 1}}{{2a(a - 1)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that \(\ln \left( {\frac{a}{{a - 1}}} \right) < \frac{{2a - 1}}{{2a(a - 1)}}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) putting</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\frac{a}{{a - 1}} = 1.2} \right) \Rightarrow a = 6\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore, \({\text{UB}} = \frac{{11}}{{60}}( = 0.183)\) <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates made progress with this problem. This was pleasing since whilst being relatively straightforward it was not a standard problem. There were still some candidates who did not use the definite integral correctly to find the area under the curve in part (a) and part (b). Also candidates should take care to show all the required working in a “show that” question, even when demonstrating familiar results. The ability to find upper and lower bounds was often well done in parts (a) (ii) and (b) (ii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates made progress with this problem. This was pleasing since whilst being relatively straightforward it was not a standard problem. There were still some candidates who did not use the definite integral correctly to find the area under the curve in part (a) and part (b). Also candidates should take care to show all the required working in a “show that” question, even when demonstrating familiar results. The ability to find upper and lower bounds was often well done in parts (a) (ii) and (b) (ii).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by \(f(x) = \left\{ \begin{array}{r}{e^{ - x^3}}( - {x^3} + 2{x^2} + x),x \le 1\\ax + b,x > 1\end{array} \right.\), where \(a\) and \(b\) are constants.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact values of \(a\) and \(b\) if \(f\) is continuous and differentiable at \(x = 1\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Use Rolle’s theorem, applied to \(f\), to prove that \(2{x^4} - 4{x^3} - 5{x^2} + 4x + 1 = 0\) has a root in the interval \(\left] { - 1,1} \right[\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence prove that \(2{x^4} - 4{x^3} - 5{x^2} + 4x + 1 = 0\) has at least two roots in the interval \(\left] { - 1,1} \right[\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to {1^ - }} {{\text{e}}^{ - {x^2}}}\left( { - {x^3} + 2{x^2} + x} \right) = \mathop {{\text{lim}}}\limits_{x \to {1^ + }} (ax + b)\) \(( = a + b)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{{\text{e}}^{ - 1}} = a + b\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">differentiability: attempt to differentiate <strong>both </strong>expressions <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = - 2x{{\text{e}}^{ - {x^2}}}\left( { - {x^3} + 2{x^2} + x} \right) + {{\text{e}}^{ - {x^2}}}\left( { - 3{x^2} + 4x + 1} \right)\) \((x < 1)\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or \(f'(x) = {{\text{e}}^{ - {x^2}}}\left( {2{x^4} - 4{x^3} - 5{x^2} + 4x + 1} \right)\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = a\) \((x > 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substitute \(x = 1\) in <strong>both </strong>expressions and equate</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 2{{\text{e}}^{ - 1}} = a\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substitute value of \(a\) and find \(b = 4{{\text{e}}^{ - 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(f'(x) = {{\text{e}}^{ - {x^2}}}\left( {2{x^4} - 4{x^3} - 5{x^2} + 4x + 1} \right)\) (for \(x \leqslant 1\)) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1) = f( - 1)\) <em><strong>M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Rolle’s theorem statement <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by Rolle’s Theorem, \(f'(x)\) has a zero in \(\left] { - 1,1} \right[\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence quartic equation has a root in \(\left] { - 1,1} \right[\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) let \(g(x) = 2{x^4} - 4{x^3} - 5{x^2} + 4x + 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g( - 1) = g(1) < 0\) and \(g(0) > 0\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(g\) is a polynomial function it is continuous in \(\left[ { - 1,0} \right]\) and \(\left[ {0,{\text{ 1}}} \right]\). <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or \(g\) is a polynomial function continuous in any interval of real numbers)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then the graph of \(g\) must cross the <em>x</em>-axis at least once in \(\left] { - 1,0} \right[\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and at least once in \(\left] {0,1} \right[\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using the Maclaurin series for \({(1 + x)^n}\), write down and simplify the Maclaurin series approximation for \({(1 - {x^2})^{ - \frac{1}{2}}}\) as far as the term in \({x^4}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Use your result to show that a series approximation for arccos <em>x</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\arccos x \approx \frac{\pi }{2} - x - \frac{1}{6}{x^3} - \frac{3}{{40}}{x^5}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Evaluate \(\mathop {\lim }\limits_{x \to 0} \frac{{\frac{\pi }{2} - \arccos ({x^2}) - {x^2}}}{{{x^6}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Use the series approximation for \(\arccos x\) to find an approximate value for</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_0^{0.2} {\arccos \left( {\sqrt x } \right){\text{d}}x} ,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">giving your answer to 5 decimal places. Does your answer give the actual value of the integral to 5 decimal places?</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) using or obtaining \({(1 + x)^n} = 1 + nx + \frac{{n(n - 1)}}{2}{x^2} + \ldots \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 - {n^2})^{ - \frac{1}{2}}} = 1 + ( - {x^2}) \times \left( { - \frac{1}{2}} \right) + \frac{{{{( - {x^2})}^2}}}{2} \times \left( { - \frac{1}{2}} \right) \times \left( { - \frac{3}{2}} \right) + \ldots \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + \frac{1}{2}{x^2} + \frac{3}{8}{x^4} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) integrating, and changing sign</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arccos x = - x - \frac{1}{6}{x^3} - \frac{3}{{40}}{x^5} + C + \ldots \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">put <em>x</em> = 0,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{\pi }{2} = C\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\arccos x \approx \frac{\pi }{2} - x - \frac{1}{6}{x^3} - \frac{3}{{40}}{x^5}} \right)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using \(\arccos {x^2} \approx \frac{\pi }{2} - {x^2} - \frac{1}{6}{x^6} - \frac{3}{{40}}{x^{10}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{\frac{\pi }{2} - \arccos {x^2} - {x^2}}}{{{x^6}}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{{x^6}}}{6} + {\text{higher powers}}}}{{{x^6}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{6}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using l’Hôpital’s Rule <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{limit}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{\sqrt {1 - {x^4}} }} \times 2x - 2x}}{{6{x^5}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{{\sqrt {1 - {x^4}} }} - 1}}{{3{x^4}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \frac{{ - \frac{1}{2} \times \frac{1}{{{{(1 - {x^4})}^{3/2}}}} \times - 4{x^3}}}{{12{x^3}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{6}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) \(\int_0^{0.2} {\arccos \sqrt x {\text{d}}x \approx \int_0^{0.2} {\left( {\frac{\pi }{2} - {x^{\frac{1}{2}}} - \frac{1}{6}{x^{\frac{3}{2}}} - \frac{3}{{40}}{x^{\frac{5}{2}}}} \right){\text{d}}x} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{\pi }{2}x - \frac{2}{3}{x^{\frac{3}{2}}} - \frac{1}{{15}}{x^{\frac{5}{2}}} - \frac{3}{{140}}{x^{\frac{7}{2}}}} \right]_0^{0.2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{2} \times 0.2 - \frac{2}{3} \times {0.2^{\frac{3}{2}}} - \frac{1}{{15}} \times {0.2^{\frac{5}{2}}} - \frac{3}{{140}} \times {0.2^{\frac{7}{2}}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0.25326 (to 5 decimal places) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept integration of the series approximation using a GDC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using a GDC, the actual value is 0.25325 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the approximation is not correct to 5 decimal places <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates ignored the instruction in the question to use the series for \({(1 + x)^n}\) to deduce the series for \({(1 - {x^2})^{ - 1/2}}\) and attempted instead to obtain it by successive differentiation. It was decided at the standardisation meeting to award full credit for this method although in the event the algebra proved to be too difficult for many. Many candidates used l’Hopital’s Rule in (c) – this was much more difficult algebraically than using the series and it usually ended unsuccessfully. Candidates should realise that if a question on evaluating an indeterminate limit follows the determination of a Maclaurin series then it is likely that the series will be helpful in evaluating the limit. Part (d) caused problems for many candidates with algebraic errors being common. Many candidates failed to realise that the best way to find the exact value of the integral was to use the calculator.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using l’Hopital’s Rule, show that \(\mathop {\lim }\limits_{x \to \infty } x{{\text{e}}^{ - x}} = 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine \(\int_0^a {x{{\text{e}}^{ - x}}{\text{d}}x} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Show that the integral \(\int_0^\infty {x{{\text{e}}^{ - x}}{\text{d}}x} \) is convergent and find its value.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(\mathop {\lim }\limits_{x \to \infty } \frac{x}{{{{\text{e}}^x}}} = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{{{\text{e}}^x}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Using integration by parts </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^a {x{{\text{e}}^{ - x}}{\text{d}}x} = \left[ { - x{{\text{e}}^{ - x}}} \right]_0^a + \int_0^a {{{\text{e}}^{ - x}}{\text{d}}x} \) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - a{{\text{e}}^{ - a}} - \left[ {{e^{ - x}}} \right]_0^a\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - a{{\text{e}}^{ - a}} - {{\text{e}}^{ - a}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c)<strong><em> </em></strong>Since \({{\text{e}}^{ - a}}\) and \(a{{\text{e}}^{ - a}}\) are both convergent (to zero), the integral is convergent. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Its value is 1. <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>Total [9 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates made a reasonable attempt at (a). In (b), however, it was disappointing to note that some candidates were unable to use integration by parts to perform the integration. In (c), while many candidates obtained the correct value of the integral, proof of its convergence was often unconvincing.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By successive differentiation find the first four non-zero terms in the Maclaurin series for \(f(x) = (x + 1)\ln (1 + x) - x\).</p>
<div class="marks">[11]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce that, for \(n \geqslant 2\), the coefficient of \({x^n}\) <span class="s1">in this series is \({( - 1)^n}\frac{1}{{n(n - 1)}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By applying the ratio test, find the radius of convergence for this Maclaurin series.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(f(x) = (x + 1)\ln (1 + x) - x\) \(f(0) = 0\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(f'(x) = \ln (1 + x) + \frac{{x + 1}}{{1 + x}} - 1{\text{ }}\left( { = \ln (1 + x)} \right)\) \(f'(0) = 0\) </span><strong><em>M1A1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(f''(x) = {(1 + x)^{ - 1}}\) \(f''(0) = 1\) </span><strong><em>A1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(f'''(x) = - {(1 + x)^{ - 2}}\) \(f'''(0) = - 1\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({f^{(4)}}(x) = 2{(1 + x)^{ - 3}}\) \({f^{(4)}}(0) = 2\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({f^{(5)}}(x) = - 3 \times 2{(1 + x)^{ - 4}}\) \({f^{(5)}}(0) = - 3 \times 2\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(f(x) = \frac{{{x^2}}}{{2!}} - \frac{{1{x^3}}}{{3!}} + \frac{{2{x^4}}}{{4!}} - \frac{{6{x^5}}}{{5!}} \ldots \) </span><strong><em>M1A1</em></strong></p>
<p class="p1">\(f(x) = \frac{{{x^2}}}{{1 \times 2}} - \frac{{{x^3}}}{{2 \times 3}} + \frac{{{x^4}}}{{3 \times 4}} - \frac{{{x^5}}}{{4 \times 5}} \ldots \)</p>
<p class="p1">\(f(x) = \frac{{{x^2}}}{2} - \frac{{{x^3}}}{6} + \frac{{{x^4}}}{{12}} - \frac{{{x^5}}}{{20}} \ldots \)</p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Allow follow through from the first error in a derivative (provided future derivatives also include the chain rule), no follow through after a second error in a derivative.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[11 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({f^{(n)}}(0) = {( - 1)^n}(n - 2)!\) So coefficient of \({x^n} = {( - 1)^n}\frac{{(n - 2)!}}{{n!}}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="s1">coefficient of \({x^n}\)</span> is \({( - 1)^n}\frac{1}{{n(n - 1)}}\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">applying the ratio test to the series of absolute terms</p>
<p class="p1"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{{{{\left| x \right|}^{n + 1}}}}{{(n + 1)n}}}}{{\frac{{{{\left| x \right|}^n}}}{{n(n - 1)}}}}\) </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \mathop {\lim }\limits_{n \to \infty } \left| x \right|\frac{{(n - 1)}}{{(n + 1)}}\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \left| x \right|\) </span><strong><em>A1</em></strong></p>
<p class="p1">so for convergence \(\left| x \right| < 1\), giving radius of convergence as 1 <span class="Apple-converted-space"> </span><strong><em>(M1)A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\mathop {\lim }\limits_{x \to \frac{1}{2}} \left( {\frac{{\left( {\frac{1}{4} - {x^2}} \right)}}{{\cot \pi x}}} \right)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>using l’Hôpital’s Rule</strong> <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to \frac{1}{2}} \left( {\frac{{\left( {\frac{1}{4} - {x^2}} \right)}}{{\cot \pi x}}} \right) = \mathop {\lim }\limits_{x \to \frac{1}{2}} \left[ {\frac{{ - 2}}{{ - \pi {\text{cose}}{{\text{c}}^2}\pi x}}} \right]\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A1</em></strong></p>
<p style="margin: 0px 0px 0px 30px; font: 29px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 1}}{{ - \pi {\text{cose}}{{\text{c}}^2}\frac{\pi }{2}}} = \frac{1}{\pi }\) <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was accessible to the vast majority of candidates, who recognised that L’Hôpital’s rule was required. However, some candidates omitted the factor \(\pi \) in the differentiation of \({\cot \pi x}\). Some candidates replaced \({\cot \pi x}\) by \(\cos \pi x{\text{/}}\sin \pi x\), which is a valid method but the extra algebra involved often led to an incorrect answer. Many fully correct solutions were seen.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = 2x + \left| x \right|\) , \(x \in \mathbb{R}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that <em>f</em> is continuous but not differentiable at the point (0, 0) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of \(\int_{ - a}^a {f(x){\text{d}}x} \) where \(a > 0\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we note that \(f(0) = 0,{\text{ }}f(x) = 3x\) for \(x > 0\) and \(f(x) = x{\text{ for }}x < 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} x = 0\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} 3x = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(f(0) = 0\) , the function is continuous when <em>x</em> = 0 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{h}{h} = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(0 + h) - f(0)}}{h} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{3h}}{h} = 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">these limits are unequal <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>f</em> is not differentiable when <em>x</em> = 0 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{ - a}^a {f(x){\text{d}}x = \int_{ - a}^0 {x{\text{d}}x + \int_0^a {3x{\text{d}}x} } } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{x^2}}}{2}} \right]_{ - a}^0 + \left[ {\frac{{3{x^2}}}{2}} \right]_0^a\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a^2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve \(y = \frac{1}{x},{\text{ }}x > 0\).</p>
</div>
<div class="specification">
<p>Let \({U_n} = \sum\limits_{r = 1}^n {\frac{1}{r} - \ln n} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By drawing a diagram and considering the area of a suitable region under the curve, show that for \(r > 0\),</p>
<p>\[\frac{1}{{r + 1}} < \ln \left( {\frac{{r + 1}}{r}} \right) < \frac{1}{r}.\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that \(n\) is a positive integer greater than one, show that</p>
<p>\(\sum\limits_{r = 1}^n {\frac{1}{r} > \ln (1 + n)} \);</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that \(n\) is a positive integer greater than one, show that</p>
<p>\(\sum\limits_{r = 1}^n {\frac{1}{r} < 1 + \ln n} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that \(n\) is a positive integer greater than one, show that</p>
<p>\({U_n} > 0\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, given that \(n\) is a positive integer greater than one, show that</p>
<p>\({U_{n + 1}} < {U_n}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why these two results prove that \(\{ {U_n}\} \) is a convergent sequence.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-10_om_13.46.42.png" alt="M17/5/MATHL/HP3/ENG/TZ0/SE/M/05.a"></p>
<p><strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Curve, both rectangles and correct \(x\)values required.</p>
<p> </p>
<p>area of rectangles \(\frac{1}{r}\) and \(\frac{1}{{1 + r}}\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Correct values on the \(y\)-axis are sufficient evidence for this mark if not otherwise indicated.</p>
<p> </p>
<p>in the above diagram, the area below the curve between \(x = r\) and \(x = r + 1\) is between the areas of the larger and smaller rectangle</p>
<p><strong><em>or </em></strong>\(\frac{1}{{r + 1}} < \int\limits_r^{r + 1} {\frac{{{\text{d}}x}}{x} < \frac{1}{r}} \) <strong><em>(R1)</em></strong></p>
<p>integrating, \(\int_r^{r + 1} {\frac{{{\text{d}}x}}{x} = [\ln x]_r^{r + 1}\,\,\,\left( { = \ln (r + 1) - \ln (r)} \right)} \) <strong><em>A1</em></strong></p>
<p>\(\frac{1}{{r + 1}} < \ln \left( {\frac{{r + 1}}{r}} \right) < \frac{1}{r}\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>summing the right-hand part of the above inequality from \(r = 1\) to \(r = n\),</p>
<p>\(\sum\limits_{r = 1}^n {\frac{1}{r}} > \sum\limits_{r = 1}^n {\ln \left( {\frac{{r + 1}}{r}} \right)} \) <strong><em>M1</em></strong></p>
<p>\( = \ln \left( {\frac{2}{1}} \right) + \ln \left( {\frac{3}{2}} \right) + \ldots + \ln \left( {\frac{n}{{n - 1}}} \right) + \ln \left( {\frac{{n + 1}}{n}} \right)\) <strong><em>(A1)</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\( = \ln \left( {\frac{2}{1} \times \frac{3}{2} \times \ldots \times \frac{n}{{n - 1}} \times \frac{{n + 1}}{n}} \right)\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\ln 2 - \ln 1 + \ln 3 - \ln 2 + \ldots + \ln (n + 1) - \ln (n)\) <strong><em>A1</em></strong></p>
<p>\( = \ln (n + 1)\) <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sum\limits_{r = 1}^n {\frac{1}{r} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} < 1 + \ln \left( {\frac{2}{1}} \right) + \ln \left( {\frac{3}{2}} \right) + \ldots + \ln \left( {\frac{n}{{n - 1}}} \right)} \) <strong><em>M1A1A1</em></strong></p>
<p>\(\left( {1 + \sum\limits_{r = 1}^{n - 1} {\frac{1}{{r + 1}} < 1 + \sum\limits_{r = 1}^{n - 1} {\ln \left( {\frac{{r + 1}}{r}} \right)} } } \right)\)</p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1 </em></strong>is for using the correct inequality from (a), <strong><em>A1 </em></strong>for both sides beginning with 1, <strong><em>A1 </em></strong>for completely correct expression.</p>
<p> </p>
<p><strong>Note:</strong> The 1 might be added after the sums have been calculated.</p>
<p> </p>
<p>\( = 1 + \ln n\) <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from (b)(i) \({U_n} > \ln (1 + n) - \ln n > 0\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({U_{n + 1}} - {U_n} = \sum\limits_{r = 1}^{n + 1} {\frac{1}{r} - \ln (n + 1) - \sum\limits_{r = 1}^n {\frac{1}{r} + \ln n} } \) <strong><em>M1</em></strong></p>
<p>\( = \frac{1}{{n + 1}} - \ln \left( {\frac{{n + 1}}{n}} \right)\) <strong><em>A1</em></strong></p>
<p>\( < 0\) (using the result proved in (a)) <strong><em>A1</em></strong></p>
<p>\({U_{n + 1}} < {U_n}\) <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>it follows from the two results that \(\{ {U_n}\} \) cannot be divergent either in the sense of tending to \( - \infty \) or oscillating therefore it must be convergent <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept the use of the result that a bounded (monotonically) decreasing sequence is convergent (allow “positive, decreasing sequence”).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">By using the series expansions for \({{\text{e}}^{{x^2}}}\) and cos <em>x</em> evaluate \(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right).\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using l’Hopital’s rule,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \left( {\frac{{\ln x}}{{\sin 2\pi x}}} \right) = \mathop {\lim }\limits_{x \to 1} \left( {\frac{{\frac{1}{x}}}{{2\pi \cos 2\pi x}}} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{2\pi }}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - {{\text{e}}^{{x^2}}}}}{{1 - \cos x}}} \right) = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{1 - \left( {1 + {x^2} + \frac{{{x^4}}}{{2!}} + \frac{{{x^6}}}{{3!}} + ...} \right)}}{{1 - \left( {1 - \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}} - ...} \right)}}} \right)\) <em><strong>M1A1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for evidence of using the two series.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - {x^2} - \frac{{{x^4}}}{{2!}} - \frac{{{x^6}}}{{3!}} - ...} \right)}}{{\left( {\frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{4!}} + ...} \right)}}} \right)\) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 1 - \frac{{{x^2}}}{{2!}} - \frac{{{x^4}}}{{3!}} - ...} \right)}}{{\left( {\frac{1}{{2!}} - \frac{{{x^2}}}{{4!}} + ...} \right)}}} \right)\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 1}}{{\frac{1}{2}}} = - 2\) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2x - \frac{{4{x^3}}}{{2!}} - \frac{{6{x^5}}}{{3!}} - ...} \right)}}{{\left( {\frac{{2x}}{{2!}} - \frac{{4{x^3}}}{{4!}} + ...} \right)}}} \right)\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\left( { - 2 - \frac{{4{x^2}}}{{2!}} - \frac{{6{x^4}}}{{3!}} - ...} \right)}}{{\left( {1 - \frac{{4{x^2}}}{{4!}} + ...} \right)}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 2}}{1} = - 2\) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done but too often the instruction to use series in part (b) was ignored. When this hint was observed correct solutions followed.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">A curve that passes through the point (1, 2) is defined by the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x(1 + {x^2} - y){\text{ }}.\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Use Euler’s method to get an approximate value of <em>y </em>when <em>x </em>= 1.3 , taking steps of 0.1. Show intermediate steps to four decimal places in a table.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) How can a more accurate answer be obtained using Euler’s method?</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Solve the differential equation giving your answer in the form </span><em style="font-family: 'times new roman', times; font-size: medium;">y </em><span style="font-family: 'times new roman', times; font-size: medium;">= </span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">(</span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;">) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x(1 + {x^2} - y)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A2 </em></strong>for complete table.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> Award <strong><em>A1 </em></strong>for a reasonable attempt.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1.3) = 2.14\,\,\,\,\,{\text{(accept 2.141)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Decrease the step size <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) </span><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x(1 + {x^2} - y)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2xy = 2x(1 + {x^2})\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Integrating factor is \({{\text{e}}^{\int {2x{\text{d}}x} }} = {{\text{e}}^{{x^2}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So, \({{\text{e}}^{{x^2}}}y = \int {(2x} {{\text{e}}^{{x^2}}} + 2x{{\text{e}}^{{x^2}}}{x^2}){\text{d}}x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{{x^2}}} + {x^2}{{\text{e}}^{{x^2}}} - \int {2x{{\text{e}}^{{x^2}}}{\text{d}}x} \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{{x^2}}} + {x^2}{{\text{e}}^{{x^2}}} - {{\text{e}}^{{x^2}}} + k\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {x^2}{{\text{e}}^{{x^2}}} + k\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {x^2} + k{{\text{e}}^{ - {x^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1,{\text{ }}y = 2 \to 2 = 1 + k{{\text{e}}^{ - 1}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = {\text{e}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {x^2} + {{\text{e}}^{1 - {x^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some incomplete tables spoiled what were often otherwise good solutions. Although the intermediate steps were asked to four decimal places the answer was not and the usual degree of IB accuracy was expected.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates surprisingly could not solve what was a fairly easy differential equation in part (b).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The variables <em>x</em> and <em>y</em> are related by \(\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x = \cos x\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the Maclaurin series for <em>y</em> up to and including the term in \({x^2}\) given that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = - \frac{\pi }{2}\) when <em>x</em> = 0 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Solve the differential equation given that <em>y</em> = 0 when \(x = \pi \) . Give the solution in the form \(y = f(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) from \(\frac{{{\text{d}}y}}{{{\text{d}}x}} - y\tan x + \cos x\) , \(f'(0) = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">now \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = y{\sec ^2}x + \frac{{{\text{d}}y}}{{{\text{d}}x}}\tan x - \sin x\) <strong><em>M1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for each term on RHS.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow f''(0) = - \frac{\pi }{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = - \frac{\pi }{2} + x - \frac{{\pi {x^2}}}{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) recognition of integrating factor <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">integrating factor is \({{\text{e}}^{\int { - \tan x{\text{d}}x} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{\ln \cos x}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \cos x\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y\cos x = \int {{{\cos }^2}x{\text{d}}x} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y\cos x = \frac{1}{2}\int {(1 + \cos 2x){\text{d}}x} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y\cos x = \frac{x}{2} + \frac{{\sin 2x}}{4} + k\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = \pi ,{\text{ }}y = 0 \Rightarrow k = - \frac{\pi }{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y\cos x = \frac{x}{2} + \frac{{\sin 2x}}{4} - \frac{\pi }{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = \sec x\left( {\frac{x}{2} + \frac{{\sin 2x}}{4} - \frac{\pi }{2}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of the question was set up in an unusual way, which caused a problem for a number of candidates as they tried to do part (b) first and then find the Maclaurin series by a standard method. Few were successful as they were usually weaker candidates and made errors in finding the solution \(y = f(x)\) . The majority of candidates knew how to start part (b) and recognised the need to use an integrating factor, but a number failed because they missed out the negative sign on the integrating factor, did not realise that \({{\text{e}}^{\ln \cos x}} = \cos x\) or were unable to integrate \({{{\cos }^2}x}\) . Having said this, a number of candidates succeeded in gaining full marks on this question.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation \(x\frac{{{\text{d}}y}}{{{\text{d}}x}} - y = {x^p} + 1\) where \(x \in \mathbb{R},\,x \ne 0\) and \(p\) is a positive integer, \(p > 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation given that \(y = - 1\) when \(x = 1\). Give your answer in the form \(y = f\left( x \right)\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the \(x\)-coordinate(s) of the points on the curve \(y = f\left( x \right)\) where \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) satisfy the equation \({x^{p - 1}} = \frac{1}{p}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the set of values for \(p\) such that there are two points on the curve \(y = f\left( x \right)\) where \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\). Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{x} = {x^{p - 1}} + \frac{1}{x}\) <em><strong>(M1)</strong></em></p>
<p>integrating factor \( = {{\text{e}}^{\int { - \frac{1}{x}{\text{d}}x} }}\) <em><strong>M1</strong></em></p>
<p>\({\text{ = }}{{\text{e}}^{ - {\text{ln}}\,x}}\) <em><strong>(A1)</strong></em></p>
<p>= \(\frac{1}{x}\) <em><strong>A1</strong></em></p>
<p>\(\frac{1}{x}\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{y}{{{x^2}}} = {x^{p - 2}} + \frac{1}{{{x^2}}}\) <em><strong>(M1)</strong></em></p>
<p>\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{y}{x}} \right) = {x^{p - 2}} + \frac{1}{{{x^2}}}\)</p>
<p>\(\frac{y}{x} = \frac{1}{{p - 1}}{x^{p - 1}} - \frac{1}{x} + C\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone the absence of <em>C</em>.</p>
<p>\(y = \frac{1}{{p - 1}}{x^p} + Cx - 1\)</p>
<p>substituting \(x = 1\), \(y = - 1 \Rightarrow C = - \frac{1}{{p - 1}}\) <em><strong>M1</strong> </em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to find their value of <em>C</em>.</p>
<p>\(y = \frac{1}{{p - 1}}\left( {{x^p} - x} \right) - 1\) <em><strong>A1</strong></em></p>
<p><em><strong>[8 marks]</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>put \(y = vx\) so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <em><strong>M1(A1)</strong></em></p>
<p>substituting, <em><strong>M1 </strong></em></p>
<p>\(x\left( {v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}} \right) - vx = {x^p} + 1\) <em><strong>(A1)</strong></em></p>
<p>\(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = {x^{p - 1}} + \frac{1}{x}\) <em><strong>M1</strong></em></p>
<p>\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = {x^{p - 2}} + \frac{1}{{{x^2}}}\)</p>
<p>\(v = \frac{1}{{p - 1}}{x^{p - 1}} - \frac{1}{x} + C\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone the absence of <em>C</em>.</p>
<p>\(y = \frac{1}{{p - 1}}{x^p} + Cx - 1\)</p>
<p>substituting \(x = 1\), \(y = - 1 \Rightarrow C = - \frac{1}{{p - 1}}\) <em><strong>M1</strong> </em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to find their value of <em>C</em>.</p>
<p>\(y = \frac{1}{{p - 1}}\left( {{x^p} - x} \right) - 1\) <em><strong>A1</strong></em></p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) and solve \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) for \(x\)</p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{{p - 1}}\left( {p{x^{p - 1}} - 1} \right)\) <em><strong>M1</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow p{x^{p - 1}} - 1 = 0\) <em><strong>A1</strong></em></p>
<p>\(p{x^{p - 1}} = 1\)</p>
<p><strong>Note:</strong> Award a maximum of <em><strong>M1A0</strong> </em>if a candidate’s answer to part (a) is incorrect.</p>
<p>\({x^{p - 1}} = \frac{1}{p}\) <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>substitute \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) and their \(y\) into the differential equation and solve for \(x\)</p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow - \left( {\frac{{{x^p} - x}}{{p - 1}}} \right) + 1 = {x^p} + 1\) <em><strong>M1</strong></em></p>
<p>\({x^p} - x = {x^p} - p{x^p}\) <em><strong>A1</strong></em></p>
<p>\(p{x^{p - 1}} = 1\)</p>
<p><strong>Note:</strong> Award a maximum of <em><strong>M1A0</strong> </em>if a candidate’s answer to part (a) is incorrect.</p>
<p>\({x^{p - 1}} = \frac{1}{p}\) <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>there are two solutions for \(x\) when \(p\) is odd (and \(p > 1\) <em><strong>A1</strong></em></p>
<p>if \(p - 1\) is even there are two solutions (to \({x^{p - 1}} = \frac{1}{p}\))</p>
<p>and if \(p - 1\) is odd there is only one solution (to \({x^{p - 1}} = \frac{1}{p}\)) <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Only award the <em><strong>R1</strong> </em>if both cases are considered.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the limit comparison test to prove that \(\sum\limits_{n = 1}^\infty {\frac{1}{{n(n + 1)}}} \) converges.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the Maclaurin series for \(\ln (1 + x)\) , show that the Maclaurin series for \(\left( {1 + x} \right)\ln \left( {1 + x} \right)\) is \(x + \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^{n + 1}}{x^{n + 1}}}}{{n(n + 1)}}} \)</span><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">apply the limit comparison test with \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{n(n + 1)}}}}{{\frac{1}{{{n^2}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^2}}}{{n(n + 1)}} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{1 + \frac{1}{n}}} = 1\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(since the limit is finite and \( \ne 0\) ) both series do the same <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we know that \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges and hence \(\sum\limits_{n = 1}^\infty {\frac{1}{{n(n + 1)}}} \) also converges <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((1 + x)\ln (1 + x) = (1 + x)\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4}...} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3} - \frac{{{x^4}}}{4}...} \right) + \left( {{x^2} - \frac{{x3}}{2} + \frac{{{x^4}}}{3} - \frac{{{x^5}}}{4}...} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x + \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}{x^{n + 1}}}}{{n + 1}} + \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^{n + 1}}{x^{n + 1}}}}{n}} } \) <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x + \sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}{x^{n + 1}}\left( {\frac{{ - 1}}{{n + 1}} + \frac{1}{n}} \right)} \) <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x + \left( {1 - \frac{1}{2}} \right){x^2} - \left( {\frac{1}{2} - \frac{1}{3}} \right){x^3} + \left( {\frac{1}{3} - \frac{1}{4}} \right){x^4} - …\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x + \sum\limits_{n = 1}^\infty {{{( - 1)}^{n + 1}}{x^{n + 1}}\left( {\frac{1}{n} - \frac{1}{{n + 1}}} \right)} \) <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x + \sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^{n + 1}}{x^{n + 1}}}}{{n(n + 1)}}} \) <em><strong>AG</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates and teachers need to be aware that the Limit comparison test is distinct from the comparison test. Quite a number of candidates lost most of the marks for this part by doing the wrong test.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates failed to state that because the result was finite and not equal to zero then the two series converge or diverge together. Others forgot to state, with a reason, that \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates and teachers need to be aware that the Limit comparison test is distinct from the comparison test. Quite a number of candidates lost most of the marks for this part by doing the wrong test.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates failed to state that because the result was finite and not equal to zero then the two series converge or diverge together. Others forgot to state, with a reason, that \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) finding the partial fractions was well done. The second part involving the use of telescoping series was less well done, and students were clearly not as familiar with this technique as with some others.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (c) was the least well done of all the questions. It was expected that students would use explicitly the result from the first part of 4(b) or show it once again in order to give a complete answer to this question, rather than just assuming that a pattern spotted in the first few terms would continue.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates need to be informed that unless specifically told otherwise they may use without proof any of the Maclaurin expansions given in the Information Booklet. There were many candidates who lost time and gained no marks by trying to derive the expansion for \(\ln (1 + x)\).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In this question you may assume that \(\arctan x\) is continuous and differentiable for \(x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the infinite geometric series</p>
<p>\[1 - {x^2} + {x^4} - {x^6} + \ldots \;\;\;\left| x \right| < 1.\]</p>
<p>Show that the sum of the series is \(\frac{1}{{1 + {x^2}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that an expansion of \(\arctan x\) is \(\arctan x = x - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{7} + \ldots \)</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(f\) is a continuous function defined on \([a,{\text{ }}b]\) and differentiable on \(]a,{\text{ }}b[\) with \(f'(x) > 0\) on \(]a,{\text{ }}b[\).</p>
<p class="p1">Use the mean value theorem to prove that for any \(x,{\text{ }}y \in [a,{\text{ }}b]\), if \(y > x\) then \(f(y) > f(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Given \(g(x) = x - \arctan x\), prove that \(g'(x) > 0\), for \(x > 0\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Use the result from part (c) to prove that \(\arctan x < x\), for \(x > 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the result from part (c) to prove that \(\arctan x > x - \frac{{{x^3}}}{3}\), for \(x > 0\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(\frac{{16}}{{3\sqrt 3 }} < \pi < \frac{6}{{\sqrt 3 }}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(r = - {x^2},\;\;\;S = \frac{1}{{1 + {x^2}}}\) <strong><em>A1AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{{1 + {x^2}}} = 1 - {x^2} + {x^4} - {x^6} + \ldots \)</p>
<p><strong>EITHER</strong></p>
<p>\(\int {\frac{1}{{1 + {x^2}}}{\text{d}}x} = \int {1 - {x^2} + {x^4} - {x^6} + \ldots } {\text{d}}x\) <strong><em>M1</em></strong></p>
<p>\(\arctan x = c + x - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{7} + \ldots \) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Do not penalize the absence of <em>\(c\) </em>at this stage.</p>
<p> </p>
<p>when \(x = 0\) we have \(\arctan 0 = c\) hence \(c = 0\) <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\int_0^x {\frac{1}{{1 + {t^2}}}{\text{d}}t = } \int_0^x {1 - {t^2} + {t^4}} - {t^6} + \ldots {\text{d}}t\) <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Allow <em>\(x\) </em>as the variable as well as the limit.</p>
<p><strong><em>M1 </em></strong>for knowing to integrate, <strong><em>A1 </em></strong>for each of the limits.</p>
<p> </p>
<p>\([\arctan t]_0^x = \left[ {t - \frac{{{t^3}}}{3} + \frac{{{t^5}}}{5} - \frac{{{t^7}}}{7} + \ldots } \right]_0^x\) <strong><em>A1</em></strong></p>
<p>hence \(\arctan x = x - \frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} - \frac{{{x^7}}}{7} + \ldots \) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">applying the \(MVT\) to the function \(f\) on the interval \([x,{\text{ }}y]\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(\frac{{f(y) - f(x)}}{{y - x}} = f'(c)\;\;\;({\text{for some }}c \in ]x,{\text{ }}y[)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{f(y) - f(x)}}{{y - x}} > 0\;\;\;({\text{as }}f'(c) > 0)\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\(f(y) - f(x) > 0{\text{ as }}y > x\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\( \Rightarrow f(y) > f(x)\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>If they use <em>\(x\) </em>rather than \(c\) they should be awarded <strong><em>M1A0R0</em></strong>, but could get the next <strong><em>R1</em></strong>.</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(g(x) = x - \arctan x \Rightarrow g'(x) = 1 - \frac{1}{{1 + {x^2}}}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">this is greater than zero because \(\frac{1}{{1 + {x^2}}} < 1\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">so \(g'(x) > 0\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>(\(g\) is a continuous function defined on \([0,{\text{ }}b]\) and differentiable on \(]0,{\text{ }}b[\) with \(g'(x) > 0\) on \(]0,{\text{ }}b[\) for all \(b \in \mathbb{R}\))</p>
<p class="p1"><span class="s1">(If </span>\(x \in [0,{\text{ }}b]\) then) from part (c) \(g(x) > g(0)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(x - \arctan x > 0 \Rightarrow \arctan x < x\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p2">(as <em>\(b\) </em>can take any positive value it is true for all <span class="s2">\(x > 0\)) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></span></p>
<p class="p2"><span class="s2"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let \(h(x) = \arctan x - \left( {x - \frac{{{x^3}}}{3}} \right)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p2">(\(h\) is a continuous function defined on \([0,{\text{ }}b]\) and differentiable on <span class="s1">\(]0,{\text{ }}b[\) with \(h'(x) > 0\) on \(]0,{\text{ }}b[\))</span></p>
<p class="p1">\(h'(x) = \frac{1}{{1 + {x^2}}} - (1 - {x^2})\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\( = \frac{{1 - (1 - {x^2})(1 + {x^2})}}{{1 + {x^2}}} = \frac{{{x^4}}}{{1 + {x^2}}}\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">\(h'(x) > 0\) hence \(({\text{for }}x \in [0,{\text{ }}b]){\text{ }}h(x) > h(0)( = 0)\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\( \Rightarrow \arctan x > x - \frac{{{x^3}}}{3}\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: </strong>Allow correct working with \(h(x) = x - \frac{{{x^3}}}{3} - \arctan x\).</p>
<p class="p1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of \(x - \frac{{{x^3}}}{3} < \arctan x < x\) <strong><em>M1</em></strong></p>
<p>choice of \(x = \frac{1}{{\sqrt 3 }}\) <strong><em>A1</em></strong></p>
<p>\(\frac{1}{{\sqrt 3 }} - \frac{1}{{9\sqrt 3 }} < \frac{\pi }{6} < \frac{1}{{\sqrt 3 }}\) <strong><em>M1</em></strong></p>
<p>\(\frac{8}{{9\sqrt 3 }} < \frac{\pi }{6} < \frac{1}{{\sqrt 3 }}\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award final <strong><em>A1 </em></strong>for a correct inequality with a single fraction on each side that leads to the final answer.</p>
<p> </p>
<p>\(\frac{{16}}{{3\sqrt 3 }} < \pi < \frac{6}{{\sqrt 3 }}\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [22 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates picked up this mark for realizing the common ratio was \( - {x^2}\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Quite a few candidates did not recognize the importance of ‘hence’ in this question, losing a lot of time by trying to work out the terms from first principles.</p>
<p class="p1">Of those who integrated the formula from part (a) only a handful remembered to include the ‘\( + c\)’ term, and to verify that this must be equal to zero.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to achieve some marks on this question. The most commonly lost mark was through not stating that the inequality was unchanged when multiplying by \(y - x{\text{ as }}y > x\).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The first part of this question proved to be very straightforward for the majority of candidates.</p>
<p class="p1">In (ii) very few realized that they had to replace the lower variable in the formula from part (c) by zero.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Candidates found this part difficult, failing to spot which function was required.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates, even those who did not successfully complete (d) (ii) or (e), realized that these parts gave them the necessary inequality.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {\frac{{2x}}{{1 + {x^2}}}} \right)y = {x^2}\), <span class="s1">given that \(y = 2\) when \(x = 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(1 + {x^2}\)<span class="s2"> </span>is an integrating factor for this differential equation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence solve this differential equation. Give the answer in the form \(y = f(x)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">attempting to find an integrating factor <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int {\frac{{2x}}{{1 + {x^2}}}{\text{d}}x = \ln (1 + {x^2})} \) </span><strong><em>(M1)A1</em></strong></p>
<p class="p1">IF is \({{\text{e}}^{\ln (1 + {x^2})}}\) <span class="Apple-converted-space"> </span><strong><em>(M1)A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = 1 + {x^2}\) </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">multiply by the integrating factor</p>
<p class="p1"><span class="Apple-converted-space">\((1 + {x^2})\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2xy = {x^2}(1 + {x^2})\) </span><strong><em>M1A1</em></strong></p>
<p class="p1">left hand side is equal to the derivative of \((1 + {x^2})y\)</p>
<p class="p1"><strong><em>A3</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\((1 + {x^2})\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2xy = (1 + {x^2}){x^2}\) </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(\frac{{\text{d}}}{{{\text{d}}x}}\left[ {(1 + {x^2})y} \right] = {x^2} + {x^4}\)</p>
<p class="p1"><span class="Apple-converted-space">\((1 + {x^2})y = \left( {\int {{x^2} + {x^4}{\text{d}}x = } } \right){\text{ }}\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5}( + c)\) </span><strong><em>A1A1</em></strong></p>
<p class="p1">\(y = \frac{1}{{1 + {x^2}}}\left( {\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + c} \right)\)</p>
<p class="p1"><span class="Apple-converted-space">\(x = 0,{\text{ }}y = 2 \Rightarrow c = 2\) </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(y = \frac{1}{{1 + {x^2}}}\left( {\frac{{{x^3}}}{3} + \frac{{{x^5}}}{5} + 2} \right)\) </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = \frac{1}{{1 + {x^2}}},{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Illustrate graphically the inequality, \(\frac{1}{5}\sum\limits_{r = 1}^5 {f\left( {\frac{r}{5}} \right) < \int_0^1 {f(x){\text{d}}x < \frac{1}{5}\sum\limits_{r = 0}^4 {f\left( {\frac{r}{5}} \right)} } } \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the inequality in part (a) to find a lower and upper bound for \(\pi \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\sum\limits_{r = 0}^{n - 1} {{{( - 1)}^r}{x^{2r}} = \frac{{1 + {{( - 1)}^{n - 1}}{x^{2n}}}}{{1 + {x^2}}}} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(\pi = 4\left( {\sum\limits_{r = 0}^{n - 1} {\frac{{{{( - 1)}^r}}}{{2r + 1}} - {{( - 1)}^{n - 1}}\int_0^1 {\frac{{{x^{2n}}}}{{1 + {x^2}}}{\text{d}}x} } } \right)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong><em><img src="images/Schermafbeelding_2016-01-21_om_10.34.21.png" alt> A1A1A1</em></strong></p>
<p class="p1"><strong><em>A1 </em></strong>for upper rectangles, <strong><em>A1 </em></strong>for lower rectangles, <strong><em>A1 </em></strong>for curve in between with \(0 \le x \le 1\)</p>
<p class="p1">hence \(\frac{1}{5}\sum\limits_{r = 1}^5 {f\left( {\frac{r}{5}} \right) < \int_0^1 {f(x){\text{d}}x < \frac{1}{5}\sum\limits_{r = 0}^4 {f\left( {\frac{r}{5}} \right)} } } \) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to integrate from \(0\) to \(1\) <strong><em>(M1)</em></strong></p>
<p>\(\int_0^1 {f(x){\text{d}}x = [\arctan x]_0^1} \)</p>
<p>\( = \frac{\pi }{4}\) <strong><em>A1</em></strong></p>
<p>attempt to evaluate either summation <strong><em>(M1)</em></strong></p>
<p>\(\frac{1}{5}\sum\limits_{r = 1}^5 {f\left( {\frac{r}{5}} \right) < \frac{\pi }{4} < \frac{1}{5}\sum\limits_{r = 0}^4 {f\left( {\frac{r}{5}} \right)} } \)</p>
<p>hence \(\frac{4}{5}\sum\limits_{r = 1}^5 {f\left( {\frac{r}{5}} \right) < \pi < \frac{4}{5}\sum\limits_{r = 0}^4 {f\left( {\frac{r}{5}} \right)} } \)</p>
<p>so \(2.93 < \pi < 3.33\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept any answers that round to \(2.9\) and \(3.3\).</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>recognise \(\sum\limits_{r = 0}^{n - 1} {{{( - 1)}^r}{x^{2r}}} \) as a geometric series with \(r = - {x^2}\) <strong><em>M1</em></strong></p>
<p>sum of \(n\) terms is \(\frac{{1 - {{( - {x^2})}^n}}}{{1 - - {x^2}}} = \frac{{1 + {{( - 1)}^{n - 1}}{x^{2n}}}}{{1 + {x^2}}}\) <strong><em>M1AG</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\sum\limits_{r = 0}^{n - 1} {{{( - 1)}^r}(1 + {x^2}){x^{2r}} = (1 + {x^2}){x^0} - (1 + {x^2}){x^2} + (1 + {x^2}){x^4} + \ldots } \)</p>
<p>\( + {( - 1)^{n - 1}}(1 + {x^2}){x^{2n - 2}}\) <strong><em>M1</em></strong></p>
<p>cancelling out middle terms <strong><em>M1</em></strong></p>
<p>\( = 1 + {( - 1)^{n - 1}}{x^{2n}}\) <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sum\limits_{r = 0}^{n - 1} {{{( - 1)}^r}{x^{2r}} = \frac{1}{{1 + {x^2}}} + {{( - 1)}^{n - 1}}\frac{{{x^{2n}}}}{{1 + {x^2}}}} \)</p>
<p>integrating from \(0\) to \(1\) <strong><em>M1</em></strong></p>
<p>\(\left[ {\sum\limits_{r = 0}^{n - 1} {{{( - 1)}^r}\frac{{{x^{2r + 1}}}}{{2r + 1}}} } \right]_0^1 = \int_0^1 {f(x){\text{d}}x + {{( - 1)}^{n - 1}}\int_0^1 {\frac{{{x^{2n}}}}{{1 + {x^2}}}{\text{d}}x} } \) <strong><em>A1A1</em></strong></p>
<p>\(\int_0^1 {f(x){\text{d}}x = \frac{\pi }{4}} \) <strong><em>A1</em></strong></p>
<p>so \(\pi = 4\left( {\sum\limits_{r = 0}^{n - 1} {\frac{{{{( - 1)}^r}}}{{2r + 1}} - {{( - 1)}^{n - 1}}\int_0^1 {\frac{{{x^{2n}}}}{{1 + {x^2}}}{\text{d}}x} } } \right)\) <strong><em>AG</em></strong></p>
<p><em><strong>[4 marks] </strong></em></p>
<p><em><strong>Total [14 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use L’Hôpital’s Rule to find \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x} - 1 - x\cos x}}{{{{\sin }^2}x}}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">apply l’Hôpital’s Rule to a \(0/0\) type limit</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x} - 1 - x\cos x}}{{{{\sin }^2}x}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x} - \cos x + x\sin x}}{{2\sin x\cos x}}\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">noting this is also a \(0/0\) type limit, apply l’Hôpital’s Rule again <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x} + \sin x + x\cos x + \sin x}}{{2\cos 2x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">substitution of <em>x</em> = 0 <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0.5 <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-size: medium; font-family: 'times new roman', times;">The vast majority of candidates were familiar with L’Hôpitals rule and were also able to apply the technique twice as required by the problem. The errors that occurred were mostly due to difficulty in applying the differentiation rules correctly or errors in algebra. A small minority of candidates tried to use the quotient rule but it seemed that most candidates had a good understanding of L’Hôpital’s rule and its application to finding a limit.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function \(f\) is given by \(f(x) = \int_0^x {\ln (2 + \sin t){\text{d}}t} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down \(f'(x)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">By differentiating \(f({x^2})\)</span>, obtain an expression for the derivative of \(\int_0^{{x^2}} {\ln (2 + \sin t){\text{d}}t} \) with respect to \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence obtain an expression for the derivative of \(\int_x^{{x^2}} {\ln (2 + \sin t){\text{d}}t} \) <span class="s1">with respect to \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\ln (2 + \sin x)\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong>Note: <span class="Apple-converted-space"> </span></strong></span>Do not accept \(\ln (2 + \sin t)\)<span class="s1">.</span></p>
<p class="p3"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to use chain rule <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {f({x^2})} \right) = 2xf'({x^2})\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = 2x\ln \left( {2 + \sin ({x^2})} \right)\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\int_x^{{x^2}} {\ln (2 + \sin t){\text{d}}t = \int_0^{{x^2}} {\ln (2 + \sin t){\text{d}}t - \int_0^x {\ln (2 + \sin t){\text{d}}t} } } \) </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\int_x^{{x^2}} {\ln (2 + \sin t){\text{d}}t} } \right) = 2x\ln \left( {2 + \sin ({x^2})} \right) - \ln (2 + \sin x)\) </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates answered this question well. Many others showed no knowledge of this part of the option; candidates that recognized the Fundamental Theorem of Calculus answered this question well. In general the scores were either very low or full marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates answered this question well. Many others showed no knowledge of this part of the option; candidates that recognized the Fundamental Theorem of Calculus answered this question well. In general the scores were either very low or full marks.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates answered this question well. Many others showed no knowledge of this part of the option; candidates that recognized the Fundamental Theorem of Calculus answered this question well. In general the scores were either very low or full marks.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f(x) = {{\text{e}}^x}\sin x,{\text{ }}x \in \mathbb{R}\).</p>
</div>
<div class="specification">
<p class="p1">The Maclaurin series is to be used to find an approximate value for \(f(0.5)\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">By finding a suitable number of derivatives of \(f\), </span>determine the Maclaurin series for \(f(x)\) as far as the term in \({x^3}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, or otherwise, determine the exact value of \(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x}\sin x - x - {x^2}}}{{{x^3}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Use the Lagrange form of the error term to find an upper bound for the absolute value of the error in this approximation.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Deduce from the Lagrange error term whether the approximation will be greater than or less than the actual value of \(f(0.5)\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to use product rule <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(f''(x) = 2{{\text{e}}^x}\cos x\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(f''(x) = 2{{\text{e}}^x}\cos x - 2{{\text{e}}^x}\sin x\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\(f(0) = 0,{\text{ }}f'(0) = 1\)</p>
<p class="p2"><span class="Apple-converted-space">\(f''(0) = 2,{\text{ }}f'''(0) = 2\) </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\({{\text{e}}^x}\sin x = x + {x^2} + \frac{{{x^3}}}{3} + \ldots \) </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{{\text{e}}^x}\sin x - x - {x^2}}}{{{x^3}}} = \frac{{x + {x^2} + \frac{{{x^3}}}{3} + \ldots - x - {x^2}}}{{{x^3}}}\) </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><span class="s1">\( \to \frac{1}{3}\) as \(x \to 0\)</span> <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x}\sin x - x - {x^2}}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x - 1 - 2x}}{{3{x^2}}}\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\text{e}}^x}\cos x - 2}}{{6x}}\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\text{e}}^x}\cos x - 2{{\text{e}}^x}\sin x}}{6} = \frac{1}{3}\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>attempt to find \({{\text{4}}^{{\text{th}}}}\) derivative from the \({{\text{3}}^{{\text{rd}}}}\) derivative obtained in (a) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(f''''(x) = - 4{{\text{e}}^x}\sin x\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">Lagrange error term \( = \frac{{{f^{(n + 1)}}(c){x^{n + 1}}}}{{(n + 1)!}}\) <span class="s1">(where </span><em>c </em>lies between 0 <span class="s1">and \(x\)</span>)</p>
<p class="p2"><span class="Apple-converted-space">\( = - \frac{{4{{\text{e}}^c}\sin c \times {{0.5}^4}}}{{4!}}\) </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">the maximum absolute value of this expression occurs when \(c = 0.5\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>This <strong><em>A1 </em></strong>is independent of previous <strong><em>M </em></strong><span class="s2">marks.</span></p>
<p class="p2">therefore</p>
<p class="p2">upper bound \( = \frac{{4{{\text{e}}^{0.5}}\sin 0.5 \times {{0.5}^4}}}{{4!}}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = 0.00823\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the approximation is greater than the actual value because the Lagrange error term is negative <strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This part of the question was well answered by most candidates. In a few cases candidates failed to follow instructions and attempted to use known series; in a few cases mistakes in the determination of the derivatives prevented other candidates from achieving full marks; part (b) was also well answered using both the Maclaurin expansion or L’Hôpital rule; again in most cases that candidates failed to achieve full marks were due to mistakes in the determination of derivatives.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) of the question was well answered by most candidates. In a few cases candidates failed to follow instructions and attempted to use known series; in a few cases mistakes in the determination of the derivatives prevented other candidates from achieving full marks; part (b) was also well answered using both the Maclaurin expansion or L’Hôpital rule; again in most cases that candidates failed to achieve full marks were due to mistakes in the determination of derivatives.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) was poorly answered with few candidates showing familiarity with this part of the option. Most candidates quoted the formula and managed to find the \({4^{{\text{th}}}}\) derivative of \(f\) but then could not use it to obtain the required answer; in other cases candidates did obtain an answer but showed little understanding of its meaning when answering (c)(ii).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the infinite series \(S = \sum\limits_{n = 0}^\infty {{u_n}} \) where \({u_n} = \int_{nx}^{(n + 1)\pi } {\frac{{\sin t}}{t}{\text{d}}t} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the series is alternating.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Use the substitution \(T = t - \pi \) in the expression for \({u_{n + 1}}\) to show that \(\left| {{u_{n + 1}}} \right| < \left| {{u_n}} \right|\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Show that the series is convergent.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(S < 1.65\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">as \(t\) </span>moves through the intervals \([0,{\text{ }}\pi ],{\text{ }}[\pi ,{\text{ }}2\pi ],{\text{ }}[2\pi ,{\text{ }}3\pi ],{\text{ }}[3\pi ,{\text{ }}4\pi ]\), <span class="s1"><em>etc</em></span>, the sign of \(\sin t\), (and therefore the sign of the integral) alternates \( + ,{\text{ }} - ,{\text{ }} + ,{\text{ }} - \), <span class="s1"><em>etc</em>, so that the series is alternating <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></span></p>
<p class="p1"><span class="s1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>R1 </em></strong></span>only if it includes a clear reason that justifies that the sign of the integrand alternates between − and + <span class="s1">and this pattern is valid for all the terms.</span></p>
<p class="p3">The change of signs can be justified by a labelled graph of \(y = \sin (x)\) or \(y = \frac{{\sin x}}{x}\) <span class="s2">that shows the intervals \([0,{\text{ }}\pi ],{\text{ }}[\pi ,{\text{ }}2\pi ],{\text{ }}[2\pi ,{\text{ }}3\pi ],{\text{ }} \ldots \)</span></p>
<p class="p3"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> \({u_{n + 1}} = \int_{(n + 1)\pi }^{(n + 2)\pi } {\frac{{\sin t}}{t}{\text{d}}t} \)</span></p>
<p class="p1"><strong><em>(M1)</em></strong></p>
<p class="p1">put \(T = t--\pi \) <span class="s1">and \({\text{d}}T = {\text{d}}t\) <span class="Apple-converted-space"> </span></span><strong><em>(M1)</em></strong></p>
<p class="p1">the limits change to \(n\pi ,{\text{ }}(n + 1)\pi \)</p>
<p class="p1">\(\left| {{u_{n + 1}}} \right| = \int_{n\pi }^{(n + 1)\pi } {\frac{{\left| {\sin (T + \pi )} \right|}}{{T + \pi }}{\text{d}}T} \) (or equivalent) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2">\(\left| {\sin (T + \pi )} \right| = \left| {\sin (T)} \right|\) or \(\sin (T + \pi ) = - \sin (T)\) <span class="Apple-converted-space"> </span><span class="s2"><strong><em>(M1)</em></strong></span></p>
<p class="p2">\( = \int_{n\pi }^{(n + 1)\pi } {\frac{{\left| {\sin T} \right|}}{{T + \pi }}{\text{d}}T} \)</p>
<p class="p2"><span class="Apple-converted-space">\( < \int_{n\pi }^{(n + 1)\pi } {\frac{{\left| {\sin T} \right|}}{T}{\text{d}}T = \left| {{u_n}} \right|} \) </span><span class="s2"><strong><em>A1AG</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> \(\left| {{u_n}} \right| = \int_{n\pi }^{(n + 1)\pi } {\frac{{\sin t}}{t}{\text{d}}t} \)</span></p>
<p class="p1"><span class="Apple-converted-space">\( < \int_{n\pi }^{(n + 1)\pi } {\frac{1}{t}{\text{d}}t} \) </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = [\ln t]_{n\pi }^{(n + 1)\pi }\) </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \ln \left( {\frac{{n + 1}}{n}} \right)\) </span><strong><em>A1</em></strong></p>
<p class="p1">\( \to \ln 1 = 0\) as \(n \to \infty \)</p>
<p class="p2"><span class="s2">from part (i) \(\left| {{u_n}} \right|\) </span>is a decreasing sequence and since \(\mathop {\lim }\limits_{n \to \infty } \left| {{u_n}} \right| = 0\), <span class="Apple-converted-space"> </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p1">the series is convergent <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to calculate the partial sums \(\sum\limits_{i = 0}^{n - 1} {{u_i} = \int_0^{n\pi } {\frac{{\sin t}}{t}{\text{d}}t} } \) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">the first partial sums are</p>
<p class="p1"><img src="images/Schermafbeelding_2017-02-06_om_16.13.20.png" alt="M16/5/MATHL/HP3/ENG/TZ0/SE/M/05.c"></p>
<p class="p1">two consecutive partial sums for \(n \geqslant 4\) <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p1">(<span class="s1"><em>eg</em> \({S_4} = 1.49\) </span>and \({S_5} = 1.63\) or \({S_{100}} = 1.567 \ldots \) and \({S_{101}} = 1.573 \ldots \))</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>These answers must be given to a minimum of 3 significant figures.</p>
<p class="p1">the sum to infinity lies between any two consecutive partial sums,</p>
<p class="p3"><span class="s2"><em>eg </em></span>between 1.49 and 1.63 <span class="Apple-converted-space"> </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p1">so that \(S < 1.65\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1A1R1 </em></strong>to candidates who calculate at least two partial sums for only odd values of \(n\) and state that the upper bound is less than these values.</p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very few candidates presented a valid reason to justify the alternating nature of the series. In most cases candidates just reformulated the wording of the question by saying that it changed signs and completely ignored the interval over which the expression had to be integrated to obtain each term.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) Most candidates achieved 1 or 2 marks for attempting the given substitution; in most cases candidates failed to find the correct limits of integration for the new variable and then relate the expressions of the consecutive terms of the series. In part (ii) very few correct attempts were seen; in some cases candidates did recognize the conditions for the alternating series to be convergent but very few got close to establish that the limit of the general term was zero.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A few good attempts to use partial sums were seen although once again candidates showed difficulties in identifying what was needed to show the given answer. In most cases candidates just verified with GDC that in fact for high values of <span class="s1"><em>n </em></span>the series was indeed less than the upper bound given but could not provide a valid argument that justified the given statement.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The curves \(y = f(x)\) and \(y = g(x)\) </span>both pass through the point \((1,{\text{ }}0)\) and are defined by the differential equations \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x - {y^2}\) and \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = y - {x^2}\) <span class="s1">respectively.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the tangent to the curve \(y = f(x)\) <span class="s1">at the point \((1,{\text{ }}0)\) </span>is normal to the curve \(y = g(x)\) <span class="s1">at the point \((1,{\text{ }}0)\)</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(g(x)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use Euler’s method with steps of \(0.2\) <span class="s1">to estimate \(f(2)\) </span>to \(5\) <span class="s1">decimal places.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why \(y = f(x)\) cannot cross the isocline \(x - {y^2} = 0\), for \(x > 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch the isoclines \(x - {y^2} = - 2,{\text{ }}0,{\text{ }}1\).</p>
<p>(ii) On the same set of axes, sketch the graph of \(f\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>gradient of \(f\) at \((1,{\text{ }}0)\) is \(1 - {0^2} = 1\) and the gradient of \(g\) at \((1,{\text{ }}0)\) is \(0 - {1^2} = - 1\) <strong><em>A1</em></strong></p>
<p>so gradient of normal is \(1\) <strong><em>A1</em></strong></p>
<p>= Gradient of the tangent of \(f\) at \((1,{\text{ }}0)\) <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} - y = - {x^2}\)</p>
<p>integrating factor is \({{\text{e}}^{\int { - 1{\text{d}}x} }} = {{\text{e}}^{ - x}}\) <strong><em>M1</em></strong></p>
<p>\(y{{\text{e}}^{ - x}} = \int { - {x^2}{{\text{e}}^{ - x}}{\text{d}}x} \) <strong><em>A1</em></strong></p>
<p>\( = {x^2}{{\text{e}}^{ - x}} - \int {2x{{\text{e}}^{ - x}}{\text{d}}x} \) <strong><em>M1</em></strong></p>
<p>\( = {x^2}{{\text{e}}^{ - x}} + 2x{{\text{e}}^{ - x}} - \int {2{{\text{e}}^{ - x}}{\text{d}}x} \)</p>
<p>\( = {x^2}{{\text{e}}^{ - x}} + 2x{{\text{e}}^{ - x}} + 2{{\text{e}}^{ - x}} + c\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Condone missing \( + c\) at this stage.</p>
<p> </p>
<p>\( \Rightarrow g(x) = {x^2} + 2x + 2 + c{{\text{e}}^x}\)</p>
<p>\(g(1) = 0 \Rightarrow c = - \frac{5}{{\text{e}}}\) <strong><em>M1</em></strong></p>
<p>\( \Rightarrow g(x) = {x^2} + 2x + 2 - 5{{\text{e}}^{x - 1}}\) <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of \({y_{n + 1}} = {y_n} + hf'({x_n},{\text{ }}{y_n})\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\({x_0} = 1,{\text{ }}{y_0} = 0\)</p>
<p class="p1">\({x_1} = 1.2,{\text{ }}{y_1} = 0.2\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\({x_2} = 1.4,{\text{ }}{y_2} = 0.432\) <span class="Apple-converted-space"> </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1">\({x_3} = 1.6,{\text{ }}{y_3} = 0.67467 \ldots \)</p>
<p class="p1">\({x_4} = 1.8,{\text{ }}{y_4} = 0.90363 \ldots \)</p>
<p class="p1">\({x_5} = 2,{\text{ }}{y_5} = 1.1003255 \ldots \)</p>
<p class="p1">answer \( = 1.10033\) <span class="Apple-converted-space"> </span><strong><em>A1 <span class="Apple-converted-space"> </span>N3</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A0 </em></strong>or <strong><em>N1 </em></strong><span class="s1">if \(1.10\) </span>given as answer.</p>
<p class="p1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at the point \((1,{\text{ }}0)\), the gradient of \(f\) is positive so the graph of <span class="s1">\(f\) </span>passes into the first quadrant for \(x > 1\)</p>
<p class="p1">in the first quadrant below the curve \(x - {y^2} = 0\) the gradient of \(f\) is positive <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">the curve \(x - {y^2} = 0\) has positive gradient in the first quadrant <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">if \(f\) were to reach \(x - {y^2} = 0\) it would have gradient of zero, and therefore would not cross <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) and (ii)</p>
<p class="p1"><strong><em><img src="images/Schermafbeelding_2016-01-21_om_12.34.00.png" alt> A4</em></strong></p>
<p class="p2"> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for 3 correct isoclines.</p>
<p>Award <strong><em>A1 </em></strong>for \(f\) not reaching \(x - {y^2} = 0\).</p>
<p>Award <strong><em>A1 </em></strong>for turning point of \(f\) on \(x - {y^2} = 0\).</p>
<p>Award <strong><em>A1 </em></strong>for negative gradient to the left of the turning point.</p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct shape and position if curve drawn without any isoclines.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p><em><strong>Total [20 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p>Use the integral test to determine whether the infinite series \(\sum\limits_{n = 2}^\infty {\frac{1}{{n\sqrt {\ln n} }}} \) is convergent or divergent.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>consider \(I = \int\limits_2^N {\frac{{{\text{d}}x}}{{x\sqrt {\ln x} }}} \) <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Do not award <strong><em>A1 </em></strong>if \(n\) is used as the variable or if lower limit equal to 1, but some subsequent <strong><em>A </em></strong>marks can still be awarded. Allow \(\infty \) as upper limit.</p>
<p> </p>
<p>let \(y = \ln x\) <strong><em>(M1)</em></strong></p>
<p>\({\text{d}}y = \frac{{{\text{d}}x}}{x},\) <strong><em>(A1)</em></strong></p>
<p>\(\left[ {2,{\text{ }}N} \right] \Rightarrow \left[ {\ln 2,{\text{ }}\ln N} \right]\)</p>
<p>\(I = \int\limits_{\ln \,2}^{\ln \,N} {\frac{{{\text{d}}y}}{{\sqrt y }}} \) <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Condone absence of limits, or wrong limits.</p>
<p> </p>
<p>\( = \left[ {2\sqrt y } \right]_{\ln 2}^{\ln N}\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>A1 </em></strong>is for the correct integral, irrespective of the limits used. Accept correct use of integration by parts.</p>
<p> </p>
<p>\( = 2\sqrt {\ln N} - 2\sqrt {\ln 2} \) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1 </em></strong>is for substituting their limits into their integral and subtracting.</p>
<p> </p>
<p>\( \to \infty {\text{ as }}N \to \infty \) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Allow “\( = \infty \)”, “limit does not exist”, “diverges” or equivalent.</p>
<p>Do not award if wrong limits substituted into the integral but allow \(N\) or \(\infty \) as an upper limit in place of \(\ln N\).</p>
<p> </p>
<p>(by the integral test) the series is divergent (because the integral is divergent) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Do not award this mark if \(\infty \) used as upper limit throughout.</p>
<p> </p>
<p><strong><em>[9 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Let \(S = \sum\limits_{n = 1}^\infty {\frac{{{{(x - 3)}^n}}}{{{n^2} + 2}}} \).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the limit comparison test to show that the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) is convergent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interval of convergence for \(S\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\mathop {\lim }\limits_{n \to \infty } \frac{{\frac{1}{{{n^2} + 2}}}}{{\frac{1}{{{n^2}}}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{{n^2}}}{{{n^2} + 2}} = \left( {\mathop {\lim }\limits_{n \to \infty } \left( {1 - \frac{2}{{{n^2} + 2}}} \right)} \right)\) <strong><em>M1</em></strong></p>
<p>\( = 1\) <strong><em>A1</em></strong></p>
<p>since \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges (a \(p\)-series with \(p = 2\)) <strong><em>R1</em></strong></p>
<p>by limit comparison test, \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) also converges <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>The <strong><em>R1 </em></strong>is independent of the <strong><em>A1</em></strong>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>applying the ratio test \(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{(x - 3)}^{n + 1}}}}{{{{(n + 1)}^2} + 2}} \times \frac{{{n^2} + 2}}{{{{(x - 3)}^n}}}} \right|\) <strong><em>M1A1</em></strong></p>
<p>\( = \left| {x - 3} \right|{\text{ }}\left( {{\text{as }}\mathop {\lim }\limits_{n \to \infty } \frac{{({n^2} + 2)}}{{{{(n + 1)}^2} + 2}} = 1} \right)\) <strong><em>A1</em></strong></p>
<p>converges if \(\left| {x - 3} \right| < 1\) (converges for \(2 < x < 4\)) <strong><em>M1</em></strong></p>
<p>considering endpoints \(x = 2\) and \(x = 4\) <strong><em>M1</em></strong></p>
<p>when \(x = 4\), series is \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \), convergent from (a) <strong><em>A1</em></strong></p>
<p>when \(x = 2\), series is \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>EITHER</strong></p>
<p>\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2} + 2}}} \) is convergent therefore \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{{{n^2} + 2}}} \) is (absolutely) convergent <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\frac{1}{{{n^2} + 2}}\) is a decreasing sequence and \(\mathop {\lim }\limits_{n \to \infty } \frac{1}{{{n^2} + 2}} = 0\) so series converges by the alternating series test <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>interval of convergence is \(2 \leqslant x \leqslant 4\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>The final <strong><em>A1 </em></strong>is dependent on previous <strong><em>A1</em></strong>s – <em>ie</em>, considering correct series when \(x = 2\) and \(x = 4\) and on the final <strong><em>R1</em></strong>.</p>
<p> </p>
<p><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The mean value theorem states that if \(f\) is a continuous function on \([a,{\text{ }}b]\) and differentiable on \(]a,{\text{ }}b[\) then \(f’(c) = \frac{{f(b) - f(a)}}{{b - a}}\) for some \(c \in ]a,{\text{ }}b[\).</p>
<p>The function \(g\), defined by \(g(x) = x\cos \left( {\sqrt x } \right)\), satisfies the conditions of the mean value theorem on the interval \([0,{\text{ }}5\pi ]\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For \(a = 0\) and \(b = 5\pi \), use the mean value theorem to find all possible values of \(c\) for the function \(g\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = g(x)\) on the interval \([0,{\text{ }}5\pi ]\) and hence illustrate the mean value theorem for the function \(g\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{g(5\pi ) - g(0)}}{{5\pi - 0}} = - 0.6809 \ldots {\text{ }}\left( { = \cos \sqrt {5\pi } } \right)\) (gradient of chord) <strong><em>(A1)</em></strong></p>
<p>\(g’(x) = \cos \left( {\sqrt x } \right) - \frac{{\sqrt x \sin \left( {\sqrt x } \right)}}{2}\) (or equivalent) <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>to candidates who attempt to use the product and chain rules.</p>
<p> </p>
<p>attempting to solve \(\cos \left( {\sqrt c } \right) - \frac{{\sqrt c \sin \left( {\sqrt c } \right)}}{2} = - 0.6809 \ldots \) for \(c\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>M1 </em></strong>to candidates who attempt to solve their \(g’(c) = \) gradient of chord.</p>
<p>Do not award <strong><em>M1 </em></strong>to candidates who just attempt to rearrange their equation.</p>
<p> </p>
<p>\(c = 2.26,{\text{ }}11.1\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Condone candidates working in terms of \(x\).</p>
<p> </p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-09_om_11.32.05.png" alt="N17/5/MATHL/HP3/ENG/TZ0/SE/M/04.b"></p>
<p>correct graph: 2 turning points close to the endpoints, endpoints indicated and correct endpoint behaviour <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Endpoint coordinates are not required. Candidates do not need to indicate axes scales.</p>
<p> </p>
<p>correct chord <strong><em>A1</em></strong></p>
<p>tangents drawn at their values of \(c\) which are approximately parallel to the chord <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>A1A0A1A0 </em></strong>to candidates who draw a correct graph, do not draw a chord but draw 2 tangents at their values of \(c\). Condone the absence of their \(c - \) values stated on their sketch. However do not award marks for tangents if no \(c - \) values were found in (a).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the infinite series \(\sum\limits_{n = 1}^\infty {\frac{{(n - 1){x^n}}}{{{n^2} \times {2^n}}}} \) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the radius of convergence.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the interval of convergence.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the ratio test, \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n{x^{n + 1}}}}{{{{(n + 1)}^2}{2^{n + 1}}}} \times \frac{{{n^2}{2^n}}}{{(n - 1){x^n}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{n^3}}}{{{{(n + 1)}^2}(n - 1)}} \times \frac{x}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{x}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the radius of convergence <em>R</em> satisfies</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{R}{2} = 1\) so <em>R</em> = 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">considering <em>x</em> = 2 for which the series is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{{(n - 1)}}{{{n^2}}}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the limit comparison test with the harmonic series <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{n}} \), which diverges</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n}}}{{\frac{1}{n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{n - 1}}{n} = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the series is therefore divergent for <em>x</em> = 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = –2 , the series is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{{(n - 1)}}{{{n^2}}} \times {{( - 1)}^n}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this is an alternating series in which the \({n^{{\text{th}}}}\) term tends to 0 as \(n \to \infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \(f(x) = \frac{{x - 1}}{{{x^2}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{2 - x}}{{{x^3}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this is negative for \(x > 2\) so the sequence \(\{ |{u_n}|\} \) is eventually decreasing <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the series therefore converges when <em>x</em> = –2 by the alternating series test <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the interval of convergence is therefore [–2, 2[ <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2}}}{{1 + x}}\), where <em>x </em>> −1 and <em>y </em>= 1 when <em>x </em>= 0 .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Euler’s method, with a step length of 0.1, to find an approximate value of <em>y </em>when <em>x </em>= 0.5.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = \frac{{2{y^3} - {y^2}}}{{{{(1 + x)}^2}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find the Maclaurin series for <em>y</em>, up to and including the term in \({x^2}\)<span style="font: 7.0px Helvetica;"> </span>.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Solve the differential equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the value of <em>a </em>for which \(y \to \infty \) as \(x \to a\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt the first step of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_{n + 1}} = {y_n} + (0.1)f({x_n},\,{y_n})\) with \({y_0} = 1,{\text{ }}{x_0} = 0\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_1} = 1.1\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_2} = 1.1 + (0.1)\frac{{{{1.1}^2}}}{{1.1}} = 1.21\) <strong> <em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_3} = 1.332(0)\) <strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_4} = 1.4685\) <strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y_5} = 1.62\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) recognition of both quotient rule and implicit differentiation <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = \frac{{(1 + x)2y\frac{{{\text{d}}y}}{{{\text{d}}x}} - {y^2} \times 1}}{{{{(1 + x)}^2}}}\) <strong> <em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for first term in numerator, <strong><em>A1 </em></strong>for everything else correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{(1 + x)2y\frac{{{y^2}}}{{1 + x}} - {y^2} \times 1}}{{{{(1 + x)}^2}}}\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2{y^3} - {y^2}}}{{{{(1 + x)}^2}}}\) <strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) attempt to use \(y = y(0) + x\frac{{{\text{d}}y}}{{{\text{d}}x}}(0) + \frac{{{x^2}}}{{2!}}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}(0) + ...\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + x + \frac{{{x^2}}}{2}\) <strong> <em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct evaluation of \(y(0),{\text{ }}\frac{{dy}}{{dx}}(0),{\text{ }}\frac{{{d^2}y}}{{d{x^2}}}(0)\), <strong><em>A1 </em></strong>for correct series.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[8 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) separating the variables \(\int {\frac{1}{{{y^2}}}{\text{d}}y = \int {\frac{1}{{1 + x}}{\text{d}}x} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \( - \frac{1}{y} = \ln (1 + x) + (c)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">impose initial condition \( - 1 = \ln 1 + c\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(y = \frac{1}{{1 - \ln (1 + x)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(y \to \infty \) if \(\ln (1 + x) \to 1\) , so <em>a</em> = e – 1 <strong><em>(M1)A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note</strong>: To award <strong><em>A1 </em></strong>must see either \(x \to e - 1\) or <em>a</em> = <em>e</em> – 1 . Do not accept <em>x</em> = <em>e</em> – 1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates had a good knowledge of Euler’s method and were confident in applying it to the differential equation in part (a). A few candidates who knew the Euler’s method completed one iteration too many to arrive at an incorrect answer but this was rare. Nearly all candidates who applied the correct technique in part (a) correctly calculated the answer. Most candidates were able to attempt part (b) but some lost marks due to a lack of rigour by not clearly showing the implicit differentiation in the first line of working. Part (c) was reasonably well attempted by many candidates and many could solve the integrals although some did not find the arbitrary constant meaning that it was not possible to solve (ii) of the part (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates had a good knowledge of Euler’s method and were confident in applying it to the differential equation in part (a). A few candidates who knew the Euler’s method completed one iteration too many to arrive at an incorrect answer but this was rare. Nearly all candidates who applied the correct technique in part (a) correctly calculated the answer. Most candidates were able to attempt part (b) but some lost marks due to a lack of rigour by not clearly showing the implicit differentiation in the first line of working. Part (c) was reasonably well attempted by many candidates and many could solve the integrals although some did not find the arbitrary constant meaning that it was not possible to solve (ii) of the part (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-size: medium; font-family: 'times new roman', times;">Most candidates had a good knowledge of Euler’s method and were confident in applying it to the differential equation in part (a). A few candidates who knew the Euler’s method completed one iteration too many to arrive at an incorrect answer but this was rare. Nearly all candidates who applied the correct technique in part (a) correctly calculated the answer. Most candidates were able to attempt part (b) but some lost marks due to a lack of rigour by not clearly showing the implicit differentiation in the first line of working. Part (c) was reasonably well attempted by many candidates and many could solve the integrals although some did not find the arbitrary constant meaning that it was not possible to solve (ii) of the part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that the solution of the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \cos x{\cos ^2}y{\text{,}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that \(y = \frac{\pi }{4}{\text{ when }}x = \pi {\text{, is }}y = \arctan (1 + \sin x){\text{.}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine the value of the constant <em>a </em>for which the following limit exists</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\arctan (1 + \sin x) - a}}{{{{\left( {x - \frac{\pi }{2}} \right)}^2}}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and evaluate that limit<em>.</em></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) this separable equation has general solution</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\sec }^2}y{\text{d}}y = \int {\cos x{\text{d}}x} } \) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)(A1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan y = \sin x + c\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the condition gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \frac{\pi }{4} = \sin \pi + c \Rightarrow c = 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \(\tan y = 1 + \sin x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \arctan (1 + \sin x)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) the limit cannot exist unless \(a = \arctan \left( {1 + \sin \frac{\pi }{2}} \right) = \arctan 2\) <strong><em>R1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">in that case the limit can be evaluated using l’Hopital’s rule (twice) limit is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{{{\left( {\arctan (1 + \sin x)} \right)}^\prime }}}{{2\left( {x - \frac{\pi }{2}} \right)}} = \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{y'}}{{2\left( {x - \frac{\pi }{2}} \right)}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where <em>y</em> is the solution of the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the numerator has zero limit (from the factor \(\cos x\) in the differential equation) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so required limit is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{y''}}{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">finally,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'' = - \sin x{\cos ^2}y - 2\cos x\cos y\sin y \times y'(x)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\cos y\left( {\frac{\pi }{2}} \right) = \frac{1}{{\sqrt 5 }}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'' = - \frac{1}{5}{\text{ at }}x = \frac{\pi }{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required limit is \( - \frac{1}{{10}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[12 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates successfully obtained the displayed solution of the differential equation in part(a). Few complete solutions to part(b) were seen which used the result in part(a). The problem can, however, be solved by direct differentiation although this is algebraically more complicated. Some successful solutions using this method were seen.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the radius of convergence of the infinite series</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{1}{2}x + \frac{{1 \times 3}}{{2 \times 5}}{x^2} + \frac{{1 \times 3 \times 5}}{{2 \times 5 \times 8}}{x^3} + \frac{{1 \times 3 \times 5 \times 7}}{{2 \times 5 \times 8 \times 11}}{x^4} + \ldots {\text{ .}}\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether the series \(\sum\limits_{n = 1}^\infty {\sin \left( {\frac{1}{n} + n\pi } \right)} \) is convergent or divergent.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the <em>n</em>th term is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} = \frac{{1 \times 3 \times 5 \ldots (2n - 1)}}{{2 \times 5 \times 8 \ldots (3n - 1)}}{x^n}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(using the ratio test to test for absolute convergence)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\left| {{u_{n + 1}}} \right|}}{{\left| {{u_n}} \right|}} = \frac{{(2n + 1)}}{{(3n + 2)}}\left| x \right|\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{\left| {{u_{n + 1}}} \right|}}{{\left| {{u_n}} \right|}} = \frac{{2\left| x \right|}}{3}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>R</em> denote the radius of convergence</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then \(\frac{{2R}}{3} = 1\) so \(r = \frac{3}{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalise the absence of absolute value signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the compound angle formula or a graphical method the series can be written in the form <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {{u_n}} \) where \({u_n} = {( - 1)^n}\sin \left( {\frac{1}{n}} \right)\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\frac{1}{n} < \frac{\pi }{2}\) <em>i.e.</em> an angle in the first quadrant, <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it is an alternating series <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} \to 0{\text{ as }}n \to \infty \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(\left| {{u_{n + 1}}} \right| < \left| {{u_n}} \right|\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that the series is convergent <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (a), many candidates were unable even to find an expression for the <em>n</em>th term so that they could not apply the ratio test.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (b), few candidates were able to rewrite the <em>n</em>th term in the form \(\sum {{{( - 1)}^n}\sin \left( {\frac{1}{n}} \right)} \) so that most candidates failed to realise that the series was alternating.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions \(f\) and \(g\) given by \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}{\text{ and }}g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f'(x) = g(x)\) and \(g'(x) = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the first three non-zero terms in the Maclaurin expansion of \(f(x)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of the improper integral \(\int_0^\infty {\frac{{g(x)}}{{{{\left[ {f(x)} \right]}^2}}}{\text{d}}x} \).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">any correct step before the given answer <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg</em>, \(f'(x) = \frac{{{{\left( {{{\text{e}}^x}} \right)}^\prime } + {{\left( {{{\text{e}}^{ - x}}} \right)}^\prime }}}{2} = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2} = g(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">any correct step before the given answer <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg</em>, \(g'(x) = \frac{{{{\left( {{{\text{e}}^x}} \right)}^\prime } - {{\left( {{{\text{e}}^{ - x}}} \right)}^\prime }}}{2} = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2} = f(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">statement and attempted use of the general Maclaurin expansion formula <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) = 1;{\text{ }}g(0) = 0\) (or equivalent in terms of derivative values) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}}\) or \(f(x) = 1 + \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{ - x}} = 1 - x + \frac{{{x^2}}}{{2!}} - \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">adding and dividing by 2 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = 1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}}\) or \(f(x) = 1 + \frac{{{x^2}}}{{2!}} + \frac{{{x^4}}}{{4!}}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes: </strong>Accept 1, \(\frac{{{x^2}}}{2}\) and \(\frac{{{x^4}}}{{24}}\) or 1, \(\frac{{{x^2}}}{{2!}}\) and \(\frac{{{x^4}}}{{4!}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font: 23.0px 'Times New Roman';"> </span>Award <strong><em>A1 </em></strong>if two correct terms are seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">attempted use of the Maclaurin expansion from (b) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - \left( {1 + \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{24}} + \ldots } \right)}}{{{x^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \left( { - \frac{1}{2} - \frac{{{x^2}}}{{24}} - \ldots } \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">attempted use of L’Hôpital and result from (a) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{1 - f(x)}}{{{x^2}}} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{ - g(x)}}{{2x}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{ - f(x)}}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of the substitution \(u = f(x)\) and \(\left( {{\text{d}}u = g(x){\text{d}}x} \right)\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to integrate \(\int_1^\infty {\frac{{{\text{d}}u}}{{{u^2}}}} \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\left[ { - \frac{1}{u}} \right]_1^\infty \) or \(\left[ { - \frac{1}{{f(x)}}} \right]_0^\infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">recognition of an improper integral by use of a limit or statement saying the integral converges <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain 1 <strong><em>A1 N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^\infty {\frac{{\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}}}{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}{\text{d}}x = \int_0^\infty {\frac{{2\left( {{{\text{e}}^x} - {{\text{e}}^{ - x}}} \right)}}{{{{\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)}^2}}}{\text{d}}x} } \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of the substitution \(u = {{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \(\left( {{\text{d}}u = {{\text{e}}^x} - {{\text{e}}^{ - x}}{\text{d}}x} \right)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to integrate \(\int_2^\infty {\frac{{2{\text{d}}u}}{{{u^2}}}} \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\left[ { - \frac{2}{u}} \right]_2^\infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">recognition of an improper integral by use of a limit or statement saying the integral converges <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain 1 <strong><em>A1 N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">A differential equation is given by \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{x}\) , where <em>x </em>> 0 and <em>y </em>> 0.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve this differential equation by separating the variables, giving your answer in the form <em>y </em>= <em>f </em>(<em>x</em>) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the same differential equation by using the standard homogeneous substitution <em>y </em>= <em>vx </em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the same differential equation by the use of an integrating factor.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>y </em>= 20 when <em>x </em>= 2 , find <em>y </em>when <em>x </em>= 5 .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{x} \Rightarrow \int {\frac{1}{y}{\text{d}}y = \int {\frac{1}{x}{\text{d}}x} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \ln y = \ln x + c\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \ln y = \ln x + \ln k = \ln kx\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = kx\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = vx \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = v\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x\frac{{{\text{d}}v}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}v}}{{{\text{d}}x}} = 0\,\,\,\,\,({\text{as }}x \ne 0)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow v = k\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{y}{x} = k\,\,\,\,\,( \Rightarrow y = kx)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {\frac{{ - 1}}{x}} \right)y = 0\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{IF}} = {{\text{e}}^{\int {\frac{{ - 1}}{x}{\text{d}}x} }} = {{\text{e}}^{ - \ln x}} = \frac{1}{x}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^{ - 1}}\frac{{{\text{d}}y}}{{{\text{d}}x}} - {x^{ - 2}}y = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}[{x^{ - 1}}y]}}{{{\text{d}}x}} = 0\) <strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^{ - 1}}y = k\,\,\,\,\,( \Rightarrow y = kx)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(20 = 2k \Rightarrow k = 10{\text{ so }}y(5) = 10 \times 5 = 50\) <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question allowed candidates to demonstrate a range of skills in solving differential equations. Generally this was well done with candidates making mistakes in algebra rather than the techniques themselves. For example a common error in part (a) was to go from \(\ln y = \ln x + c\) to \(y = x + c\)</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question allowed candidates to demonstrate a range of skills in solving differential equations. Generally this was well done with candidates making mistakes in algebra rather than the techniques themselves. For example a common error in part (a) was to go from \(\ln y = \ln x + c\) to \(y = x + c\)</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question allowed candidates to demonstrate a range of skills in solving differential equations. Generally this was well done with candidates making mistakes in algebra rather than the techniques themselves. For example a common error in part (a) was to go from \(\ln y = \ln x + c\) to \(y = x + c\)</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question allowed candidates to demonstrate a range of skills in solving differential equations. Generally this was well done with candidates making mistakes in algebra rather than the techniques themselves. For example a common error in part (a) was to go from \(\ln y = \ln x + c\) to \(y = x + c\)</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The function \(f\) is defined by</p>
<p>\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}<br> {\left| {x - 2} \right| + 1}&{x < 2} \\ <br> {a{x^2} + bx}&{x \geqslant 2} <br>\end{array}} \right.\]</p>
<p>where \(a\) and \(b\) are real constants</p>
<p>Given that both \(f\) and its derivative are continuous at \(x = 2\), find the value of \(a\) and the value of \(b\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>considering continuity at \(x = 2\)</p>
<p>\(\mathop {{\text{lim}}}\limits_{x \to {2^ - }} f\left( x \right) = 1\) and \(\mathop {{\text{lim}}}\limits_{x \to {2^ + }} f\left( x \right) = 4a + 2b\) <em><strong>(M1)</strong></em></p>
<p>\(4a + 2b = 1\) <em><strong>A1</strong></em></p>
<p>considering differentiability at \(x = 2\)</p>
<p>\(f'\left( x \right) = \left\{ {\begin{array}{*{20}{c}}<br> { - 1}&{x < 2} \\ <br> {2ax + b}&{x \geqslant 2} <br>\end{array}} \right.\) <em><strong>(M1)</strong></em></p>
<p>\(\mathop {{\text{lim}}}\limits_{x \to {2^ - }} f'\left( x \right) = - 1\) and \(\mathop {{\text{lim}}}\limits_{x \to {2^ + }} f'\left( x \right) = 4a + b\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> The above <em><strong>M1</strong> </em>is for attempting to find the left and right limit of their derived piecewise function at \(x = 2\).</p>
<p>\(4a + b = - 1\) <em><strong>A1</strong></em></p>
<p>\(a = - \frac{3}{4}\) and \(b = 2\) <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The mean value theorem states that if \(f\) is a continuous function on \([a,{\text{ }}b]\) and differentiable on \(]a,{\text{ }}b[\) <span class="s1">then \(f'(c) = \frac{{f(b) - f(a)}}{{b - a}}\) </span>for some \(c \in ]a,{\text{ }}b[\).</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the two possible values of \(c\) for the function defined by \(f(x) = {x^3} + 3{x^2} - 2\) on the interval \([ - 3,{\text{ }}1]\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Illustrate this result graphically.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>The function \(f\) is continuous on \([a,{\text{ }}b]\), differentiable on \(]a,{\text{ }}b[\) and \(f'(x) = 0\) for all \(x \in ]a,{\text{ }}b[\). Show that \(f(x)\) is constant on \([a,{\text{ }}b]\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence, prove that for \(x \in [0,{\text{ }}1],{\text{ }}2\arccos x + \arccos (1 - 2{x^2}) = \pi \).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \(f'(x) = 3{x^2} + 6x\) <strong><em>A1</em></strong></p>
<p>gradient of chord \( = 1\) <strong><em>A1</em></strong></p>
<p>\(3{c^2} + 6c = 1\)</p>
<p>\(c = \frac{{ - 3 \pm 2\sqrt 3 }}{3}{\text{ }}( = - 2.15,{\text{ }}0.155)\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept any answers that round to the correct 2sf answers \(( - 2.2,{\text{ }}0.15)\).</p>
<p class="p2"> </p>
<p class="p3">(ii) <span class="Apple-converted-space"> <img src="images/Schermafbeelding_2016-01-07_om_11.50.57.png" alt></span></p>
<p>award <strong><em>A1</em></strong> for correct shape and clear indication of correct domain, <strong><em>A1</em></strong> for chord (from \(x = - 3\) to \(x = 1\)) and <strong><em>A1</em></strong> for two tangents drawn at their values of \(c\) <strong><em>A1A1A1</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) <strong>METHOD 1</strong></p>
<p>(if a theorem is true for the interval \([a,{\text{ }}b]\), it is also true for any interval \([{x_1},{\text{ }}{x_2}]\) which belongs to \([a,{\text{ }}b]\))</p>
<p>suppose \({x_1},{\text{ }}{x_2} \in [a,{\text{ }}b]\) <strong><em>M1</em></strong></p>
<p>by the \(MVT\), there exists \(c\) such that \(f'(c) = \frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = 0\) <strong><em>M1A1</em></strong></p>
<p>hence \(f({x_1}) = f({x_2})\) <strong><em>R1</em></strong></p>
<p>as \({x_1},{\text{ }}{x_2}\) are arbitrarily chosen, \(f(x)\) is constant on \([a,{\text{ }}b]\)</p>
<p> </p>
<p><strong>Note:</strong> If the above is expressed in terms of \(a\) and \(b\) award <strong><em>M0M1A0R0</em></strong>.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>(if a theorem is true for the interval \([a,{\text{ }}b]\), it is also true for any interval \([{x_1},{\text{ }}{x_2}]\) which belongs to \([a,{\text{ }}b]\))</p>
<p>suppose \(x \in [a,{\text{ }}b]\) <strong><em>M1</em></strong></p>
<p>by the \(MVT\), there exists \(c\) such that \(f'(c) = \frac{{f(x) - f(a)}}{{x - a}} = 0\) <strong><em>M1A1</em></strong></p>
<p>hence \(f(x) = f(a) = \) constant <strong><em>R1</em></strong></p>
<p>(ii) attempt to differentiate \((x) = 2\arccos x + \arccos (1 - 2{x^2})\) <strong><em>M1</em></strong></p>
<p>\( - 2\frac{1}{{\sqrt {1 - {x^2}} }} - \frac{{ - 4x}}{{\sqrt {1 - {{(1 - 2{x^2})}^2}} }}\) <strong><em>A1A1</em></strong></p>
<p>\( = - 2\frac{1}{{\sqrt {1 - {x^2}} }} + \frac{{4x}}{{\sqrt {4{x^2} - 4{x^4}} }} = 0\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only award <strong><em>A1</em></strong> for \(0\) if a correct attempt to simplify the denominator is also seen.</p>
<p> </p>
<p>\(f(x) = f(0) = 2 \times \frac{\pi }{2} + 0 = \pi \) <strong><em>A1AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> This <strong><em>A1</em></strong> is not dependent on previous marks.</p>
<p> </p>
<p><strong>Note:</strong> Allow any value of \(x \in [0,{\text{ }}1]\).</p>
<p><em><strong>[9 marks]</strong></em></p>
<p><em><strong>Total [16 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) This was well done by most candidates.</p>
<p class="p1">(ii) This was generally poorly done, with many candidates failing to draw the curve correctly as they did not appreciate the importance of the given domain. Another common error was to draw the graph of the derivative rather than the function.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>This was very poorly done. A lot of the arguments seemed to be stating what was being required to be proved, eg ‘because the derivative is equal to 0 the line is flat’. Most candidates did not realise the importance of testing a point inside the interval, so the most common solutions seen involved the Mean Value Theorem applied to the end points. In addition there was some confusion between the Mean Value Theorem and Rolle’s Theorem.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>It was pleasing that so many candidates spotted the link with the previous part of the question. The most common error after this point was to differentiate incorrectly. Candidates should be aware this is a ‘prove’ question, and so it was not sufficient simply to state, for example, \(f(0) = \pi \).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Use l’Hôpital’s rule to determine the value of</p>
<p>\[\mathop {\lim }\limits_{x \to 0} \frac{{{{\sin }^2}x}}{{x\ln (1 + x)}}.\]</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to use l’Hôpital’s rule, <strong><em>M1</em></strong></p>
<p>\({\text{limit}} = \mathop {\lim }\limits_{x \to 0} \frac{{2\sin x\cos x}}{{\ln (1 + x) + \frac{x}{{1 + x}}}}\)\(\,\,\,\)or\(\,\,\,\)\(\frac{{\sin 2x}}{{\ln (1 + x) + \frac{x}{{1 + x}}}}\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for numerator <strong><em>A1 </em></strong>for denominator.</p>
<p> </p>
<p>this gives 0/0 so use the rule again <strong><em>(M1)</em></strong></p>
<p>\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\cos }^2}x - 2{{\sin }^2}x}}{{\frac{1}{{1 + x}} + \frac{{1 + x - x}}{{{{(1 + x)}^2}}}}}\)\(\,\,\,\)or\(\,\,\,\)\(\frac{{2\cos 2x}}{{\frac{{2 + x}}{{{{(1 + x)}^2}}}}}\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>for numerator <strong><em>A1 </em></strong>for denominator.</p>
<p> </p>
<p>\( = 1\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> This <strong><em>A1 </em></strong>is dependent on all previous marks being awarded, except when the first application of L’Hopital’s does not lead to 0/0, when it should be awarded for the correct limit of their derived function.</p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(x - 1)\frac{{{\text{d}}y}}{{{\text{d}}x}} + xy = (x - 1){{\text{e}}^{ - x}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that <em>y</em> = 1 when <em>x</em> = 0. Give your answer in the form \(y = f(x)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">writing the differential equation in standard form gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{x}{{x - 1}}y = {{\text{e}}^{ - x}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{x}{{x - 1}}{\text{d}}x = \int {\left( {1 + \frac{1}{{x - 1}}} \right){\text{d}}x = x + \ln (x - 1)} } \) <strong><em>M1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence integrating factor is \({{\text{e}}^{x + \ln (x - 1)}} = (x - 1){{\text{e}}^x}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, \((x - 1){{\text{e}}^x}\frac{{{\text{d}}y}}{{{\text{d}}x}} + x{{\text{e}}^x}y = x - 1\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}\left[ {(x - 1){{\text{e}}^x}y} \right]}}{{{\text{d}}x}} = x - 1\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (x - 1){{\text{e}}^x}y = \int {(x - 1){\text{d}}x} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (x - 1){{\text{e}}^x}y = \frac{{{x^2}}}{2} - x + c\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting (0, 1), <em>c</em> = –1 <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (x - 1){{\text{e}}^x}y = \frac{{{x^2} - 2x - 2}}{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, \(y = \frac{{{x^2} - 2x - 2}}{{2(x - 1){{\text{e}}^x}}}\) (or equivalent) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[13 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Apart from some candidates who thought the differential equation was homogenous, the others were usually able to make a good start, and found it quite straightforward. Some made errors after identifying the correct integrating factor, and so lost accuracy marks.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove by induction that \(n! > {3^n}\), for \(n \ge 7,{\text{ }}n \in \mathbb{Z}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence use the comparison test to prove that the series \(\sum\limits_{r = 1}^\infty {\frac{{{2^r}}}{{r!}}} \) converges.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">if \(n = 7\) <span class="s1">then </span>\(7! > {3^7}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">so true for \(n = 7\)</p>
<p class="p1">assume true for \(n = k\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="s1">so </span>\(k! > {3^k}\)</p>
<p class="p1">consider \(n = k + 1\)</p>
<p class="p1">\((k + 1)! = (k + 1)k!\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( > (k + 1){3^k}\)</p>
<p class="p1">\( > 3.3k\;\;\;({\text{as }}k > 6)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\( = {3^{k + 1}}\)</p>
<p class="p1">hence if true for \(n = k\) then also true for \(n = k + 1\). As true for \(n = 7\), so true for all \(n \ge 7\). <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Do not award the <strong><em>R1 </em></strong>if the two <strong><em>M </em></strong>marks have not been awarded.</p>
<p class="p3"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the series \(\sum\limits_{r = 7}^\infty {{a_r}} \), where \({a_r} = \frac{{{2^r}}}{{r!}}\) <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award the <strong><em>R1 </em></strong>for starting at \(r = 7\)</p>
<p> </p>
<p>compare to the series \(\sum\limits_{r=7}^\infty {{b_r}} \) where \({b_r} = \frac{{{2^r}}}{{{3^r}}}\) <strong><em>M1</em></strong></p>
<p>\(\sum\limits_{r = 7}^\infty {{b_r}} \) is an infinite Geometric Series with \(r = \frac{2}{3}\) and hence converges <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award the <strong><em>A1 </em></strong>even if series starts at \(r = 1\).</p>
<p> </p>
<p>as \(r! > {3^r}\) so \((0 < ){a_r} < {b_r}\) for all \(r \ge 7\) <strong><em>M1R1</em></strong></p>
<p>as \(\sum\limits_{r = 7}^\infty {{b_r}} \) converges and \({a_r} < {b_r}\) so \(\sum\limits_{r = 7}^\infty {{a_r}} \) must converge</p>
<p> </p>
<p><strong>Note: </strong>Award the <strong><em>A1 </em></strong>even if series starts at \(r = 1\).</p>
<p> </p>
<p>as \(\sum\limits_{r = 1}^6 {{a_r}} \) is finite, so \(\sum\limits_{r = 1}^\infty {{a_r}} \) must converge <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>If the limit comparison test is used award marks to a maximum of <strong><em>R1M1A1M0A0R1</em></strong>.</p>
<p><em><strong>[6 marks]</strong></em></p>
<p><em><strong>Total [11 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{x}{{{x^2} + 1}}y = x\) where \(y = 1\) when \(x = 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\sqrt {{x^2} + 1} \) is an integrating factor for this differential equation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the differential equation giving your answer in the form \(y = f(x)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>integrating factor \( = {{\text{e}}^{\int {\frac{x}{{{x^2} + 1}}{\text{d}}x} }}\) <strong><em>(M1)</em></strong></p>
<p>\(\int {\frac{x}{{{x^2} + 1}}{\text{d}}x = \frac{1}{2}\ln ({x^2} + 1)} \) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for use of \(u = {x^2} + 1\) for example or \(\int {\frac{{f'(x)}}{{f(x)}}{\text{d}}x = \ln f(x)} \).</p>
<p> </p>
<p>integrating factor \( = {{\text{e}}^{\frac{1}{2}\ln ({x^2} + 1)}}\) <strong><em>A1</em></strong></p>
<p>\( = {{\text{e}}^{\ln \left( {\sqrt {{x^2} + 1} } \right)}}\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for \({{\text{e}}^{\ln \sqrt u }}\) where \(u = {x^2} + 1\).</p>
<p> </p>
<p>\( = \sqrt {{x^2} + 1} \) <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {y\sqrt {{x^2} + 1} } \right) = \frac{{{\text{d}}y}}{{{\text{d}}x}}\sqrt {{x^2} + 1} + \frac{x}{{\sqrt {{x^2} + 1} }}y\) <strong><em>M1A1</em></strong></p>
<p>\(\sqrt {{x^2} + 1} \left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{x}{{{x^2} + 1}}y} \right)\) <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempting to express in the form \(\sqrt {{x^2} + 1} \times {\text{(LHS of de)}}\).</p>
<p> </p>
<p>so \(\sqrt {{x^2} + 1} \) is an integrating factor for this differential equation <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sqrt {{x^2} + 1} \frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{x}{{\sqrt {{x^2} + 1} }}y = x\sqrt {{x^2} + 1} \) (or equivalent) <strong><em>(M1)</em></strong></p>
<p>\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {y\sqrt {{x^2} + 1} } \right) = x\sqrt {{x^2} + 1} \)</p>
<p>\(y\sqrt {{x^2} + 1} = \int {x\sqrt {{x^2} + 1} {\text{d}}x{\text{ }}\left( {y = \frac{1}{{\sqrt {{x^2} + 1} }}\int {x\sqrt {{x^2} + 1} {\text{d}}x} } \right)} \) <strong><em>A1</em></strong></p>
<p>\( = \frac{1}{3}{({x^2} + 1)^{\frac{3}{2}}} + C\) <strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for using an appropriate substitution.</p>
<p> </p>
<p><strong>Note: </strong>Condone the absence of \(C\).</p>
<p> </p>
<p>substituting \(x = 0,{\text{ }}y = 1 \Rightarrow C = \frac{2}{3}\) <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempting to find their value of \(C\).</p>
<p> </p>
<p>\(y = \frac{1}{3}({x^2} + 1) + \frac{2}{{3\sqrt {{x^2} + 1} }}{\text{ }}\left( {y = \frac{{{{({x^2} + 1)}^{\frac{3}{2}}} + 2}}{{3\sqrt {{x^2} + 1} }}} \right)\) <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(n! \geqslant {2^{n - 1}}\), for \(n \geqslant 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence use the comparison test to determine whether the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{n!}}} \) converges or diverges.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(n \geqslant 1,{\text{ }}n! = n(n - 1)(n - 2) \ldots 3 \times 2 \times 1 \geqslant 2 \times 2 \times 2 \ldots 2 \times 2 \times 1 = {2^{n - 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow n! \geqslant {2^{n - 1}}{\text{ for }}n \geqslant 1\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n! \geqslant {2^{n - 1}} \Rightarrow \frac{1}{{n!}} \leqslant \frac{1}{{{2^{n - 1}}}}{\text{ for }}n \geqslant 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{{{2^{n - 1}}}}} \) is a positive converging geometric series <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(\sum\limits_{n = 1}^\infty {\frac{1}{{n!}}} \) converges by the comparison test <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was found challenging by the majority of candidates, a fairly common ‘solution’ being that the result is true for <em>n</em> = 1, 2, 3 and therefore true for all <em>n</em>. Some candidates attempted to use induction which is a valid method but no completely correct solution using this method was seen. Candidates found part (b) more accessible and many correct solutions were seen. The most common problem was candidates using an incorrect comparison test, failing to realise that what was required was a comparison between \(\sum {\frac{1}{{n!}}} \) and \(\sum {\frac{1}{{{2^{n - 1}}}}} \).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was found challenging by the majority of candidates, a fairly common ‘solution’ being that the result is true for <em>n</em> = 1, 2, 3 and therefore true for all <em>n</em>. Some candidates attempted to use induction which is a valid method but no completely correct solution using this method was seen. Candidates found part (b) more accessible and many correct solutions were seen. The most common problem was candidates using an incorrect comparison test, failing to realise that what was required was a comparison between \(\sum {\frac{1}{{n!}}} \) and \(\sum {\frac{1}{{{2^{n - 1}}}}} \).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the series \(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}\ln n}}} \) converges.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Show that \(\ln (n) + \ln \left( {1 + \frac{1}{n}} \right) = \ln (n + 1)\).</p>
<p>(ii) Using this result, show that an application of the ratio test fails to determine whether or not \(\sum\limits_{n = 2}^\infty {\frac{1}{{n\ln n}}} \) converges.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State why the integral test can be used to determine the convergence or divergence of \(\sum\limits_{n = 2}^\infty {\frac{1}{{n\ln n}}} \).</p>
<p>(ii) Hence determine the convergence or divergence of \(\sum\limits_{n = 2}^\infty {\frac{1}{{n\ln n}}} \).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\((0 < )\frac{1}{{{n^2}\ln (n)}} < \frac{1}{{{n^2}}},{\text{ }}({\text{for }}n \ge 3)\) <strong><em>A1</em></strong></p>
<p>\(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}}}} \) converges <strong><em>A1</em></strong></p>
<p>by the comparison test ( \(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}}}} \) converges implies) \(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}\ln (n)}}} \) converges <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Mention of using the comparison test may have come earlier.</p>
<p>Only award <strong><em>R1</em></strong> if previous 2 <strong><em>A1</em></strong>s have been awarded.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{\frac{1}{{{n^2}\ln n}}}}{{\frac{1}{{{n^2}}}}}} \right) = \mathop {\lim }\limits_{n \to \infty } \frac{1}{{\ln n}} = 0\) <strong><em>A1</em></strong></p>
<p>\(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}}}} \) converges <strong><em>A1</em></strong></p>
<p>by the limit comparison test (if the limit is \(0\) and the series represented by the denominator converges, then so does the series represented by the numerator, hence) \(\sum\limits_{n = 2}^\infty {\frac{1}{{{n^2}\ln (n)}}} \) converges <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Mention of using the limit comparison test may come earlier.</p>
<p>Do not award the <strong><em>R1</em></strong> if incorrect justifications are given, for example the series “converge or diverge together”.</p>
<p>Only award <strong><em>R1</em></strong> if previous 2 <strong><em>A1</em></strong>s have been awarded.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span><strong>EITHER</strong></p>
<p class="p2">\(\ln (n) + \ln \left( {1 + \frac{1}{n}} \right) = \ln \left( {n\left( {1 + \frac{1}{n}} \right)} \right)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p2">\(\ln (n) + \ln \left( {1 + \frac{1}{n}} \right) = \ln (n) + \ln \left( {\frac{{n + 1}}{n}} \right)\)</p>
<p class="p2">\( = \ln (n) + \ln (n + 1) - \ln (n)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p2">\( = \ln (n + 1)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>attempt to use the ratio test \(\frac{n}{{(n + 1)}}\frac{{\ln (n)}}{{\ln (n + 1)}}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">\(\frac{n}{{n + 1}} \to 1{\text{ as }}n \to \infty \) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\(\frac{{\ln (n)}}{{\ln (n + 1)}} = \frac{{\ln (n)}}{{\ln (n) + \ln \left( {1 + \frac{1}{n}} \right)}}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">\( \to 1\;\;\;({\text{as }}n \to \infty )\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\(\frac{n}{{(n + 1)}}\frac{{\ln (n)}}{{\ln (n + 1)}} \to 1\;\;\;({\text{as }}n \to \infty )\;\;\;\)<span class="s1">hence ratio test is inconclusive <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space"> </span>A link with the limit equalling \(1\) and the result being inconclusive needs to be given for <strong><em>R1</em></strong>.</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span></span>consider \(f(x) = \frac{1}{{x\ln x}}\;\;\;({\text{for }}x > 1)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="s1">\(f(x)\) </span>is continuous and positive <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">and is (monotonically) decreasing <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space"> </span>If a candidate uses \(n\) rather than \(x\)<span class="s1">, award as follows</span></p>
<p class="p1"><span class="s1">\(\frac{1}{{n\ln n}}\) </span>is positive and decreasing <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p3">\(\frac{1}{{n\ln n}}\) is continuous for \(n \in \mathbb{R},{\text{ }}n > 1\) <strong><em>A1</em></strong> (only award this mark if the domain has been explicitly changed).</p>
<p class="p4"> </p>
<p class="p3">(ii) <span class="Apple-converted-space"> </span>consider \(\int_2^R {\frac{1}{{x\ln x}}{\text{d}}x} \) <span class="Apple-converted-space"> </span><span class="s2"><strong><em>M1</em></strong></span></p>
<p class="p3">\( = \left[ {\ln (\ln x)} \right]_2^R\) <span class="Apple-converted-space"> </span><span class="s2"><strong><em>(M1)A1</em></strong></span></p>
<p class="p3">\( \to \infty {\text{ as }}R \to \infty \) <span class="Apple-converted-space"> </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p1">hence series diverges <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p4"> </p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space"> </span>Condone the use of \(\infty \) in place of \(R\).</p>
<p class="p2"> </p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space"> </span>If the lower limit is not equal to \(2\), but the expression is integrated correctly award <strong><em>M0M1A1R0A0</em></strong>.</p>
<p class="p1"><em><strong>[8 marks]</strong></em></p>
<p class="p1"><em><strong>Total [17 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In this part the required test was not given in the question. This led to some students attempting inappropriate methods. When using the comparison or limit comparision test many candidates wrote the incorrect statement \(\frac{1}{{{n^2}}}\) converges, (<em>p</em>-series) rather than the correct one with \(\sum {} \). This perhaps indicates a lack of understanding of the concepts involved.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">There were many good, well argued answers to this part. Most candidates recognised the importance of the result in part (i) to find the limit in part (ii). Generally a standard result such as \(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{n}{{n + 1}}} \right) = 1\) can simply be quoted, but other limits such as \(\mathop {\lim }\limits_{n \to \infty } \left( {\frac{{\ln n}}{{\ln (n + 1)}}} \right) = 1\) need to be carefully justified.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Candidates need to be aware of the necessary conditions for all the series tests.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>The integration was well done by the candidates. Most also made the correct link between the integral being undefined and the series diverging. In this question it was not necessary to initially take a finite upper limit and the use of \(\infty \) was acceptable. This was due to the command term being ‘determine’. In q4b a finite upper limit was required, as the command term was ‘show’. To ensure full marks are always awarded candidates should err on the side of caution and always use limit notation when working out indefinite integrals.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The Taylor series of \(\sqrt x \) about <em>x</em> = 1 is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{a_0} + {a_1}(x - 1) + {a_2}{(x - 1)^2} + {a_3}{(x - 1)^3} + \ldots \]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the values of \({a_0},{\text{ }}{a_1},{\text{ }}{a_2}\) and \({a_3}\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, find the value of \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(f(x) = \sqrt x ,{\text{ }}f(1) = 1\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{2}{x^{ - \frac{1}{2}}},{\text{ }}f'(1) = \frac{1}{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = - \frac{1}{4}{x^{ - \frac{3}{2}}},{\text{ }}f''(1) = - \frac{1}{4}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(x) = \frac{3}{8}{x^{ - \frac{5}{2}}},{\text{ }}f'''(1) = \frac{3}{8}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a_1} = \frac{1}{2} \cdot \frac{1}{{1!}},{\text{ }}{a_2} = - \frac{1}{4} \cdot \frac{1}{{2!}},{\text{ }}{a_3} = \frac{3}{8} \cdot \frac{1}{{3!}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a_0} = 1,{\text{ }}{a_1} = \frac{1}{2},{\text{ }}{a_2} = - \frac{1}{8},{\text{ }}{a_3} = \frac{1}{{16}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(y = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}{(x - 1)^2} + \frac{1}{{16}}{(x - 1)^3} + \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}(x - 1) - \frac{1}{8}{{(x - 1)}^2} + \ldots }}{{x - 1}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 1} \left( {\frac{1}{2} - \frac{1}{8}(x - 1) + \ldots } \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong> </strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using l’Hôpital’s rule, <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt x - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^{ - \frac{1}{2}}}}}{1}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong> </strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\sqrt x - 1}}{{x + 1}} = \frac{1}{{\sqrt x + 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt x + 1}} = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates achieved full marks on this question but there were still a large minority of candidates who did not seem familiar with the application of Taylor series. Whilst all candidates who responded to this question were aware of the need to use derivatives many did not correctly use factorials to find the required coefficients. It should be noted that the formula for Taylor series appears in the Information Booklet.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates achieved full marks on this question but there were still a large minority of candidates who did not seem familiar with the application of Taylor series. Whilst all candidates who responded to this question were aware of the need to use derivatives many did not correctly use factorials to find the required coefficients. It should be noted that the formula for Taylor series appears in the Information Booklet.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use an integrating factor to show that the general solution for \(\frac{{{\text{d}}x}}{{{\text{d}}t}} - \frac{x}{t} = - \frac{2}{t},{\text{ }}t > 0\) is \(x = 2 + ct\), where <em>\(c\) </em>is a constant.</p>
<p class="p1">The weight in kilograms of a dog, <em>\(t\) </em>weeks after being bought from a pet shop, can be modelled by the following function:</p>
<p class="p1">\[w(t) = \left\{ {\begin{array}{*{20}{c}} {2 + ct}&{0 \le t \le 5} \\ {16 - \frac{{35}}{t}}&{t > 5} \end{array}.} \right.\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(w(t)\) is continuous, find the value of \(c\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>the weight of the dog when bought from the pet shop;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>an upper bound for the weight of the dog.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove from first principles that \(w(t)\) is differentiable at \(t = 5\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>integrating factor \({e^{\int { - \frac{1}{2}{\text{d}}t} }} = {e^{ - \ln t}}\left( { = \frac{1}{t}} \right)\) <strong><em>M1A1</em></strong></p>
<p>\(\frac{x}{t} = \int { - \frac{2}{{{t^2}}}{\text{d}}t = \frac{2}{t} + c} \) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>A1 </em></strong>for \(\frac{x}{t}\) and <strong><em>A1 </em></strong>for \({\frac{2}{t} + c}\).</p>
<p> </p>
<p>\(x = 2 + ct\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">given continuity at \(x = 5\)</p>
<p class="p1">\(5c + 2 = 16 - \frac{{35}}{5} \Rightarrow c = \frac{7}{5}\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(2\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>any value \( \ge 16\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept values less than \(16\) if fully justified by reference to the maximum age for a dog.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\mathop {\lim }\limits_{h \to 0 - } \left( {\frac{{\frac{7}{5}(5 + h) + 2 - \frac{7}{5}(5) - 2}}{h}} \right) = \frac{7}{5}\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">\(\mathop {\lim }\limits_{h \to 0 + } \left( {\frac{{16 - \frac{{35}}{{5 + h}} - 16 + \frac{{35}}{5}}}{h}} \right)\;\;\;\left( { = \mathop {\lim }\limits_{h \to 0 + } \left( {\frac{{\frac{{ - 35}}{{5 + h}} + 7}}{h}} \right)} \right)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( = \)\(\mathop {\lim }\limits_{h \to 0 + } \left( {\frac{{\frac{{ - 35 + 35 + 7h}}{{(5 + h)}}}}{h}} \right) = \mathop {\lim }\limits_{h \to 0 + } \left( {\frac{7}{{5 + h}}} \right) = \frac{7}{5}\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">both limits equal so differentiable at \(t = 5\) <span class="Apple-converted-space"> </span><strong><em>R1AG</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>The limits \(t \to 5\) could also be used.</p>
<p class="p1">For each value of \(\frac{7}{5}\) obtained by standard differentiation award <strong><em>A1</em></strong>.</p>
<p class="p1">To gain the other 4 marks a rigorous explanation must be given on how you can get from the left and right hand derivatives to the derivative.</p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>If the candidate works with \(t\) and then substitutes \(t = 5\) at the end award as follows</p>
<p class="p1">First <strong><em>M1 </em></strong>for using formula with <em>\(t\) </em>in the linear case, <strong><em>A1 </em></strong>for \(\frac{7}{5}\)</p>
<p class="p1">Award next 2 method marks even if \(t = 5\) not substituted, <strong><em>A1 </em></strong>for \(\frac{7}{5}\)</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<p class="p1"><em><strong>Total [14 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well done. Some candidates did not realize \({e^{ - \ln t}}\) could be simplified to \(\frac{1}{t}\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This part was well done by the majority of candidates.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This part was well done by the majority of candidates.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some candidates ignored the instruction to prove from first principles and instead used standard differentiation. Some candidates also only found a derivative from one side.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the power series \(\sum\limits_{k = 1}^\infty {k{{\left( {\frac{x}{2}} \right)}^k}} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the radius of convergence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the interval of convergence.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the infinite series \(\sum\limits_{k = 1}^\infty {{{( - 1)}^{k + 1}} \times \frac{k}{{2{k^2} + 1}}} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that the series is convergent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that the sum to infinity of the series is less than 0.25.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) consider \(\frac{{{T_{n + 1}}}}{{{T_n}}} = \frac{{\left| {\frac{{(n - 1){x^{n + 1}}}}{{{2^{n + 1}}}}} \right|}}{{\left| {\frac{{n{x^n}}}{{{2^n}}}} \right|}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{(n + 1)\left| x \right|}}{{2n}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \to \frac{{\left| x \right|}}{2}{\text{ as }}n \to \infty \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the radius of convergence satisfies</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{R}{2} = 1\), <em>i.e. R</em> = 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the series converges for \( - 2 < x < 2\), we need to consider \(x = \pm 2\) <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = 2, the series is \(1 + 2 + 3 + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this is divergent for any one of several reasons <em>e.g.</em> finding an expression for or a comparison test with the harmonic series or noting that \(\mathop {\lim }\limits_{n \to \infty } {u_n} \ne 0\) etc. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = – 2, the series is \( - 1 + 2 - 3 + 4 \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this is divergent for any one of several reasons</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>e.g.</em> partial sums are</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 1,{\text{ }}1,{\text{ }} - 2,{\text{ }}2,{\text{ }} - 3,{\text{ }}3 \ldots \) or noting that \(\mathop {\lim }\limits_{n \to \infty } {u_n} \ne 0\) <em>etc.</em> <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the interval of convergence is \( - 2 < x < 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) this alternating series is convergent because the moduli of successive terms are monotonic decreasing <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and the \({n^{{\text{th}}}}\) term tends to zero as \(n \to \infty \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) consider the partial sums</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">0.333, 0.111, 0.269, 0.148, 0.246 <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since the sum to infinity lies between any pair of successive partial sums, it follows that the sum to infinity lies between 0.148 and 0.246 so that it is less than 0.25 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept a solution which looks only at 0.333, 0.269, 0.246 and states that these are successive upper bounds.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates found the radius of convergence correctly but examining the situation when \(x = \pm 2\) often ended in loss of marks through inadequate explanations. In (b)(i) many candidates were able to justify the convergence of the given series. In (b)(ii), however, many candidates seemed unaware of the fact the sum to infinity lies between any pair of successive partial sums.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates found the radius of convergence correctly but examining the situation when \(x = \pm 2\) often ended in loss of marks through inadequate explanations. In (b)(i) many candidates were able to justify the convergence of the given series. In (b)(ii), however, many candidates seemed unaware of the fact the sum to infinity lies between any pair of successive partial sums.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that the solution of the homogeneous differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{x} + 1,{\text{ }}x > 0,\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that \(y = 0{\text{ when }}x = {\text{e, is }}y = x(\ln x - 1)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Determine the first three derivatives of the function \(f(x) = x(\ln x - 1)\).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 21px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Hence find the first three non-zero terms of the Taylor series for <em>f</em>(<em>x</em>) about <em>x </em>= 1.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use the substitution <em>y</em> = <em>vx</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}}x + v = v + 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{\text{d}}v = \int {\frac{{{\text{d}}x}}{x}} } \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by integration</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \frac{y}{x} = \ln x + c\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation can be rearranged as first order linear</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{1}{x}y = 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the integrating factor <em>I</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{\int { - \frac{1}{x}{\text{d}}x} }} = {{\text{e}}^{ - \ln x}} = \frac{1}{x}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">multiplying by <em>I</em> gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}}}{{{\text{d}}x}}\left( {\frac{1}{x}y} \right) = \frac{1}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{x}y = \ln x + c\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the condition gives <em>c</em> = –1</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the solution is \(y = x(\ln x - 1)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) \(f'(x) = \ln x - 1 + 1 = \ln x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{1}{x}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(x) = - \frac{1}{{{x^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the Taylor series about <em>x</em> = 1 starts</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) \approx f(1) + f'(1)(x - 1) + f''(1)\frac{{{{(x - 1)}^2}}}{{2!}} + f'''(1)\frac{{{{(x - 1)}^3}}}{{3!}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - 1 + \frac{{{{(x - 1)}^2}}}{{2!}} - \frac{{{{(x - 1)}^3}}}{{3!}}\) <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total: [12 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part(a) was well done by many candidates. In part(b)(i), however, it was disappointing to see so many candidates unable to differentiate \(x(\ln x - 1)\) correctly. Again, too many candidates were able to quote the general form of a Taylor series expansion, but not how to apply it to the given function.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="text-align: left;">The function \(f\) is defined by \(f(x){\text{ }}={\text{ }}{(\arcsin{\text{ }}x)^2},{\text{ }} - 1 \leqslant x \leqslant 1\).</p>
<p> </p>
</div>
<div class="specification">
<p>The function \(f\) satisfies the equation \(\left( {1 - {x^2}} \right)f''\left( x \right) - xf'\left( x \right) - 2 = 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f'\left( 0 \right) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By differentiating the above equation twice, show that</p>
<p>\[\left( {1 - {x^2}} \right){f^{\left( 4 \right)}}\left( x \right) - 5x{f^{\left( 3 \right)}}\left( x \right) - 4f''\left( x \right) = 0\]</p>
<p>where \({f^{\left( 3 \right)}}\left( x \right)\) and \({f^{\left( 4 \right)}}\left( x \right)\) denote the 3rd and 4th derivative of \(f\left( x \right)\) respectively.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the Maclaurin series for \(f\left( x \right)\) up to and including the term in \({x^4}\) is \({x^2} + \frac{1}{3}{x^4}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this series approximation for \(f\left( x \right)\) with \(x = \frac{1}{2}\) to find an approximate value for \({\pi ^2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f'\left( x \right) = \frac{{2\,{\text{arcsin}}\,\left( x \right)}}{{\sqrt {1 - {x^2}} }}\) <strong><em>M1A1</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for an attempt at chain rule differentiation.<br>Award <em><strong>M0A0</strong> </em>for \(f'\left( x \right) = 2\,{\text{arcsin}}\,\left( x \right)\).</p>
<p>\(f'\left( 0 \right) = 0\) <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>differentiating gives \(\left( {1 - {x^2}} \right){f^{\left( 3 \right)}}\left( x \right) - 2xf''\left( x \right) - f'\left( x \right) - xf''\left( x \right)\left( { = 0} \right)\) <em><strong>M1A1</strong></em></p>
<p>differentiating again gives \(\left( {1 - {x^2}} \right){f^{\left( 4 \right)}}\left( x \right) - 2x{f^{\left( 3 \right)}}\left( x \right) - 3f''\left( x \right) - 3x{f^{\left( 3 \right)}}\left( x \right) - f''\left( x \right)\left( { = 0} \right)\) <em><strong>M1A1</strong></em></p>
<p><strong>Note</strong>: Award <em><strong>M1</strong> </em>for an attempt at product rule differentiation of at least one product in each of the above two lines.<br>Do not penalise candidates who use poor notation.</p>
<p>\(\left( {1 - {x^2}} \right){f^{\left( 4 \right)}}\left( x \right) - 5x{f^{\left( 3 \right)}}\left( x \right) - 4f''\left( x \right) = 0\) <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find <strong>one of</strong> \(f''\left( 0 \right)\), \({f^{\left( 3 \right)}}\left( 0 \right)\) or \({f^{\left( 4 \right)}}\left( 0 \right)\) by substituting \(x = 0\) into relevant differential equation(s) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Condone \(f''\left( 0 \right)\) found by calculating \(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{2\,{\text{arcsin}}\,\left( x \right)}}{{\sqrt {1 - {x^2}} }}} \right)\) at \(x = 0\).</p>
<p>\(\left( {f\left( 0 \right) = 0,\,f'\left( 0 \right) = 0} \right)\)</p>
<p>\(f''\left( 0 \right) = 2\) and \({f^{\left( 4 \right)}}\left( 0 \right) - 4f''\left( 0 \right) = 0 \Rightarrow {f^{\left( 4 \right)}}\left( 0 \right) = 8\) <em><strong>A1</strong></em></p>
<p>\({f^{\left( 3 \right)}}\left( 0 \right) = 0\) and so \(\frac{2}{{2{\text{!}}}}{x^2} + \frac{8}{{4{\text{!}}}}{x^4}\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Only award the above <em><strong>A1</strong></em>, for correct first differentiation in part (b) leading to \({f^{\left( 3 \right)}}\left( 0 \right) = 0\) stated or \({f^{\left( 3 \right)}}\left( 0 \right) = 0\) seen from use of the general Maclaurin series.<br><strong>Special Case:</strong> Award <em><strong>(M1)A0A1</strong></em> if \({f^{\left( 4 \right)}}\left( 0 \right) = 8\) is stated without justification or found by working backwards from the general Maclaurin series.</p>
<p>so the Maclaurin series for \(f\left( x \right)\) up to and including the term in \({x^4}\) is \({x^2} + \frac{1}{3}{x^4}\) <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting \(x = \frac{1}{2}\) into \({x^2} + \frac{1}{3}{x^4}\) <em><strong>M1</strong></em></p>
<p>the series approximation gives a value of \(\frac{{13}}{{48}}\)</p>
<p>so \({\pi ^2} \simeq \frac{{13}}{{48}} \times 36\)</p>
<p>\( \simeq 9.75\,\,\left( { \simeq \frac{{39}}{4}} \right)\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept 9.76.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A function \(f\) is defined in the interval \(\left] { - k,{\text{ }}k} \right[\), where \(k > 0\). The gradient function \({f'}\) exists at each point of the domain of \(f\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following diagram shows the graph of \(y = f(x)\), its asymptotes and its vertical symmetry axis.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-17_om_14.31.15.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Sketch the graph of \(y = f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(p(x) = a + bx + c{x^2} + d{x^3} + \ldots \) be the Maclaurin expansion of \(f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Justify that \(a > 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Write down a condition for the largest set of possible values for each of the parameters \(b\), \(c\) and \(d\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) State, with a reason, an upper bound for the radius of convergence.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)<br><img src="images/maths_5_markscheme.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for shape, <strong><em>A1 </em></strong>for passing through origin <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Asymptotes not required.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(p(x) = \underbrace {f(0)}_a + \underbrace {f'(0)}_bx + \underbrace {\frac{{f''(0)}}{{2!}}}_c{x^2} + \underbrace {\frac{{{f^{(3)}}(0)}}{{3!}}}_d{x^3} + \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) because the <em>y</em>-intercept of \(f\) is positive <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(b = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c \geqslant 0\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>A1</em> </strong>for \( > \) and <strong style="font-weight: normal;"><em>A1 </em></strong>for \( = \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(d = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) as the graph has vertical asymptotes \(x = \pm k,{\text{ }}k > 0\), <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">the radius of convergence has an upper bound of \(k\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept \(r < k\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Overall candidates made good attempts to parts (a) and most candidates realized that the graph contained the origin; however many candidates had difficulty rendering the correct shape of the graph of \(f'\). Part b(i) was also well answered although some candidates where not very clear and digressed a lot. Part (ii) was less successful with most candidates scoring just part of the marks. A small number of candidates answered part (c) correctly with a valid reason.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[x\frac{{{\text{d}}y}}{{{\text{d}}x}} - 2y = \frac{{{x^3}}}{{{x^2} + 1}}.\]</span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find an integrating factor for this differential equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Solve the differential equation given that \(y = 1\) when \(x = 1\) , giving your answer in the forms \(y = f(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Rewrite the equation in the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{2}{x}y = \frac{{{x^2}}}{{{x^2} + 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Integrating factor \( = {{\text{e}}^{\int { - \frac{2}{x}{\text{d}}x} }}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{ - 2\ln x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{{x^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Accept \(\frac{1}{{{x^3}}}\) as applied to the original equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[5 marks]</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Multiplying the equation,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{{x^2}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{2}{{{x^3}}}y = \frac{1}{{{x^2} + 1}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{y}{{{x^2}}}} \right) = \frac{1}{{{x^2} + 1}}\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{y}{{{x^2}}} = \int {\frac{{{\text{d}}x}}{{{x^2} + 1}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \arctan x + C\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Substitute \(x = 1,{\text{ }}y = 1\) . <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 = \frac{\pi }{4} + C \Rightarrow C = 1 - \frac{\pi }{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {x^2}\left( {\arctan x + 1 - \frac{\pi }{4}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [13 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The response to this question was often disappointing. Many candidates were unable to find the integrating factor successfully. </span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The real and imaginary parts of a complex number \(x + {\text{i}}y\) are related by the differential equation \((x + y)\frac{{{\text{d}}y}}{{{\text{d}}x}} + (x - y) = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By solving the differential equation, given that \(y = \sqrt 3 \) when <em>x</em> =1, show that the relationship between the modulus <em>r</em> and the argument \(\theta \) of the complex number is \(r = 2{{\text{e}}^{\frac{\pi }{3} - \theta }}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((x + y)\frac{{{\text{d}}y}}{{{\text{d}}x}} + (x - y) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{y - x}}{{x + y}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(y = vx\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{vx - x}}{{x + vx}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{v - 1}}{{v + 1}} - v = \frac{{v - 1 - {v^2} - v}}{{v + 1}} = \frac{{ - 1 - {v^2}}}{{1 + v}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{v + 1}}{{1 + {v^2}}}{\text{d}}v = - \int {\frac{1}{x}{\text{d}}x} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{v}{{1 + {v^2}}}{\text{d}}v + \int {\frac{1}{{1 + {v^2}}}{\text{d}}v = - \int {\frac{1}{x}{\text{d}}x} } } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln \left| {1 + {v^2}} \right| + \arctan v = - \ln \left| x \right| + k\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Notes:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\frac{1}{2}\ln \left| {1 + {v^2}} \right|\), </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the other two terms.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Do not penalize missing <em>k</em> or missing modulus signs at this stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln \left| {1 + \frac{{{y^2}}}{{{x^2}}}} \right| + \arctan \frac{y}{x} = - \ln \left| x \right| + k\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln 4 + \arctan \sqrt 3 = - \ln 1 + k\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = \ln 2 + \frac{\pi }{3}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln \left| {1 + \frac{{{y^2}}}{{{x^2}}}} \right| + \arctan \frac{y}{x} = - \ln \left| x \right| + \ln 2 + \frac{\pi }{3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to combine logarithms <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln \left| {\frac{{{y^2} + {x^2}}}{{{x^2}}}} \right| + \frac{1}{2}\ln \left| {{x^2}} \right| = \ln 2 + \frac{\pi }{3} - \arctan \frac{y}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{2}\ln \left| {{y^2} + {x^2}} \right| = \ln 2 + \frac{\pi }{3} - \arctan \frac{y}{x}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \sqrt {{y^2} + {x^2}} = {{\text{e}}^{\ln 2 + \frac{\pi }{3}\arctan \frac{y}{x}}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \sqrt {{y^2} + {x^2}} = {{\text{e}}^{\ln 2}} \times {{\text{e}}^{\frac{\pi }{3} - \arctan \frac{y}{x}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow r = 2{{\text{e}}^{\frac{\pi }{3} - \theta }}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[15 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates realised that this was a homogeneous differential equation and that the substitution \(y = vx\) was the way forward. Many of these candidates reached as far as separating the variables correctly but integrating \(\frac{{v + 1}}{{{v^2} + 1}}\) proved to be too difficult for many candidates – most failed to realise that the expression had to be split into two separate integrals. Some candidates successfully evaluated the arbitrary constant but the combination of logs and the subsequent algebra necessary to obtain the final result proved to be beyond the majority of candidates.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the differential equation</p>
<p>\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( {\frac{y}{x}} \right),{\text{ }}x > 0.\]</p>
<p>Use the substitution \(y = vx\) to show that the general solution of this differential equation is</p>
<p>\[\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \ln x + } {\text{ Constant.}}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, solve the differential equation</p>
<p>\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{x^2} + 3xy + {y^2}}}{{{x^2}}},{\text{ }}x > 0,\]</p>
<p>given that \(y = 1\) when \(x = 1\). Give your answer in the form \(y = g(x)\).</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(y = vx \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>M1</em></strong></p>
<p>the differential equation becomes</p>
<p>\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = f(v)\) <strong><em>A1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \int {\frac{{{\text{d}}v}}{x}} } \) <strong><em>A1</em></strong></p>
<p>integrating, Constant \(\int {\frac{{{\text{d}}v}}{{f(v) - v}} = \ln x + } {\text{ Constant}}\) <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(f(v) = 1 + 3v + {v^2}\) <strong><em>(A1)</em></strong></p>
<p>\(\left( {\int {\frac{{{\text{d}}v}}{{f(v) - v}} = } } \right)\,\,\,\int {\frac{{{\text{d}}v}}{{1 + 3v + {v^2} - v}} = \ln x + C} \) <strong><em>M1A1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}v}}{{{{(1 + v)}^2}}} = (\ln x + C)} \) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>A1 </em></strong>is for correct factorization.</p>
<p> </p>
<p>\( - \frac{1}{{1 + v}}\,\,\,( = \ln x + C)\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = 1 + 3v + {v^2}\) <strong><em>A1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}v}}{{1 + 2v + {v^2}}} = \int {\frac{1}{x}{\text{d}}x} } \) <strong><em>M1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}v}}{{{{(1 + v)}^2}}}\,\,\,\left( { = \int {\frac{1}{x}{\text{d}}x} } \right)} \) <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>A1 </em></strong>is for correct factorization.</p>
<p> </p>
<p>\( - \frac{1}{{1 + v}} = \ln x( + C)\) <strong><em>A1A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>substitute \(y = 1\) or \(v = 1\) when \(x = 1\) (<strong><em>M1)</em></strong></p>
<p>therefore \(C = - \frac{1}{2}\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> This <strong><em>A1 </em></strong>can be awarded anywhere in their solution.</p>
<p> </p>
<p>substituting for \(v\),</p>
<p>\( - \frac{1}{{\left( {1 + \frac{y}{x}} \right)}} = \ln x - \frac{1}{2}\) <strong><em>M1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award for correct substitution of \(\frac{y}{x}\) into their expression.</p>
<p> </p>
<p>\(1 + \frac{y}{x} = \frac{1}{{\frac{1}{2} - \ln x}}\) <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award for any rearrangement of a correct expression that has \(y\) in the numerator.</p>
<p> </p>
<p>\(y = x\left( {\frac{1}{{\left( {\frac{1}{2} - \ln x} \right)}} - 1} \right)\,\,\,{\text{(or equivalent)}}\) <strong><em>A1</em></strong></p>
<p>\(\left( { = x\left( {\frac{{1 + 2\ln x}}{{1 - 2\ln x}}} \right)} \right)\)</p>
<p><strong><em>[10 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^2} + 3xy + 2{x^2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that <em>y</em> = −1 when <em>x</em> =1. Give your answer in the form \(y = f(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">put <em>y</em> = <em>vx</em> so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting, <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{{v^2}{x^2} + 3v{x^2} + 2{x^2}}}{{{x^2}}}{\text{ }}( = {v^2} + 3v + 2)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = {v^2} + 2v + 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{\text{d}}v}}{{{v^2} + 2v + 2}} = \int {\frac{{{\text{d}}x}}{x}} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{\text{d}}v}}{{{{(v + 1)}^2} + 1}} = \int {\frac{{{\text{d}}x}}{x}} } \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan (v + 1) = \ln x + c\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Condone absence of c at </span><strong style="font-family: 'times new roman', times; font-size: medium;">this</strong><span style="font-family: 'times new roman', times; font-size: medium;"> stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan (\frac{y}{x} + 1) = \ln x + c\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When <em>x</em> = 1, <em>y</em> = −1 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>c</em> = 0 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{y}{x} + 1 = \tan \ln x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = x(\tan \ln x - 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates recognised this differential equation as one in which the substitution <em>y</em> = <em>vx</em> would be helpful and many reached the stage of separating the variables. However, the integration of \(\frac{1}{{{v^2} + 2v + 2}}\) proved beyond many candidates who failed to realise that completing the square would lead to an arctan integral. This highlights the importance of students having a full understanding of the core calculus if they are studying this option.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(f(x) = {{\text{e}}^x}\sin x\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(f''(x) = 2\left( {f'(x) - f(x)} \right)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By further differentiation of the result in part (a) , find the Maclaurin expansion of \(f(x)\), as far as the term in \({x^5}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">\(f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x = 2{{\text{e}}^x}\cos x\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\( = 2\left( {{{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x} \right)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( = 2\left( {f'(x) - f(x)} \right)\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f(0) = 0,{\text{ }}f'(0) = 1,{\text{ }}f''(0) = 2(1 - 0) = 2\) <strong><em>(M1)A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempt to find \(f(0)\), \(f'(0)\) and \(f''(0)\).</p>
<p> </p>
<p>\(f'''(x) = 2\left( {f''(x) - f'(x)} \right)\) <strong><em>(M1)</em></strong></p>
<p>\(f'''(0) = 2(2 - 1) = 2,{\text{ }}{f^{IV}}(0) = 2(2 - 2) = 0,{\text{ }}{f^V}(0) = 2(0 - 2) = - 4\) <strong><em>A1</em></strong></p>
<p>so \(f(x) = x + \frac{2}{{2!}}{x^2} + \frac{2}{{3!}}{x^3} - \frac{4}{{5!}} + \ldots \) <strong><em>(M1)A1</em></strong></p>
<p>\( = x + {x^2} + \frac{1}{3}{x^3} - \frac{1}{{30}}{x^5} + \ldots \)</p>
<p><em><strong>[6 marks]</strong></em></p>
<p><em><strong>Total [10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact value of \(\int_0^\infty {\frac{{{\text{d}}x}}{{(x + 2)(2x + 1)}}} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\frac{1}{{(x + 2)(2x + 1)}} = \frac{A}{{x + 2}} + \frac{B}{{2x + 1}} = \frac{{A(2x + 1) + B(x + 2)}}{{(x + 2)(2x + 1)}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - 2 \to A = - \frac{1}{3}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - \frac{1}{2} \to B = \frac{2}{3}\) <strong><em>A1 N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \frac{1}{3}\int_0^h {\left[ {\frac{2}{{(2x + 1)}} - \frac{1}{{(x + 2)}}} \right]{\text{d}}x} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}\left[ {\ln (2x + 1) - \ln (x + 2)} \right]_0^h\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}\left[ {\mathop {\lim }\limits_{h \to \infty } \left( {\ln \left( {\frac{{2h + 1}}{{h + 2}}} \right)} \right) - \ln \frac{1}{2}} \right]\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}\left( {\ln 2 - \ln \frac{1}{2}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{2}{3}\ln 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>If the logarithms are not combined in the third from last line the last three <strong><em>A1 </em></strong>marks cannot be awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Not a difficult question but combination of the logarithms obtained by integration was often replaced by a spurious argument with infinities to get an answer. \(\log (\infty + 1)\) was often seen.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = {\cos ^2}x\), given that <em>y</em> = 2 when <em>x</em> = 0.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Euler’s method with a step length of 0.1 to find an approximation to the value of <em>y</em> when <em>x</em> = 0.3.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that the integrating factor for solving the differential equation is \(\sec x\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence solve the differential equation, giving your answer in the form \(y = f(x)\).</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of \(y \to y + \frac{{h{\text{d}}y}}{{{\text{d}}x}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for \(y(0.1)\) and <strong><em>A1</em></strong> for \(y(0.2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(0.3) = 2.23\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({\text{IF}} = {{\text{e}}^{\left( {\int {\tan x{\text{d}}x} } \right)}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{IF}} = {{\text{e}}^{\left( {\int {\frac{{\sin x}}{{\cos x}}{\text{d}}x} } \right)}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Only one of the two </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> above may be implied.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{( - \ln \cos x)}}{\text{ (or }}{{\text{e}}^{(\ln \sec x)}})\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sec x\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) multiplying by the IF <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sec x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x\tan x = \cos x\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}(y\sec x) = \cos x\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y\sec x = \sin x + c\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">putting \(x = 0,{\text{ }}y = 2 \Rightarrow c = 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \cos x(\sin x + 2)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates knew Euler’s method and were able to apply it to the differential equation to answer part (a). Some candidates who knew Euler’s method completed one iteration too many to arrive at an incorrect answer. Surprisingly few candidates were able to efficiently use their GDCs to answer this question and this led to many final answers that were incorrect due to rounding errors.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to correctly derive the Integration Factor in part (b) but some lost marks due to not showing all the steps that would be expected in a “show that” question. The differential equation was solved correctly by a significant number of candidates but there were errors when candidates multiplied by \(\sec x\) before the inclusion of the arbitrary constant.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g(x) = \sin {x^2}\), where \(x \in \mathbb{R}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result \(\mathop {{\text{lim}}}\limits_{t \to 0} \frac{{\sin t}}{t} = 1\), or otherwise, calculate \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{g(2x) - g(3x)}}{{4{x^2}}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Maclaurin series of \(\sin x\) to show that \(g(x) = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{{{x^{4n + 2}}}}{{(2n + 1)!}}} \)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine the minimum number of terms of the expansion of \(g(x)\) required to approximate the value of \(\int_0^1 {g(x){\text{d}}x} \) to four decimal places.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\sin 4{x^2} - \sin 9{x^2}}}{{4{x^2}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\sin 4{x^2}}}{{4{x^2}}} - \frac{9}{4}\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\sin 9{x^2}}}{{9{x^2}}}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - \frac{9}{4} \times 1 = - \frac{5}{4}\) <strong>A1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\sin 4{x^2} - \sin 9{x^2}}}{{4{x^2}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{8x\cos 4{x^2} - 18x\cos 9{x^2}}}{{8x}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{8 - 18}}{8} = - \frac{{10}}{8} = - \frac{5}{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\sin x = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{{{x^{(2n + 1)}}}}{{(2n + 1)!}}} \) \(\left( {{\text{or }}\sin x = \frac{x}{{1!}} - \frac{{{x^3}}}{{3!}} + \frac{{{x^5}}}{{5!}} - \ldots } \right)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin {x^2} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{{{x^{2(2n + 1)}}}}{{(2n + 1)!}}} \) \(\left( {{\text{or }}\sin x = \frac{{{x^2}}}{{1!}} - \frac{{{x^6}}}{{3!}} + \frac{{{x^{10}}}}{{5!}} - \ldots } \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = \sin {x^2} = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{{{x^{4n + 2}}}}{{(2n + 1)!}}} \) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">let \(I = \int_0^1 {\sin {x^2}{\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{1}{{(2n + 1)!}}} \int_0^1 {{x^{4n + 2}}{\text{d}}x{\text{ }}\left( {\int_0^1 {\frac{{{x^2}}}{{1!}}{\text{d}}x - } \int_0^1 {\frac{{{x^6}}}{{3!}}{\text{d}}x + } \int_0^1 {\frac{{{x^{10}}}}{{5!}}{\text{d}}x - \ldots } } \right)} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{1}{{(2n + 1)!}}} \frac{{[{x^{4n + 3}}]_0^1}}{{(4n + 3)}}{\text{ }}\left( {\left[ {\frac{{{x^3}}}{{3 \times 1!}}} \right]_0^1 - \left[ {\frac{{{x^7}}}{{7 \times 3!}}} \right]_0^1 + \left[ {\frac{{{x^{11}}}}{{11 \times 5!}}} \right]_0^1 - \ldots } \right)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}\frac{1}{{(2n + 1)!(4n + 3)}}} {\text{ }}\left( {\frac{1}{{3 \times 1!}} - \frac{1}{{7 \times 3!}} + \frac{1}{{11 \times 5!}} - \ldots } \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sum\limits_{n = 0}^\infty {{{( - 1)}^n}{a_n}} \) where \({a_n} = \frac{1}{{(4n + 3)(2n + 1)!}} > 0\) for all \(n \in \mathbb{N}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(\{ {a_n}\} \) is decreasing the sum of the alternating series \(\sum\limits_{n = 0}^\infty {{{( - 1)}^n}{a_n}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">lies between \(\sum\limits_{n = 0}^N {{{( - 1)}^n}{a_n}} \) and \(\sum\limits_{n = 0}^N {{{( - 1)}^n}{a_n}} \pm {a_{N + 1}}\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence for four decimal place accuracy, we need \(\left| {{a_{N + 1}}} \right| < 0.00005\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_14.28.18.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">since \({a_{2 + 1}} < 0.00005\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so \(N = 2\) (or 3 terms) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was accessible to the vast majority of candidates, who recognised that L’Hôpital’s rule could be used. Most candidates were successful in finding the limit, with some making calculation errors. Candidates that attempted to use \(\mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\sin x}}{x} = 1\) or a combination of this result and L’Hôpital’s rule were less successful.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) most candidates showed to be familiar with the substitution given and were successful in showing the result.<br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Very few candidates were able to do part (c) successfully. Most used trial and error to arrive at the answer.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using the Maclaurin series for the function \({{\text{e}}^x}\), write down the first four terms of the Maclaurin series for \({{\text{e}}^{ - \frac{{{x^2}}}{2}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence find the first four terms of the series for \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}} {\text{d}}u\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Use the result from part (b) to find an approximate value for \(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \({{\text{e}}^x} = 1 + x + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + \frac{{{x^4}}}{{4!}} + \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">putting \(x = \frac{{ - {x^2}}}{2}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{ - \frac{{{x^2}}}{2}}} \approx 1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{{2^2} \times 2!}} - \frac{{{x^6}}}{{{2^3} \times 3!}} \approx \left( {1 - \frac{{{x^2}}}{2} + \frac{{{x^4}}}{8} - \frac{{{x^6}}}{{48}}} \right)\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(\int_0^x {{{\text{e}}^{ - \frac{{{u^2}}}{2}}}{\text{d}}u \approx \left[ {u - \frac{{{u^3}}}{{3 \times 2}} + \frac{{{u^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{u^7}}}{{7 \times {2^3} \times 3!}}} \right]_0^x} \) <strong><em>M1(A1)</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x - \frac{{{x^3}}}{{3 \times 2}} + \frac{{{x^5}}}{{5 \times {2^2} \times 2!}} - \frac{{{x^7}}}{{7 \times {2^3} \times 3!}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = x - \frac{{{x^3}}}{6} + \frac{{{x^5}}}{{40}} - \frac{{{x^7}}}{{336}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) putting <em>x</em> = 1 in part (b) gives \(\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.85535 \ldots \) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{\sqrt {2\pi } }}\int_0^1 {{{\text{e}}^{ - \frac{{{x^2}}}{2}}}{\text{d}}x \approx } 0.341\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was one of the most successfully answered questions. Some candidates however failed to use the data booklet for the expansion of the series, thereby wasting valuable time.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the infinite series \(\sum\limits_{n = 1}^\infty {\frac{{{n^2}}}{{{2^n}}}{x^n}} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the radius of convergence.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the interval of convergence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>x</em> = – 0.1, find the sum of the series correct to three significant figures.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_{n + 1}}}}{{{u_n}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{\frac{{{{(n + 1)}^2}{x^{n + 1}}}}{{{2^{n + 1}}}}}}{{\frac{{{n^2}{x^n}}}{{{2^n}}}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{n \to \infty } \frac{{{{(n + 1)}^2}}}{{{n^2}}} \times \frac{x}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{2}\) (since \(\lim \to \frac{x}{2}{\text{ as }}n \to \infty \)) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the radius of convergence <em>R</em> is found by equating this limit to 1, giving <em>R</em> = 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = 2, the series is \(\sum {{n^2}} \) which is divergent because the terms do not converge to 0 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = –2, the series is \(\sum {{{( - 1)}^n}{n^2}} \) which is divergent because the terms do not converge to 0 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the interval of convergence is \(] - 2,{\text{ }}2[\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">putting <em>x</em> = – 0.1, <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for any correct partial sum <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">– 0.05</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">– 0.04</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">– 0.041125</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">– 0.041025</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">– 0.0410328 <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the sum is – 0.0410 correct to 3 significant figures <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">It was pleasing that most candidates were aware of the Radius of Convergence and Interval of Convergence required by parts (a) and (b) of this problem. Many candidates correctly handled the use of the Ratio Test for convergence and there was also the use of Cauchy’s n<sup>th</sup> root test by a small number of candidates to solve part (a). Candidates need to take care to justify correctly the divergence or convergence of series when finding the Interval of Convergence.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">It was pleasing that most candidates were aware of the Radius of Convergence and Interval of Convergence required by parts (a) and (b) of this problem. Many candidates correctly handled the use of the Ratio Test for convergence and there was also the use of Cauchy’s n<sup>th</sup> root test by a small number of candidates to solve part (a). Candidates need to take care to justify correctly the divergence or convergence of series when finding the Interval of Convergence.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The summation of the series in part (c) was poorly handled by a significant number of candidates, which was surprising on what was expected to be quite a straightforward problem. Again efficient use of the GDC seemed to be a problem. A number of candidates found the correct sum but not to the required accuracy.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{x + \sqrt {xy} }}\), for \(x,{\text{ }}y > 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Use Euler’s method starting at the point \((x,{\text{ }}y) = (1,{\text{ }}2)\), with interval \(h = 0.2\), to find an approximate value of <em>y </em>when \(x = 1.6\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Use the substitution \(y = vx\) to show that \(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{v}{{1 + \sqrt v }} - v\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) Hence find the solution of the differential equation in the form \(f(x,{\text{ }}y) = 0\), given that \(y = 2\) when \(x = 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the value of \(y\) when \(x = 1.6\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) let \(f(x,{\text{ }}y) = \frac{y}{{x + \sqrt {xy} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(1.2) = y(1) + 0.2f(1,{\text{ }}2){\text{ }}( = 2 + 0.1656 \ldots )\) <strong><em>(M2)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2.1656 \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(1.4) = 2.1656 \ldots + 0.2f(1.2,{\text{ }}2.1256 \ldots ){\text{ }}( = 2.1656 \ldots + 0.1540 \ldots )\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>M1</em></strong> is for attempt to apply formula using point \(\left( {1.2,{\text{ }}y(1.2)} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2.3197 \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(1.6) = 2.3197 \ldots + 0.2f(1.4,{\text{ }}2.3197 \ldots ){\text{ }}( = 2.3297 \ldots + 0.1448 \ldots )\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2.46\) (3sf) <strong><em>A1 N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(y = vx \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{x + \sqrt {xy} }} \Rightarrow v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{vx}}{{x + \sqrt {v{x^2}} }}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{vx}}{{x + x\sqrt v }}{\text{ (as }}x > 0)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{v}{{1 + \sqrt v }} - v\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) \(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{v}{{1 + \sqrt v }} - v\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{ - v\sqrt v }}{{1 + \sqrt v }} \Rightarrow \frac{{1 + \sqrt v }}{{ - v\sqrt v }}{\text{d}}v = \frac{1}{x}{\text{d}}x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{1 + \sqrt v }}{{ - v\sqrt v }}{\text{d}}v = \int {\frac{1}{x}{\text{d}}x} } \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{2}{{\sqrt v }} - \ln v = \ln x + C\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize absence of \( + C\) at this stage; ignore use of absolute values on</span><span style="font-size: medium;"><span style="font-family: 'times new roman', times;"><span style="font-family: 'times new roman', times;"> \(</span></span><span style="font-family: 'times new roman', times;"><span style="background-color: #f7f7f7;">v\)</span><span style="background-color: #f7f7f7;">and \(</span>x\)</span></span> <span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">(which are positive anyway).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\sqrt {\frac{x}{y}} - \ln \frac{y}{x} = \ln x + C\) as \(y = vx \Rightarrow v = \frac{y}{x}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 2\) when \(x = 1 \Rightarrow \sqrt 2 - \ln 2 = 0 + C\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\sqrt {\frac{x}{y}} - \ln \frac{y}{x} = \ln x + \sqrt 2 - \ln 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\sqrt {\frac{x}{y}} - \ln \frac{y}{x} - \ln x - \sqrt 2 + \ln 2 = 0\) \(\left( {2\sqrt {\frac{x}{y}} - \ln y - \sqrt 2 + \ln 2 = 0} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(2\sqrt {\frac{{1.6}}{y}} - \ln \frac{y}{{1.6}} - \ln 1.6 - \sqrt 2 + \ln 2 = 0\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 2.45\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well answered by most candidates. In a few cases calculation errors and early rounding errors prevented candidates from achieving full marks, but most candidates scored at least a few marks here. In part (b) some candidates failed to convincingly show the given result. Part (c) proved to be a hard question for many candidates and a significant number of candidates had difficulty manipulating the algebraic expression, and either had the incorrect expression to integrate, or incorrectly integrated the correct expression. Many candidates reached as far as separating the variables correctly but integrating proved to be too difficult for many of them although most realised that the expression on v had to be split into two separate integrals. Most candidates made good attempts to evaluate the arbitrary constant and arrived at a correct or almost correct expression (sign errors were a common error) which allowed follow through for part b (ii). In some cases however the expression obtained was too simple or was omitted and it was not possible to grant follow through marks.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(y = \frac{1}{x}\int {f(x){\text{d}}x} \) is a solution of the differential equation</p>
<p class="p1">\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = f(x),{\text{ }}x > 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence solve \(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = {x^{ - \frac{1}{2}}},{\text{ }}x > 0\), given that \(y = 2\) when \(x = 4\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{1}{{{x^2}}}\int {f(x){\text{d}}x + \frac{1}{x}f(x)} \) <strong><em>M1M1A1</em></strong></p>
<p>\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = f(x),{\text{ }}x > 0\) <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> <strong><em>M1</em></strong> for use of product rule, <strong><em>M1</em></strong> for use of the fundamental theorem of calculus, <strong><em>A1</em></strong> for all correct.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = f(x)\)</p>
<p>\(\frac{{{\text{d}}(xy)}}{{{\text{d}}x}} = f(x)\) <strong><em>(M1)</em></strong></p>
<p>\(xy = \int {f(x){\text{d}}x} \) <strong><em>M1A1</em></strong></p>
<p>\(y = \frac{1}{x}\int {f(x){\text{d}}x} \) <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = \frac{1}{x}\left( {2{x^{\frac{1}{2}}} + c} \right)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong> for correct expression apart from the constant, <strong><em>A1</em></strong> for including the constant in the correct position.</p>
<p class="p2"> </p>
<p class="p3">attempt to use the boundary condition <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(c = 4\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\(y = \frac{1}{x}\left( {2{x^{\frac{1}{2}}} + 4} \right)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space"> </span>Condone use of integrating factor.</p>
<p class="p3"><em><strong>[5 marks]</strong></em></p>
<p class="p3"><em><strong>Total [8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question allowed for several different approaches. The most common of these was the use of the integrating factor (even though that just took you in a circle). Other candidates substituted the solution into the differential equation and others multiplied the solution by \(x\) and then used the product rule to obtain the differential equation. All these were acceptable.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was a straightforward question. Some candidates failed to use the hint of ‘hence’, and worked from the beginning using the integrating factor. A surprising number made basic algebra errors such as putting the \( + c\) term in the wrong place and so not dividing it by \(\chi \).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[x\frac{{{\text{d}}y}}{{{\text{d}}x}} = y + \sqrt {{x^2} - {y^2}} ,{\text{ }}x > 0,{\text{ }}{x^2} > {y^2}.\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that this is a homogeneous differential equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the general solution, giving your answer in the form \(y = f(x)\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation can be rewritten as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{y + \sqrt {{x^2} - {y^2}} }}{x} = \frac{y}{x} + \sqrt {1 - {{\left( {\frac{y}{x}} \right)}^2}} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the differential equation is homogeneous <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">put <em>y</em> = <em>vx</em> so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = v + \sqrt {1 - {v^2}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{\text{d}}v}}{{\sqrt {1 - {v^2}} }} = \int {\frac{{{\text{d}}x}}{x}} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arcsin v = \ln x + C\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{y}{x} = \sin (\ln x + C)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = x\sin (\ln x + C)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f(x) = \frac{{1 + ax}}{{1 + bx}}\) can be expanded as a power series in <em style="font-family: 'times new roman', times; font-size: medium;">x</em>, within its radius of convergence R, in the form \(f(x) \equiv 1 + \sum\limits_{n = 1}^\infty {{c_n}{x^n}} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Show that \({c_n} = {( - b)^{n - 1}}(a - b)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) State the value of R.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine the values of <em>a</em> and <em>b</em> for which the expansion of <em>f</em>(<em>x</em>) agrees with that of \({{\text{e}}^x}\) up to and including the term in \({x^2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Hence find a rational approximation to \({{\text{e}}^{\frac{1}{3}}}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) \(f(x) = (1 + ax){(1 + bx)^{ - 1}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (1 + ax)(1 - bx + ...{( - 1)^n}{b^n}{x^n} + …\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\({c_n} = {( - 1)^n}{b^n} + {( - 1)^{n - 1}}a{b^{n - 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {( - b)^{n - 1}}(a - b)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \({\text{R}} = \frac{1}{{\left| b \right|}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) to agree up to quadratic terms requires</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 = - b + a,{\text{ }}\frac{1}{2} = {b^2} - ab\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">from which \(a = - b = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) \({{\text{e}}^x} \approx \frac{{1 + 0.5x}}{{1 - 0.5x}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">putting \(x = \frac{1}{3}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{\frac{1}{3}}} \approx \frac{{\left( {1 + \frac{1}{6}} \right)}}{{\left( {1 - \frac{1}{6}} \right)}} = \frac{7}{5}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [12 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates failed to realize that the first step was to write <em>f</em>(<em>x</em>) as \((1 + ax){(1 + bx)^{ - 1}}\) . Given the displayed answer to part(a), many candidates successfully tackled part(b). Few understood the meaning of the ‘hence’ in part(c).</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the first three terms of the Maclaurin series for \(\ln (1 + {{\text{e}}^x})\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, determine the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{2\ln (1 + {{\text{e}}^x}) - x - \ln 4}}{{{x^2}}}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = \ln (1 + {{\text{e}}^x});{\text{ }}f(0) = \ln 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{{{\text{e}}^x}}}{{1 + {{\text{e}}^x}}};{\text{ }}f'(0) = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(f'(x) = \frac{1}{{1 + {{\text{e}}^x}}};{\text{ }}f'(0) = \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{{{\text{e}}^x}(1 + {{\text{e}}^x}) - {{\text{e}}^{2x}}}}{{{{(1 + {{\text{e}}^x})}^2}}};{\text{ }}f''(0) = \frac{1}{4}\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M0A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(f''(x){\text{ if }}f'(x) = \frac{1}{{1 + {{\text{e}}^x}}}\) is used</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln (1 + {{\text{e}}^x}) = \ln 2 + \frac{1}{2}x + \frac{1}{8}{x^2} + …\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln (1 + {{\text{e}}^x}) = \ln (1 + 1 + x + \frac{1}{2}{x^2} + …)\) <strong>M1A1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 2 + \ln (1 + \frac{1}{2}x + \frac{1}{4}{x^2} + …)\) <strong>A1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 2 + \left( {\frac{1}{2}x + \frac{1}{4}{x^2} + ...} \right) - \frac{1}{2}{\left( {\frac{1}{2}x + \frac{1}{4}{x^2} + ...} \right)^2} + …\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 2 + \frac{1}{2}x + \frac{1}{4}{x^2} - \frac{1}{8}{x^2} + …\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 2 + \frac{1}{2}x + \frac{1}{8}{x^2} + …\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{2\ln (1 + {{\text{e}}^x}) - x - \ln 4}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2\ln 2 + x + \frac{{{x^2}}}{4} + {x^3}{\text{ terms & above}} - x - \ln 4}}{{{x^2}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{4} + {\text{powers of }}x} \right) = \frac{1}{4}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept + … as evidence of recognition of cubic and higher powers.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1AOM1A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for a solution which omits the cubic and higher powers.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using l’Hôpital’s Rule</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{2\ln (1 + {{\text{e}}^x}) - x - \ln 4}}{{{x^2}}} = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\text{e}}^x} \div (1 + {{\text{e}}^x}) - 1}}{{2x}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \frac{{2{{\text{e}}^x} \div {{(1 + {{\text{e}}^x})}^2}}}{2} = \frac{1}{4}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), candidates who found the series by successive differentiation were generally successful, the most common error being to state that the derivative of \(\ln (1 + {{\text{e}}^x})\) is \({(1 + {{\text{e}}^x})^{ - 1}}\). Some candidates assumed the series for \(\ln (1 + x)\) and \({{\text{e}}^x}\) attempted to combine them. This was accepted as an alternative solution but candidates using this method were often unable to obtain the required series.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (b), candidates were equally split between using the series or using l’Hopital’s rule to find the limit. Both methods were fairly successful, but a number of candidates forgot that if a series was used, there had to be a recognition that it was not a finite series. </span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = {{\text{e}}^{({{\text{e}}^x} - 1)}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Assuming the Maclaurin series for \({{\text{e}}^x}\) , show that the Maclaurin series for \(f(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">is \(1 + x + {x^2} + \frac{5}{6}{x^3} + \ldots {\text{ .}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence or otherwise find the value of \(\mathop {\lim }\limits_{x \to 0} \frac{{f(x) - 1}}{{f'(x) - 1}}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \({{\text{e}}^x} - 1 = x + \frac{{{x^2}}}{2} + \frac{{{x^2}}}{6} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{{{\text{e}}^x} - 1}} = 1 + \left( {x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6}} \right) + \frac{{{{\left( {x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6}} \right)}^2}}}{2} + \frac{{{{\left( {x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6}} \right)}^3}}}{6} + \ldots \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{6} + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{2} + \frac{{{x^3}}}{6} + \ldots \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + x + {x^2} + \frac{5}{6}{x^3} + \ldots \) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 1 + 2x + \frac{{5{x^2}}}{2} + \ldots \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{f(x) - 1}}{{f'(x) - 1}} = \frac{{x + {x^2} + 5{x^3}/6 + \ldots }}{{2x + 5{x^2}/2 + \ldots }}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{1 + x + \ldots }}{{2 + 5x/2 + \ldots }}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \to \frac{1}{2}{\text{ as }}x \to 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using l’Hopital’s rule, <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^{({{\text{e}}^x} - 1)}} - 1}}{{{{\text{e}}^{({{\text{e}}^x} - 1)}} - 1' - 1}} = \mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^{({{\text{e}}^x} - 1)}} - 1}}{{{{\text{e}}^{({{\text{e}}^x} + x - 1)}} - 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{x \to 0} \frac{{{{\text{e}}^{({{\text{e}}^x} + x - 1)}}}}{{{{\text{e}}^{({{\text{e}}^x} + x - 1)}} \times ({{\text{e}}^x} + 1)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [10 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates obtained the required series by finding the values of successive derivatives at <em>x</em> = 0 , failing to realise that the intention was to start with the exponential series and replace <em>x</em> by the series for \({{\text{e}}^x} - 1\). Candidates who did this were given partial credit for using this method. Part (b) was reasonably well answered using a variety of methods.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether the series \(\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}} \) is convergent or divergent.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the series \(\sum\limits_{n = 2}^\infty {\frac{1}{{n{{(\ln n)}^2}}}} \) is convergent.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">comparing with the series \(\sum\limits_{n = 1}^\infty {\frac{1}{n}} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the limit comparison test <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{{\sin \frac{1}{n}}}{{\frac{1}{n}}}\left( { = \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x}} \right) = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\sum\limits_{n = 1}^\infty {\frac{1}{n}} \) diverges, \(\sum\limits_{n = 1}^\infty {\sin \frac{1}{n}} \) diverges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using integral test <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(u = \ln x\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{x{{(\ln x)}^2}}}{\text{d}}x = \int {\frac{1}{{{u^2}}}{\text{d}}u = - \frac{1}{u}\left( { = - \frac{1}{{\ln x}}} \right)} } \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \int_2^\infty {\frac{1}{{x{{(\ln x)}^2}}}{\text{d}}x = \mathop {\lim }\limits_{a \to \infty } } \left[ { - \frac{1}{{\ln x}}} \right]_2^a\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{a \to \infty } \left( { - \frac{1}{{\ln a}} + \frac{1}{{\ln 2}}} \right)\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(a \to \infty ,{\text{ }} - \frac{1}{{\ln a}} \to 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \int_2^\infty {\frac{1}{{x{{\left( {\ln x} \right)}^2}}}} {\text{d}}x = \frac{1}{{\ln 2}}\)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the series is convergent <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was found to be the hardest on the paper, with only the best candidates gaining full marks on it. Part (a) was very poorly done with a significant number of candidates unable to start the question. More students recognised part (b) as an integral test, but often could not progress beyond this. In many cases, students appeared to be guessing at what might constitute a valid test.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was found to be the hardest on the paper, with only the best candidates gaining full marks on it. Part (a) was very poorly done with a significant number of candidates unable to start the question. More students recognised part (b) as an integral test, but often could not progress beyond this. In many cases, students appeared to be guessing at what might constitute a valid test.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the general solution of the differential equation \(t\frac{{{\text{d}}y}}{{{\text{d}}t}} = \cos t - 2y\) , for <em>t </em>> 0 .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">recognise equation as first order linear and attempt to find the IF <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{IF}} = {{\text{e}}^{\int {\frac{2}{t}{\text{d}}t} }} = {t^2}\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">solution \(y{t^2} = \int {t\cos t{\text{d}}t} \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">using integration by parts with the correct choice of <em>u </em>and <em>v</em> <strong><em>(M1)<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {t\cos t{\text{d}}t = t\sin t + \cos t( + C)} \) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(y = \frac{{\sin t}}{t} + \frac{{\cos t + C}}{{{t^2}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Perhaps a small number of candidates were put off by the unusual choice of variables but in most instances it seemed that candidates who recognised the need for an integration factor could make a good attempt at this problem. Candidates who were not able to simplify the integrating factor from \({e^{2\ln t}}\) to \({t^2}\) rarely gained full marks. A significant number of candidates did not gain the final mark due to a lack of an arbitrary constant or not dividing the constant by the integration factor.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the infinite series</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{1}{{2\ln 2}} - \frac{1}{{3\ln 3}} + \frac{1}{{4\ln 4}} - \frac{1}{{5\ln 5}} + \ldots {\text{ .}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that the series converges.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Determine if the series converges absolutely or conditionally.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) applying the alternating series test as \(\forall n \geqslant 2,\frac{1}{{n\ln n}} \in {\mathbb{R}^ + }\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\forall n,\frac{1}{{(n + 1)\ln (n + 1)}} \leqslant \frac{1}{{n\ln n}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n\ln n}} = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, by the alternating series test, the series converges <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) as \(\frac{1}{{x\ln x}}\) is a continuous decreasing function, apply the integral test to determine if it converges absolutely <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_2^\infty {\frac{1}{{x\ln x}}{\text{d}}x = \mathop {\lim }\limits_{b \to \infty } \int_2^b {\frac{1}{{x\ln x}}{\text{d}}x} } \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(u = \ln x\) then \({\text{d}}u = \frac{1}{x}{\text{d}}x\) <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{u}{\text{d}}u = \ln u} \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, \(\mathop {\lim }\limits_{b \to \infty } \int_2^b {\frac{1}{{x\ln x}}{\text{d}}x = \mathop {\lim }\limits_{b \to \infty } \left[ {\ln (\ln x)} \right]_2^b} \) which does not exist <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, the series does not converge absolutely <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the series converges conditionally <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [15 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was answered well by many candidates who attempted this question. In part (b), those who applied the integral test were mainly successful, but too many failed to supply the justification for its use, and proper conclusions.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(\int\limits_4^\infty {\frac{1}{{{x^3}}}{\text{d}}x} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Illustrate graphically the inequality \(\sum\limits_{n = 5}^\infty {\frac{1}{{{n^3}}}} < \int\limits_4^\infty {\frac{1}{{{x^3}}}{\text{d}}x} < \sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down a lower bound for \(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an upper bound for \(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\int\limits_4^\infty {\frac{1}{{{x^3}}}{\text{d}}x} = \mathop {{\text{lim}}}\limits_{R \to \infty } \int\limits_4^R {\frac{1}{{{x^3}}}{\text{d}}x} \) <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> The above <em><strong>A1</strong> </em>for using a limit can be awarded at any stage.<br>Condone the use of \(\mathop {{\text{lim}}}\limits_{x \to \infty } \).</p>
<p>Do not award this mark to candidates who use \(\infty \) as the upper limit throughout.</p>
<p>= \(\mathop {{\text{lim}}}\limits_{R \to \infty } \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_4^R\left( { = \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_4^\infty } \right)\) <em><strong>M1</strong></em></p>
<p>\( = \mathop {{\text{lim}}}\limits_{R \to \infty } \left( { - \frac{1}{2}\left( {{R^{ - 2}} - {4^{ - 2}}} \right)} \right)\)</p>
<p>\( = \frac{1}{{32}}\) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> <img src=""> <em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong> </em>for the curve<br><em><strong>A1</strong> </em>for rectangles starting at \(x = 4\)<br><em><strong>A1</strong> </em>for at least three upper rectangles<br><em><strong>A1</strong> </em>for at least three lower rectangles</p>
<p><strong>Note:</strong> Award<em><strong> A0A1</strong></em> for two upper rectangles and two lower rectangles.</p>
<p>sum of areas of the lower rectangles < the area under the curve < the sum of the areas of the upper rectangles so</p>
<p>\(\sum\limits_{n = 5}^\infty {\frac{1}{{{n^3}}}} < \int\limits_4^\infty {\frac{1}{{{x^3}}}{\text{d}}x} < \sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} \) <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a lower bound is \(\frac{1}{{32}}\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow <strong>FT</strong> from part (a).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\sum\limits_{n = 5}^\infty {\frac{1}{{{n^3}}}} < \frac{1}{{32}}\) <em><strong>(M1)</strong></em></p>
<p>\(\frac{1}{{64}} + \sum\limits_{n = 5}^\infty {\frac{1}{{{n^3}}}} = \frac{1}{{32}} + \frac{1}{{64}}\) <em><strong>(M1)</strong></em></p>
<p>\(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} < \frac{3}{{64}}\), an upper bound <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Allow <em><strong>FT</strong> </em>from part (a).</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>changing the lower limit in the inequality in part (b) gives</p>
<p>\(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} < \int\limits_3^\infty {\frac{1}{{{x^3}}}{\text{d}}x} \left( { < \sum\limits_{n = 3}^\infty {\frac{1}{{{n^3}}}} } \right)\) <em><strong>(A1)</strong></em></p>
<p>\(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} < \mathop {{\text{lim}}}\limits_{R \to \infty } \left[ { - \frac{1}{2}{x^{ - 2}}} \right]_3^R\) <em><strong>(M1)</strong></em></p>
<p>\(\sum\limits_{n = 4}^\infty {\frac{1}{{{n^3}}}} < \frac{1}{{18}}\), an upper bound <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone candidates who do not use a limit.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the infinite series \(\sum\limits_{n = 1}^\infty {\frac{2}{{{n^2} + 3n}}} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use a comparison test to show that the series converges.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{2}{{{n^2} + 3n}}} < \sum\limits_{n = 1}^\infty {\frac{2}{{{n^2}}}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">which is convergent <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the given series is therefore convergent using the comparison test <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{n \to \infty } \frac{{\frac{2}{{{n^2} + 3n}}}}{{\frac{1}{{{n^2}}}}} = 2\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the given series is therefore convergent using the limit comparison test <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to answer part (a) and many gained a fully correct answer. A number of candidates ignored the factor 2 in the numerator and this led to candidates being penalised. In some cases candidates were not able to identify an appropriate series to compare with. Most candidates used the Comparison test rather than the Limit comparison test.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The general term of a sequence \(\{ {a_n}\} \) is given by the formula \({a_n} = \frac{{{{\text{e}}^n} + {2^n}}}{{2{{\text{e}}^n}}},{\text{ }}n \in {\mathbb{Z}^ + }\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Determine whether the sequence \(\{ {a_n}\} \) is decreasing or increasing.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that the sequence \(\{ {a_n}\} \) is convergent and find the limit <em>L</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find the smallest value of \(N \in {\mathbb{Z}^ + }\) such that \(\left| {{a_n} - L} \right| < 0.001\), for all \(n \geqslant N\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \({a_n} = \frac{{{{\text{e}}^n} + {2^n}}}{{2{{\text{e}}^n}}} = \frac{1}{2} + \frac{1}{2}{\left( {\frac{2}{{\text{e}}}} \right)^2} > \frac{1}{2} + \frac{1}{2}{\left( {\frac{2}{{\text{e}}}} \right)^{n + 1}} = {a_{n + 1}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the sequence is decreasing (as terms are positive) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept reference to the sum of a constant and a decreasing geometric sequence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept use of derivative of \(f(x) = \frac{{{{\text{e}}^x} + 2x}}{{2{{\text{e}}^x}}}\) (and condone use of n) and graphical methods (graph of the sequence or graph of corresponding function \(f\) or graph of its derivative \({f'}\)).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> Accept a list of consecutive terms of the sequence clearly decreasing (<em>eg</em> \(0.8678 \ldots ,{\text{ }}0.77067 \ldots ,{\text{ }} \ldots \)).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(L = \mathop {\lim }\limits_{n \to \infty } {a_n} = \mathop {\lim }\limits_{n \to \infty } \frac{1}{2} + \frac{1}{2}{\left( {\frac{2}{{\text{e}}}} \right)^n} = \frac{1}{2} + \frac{1}{2} \times 0 = \frac{1}{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) \(\left| {{a_n} - \frac{1}{2}} \right| = \left| {\frac{1}{2} + \frac{1}{2}{{\left( {\frac{2}{{\text{e}}}} \right)}^n} - \frac{1}{2}} \right| = \left| {\frac{1}{2}{{\left( {\frac{2}{{\text{e}}}} \right)}^n}} \right| < \frac{1}{{1000}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {\left( {\frac{{\text{e}}}{2}} \right)^n} > 500\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow n > 20.25 \ldots \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {\left( {\frac{2}{{\text{e}}}} \right)^n} < 500\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow n > 20.25 \ldots \) <strong><em>(A1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: normal;">Note:</strong> <strong style="font-weight: normal;"><em>A1</em></strong> for correct inequality; <strong style="font-weight: normal;"><em>A1 </em></strong>for correct value.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(N = 21\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were successful in answering part (a) using a variety of methods. The majority of candidates scored some marks, if not full marks. Surprisingly, some candidates did not have the correct graph for the function the sequence represents. They obviously did not enter it correctly into their GDCs. Others used one of the two definitions for showing that a sequence is increasing/decreasing, but made mistakes with the algebraic manipulation of the expression, thereby arriving at an incorrect answer. Part (b) was less well answered with many candidates ignoring the command terms ‘show that’ and ‘find’ and just writing down the value of the limit. Some candidates attempted to use convergence tests for series with this sequence. Part (c) of this question was found challenging by the majority of candidates due to difficulties in solving inequalities involving absolute value.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the series \(\sum\limits_{n = 1}^\infty {{{( - 1)}^n}\frac{{{x^n}}}{{n \times {2^n}}}} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the radius of convergence of the series.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence deduce the interval of convergence.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the ratio test (and absolute convergence implies convergence) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{u_{n + 1}}}}{{{u_n}}}} \right| = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{\frac{{{{( - 1)}^{n + 1}}{x^{n + 1}}}}{{(n + 1){2^{n + 1}}}}}}{{\frac{{{{( - 1)}^n}{x^n}}}{{(n){2^n}}}}}} \right|\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for numerator, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for denominator.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{n \to \infty } \left| {\frac{{{{( - 1)}^{n + 1}} \times {x^{n + 1}} \times n \times {2^n}}}{{{{( - 1)}^n} \times (n + 1) \times {2^{n + 1}} \times {x^n}}}} \right|\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{2(n + 1)}}\left| x \right|\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\left| x \right|}}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for convergence we require \(\frac{{\left| x \right|}}{2} < 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \left| x \right| < 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence radius of convergence is 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we now need to consider what happens when \(x = \pm 2\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = 2 we have \(\sum\limits_{n = 1}^\infty {\frac{{{{( - 1)}^n}}}{n}} \) which is convergent (by the alternating series test) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = −2 we have \(\sum\limits_{n = 1}^\infty {\frac{1}{n}} \) which is divergent <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence interval of convergence is \(] - 2,{\text{ }}2]\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to start (a) and a majority gained a fully correct answer. A number of candidates were careless with using the absolute value sign and with dealing with the negative signs and in the more extreme cases this led to candidates being penalised. Part (b) caused more difficulties, with many candidates appearing to know what to do, but then not succeeding in doing it or in not understanding the significance of the answer gained.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to start (a) and a majority gained a fully correct answer. A number of candidates were careless with using the absolute value sign and with dealing with the negative signs and in the more extreme cases this led to candidates being penalised. Part (b) caused more difficulties, with many candidates appearing to know what to do, but then not succeeding in doing it or in not understanding the significance of the answer gained.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^2} + xy + 4{x^2},\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">given that <em>y</em> = 2 when <em>x</em> =1. Give your answer in the form \(y = f(x)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">put \(y = vx\) so that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation becomes \(v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = {v^2} + v + 4\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{\text{d}}v}}{{{v^2} + 4}} = \int {\frac{{{\text{d}}x}}{x}} } \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}\arctan \left( {\frac{v}{2}} \right) = \ln x + C\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting\((x,{\text{ }}v) = (1,{\text{ }}2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(C = \frac{\pi }{8}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan \left( {\frac{y}{{2x}}} \right) = 2\ln x + \frac{\pi }{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 2x\tan \left( {2\ln x + \frac{\pi }{4}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates recognised this differential equation as one in which the substitution \(y = vx\) would be helpful and many carried the method through to a successful conclusion. The most common error seen was an incorrect integration of \(\frac{1}{{4 + {v^2}}}\) with partial fractions and/or a logarithmic evaluation seen. Some candidates failed to include an arbitrary constant which led to a loss of marks later on.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\) is defined by \(f(x) = {{\text{e}}^{ - x}}\cos x + x - 1\).</p>
<p class="p1">By finding a suitable number of derivatives of \(f\), determine the first non-zero term in its Maclaurin series.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\(f(0) = 0\) <strong><em>A1</em></strong></p>
<p>\(f'(x) = - {{\text{e}}^{ - x}}\cos x - {{\text{e}}^{ - x}}\sin x + 1\) <strong><em>M1A1</em></strong></p>
<p>\(f'(0) = 0\) <strong><em>(M1)</em></strong></p>
<p>\(f''(x) = 2{{\text{e}}^{ - x}}\sin x\) <strong><em>A1</em></strong></p>
<p>\(f''(0) = 0\)</p>
<p>\({f^{(3)}}(x) = - 2{{\text{e}}^{ - x}}\sin x + 2{{\text{e}}^{ - x}}\cos x\) <strong><em>A1</em></strong></p>
<p>\({f^{(3)}}(0) = 2\)</p>
<p>the first non-zero term is \(\frac{{2{x^3}}}{{3!}}\;\;\;\left( { = \frac{{{x^3}}}{3}} \right)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award no marks for using known series.</p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Most students had a good understanding of the techniques involved with this question. A surprising number forgot to show \(f(0) = 0\). Some candidates did not simplify the second derivative which created extra work and increased the chance of errors being made.</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2} + {x^2}}}{{2{x^2}}}\) for which <em>y</em> = −1 when <em>x</em> = 1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Use Euler’s method with a step length of 0.25 to find an estimate for the value of <em>y</em> when <em>x</em> = 2 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Solve the differential equation giving your answer in the form \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find the value of <em>y</em> when <em>x</em> = 2 .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using an increment of 0.25 in the <em>x</em>-values <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> The <strong><em>A1</em></strong> marks are awarded for final column.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y(2) \approx - 0.304\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) let <em>y</em> = <em>vx</em> <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = v + x\frac{{{\text{d}}v}}{{{\text{d}}x}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow v + x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{{v^2}{x^2} + {x^2}}}{{2{x^2}}}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{1 - 2v + {v^2}}}{2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{{{(1 - v)}^2}}}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \int {\frac{2}{{{{(1 - v)}^2}}}{\text{d}}v = \int {\frac{1}{x}{\text{d}}x} } \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 2{(1 - v)^{ - 1}} = \ln x + c\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{2}{{1 - \frac{y}{x}}} = \ln x + c\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 1,{\text{ }}y = - 1 \Rightarrow c = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{2x}}{{x - y}} = \ln x + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = x - \frac{{2x}}{{1 + \ln x}}{\text{ }}\left( { = \frac{{x\ln x - x}}{{1 + \ln x}}} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) when \(x = 2,{\text{ }}y = - 0.362\,\,\,\,\,\left( {{\text{accept 2}} - \frac{4}{{1 + \ln 2}}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[13 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [20 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done by many candidates, but a number were penalised for not using a sufficient number of significant figures. Part (b) was started by the majority of candidates, but only the better candidates were able to reach the end. Many were unable to complete the question correctly because they did not know what to do with the substitution <em>y</em> = <em>vx</em> and because of arithmetic errors and algebraic errors.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(y = \ln \left( {\frac{{1 + {{\text{e}}^{ - x}}}}{2}} \right)\), show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\text{e}}^{ - y}}}}{2} - 1\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, by repeated differentiation of the above differential equation, find the Maclaurin series for <em>y</em> as far as the term in \({x^3}\), showing that two of the terms are zero.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \ln \left( {\frac{{1 + {{\text{e}}^{ - x}}}}{2}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2{{\text{e}}^{ - x}}}}{{2(1 + {{\text{e}}^{ - x}})}} = \frac{{ - {{\text{e}}^{ - x}}}}{{1 + {{\text{e}}^{ - x}}}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">now \(\frac{{1 + {{\text{e}}^{ - x}}}}{2} = {{\text{e}}^y}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 1 + {{\text{e}}^{ - x}} = 2{{\text{e}}^y}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {{\text{e}}^{ - x}} = 2{{\text{e}}^y} - 1\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2{{\text{e}}^y} + 1}}{{2{{\text{e}}^y}}}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Only one of the two above </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> marks may be implied.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\text{e}}^{ - y}}}}{2} = - 1\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>AG</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Candidates may find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) as a function of x and then work backwards from the given answer. Award full marks if done correctly.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \ln \left( {\frac{{1 + {{\text{e}}^{ - x}}}}{2}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {{\text{e}}^y} = \frac{{1 + {{\text{e}}^{ - x}}}}{2}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {{\text{e}}^{ - x}} = 2{{\text{e}}^y} - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = - \ln (2{{\text{e}}^y} - 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}y}} = - \frac{1}{{2{{\text{e}}^y} - 1}} \times 2{{\text{e}}^y}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2{{\text{e}}^y} - 1}}{{ - 2{{\text{e}}^y}}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\text{e}}^{ - y}}}}{2} - 1\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}y = \ln 1 = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{2} - 1 = - \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = - \frac{{{{\text{e}}^{ - y}}}}{2}\frac{{{\text{d}}y}}{{{\text{d}}x}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \frac{{{{\text{e}}^{ - y}}}}{2}{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2} - \frac{{{{\text{e}}^{ - y}}}}{2}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \frac{1}{2} \times \frac{1}{4} - \frac{1}{2} \times \frac{1}{4} = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = f(0) + f'(0)x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = 0 - \frac{1}{2}x + \frac{1}{8}{x^2} + 0{x^3} + \ldots \) <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">two of the above terms are zero <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}y = \ln 1 = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{2} - 1 = - \frac{1}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = \frac{{ - {{\text{e}}^{ - y}}}}{2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {{\text{e}}^{ - y}}}}{2}\left( {\frac{{{{\text{e}}^{ - y}}}}{2} - 1} \right) = \frac{{ - {{\text{e}}^{2y}}}}{4} + \frac{{{{\text{e}}^{ - y}}}}{2}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = - \frac{1}{4} + \frac{1}{2} = \frac{1}{4}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = \left( {\frac{{{{\text{e}}^{ - 2y}}}}{2} - \frac{{{{\text{e}}^{ - y}}}}{2}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}}\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} = - \frac{1}{2} \times \left( {\frac{1}{2} - \frac{1}{2}} \right) = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = f(0) + f'(0)x + \frac{{f''(0)}}{{2!}}{x^2} + \frac{{f'''(0)}}{{3!}}{x^3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = 0 - \frac{1}{2}x + \frac{1}{8}{x^2} + 0{x^3} + \ldots \) <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">two of the above terms are zero <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were successful in (a) with a variety of methods seen. In (b) the use of the chain rule was often omitted when differentiating \({{{\text{e}}^{ - y}}}\) with respect to <em>x</em>. A number of candidates tried to repeatedly differentiate the original expression, which was not what was asked for, although partial credit was given for this. In this case, they often found problems in simplifying the algebra.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were successful in (a) with a variety of methods seen. In (b) the use of the chain rule was often omitted when differentiating \({{{\text{e}}^{ - y}}}\) with respect to <em>x</em>. A number of candidates tried to repeatedly differentiate the original expression, which was not what was asked for, although partial credit was given for this. In this case, they often found problems in simplifying the algebra.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Each term of the power series \(\frac{1}{{1 \times 2}} + \frac{1}{{4 \times 5}}x + \frac{1}{{7 \times 8}}{x^2} + \frac{1}{{10 \times 11}}{x^3} + \ldots \) has the form \(\frac{1}{{b(n) \times c(n)}}{x^n}\), where \(b(n)\) and \(c(n)\) are linear functions of \(n\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the functions \(b(n)\) and \(c(n)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the radius of convergence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find the interval of convergence.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(b(n) = 3n + 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c(n) = 3n + 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>\(b(n)\) and \(c(n)\) may be reversed.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) consider the ratio of the \({(n + 1)^{{\text{th}}}}\) and \({n^{{\text{th}}}}\) terms: <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{3n + 1}}{{3n + 4}} \times \frac{{3n + 2}}{{3n + 5}} \times \frac{{{x^{n + 1}}}}{{{x^n}}}\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {{\text{lim}}}\limits_{n \to 0} \frac{{3n + 1}}{{3n + 4}} \times \frac{{3n + 2}}{{3n + 5}} \times \frac{{{x^{n + 1}}}}{{{x^n}}}x\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">radius of convergence: \(R = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) any attempt to study the series for \(x = -1\) or \(x = 1\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">converges for \(x = 1\) by comparing with <em>p</em>-series \(\sum {\frac{1}{{{n^2}}}} \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to use the alternating series test for \(x = -1\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>At least one of the conditions below needs to be attempted for <strong><em>M1</em>.</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {{\text{terms}}} \right| \approx \frac{1}{{9{n^2}}} \to 0\) and terms decrease monotonically in absolute value <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">series converges for \(x = -1\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">interval of convergence: \(\left[ { - 1,{\text{ 1}}} \right]\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award the <strong><em>R1</em></strong>s only if an attempt to corresponding correct test is made;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> award the final <strong><em>A1 </em></strong>only if at least one of the <strong><em>R1</em></strong>s is awarded;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> Accept study of absolute convergence at end points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} - 2{y^2} = {{\text{e}}^x}\) and <em>y</em> = 1 when <em>x</em> = 0, use Euler’s method with a step length of 0.1 to find an approximation for the value of <em>y</em> when <em>x</em> = 0.4. Give all intermediate values with maximum possible accuracy.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^x} + 2{y^2}\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">required approximation = 3.85 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates seemed familiar with Euler’s method. The most common way of losing marks was either to round intermediate answers to insufficient accuracy despite the advice in the question or simply to make an arithmetic error. Many candidates were given an accuracy penalty for not rounding their answer to three significant figures.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions \(f(x) = {(\ln x)^2},{\text{ }}x > 1\) and \(g(x) = \ln \left( {f(x)} \right),{\text{ }}x > 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find \(g'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Hence, show that \(g(x)\) is increasing on \(\left] {1,{\text{ }}\infty } \right[\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[(\ln x)\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{2}{x}y = \frac{{2x - 1}}{{(\ln x)}},{\text{ }}x > 1.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the general solution of the differential equation in the form \(y = h(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that the particular solution passing through the point with coordinates \(\left( {{\text{e, }}{{\text{e}}^2}} \right)\) is given by \(y = \frac{{{x^2} - x + {\text{e}}}}{{{{(\ln x)}^2}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Sketch the graph of your solution for \(x > 1\), clearly indicating any asymptotes and any maximum or minimum points.</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) attempt at chain rule <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{2\ln x}}{x}\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) attempt at chain rule <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'(x) = \frac{2}{{x\ln x}}\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) \(g'(x)\) is positive on \(\left] {1,{\text{ }}\infty } \right[\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(g(x)\) is increasing on \(\left] {1,{\text{ }}\infty } \right[\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) rearrange in standard form:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{2}{{x\ln x}}y = \frac{{2x - 1}}{{{{(\ln x)}^2}}},{\text{ }}x > 1\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">integrating factor:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{\int {\frac{2}{{x\ln x}}{\text{d}}x} }}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{\ln \left( {{{(\ln x)}^2}} \right)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {(\ln x)^2}\) <em><strong>(A1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">multiply by integrating factor <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(\ln x)^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + \frac{{2\ln x}}{x}y = 2x - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {y{{(\ln x)}^2}} \right) = 2x - 1{\text{ }}\left( {{\text{or }}y{{(\ln x)}^2} = \int {2x - 1{\text{d}}x} } \right)\) <em><strong>M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to integrate: <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(\ln x)^2}y = {x^2} - x + c\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{{x^2} - x + c}}{{{{(\ln x)}^2}}}\) <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) attempt to use the point \(\left( {{\text{e, }}{{\text{e}}^2}} \right)\) to determine c: <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg</em>, \({(\ln {\text{e}})^2}{{\text{e}}^2} = {{\text{e}}^2} - {\text{e}} + {\text{c}}\) or \({{\text{e}}^2} = \frac{{{{\text{e}}^2} - {\text{e}} + {\text{c}}}}{{{{(\ln {\text{e}})}^2}}}\) or \({{\text{e}}^2} = {{\text{e}}^2} - {\text{e}} + {\text{c}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{c}} = {\text{e}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{{x^2} - x + {\text{e}}}}{{{{(\ln x)}^2}}}\) <em><strong>AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) <br><img src="images/Schermafbeelding_2014-09-10_om_10.21.28.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">graph with correct shape <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum at \(x = 3.1\) (accept answers to a minimum of 2 s.f) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">asymptote shown at \(x = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong><em>y</em>-coor<span style="font-family: 'times new roman', times; font-size: medium;">dinate of minimum not required for <strong><em>A1</em></strong>;</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> Equation of asymptote not required for <strong><em>A1 </em></strong>if VA appears on the sketch.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> Award <strong><em>A0 </em></strong>for asymptotes if more than one asymptote are shown</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica; min-height: 36.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[12 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the integral test, show that \(\sum\limits_{n = 1}^\infty {\frac{1}{{4{n^2} + 1}}} \) is convergent.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show, by means of a diagram, that \(\sum\limits_{n = 1}^\infty {\frac{1}{{4{n^2} + 1}}} < \frac{1}{{4 \times {1^2} + 1}} + \int_1^\infty {\frac{1}{{4{x^2} + 1}}{\text{d}}x} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find an upper bound for \(\sum\limits_{n = 1}^\infty {\frac{1}{{4{n^2} + 1}}} \)</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{4{x^2} + 1}}{\text{d}}x = \frac{1}{2}\arctan 2x + k} \) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not penalize the absence of “+</span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><span style="font-family: 'times new roman', times; font-size: medium;">”.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^\infty {\frac{1}{{4{x^2} + 1}}{\text{d}}x = \frac{1}{2}\mathop {\lim }\limits_{a \to \infty } } [\arctan 2x]_1^a\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(\frac{1}{2}[\arctan 2x]_1^\infty \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\left( {\frac{\pi }{2} - \arctan 2} \right)\,\,\,\,\,( = 0.232)\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the series converges <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span class="Apple-style-span" style="line-height: 20px; display: inline; float: none;"><img src="" alt><span class="Apple-style-span" style="display: inline; float: none; line-height: normal;"><strong><em> A2</em></strong></span></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The shaded rectangles lie within the area below the graph so that \(\sum\limits_{n = 2}^\infty {\frac{1}{{4{n^2} + 1}}} < \int_1^\infty {\frac{1}{{4{x^2} + 1}}{\text{d}}x} \). Adding the first term in the series, \(\frac{1}{{4 \times {1^2} + 1}}\), gives \(\sum\limits_{n = 1}^\infty {\frac{1}{{4{n^2} + 1}}} < \frac{1}{{4 \times {1^2} + 1}} + \int_1^\infty {\frac{1}{{4{x^2} + 1}}{\text{d}}x} \) <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) upper bound \( = \frac{1}{5} + \frac{1}{2}\left( {\frac{\pi }{2} - \arctan 2} \right)\,\,\,\,\,( = 0.432)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be a hard question for most candidates. A number of fully correct answers to (a) were seen, but a significant number were unable to integrate \({\frac{1}{{4{x^2} + 1}}}\) successfully. Part (b) was found the hardest by candidates with most candidates unable to draw a relevant diagram, without which the proof of the inequality was virtually impossible.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be a hard question for most candidates. A number of fully correct answers to (a) were seen, but a significant number were unable to integrate \({\frac{1}{{4{x^2} + 1}}}\) successfully. Part (b) was found the hardest by candidates with most candidates unable to draw a relevant diagram, without which the proof of the inequality was virtually impossible.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\mathop {\lim }\limits_{H \to \infty } \int_a^H {\frac{1}{{{x^2}}}{\text{d}}x} \) exists and find its value in terms of \(a{\text{ (where }}a \in {\mathbb{R}^ + })\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the integral test to prove that \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} = L\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows the graph of \(y = \frac{1}{{{x^2}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Shade suitable regions on a copy of the diagram above and show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \int_{k + 1}^\infty {\frac{1}{{{x^2}}}} {\text{d}}x < L\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Similarly shade suitable regions on another copy of the diagram above and</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \(L < \sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \int_k^\infty {\frac{1}{{{x^2}}}} {\text{d}}x\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \(\sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \frac{1}{{k + 1}} < L < \sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \frac{1}{k}\)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">You are given that \(L = \frac{{{\pi ^2}}}{6}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By taking <em>k </em>= 4 , use the upper bound and lower bound for <em>L </em>to find an upper bound and lower bound for \(\pi \) . Give your bounds to three significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{H \to \infty } \int_a^H {\frac{1}{{{x^2}}}{\text{d}}x} = \mathop {\lim }\limits_{H \to \infty } \left[ {\frac{{ - 1}}{x}} \right]_a^H\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{H \to \infty } \left( {\frac{{ - 1}}{H} + \frac{1}{a}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{a}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(\left\{ {\frac{1}{{{n^2}}}} \right\}\) is a positive decreasing sequence we consider the function \(\frac{1}{{{x^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we look at \(\int_1^\infty {\frac{1}{{{x^2}}}} {\text{d}}x\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^\infty {\frac{1}{{{x^2}}}} {\text{d}}x = 1\) <em><strong>A1</strong><strong><br></strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since this is finite (allow “limit exists” or equivalent statement) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^\infty {\frac{1}{{{n^2}}}} \) converges <em><strong>AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to shade rectangles <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct start and finish points for rectangles <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since the area shaded is less that the area of the required staircase we have <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \int_{k + 1}^\infty {\frac{1}{{{x^2}}}} {\text{d}}x < L\)</span> </span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>AG</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii)</span></p>
<p><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to shade rectangles <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct start and finish points for rectangles <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since the area shaded is greater that the area of the required staircase we have <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\(L < \sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \int_k^\infty {\frac{1}{{{x^2}}}} {\text{d}}x\)</span> <em><strong>AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Alternative shading and rearranging of the inequality is acceptable.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{k + 1}^\infty {\frac{1}{{{x^2}}}} {\text{d}}x = \frac{1}{{k + 1}},{\text{ }}\int_k^\infty {\frac{1}{{{x^2}}}} {\text{d}}x = \frac{1}{k}\) <em><strong>A1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \frac{1}{{k + 1}} < L < \sum\limits_{n = 1}^k {\frac{1}{{{n^2}}}} + \frac{1}{k}\) <em><strong>AG</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{205}}{{144}} + \frac{1}{5} < \frac{{{\pi ^2}}}{6} < \frac{{205}}{{144}} + \frac{1}{4}{\text{ }}\left( {1.6236... < \frac{{{\pi ^2}}}{6} < 1.6736...} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt {6\left( {\frac{{205}}{{144}} + \frac{1}{5}} \right)} < \pi < \sqrt {6\left( {\frac{{205}}{{144}} + \frac{1}{4}} \right)} \) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3.12 < \pi < 3.17\) <strong><em>A1 N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates correctly obtained the result in part (a). Many then failed to realise that having obtained this result once it could then simply be stated when doing parts (b) and (d)</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates correctly obtained the result in part (a). Many then failed to realise that having obtained this result once it could then simply be stated when doing parts (b) and (d)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) the calculation of the integral as equal to 1 only scored 2 of the 3 marks. The final mark was for stating that ‘because the value of the integral is finite (or ‘the limit exists’ or an equivalent statement) then the series converges. Quite a few candidates left out this phrase.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates correctly obtained the result in part (a). Many then failed to realise that having obtained this result once it could then simply be stated when doing parts (b) and (d)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates found part (c) difficult. Very few drew the correct series of rectangles and some clearly had no idea of what was expected of them.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates correctly obtained the result in part (a). Many then failed to realise that having obtained this result once it could then simply be stated when doing parts (b) and (d)</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Though part (e) could be done without doing any of the previous parts of the question many students were probably put off by the notation because only a minority attempted it.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f(x,{\text{ }}y)\) where \(f(x,{\text{ }}y) = y - 2x\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on one diagram, the four isoclines corresponding to \(f(x,{\text{ }}y) = k\) where <em>\(k\) </em>takes the values \(-1\), \(-0.5\), \(0\) and \(1\). Indicate clearly where each isocline crosses the <em>\(y\) </em>axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A curve, \(C\), passes through the point \((0,1)\) and satisfies the differential equation above.</p>
<p>Sketch \(C\) on your diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A curve, \(C\), passes through the point \((0,1)\) and satisfies the differential equation above.</p>
<p>State a particular relationship between the isocline \(f(x,{\text{ }}y) = - 0.5\) and the curve \(C\), at their point of intersection.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A curve, \(C\), passes through the point \((0,1)\) and satisfies the differential equation above.</p>
<p class="p1">Use Euler’s method with a step interval of \(0.1\) to find an approximate value for <em>\(y\) </em>on \(C\), when \(x = 0{\text{.}}5\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1" style="text-align: center;"><img src="" alt></p>
<p class="p1"><strong><em>A1 </em></strong>for 4 parallel straight lines with a positive gradient <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>A1 </em></strong>for correct <em>\(y\) </em>intercepts <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: center;"><img src="" alt></p>
<p><strong><em>A1 </em></strong>for passing through \((0,1)\) with positive gradient less than \(2\)</p>
<p><strong><em>A1 </em></strong>for stationary point on \(y = 2x\)</p>
<p><strong><em>A1 </em></strong>for negative gradient on both of the other \(2\) isoclines <strong><em>A1A1A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The isocline is perpendicular to \(C\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({y_{n + 1}} = {y_n} + 0.1({y_n} - 2{x_n})\;\;\;( = 1.1{y_n} - 0.2{x_n})\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Also award <strong><em>M1A1 </em></strong>if no formula seen but \({y_2}\) is correct.</p>
<p class="p3"> </p>
<p class="p1">\({y_0} = 1,{\text{ }}{y_1} = 1.1,{\text{ }}{y_2} = 1.19,{\text{ }}{y_3} = 1.269,{\text{ }}{y_4} = 1.3359\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({y_5} = 1.39{\text{ to 3sf}}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span><em>M1 </em></strong>is for repeated use of their formula, with steps of \(0.1\).</p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept \(1.39\) or \(1.4\) only.</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<p class="p1"><em><strong>Total [10 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some candidates ignored the instruction to prove from first principles and instead used standard differentiation. Some candidates also only found a derivative from one side.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b) and (c) were attempted by very few candidates. Few recognized that the gradient of the curve had to equal the value of \(k\) on the isocline.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (b) and (c) were attempted by very few candidates. Few recognized that the gradient of the curve had to equal the value of \(k\) on the isocline.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Those candidates who knew the method managed to score well on this part. On most calculators a short program can be written in the exam to make Euler’s method very quick. Quite a few candidates were losing time by calculating and writing out many intermediate values, rather than just the \(x\) and\(y\) values.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \sqrt {x + y} ,{\text{ }}(x + y \geqslant 0)\) satisfying the initial conditions <em>y </em>= 1 when <em>x </em>= 1. Also let <em>y </em>= <em>c </em>when <em>x </em>= 2 .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Euler’s method to find an approximation for the value of <em>c </em>, using a step length of <em>h </em>= 0.1 . Give your answer to four decimal places.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">You are told that if Euler’s method is used with <em>h </em>= 0.05 then \(c \simeq 2.7921\) , if it is used with <em>h </em>= 0.01 then \(c \simeq 2.8099\) and if it is used with <em>h </em>= 0.005 then \(c \simeq 2.8121\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Plot on graph paper, with <em>h </em>on the horizontal axis and the approximation for <em>c</em> on the vertical axis, the four points (one of which you have calculated and three of which have been given). Use a scale of 1 cm = 0.01 on both axes. Take the horizontal axis from 0 to 0.12 and the vertical axis from 2.76 to 2.82.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw, by eye, the straight line that best fits these four points, using a ruler.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use your graph to give the best possible estimate for <em>c </em>, giving your answer to three decimal places.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">using \({x_0} = 1,{\text{ }}{y_0} = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_n} = 1 + 0.1n,{\text{ }}{y_{n + 1}} = {y_n} + 0.1\sqrt {{x_n} + {y_n}} \) (<strong><em>M1)(M1)(A1)</em></strong></span><span style="font-size: medium; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>If they have not written down formulae but have \({x_1} = 1.1\) and \({y_1} = 1.14142…\) award <strong><em>M1M1A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gives by GDC \({x_{10}} = 2,{\text{ }}{y_{10}} = 2.770114792…\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)(A1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(a \simeq 2.7701{\text{ (4dp)}}\) <strong><em>A1 N6</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Do not penalize over-accuracy.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">points drawn on graph above <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for scales, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for 2 points correctly plotted, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for other 2 points correctly plotted (second and third </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">dependent on the first being correct).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">suitable line of best fit placed on graph <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">letting \({\text{h}} \to {\text{0}}\) we approach the <em>y </em>intercept on the graph so <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c \simeq 2.814{\text{ (3dp)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Accept 2.815.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done well. We would recommend that candidates write down the equation they are using, in this case, \({y_{n + 1}} = {y_n} + 0.1\sqrt {{x_n} + {y_n}} \) , to ensure they get all the method marks. Beyond this the answer is all that is needed (or if a student wishes to show working, simply each of the values of \({{x_n}}\) and \({{y_n}}\)) . Many candidates wasted a lot of time by writing out values of each part of the function, perhaps indicating they did not how to do it more quickly using their calculators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) Surprisingly when drawing the graph a lot of candidates had (0.01, 2.8099) closer to 2.80 than 2.81</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most realised that the best possible estimate was given by the <em>y</em>-intercept of the line they had drawn.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done well. We would recommend that candidates write down the equation they are using, in this case, \({y_{n + 1}} = {y_n} + 0.1\sqrt {{x_n} + {y_n}} \) , to ensure they get all the method marks. Beyond this the answer is all that is needed (or if a student wishes to show working, simply each of the values of \({{x_n}}\) and \({{y_n}}\)) . Many candidates wasted a lot of time by writing out values of each part of the function, perhaps indicating they did not how to do it more quickly using their calculators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) Surprisingly when drawing the graph a lot of candidates had (0.01, 2.8099) closer to 2.80 than 2.81</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most realised that the best possible estimate was given by the <em>y</em>-intercept of the line they had drawn.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done well. We would recommend that candidates write down the equation they are using, in this case, \({y_{n + 1}} = {y_n} + 0.1\sqrt {{x_n} + {y_n}} \) , to ensure they get all the method marks. Beyond this the answer is all that is needed (or if a student wishes to show working, simply each of the values of \({{x_n}}\) and \({{y_n}}\)) . Many candidates wasted a lot of time by writing out values of each part of the function, perhaps indicating they did not how to do it more quickly using their calculators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) Surprisingly when drawing the graph a lot of candidates had (0.01, 2.8099) closer to 2.80 than 2.81</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most realised that the best possible estimate was given by the <em>y</em>-intercept of the line they had drawn.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done well. We would recommend that candidates write down the equation they are using, in this case, \({y_{n + 1}} = {y_n} + 0.1\sqrt {{x_n} + {y_n}} \) , to ensure they get all the method marks. Beyond this the answer is all that is needed (or if a student wishes to show working, simply each of the values of \({{x_n}}\) and \({{y_n}}\)) . Many candidates wasted a lot of time by writing out values of each part of the function, perhaps indicating they did not how to do it more quickly using their calculators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) Surprisingly when drawing the graph a lot of candidates had (0.01, 2.8099) closer to 2.80 than 2.81</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most realised that the best possible estimate was given by the <em>y</em>-intercept of the line they had drawn.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>