File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 6/markSceme-HL-paper2html
File size: 2.33 MB
MIME-type: application/octet-stream
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p class="p1"><span class="s1">A particle can move along a straight line from a point \(O\)</span>. The velocity \(v\)<span class="s1">, in \({\text{m}}{{\text{s}}^{ - 1}}\), </span>is given by the function \(v(t) = 1 - {{\text{e}}^{ - \sin {t^2}}}\) where time \(t \ge 0\) is measured in seconds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the first two times \({t_1},{\text{ }}{t_2} &gt; 0\), when the particle changes direction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the time \(t &lt; {t_2}\) when the particle has a maximum velocity.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the time \(t &lt; {t_2}\) when the particle has a minimum velocity.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the distance travelled by the particle between times \(t = {t_1}\) and \(t = {t_2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({t_1} = 1.77{\text{ (s)}}\;\;\;\left( { = \sqrt \pi&nbsp; {\text{ (s)}}} \right)\;\;\;{\text{and}}\;\;\;{t_2} = 2.51{\text{ (s)}}\;\;\;\left( { = \sqrt {2\pi } {\text{ (s)}}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>attempting to find (graphically or analytically) the first \({t_{\max }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(t = 1.25{\text{ (s)}}\;\;\;\left( { = \sqrt {\frac{\pi }{2}} {\text{ (s)}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>attempting to find (graphically or analytically) the first \({t_{\min }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(t = 2.17{\text{ (s)}}\;\;\;\left( { = \sqrt {\frac{{3\pi }}{2}} {\text{ (s)}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">distance travelled \( = \left| {\int_{1.772 \ldots }^{2.506 \ldots } {1 - {{\text{e}}^{ - \sin {t^2}}}{\text{d}}t} } \right|\;\;\;\)(or equivalent) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 0.711{\text{ (m)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong><span class="s1">for attempting to form a definite integral involving </span>\(1 - {{\text{e}}^{ - \sin {t^2}}}\). To award the <strong><em>A1</em></strong><span class="s1">, correct limits leading to&nbsp;\(0.711\) </span>must include the use of absolute value or a statement such as &ldquo;distance must be positive&rdquo;.</p>
<p class="p1">In part (c), award <strong><em>A1FT </em></strong>for a candidate working in degree mode \(\left( {5.39{\text{ (m)}}} \right)\).</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<p class="p1"><em><strong>Total [8 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = {x^3} - 3{x^2} - 9x + 10\) , \(x \in \mathbb{R}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the equation of the straight line passing through the maximum and minimum points of the graph \(y = f (x)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the point of inflexion of the graph \(y = f (x)\) lies on this straight line.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f'(x) = 3{x^2} - 6x - 9\) (\(= 0\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {x + 1} \right)\left( {x - 3} \right) = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = - 1\); \(x = 3\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(max) (&minus;1, 15); (min) (3, &minus;17)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> The coordinates need not be explicitly stated but the values need to be seen.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = - 8x + 7\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1&nbsp;&nbsp;&nbsp;&nbsp; N2</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f''(x) = 6x - 6 = 0 \Rightarrow \) inflexion (1, &minus;1)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">which lies on \(y = - 8x + 7\) &nbsp; &nbsp; <em><strong>R1AG</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were a significant number of completely correct answers to this question. Many candidates demonstrated a good understanding of basic differential calculus in the context of coordinate geometry whilst other used technology to find the turning points.<br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were a significant number of completely correct answers to this question. Many candidates demonstrated a good understanding of basic differential calculus in the context of coordinate geometry whilst other used technology to find the turning points. There were many correct demonstrations of the &ldquo;show that&rdquo; in (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(f(x) = {x^4} + 0.2{x^3} - 5.8{x^2} - x + 4,{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="specification">
<p class="p1"><span class="s1">The domain of \(f\) </span>is now restricted to \([0,{\text{ }}a]\)<span class="s1">.</span></p>
</div>

<div class="specification">
<p class="p1">Let \(g(x) = 2\sin (x - 1) - 3,{\text{ }} - \frac{\pi }{2} + 1 \leqslant x \leqslant \frac{\pi }{2} + 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the solutions of \(f(x) &gt; 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the curve \(y = f(x)\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the coordinates of both local minimum points.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the \(x\)-coordinates of the points of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the largest value of \(a\) for which \(f\) <span class="s1">has an inverse. Give your answer correct to 3 </span>significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For this value of <span class="s1"><em>a </em></span>sketch the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) on the same set of axes, showing clearly the coordinates of the end points of each curve.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve \({f^{ - 1}}(x) = 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({g^{ - 1}}(x)\), stating the domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve \(({f^{ - 1}} \circ g)(x) &lt; 1\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">valid method <em>eg</em>, sketch of curve or critical values found <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">\(x &lt;  - 2.24,{\text{ }}x &gt; 2.24,\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">\( - 1 &lt; x &lt; 0.8\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1A1A0 </em></strong>for correct intervals but with inclusive inequalities.</p>
<p class="p4"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\((1.67,{\text{ }} - 5.14),{\text{ }}( - 1.74,{\text{ }} - 3.71)\) <span class="Apple-converted-space">    </span><strong><em>A1A1</em></strong></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1A0 </em></strong></span>for any two correct terms.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(f'(x) = 4{x^3} + 0.6{x^2} - 11.6x - 1\)</p>
<p class="p1">\(f''(x) = 12{x^2} + 1.2x - 11.6 = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p5">\( - 1.03,{\text{ }}0.934\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span><em>M1 </em></strong>should be awarded if graphical method to find zeros of \(f''(x)\) or turning points of \(f'(x)\) is shown.</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">1.67 <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-01-26_om_12.42.21.png" alt="M16/5/MATHL/HP2/ENG/TZ1/11.c.ii/M">     <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for reflection of their \(y = f(x)\) in the line \(y = x\) provided their \(f\) is one-one.</p>
<p class="p1"><strong><em>A1 </em></strong><span class="s1">for \((0,{\text{ }}4)\), \((4,{\text{ }}0)\) </span>(Accept axis intercept values) <strong><em>A1 </em></strong>for the other two sets of coordinates of other end points</p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(x = f(1)\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2">\( =  - 1.6\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = 2\sin (x - 1) - 3\)</p>
<p class="p1">\(x = 2\sin (y - 1) - 3\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">\(\left( {{g^{ - 1}}(x) = } \right){\text{ }}\arcsin \left( {\frac{{x + 3}}{2}} \right) + 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">\( - 5 \leqslant x \leqslant  - 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1 </em></strong><span class="s2">for −5 and −1</span>, and <strong><em>A1 </em></strong>for correct inequalities if numbers are reasonable.</p>
<p class="p1"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({f^{ - 1}}\left( {g(x)} \right) &lt; 1\)</p>
<p class="p1">\(g(x) &gt;  - 1.6\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(x &gt; {g^{ - 1}}( - 1.6) = 1.78\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Accept = in the above.</p>
<p class="p3">\(1.78 &lt; x \leqslant \frac{\pi }{2} + 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span><em>A1 </em></strong>for \(x &gt; 1.78\) </span>(allow ≥<span class="s1">) and <strong><em>A1 </em></strong></span>for \(x \leqslant \frac{\pi }{2} + 1\).</p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part d(i) was generally well done, but there were few correct answers for d(ii).</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part d(i) was generally well done, but there were few correct answers for d(ii).</p>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \(2{x^3} - 3x + 1\) can be expressed in the form \(Ax\left( {{x^2} + 1} \right) + Bx + C\), find the values of the constants \(A\), \(B\) and \(C\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find \(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(2{x^3} - 3x + 1 = Ax\left( {{x^2} + 1} \right) + Bx + C\)</p>
<p>\(A = 2,\,\,C = 1,\)<em><strong>     A1</strong></em></p>
<p>\(A + B =  - 3 \Rightarrow B =  - 5\)<em><strong>     A1</strong></em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int {\frac{{2{x^3} - 3x + 1}}{{{x^2} + 1}}} {\text{d}}x = \int {\left( {2x - \frac{{5x}}{{{x^2} + 1}} + \frac{1}{{{x^2} + 1}}} \right)} {\text{d}}x\)      <em><strong>M1M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for dividing by \(\left( {{x^2} + 1} \right)\) to get \(2x\),<em><strong> M1</strong></em> for separating the \(5x\) and 1.</p>
<p>\( = {x^2} - \frac{5}{2}{\text{ln}}\left( {{x^2} + 1} \right) + {\text{arctan}}\,x\left( { + c} \right)\)     <em><strong>(M1)A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)A1</strong></em> for integrating \({\frac{{5x}}{{{x^2} + 1}}}\), <em><strong>A1</strong></em> for the other two terms.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graphs of \(y = {x^2}{{\text{e}}^{ - x}}\) and \(y = 1 - 2\sin x\) for \(2 \leqslant x \leqslant 7\) intersect at points A and B.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The <em>x</em>-coordinates of A and B are \({x_{\text{A}}}\) and \({x_{\text{B}}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \({x_{\text{A}}}\) and the value of \({x_{\text{B}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area enclosed between the two graphs for \({x_{\mathbf{A}}} \leqslant x \leqslant {x_{\text{B}}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_{\text{A}}} = 2.87\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_{{\text{B}}}} = 6.78\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{2.87172{\text{K}}}^{6.77681K} {1 - 2\sin x - {x^2}{{\text{e}}^{ - x}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 6.76\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>(M1) </em></strong>for definite integral and <strong><em>(A1</em></strong>) for a correct definite integral.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A particle moves in a straight line, its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\) at time \(t\) seconds is given by \(v = 9t - 3{t^2},{\text{ }}0 \le t \le 5\).</p>
<p class="p1">At time \(t = 0\), the displacement \(s\) of the particle from an origin&nbsp;\(O\) is 3 m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the displacement of the particle when \(t = 4\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch a displacement/time graph for the particle, \(0 \le t \le 5\), showing clearly where the curve meets the axes and the coordinates of the points where the displacement takes greatest and least values.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">For \(t &gt; 5\)</span>, the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) <span class="s1">such that \(s\) is continuous for all \(t \ge 0\).</span></p>
<p class="p2">Given further that \(s = 16.5\) when \(t = 7.5\), find the values of \(a\) and \(b\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">For \(t &gt; 5\)</span>, the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) <span class="s1">such that \(s\) is continuous for all \(t \ge 0\).</span></p>
<p class="p1">Find the times \({t_1}\) and \({t_2}(0 &lt; {t_1} &lt; {t_2} &lt; 8)\) when the particle returns to its starting point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2">\(s = \int {(9t - 3{t^2}){\text{d}}t = \frac{9}{2}{t^2} - {t^3}( + c)} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2">\(t = 0,{\text{ }}s = 3 \Rightarrow c = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\(t = 4 \Rightarrow s = 11\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2">\(s = 3 + \int_0^4 {(9t - 3{t^2}){\text{d}}t} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p2">\(s = 11\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<p class="p2"><span class="s1">&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-07_om_07.29.21.png" alt></p>
<p class="p2">correct shape over correct domain <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">maximum at \((3,{\text{ }}16.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">\(t\) intercept at \(4.64\), \(s\) intercept at&nbsp;\(3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">minimum at \((5,{\text{ }} - 9.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 9.5 = a + b\cos 2\pi \)</p>
<p>\(16.5 = a + b\cos 3\pi \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> &nbsp; &nbsp; Only award <strong><em>M1</em></strong> if two simultaneous equations are formed over the correct domain.</p>
<p>&nbsp;\(a = \frac{7}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(b =&nbsp; - 13\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at \({t_1}\):</p>
<p class="p1">\(3 + \frac{9}{2}{t^2} - {t^3} = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({t^2}\left( {\frac{9}{2} - t} \right) = 0\)</p>
<p class="p1">\({t_1} = \frac{9}{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">solving \(\frac{7}{2} - 13\cos \frac{{2\pi t}}{5} = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({\text{GDC}} \Rightarrow {t_2} = 6.22\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept graphical approaches.</p>
<p class="p3"><em><strong>[4 marks]</strong></em></p>
<p class="p3"><em><strong>Total [15 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following graph shows the two parts of the curve defined by the equation \({x^2}y = 5 - {y^4}\), and the normal to the curve at the point P(2 , 1).</p>
<p style="text-align: center;"><img src=""></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there are exactly two points on the curve where the gradient is zero.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve at the point P.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The normal at P cuts the curve again at the point Q. Find the \(x\)-coordinate of Q.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The shaded region is rotated by 2\(\pi \) about the \(y\)-axis. Find the volume of the solid formed.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>differentiating implicitly:       <em><strong>M1</strong></em></p>
<p>\(2xy + {x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for each side.</p>
<p>if \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) then either \(x = 0\) or \(y = 0\)      <em><strong> M1A1</strong></em></p>
<p>\(x = 0 \Rightarrow \) two solutions for \(y\left( {y =  \pm \sqrt[4]{5}} \right)\)     <em><strong> R1</strong></em></p>
<p>\(y = 0\) not possible (as 0 ≠ 5)     <em><strong>R1</strong></em></p>
<p>hence exactly two points      <strong><em>AG</em></strong></p>
<p><strong>Note:</strong> For a solution that only refers to the graph giving two solutions at  \(x = 0\) and no solutions for \(y = 0\) award <strong><em>R1</em></strong> only.</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>at (2, 1)  \(4 + 4\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - 4\frac{{{\text{d}}y}}{{{\text{d}}x}}\)    <em><strong> M1</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \frac{1}{2}\)     <em><strong>(A1)</strong></em></p>
<p>gradient of normal is 2       <em><strong>M1</strong></em></p>
<p>1 = 4 + <em>c</em>      <em><strong> (M1)</strong></em></p>
<p>equation of normal is \(y = 2x - 3\)     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>substituting      <em><strong>(M1)</strong></em></p>
<p>\({x^2}\left( {2x - 3} \right) = 5 - {\left( {2x - 3} \right)^4}\) or \({\left( {\frac{{y + 3}}{2}} \right)^2}\,y = 5 - {y^4}\)       <em><strong>(A1)</strong></em></p>
<p>\(x = 0.724\)     <em><strong> A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recognition of two volumes      <em><strong>(M1)</strong></em></p>
<p>volume \(1 = \pi \int_1^{\sqrt[4]{5}} {\frac{{5 - {y^4}}}{y}} {\text{d}}y\left( { = 101\pi  = 3.178 \ldots } \right)\)     <em><strong> M1A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to use \(\pi \int {{x^2}} {\text{d}}y\), <em><strong>A1</strong></em> for limits, <em><strong>A1</strong></em> for \({\frac{{5 - {y^4}}}{y}}\) Condone omission of \(\pi \) at this stage.</p>
<p>volume 2</p>
<p><strong>EITHER</strong></p>
<p>\( = \frac{1}{3}\pi  \times {2^2} \times 4\left( { = 16.75 \ldots } \right)\)    <strong> <em>(M1)(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>\( = \pi \int_{ - 3}^1 {{{\left( {\frac{{y + 3}}{2}} \right)}^2}} {\text{d}}y\left( { = \frac{{16\pi }}{3} = 16.75 \ldots } \right)\)     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>total volume = 19.9      <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {x{{\sec }^2}x{\text{d}}x} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of <em>m</em> if \(\int_0^m {x{{\sec }^2}x{\text{d}}x = 0.5} \), where <em>m</em> &gt; 0.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {x{{\sec }^2}x{\text{d}}x}&nbsp; = x\tan x - \int {1 \times \tan x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x\tan x + \ln \left| {\cos x} \right|( + c){\text{ }}\left( { = x\tan x - \ln \left| {\sec x} \right|( + c)} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve an appropriate equation <em>eg</em> \(m\tan m + \ln (\cos m) = 0.5\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>m</em> = 0.822 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if </span><em style="font-family: 'times new roman', times; font-size: medium;">m</em><span style="font-family: 'times new roman', times; font-size: medium;"> = 0.822 is specified with other positive solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a), a large number of candidates were able to use integration by parts correctly but were unable to use integration by substitution to then find the indefinite integral of tan <em>x</em>. In part (b), a large number of candidates attempted to solve the equation without direct use of a GDC&rsquo;s numerical solve command. Some candidates stated more than one solution for <em>m </em>and some specified <em>m </em>correct to two significant figures only.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a), a large number of candidates were able to use integration by parts correctly but were unable to use integration by substitution to then find the indefinite integral of tan <em>x</em>. In part (b), a large number of candidates attempted to solve the equation without direct use of a GDC&rsquo;s numerical solve command. Some candidates stated more than one solution for <em>m </em>and some specified <em>m </em>correct to two significant figures only.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve \(y = {{\text{e}}^{ - x}} - x + 1\) intersects the <em>x</em>-axis at P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the <em>x</em>-coordinate of P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the area of the region completely enclosed by the curve and the coordinate axes.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Either solving \({{\text{e}}^{ - x}} - x + 1 = 0\) for <em>x</em>, stating \({{\text{e}}^{ - x}} - x + 1 = 0\), stating P(<em>x</em>, 0) or using an appropriate sketch graph. &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 1.28 &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept P(1.28, 0) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Area \( = \int_0^{1.278...} {({{\text{e}}^{ - x}} - x + 1){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 1.18 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1A0A1</em></strong> if the d<em>x</em> is absent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was generally well done. In part (a), most candidates were able to find <em>x</em> = 1.28 successfully. A significant number of candidates were awarded an accuracy penalty for expressing answers to an incorrect number of significant figures.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was generally well done. A number of candidates unfortunately omitted the d<em>x</em> in the integral while some candidates omitted to write down the definite integral and instead offered detailed instructions on how they obtained the answer using their GDC.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by</p>
<p class="p1">\[f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2},{\text{ }}x \in \mathbb{R}\]</p>
<p class="p1">\[g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2},{\text{ }}x \in \mathbb{R}\]</p>
</div>

<div class="specification">
<p class="p1">Let \(h(x) = nf(x) + g(x)\) where \(n \in \mathbb{R},{\text{ }}n &gt; 1\).</p>
</div>

<div class="specification">
<p class="p1">Let \(t(x) = \frac{{g(x)}}{{f(x)}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Show that \(\frac{1}{{4f(x) - 2g(x)}} = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Use the substitution \(u = {{\text{e}}^x}\) to find \(\int_0^{\ln 3} {\frac{1}{{4f(x) - 2g(x)}}} {\text{d}}x\). Give your answer in the form \(\frac{{\pi \sqrt a }}{b}\) where \(a,{\text{ }}b \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>By forming a quadratic equation in \({{\text{e}}^x}\)<span class="s1">, solve the equation \(h(x) = k\), where \(k \in {\mathbb{R}^ + }\).</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Hence or otherwise show that the equation \(h(x) = k\) has two real solutions provided that \(k &gt; \sqrt {{n^2} - 1} \) and \(k \in {\mathbb{R}^ + }\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Show that \(t'(x) = \frac{{{{[f(x)]}^2} - {{[g(x)]}^2}}}{{{{[f(x)]}^2}}}\) <span class="s1">for \(x \in \mathbb{R}\).</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Hence show that \(t'(x) &gt; 0\) for \(x \in \mathbb{R}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)     \(\frac{1}{{4\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right) - 2\left( {\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}} \right)}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{1}{{2({{\text{e}}^x} + {{\text{e}}^{ - x}}) - ({{\text{e}}^x} - {{\text{e}}^{ - x}})}}\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{1}{{{{\text{e}}^x} + 3{{\text{e}}^{ - x}}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    \(u = {{\text{e}}^x} \Rightarrow {\text{d}}u = {{\text{e}}^x}{\text{d}}x\)</span> <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}{\text{d}}x = \int {\frac{1}{{{u^2} + 3}}{\text{d}}u} } \)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">(when \(x = 0,{\text{ }}u = 1\) and when \(x = \ln 3,{\text{ }}u = 3\))</p>
<p class="p1"><span class="Apple-converted-space">\(\int_1^3 {\frac{1}{{{u^2} + 3}}{\text{d}}u\left[ {\frac{1}{{\sqrt 3 }}\arctan \left( {\frac{u}{{\sqrt 3 }}} \right)} \right]_1^3} \)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\(\left( { = \left[ {\frac{1}{{\sqrt 3 }}\arctan \left( {\frac{{{{\text{e}}^x}}}{{\sqrt 3 }}} \right)} \right]_0^{\ln 3}} \right)\)</p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{\pi \sqrt 3 }}{9} - \frac{{\pi \sqrt 3 }}{{18}}\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{\pi \sqrt 3 }}{{18}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \((n + 1){{\text{e}}^{2x}} - 2k{{\text{e}}^x} + (n - 1) = 0\)</span> <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\({{\text{e}}^x} = \frac{{2k \pm \sqrt {4{k^2} - 4({n^2} - 1)} }}{{2(n + 1)}}\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(x = \ln \left( {\frac{{k \pm \sqrt {{k^2} - {n^2} + 1} }}{{n + 1}}} \right)\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>for two real solutions, we require \(k &gt; \sqrt {{k^2} - {n^2} + 1} \) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p2">and we also require \({k^2} - {n^2} + 1 &gt; 0\) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({k^2} &gt; {n^2} - 1\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( \Rightarrow k &gt; \sqrt {{n^2} - 1} {\text{ }}({\text{ }}k \in {\mathbb{R}^ + })\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2">\(t(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}\)</p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2} - {{({{\text{e}}^x} - {{\text{e}}^{ - x}})}^2}}}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2} - {{\left( {\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{f(x)g'(x) = g(x)f'(x)}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\(g'(x) = f(x)\) and \(f'(x) = g(x)\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong>METHOD 3</strong></p>
<p class="p4">\(t(x) = ({{\text{e}}^x} - {{\text{e}}^{ - x}}){({{\text{e}}^x} + {{\text{e}}^{ - x}})^{ - 1}}\)</p>
<p class="p4"><span class="Apple-converted-space">\(t'(x) = 1 - \frac{{{{({{\text{e}}^x} - {{\text{e}}^{ - x}})}^2}}}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\( = 1 - \frac{{{{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong>METHOD 4</strong></p>
<p class="p4"><span class="Apple-converted-space">\(t'(x) = \frac{{g'(x)}}{{f(x)}} - \frac{{g(x)f'(x)}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p3">\(g'(x) = f(x)\) and \(f'(x) = g(x)\) gives \(t'(x) = 1 - \frac{{{{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p3">(ii) <span class="Apple-converted-space">    </span><strong>METHOD 1</strong></p>
<p class="p3">\({\left[ {f(x)} \right]^2} &gt; {\left[ {g(x)} \right]^2}\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\({\left[ {f(x)} \right]^2} &gt; 0\)    </span><strong><em>R1</em></strong></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\) <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p4"><span class="s2"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Award as above for use of either \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}\) and \(g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\) or \({{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \({{\text{e}}^x} - {{\text{e}}^{ - x}}\).</p>
<p class="p3"><strong>METHOD 2</strong></p>
<p class="p3">\({\left[ {f(x)} \right]^2} - {\left[ {g(x)} \right]^2} = 1\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\({\left[ {f(x)} \right]^2} &gt; 0\)    </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\)     <strong><em>AG</em></strong></p>
<p class="p4"><span class="s2"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Award as above for use of either \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}\) and \(g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\) or \({{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \({{\text{e}}^x} - {{\text{e}}^{ - x}}\).</p>
<p class="p3"><strong>METHOD 3</strong></p>
<p class="p4">\(t'(x) = \frac{4}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)</p>
<p class="p4"><span class="Apple-converted-space">\({\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)^2} &gt; 0\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\frac{4}{{{{\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)}^2}}} &gt; 0\)    </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\) <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p3"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">Part (a)(i) was reasonably well done with most candidates able to show that \(\frac{1}{{4f(x) - 2g(x)}} = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\). In part (a)(ii), a number of candidates correctly used the required substitution to obtain \(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}{\text{d}}x = \int {\frac{1}{{{u^2} + 3}}{\text{d}}u} } \) but then thought that the antiderivative involved natural log rather than arctan.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">In part (b)(i), a reasonable number of candidates were able to form a quadratic in \({{\text{e}}^x}\) (involving parameters \(n\) and \(k\)) and then make some progress towards solving for \({{\text{e}}^x}\) in terms of \(n\) and \(k\). Having got that far, a small number of candidates recognised to then take the natural logarithm of both sides and hence solve \(h(x) = k\) for \(\chi \). In part (b)(ii), a small number of candidates were able to show from their solutions to part (b)(i) or through the use of the discriminant that the equation \(h(x) = k\) has two real solutions provided that \(k &gt; \sqrt {{k^2} - {n^2} + 1} \) and \(k &gt; \sqrt {{n^2} - 1} \).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">It was pleasing to see the number of candidates who attempted part (c). In part (c)(i), a large number of candidates were able to correctly apply either the quotient rule or the product rule to find \(t'(x)\). A smaller number of candidates were then able to show equivalence between the form of \(t'(x)\) they had obtained and the form of \(t'(x)\) required in the question. A pleasing number of candidates were able to exploit the property that \(f'(x) = g(x)\) and \(g'(x) = f(x)\). As with part (c)(i), part (c)(ii) could be successfully tackled in a number of ways. The best candidates offered concise logical reasoning to show that \(t'(x) &gt; 0\) for \(x \in \mathbb{R}\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the gradient of the tangent to the curve \({x^3}{y^2} = \cos (\pi y)\) at the point (&minus;1, 1) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2}{y^2} + 2{x^3}y\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \pi \sin (\pi y)\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At \(( - 1,{\text{ }}1),{\text{ }}3 - 2\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{3}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2}{y^2} + 2{x^3}y\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \pi \sin (\pi y)\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3{x^2}{y^2}}}{{ - \pi \sin (\pi y) - 2{x^3}y}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At \(( - 1,{\text{ }}1),{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3{{( - 1)}^2}{{(1)}^2}}}{{ - \pi \sin (\pi ) - 2{{( - 1)}^3}(1)}} = \frac{3}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A large number of candidates obtained full marks on this question. Some candidates missed \(\pi \) and/or \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) when differentiating the trigonometric function. Some candidates attempted to rearrange before differentiating, and some made algebraic errors in rearranging.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = 2{\sin ^2}x + 7\sin 2x + \tan x - 9,{\text{ }}0 \leqslant x &lt; \frac{\pi }{2}\).</p>
</div>

<div class="specification">
<p>Let \(u = \tan x\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an expression for \(f&rsquo;(x)\) in terms of \(x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of \(y = f&rsquo;(x)\) for \(0 \leqslant x &lt; \frac{\pi }{2}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(x\)-coordinate(s) of the point(s) of inflexion of the graph of \(y = f(x)\), labelling these clearly on the graph of \(y = f&rsquo;(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(\sin x\) in terms of \(\mu \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(\sin 2x\) in terms of \(u\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(f(x) = 0\) can be expressed as \({u^3} - 7{u^2} + 15u - 9 = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation \(f(x) = 0\), giving your answers in the form \(\arctan k\) where \(k \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f&rsquo;(x) = 4\sin x\cos x + 14\cos 2x + {\sec ^2}x\) (or equivalent) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.47.49.png" alt="N17/5/MATHL/HP2/ENG/TZ0/11.a.ii/M">&nbsp; &nbsp; &nbsp;<strong><em>A1A1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A1 </em></strong>for correct behaviour at \(x = 0\), <strong><em>A1 </em></strong>for correct domain and correct behaviour for \(x \to \frac{\pi }{2}\), <strong><em>A1 </em></strong>for two clear intersections with \(x\)-axis and minimum point, <strong><em>A1 </em></strong>for clear maximum point.</p>
<p>&nbsp;</p>
<p><em><strong>[4&nbsp;marks]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = 0.0736\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = 1.13\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><em style="font-size: 14px;"><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to write \(\sin x\) in terms of \(u\) only &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\sin x = \frac{u}{{\sqrt {1 + {u^2}} }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\cos x = \frac{1}{{\sqrt {1 + {u^2}} }}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>attempt to use \(\sin 2x = 2\sin x\cos x{\text{ }}\left( { = 2\frac{u}{{\sqrt {1 + {u^2}} }}\frac{1}{{\sqrt {1 + {u^2}} }}} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\sin 2x = \frac{{2u}}{{1 + {u^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2{\sin ^2}x + 7\sin 2x + \tan x - 9 = 0\)</p>
<p>\(\frac{{2{u^2}}}{{1 + {u^2}}} + \frac{{14u}}{{1 + {u^2}}} + u - 9{\text{ }}( = 0)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{2{u^2} + 14u + u(1 + {u^2}) - 9(1 + {u^2})}}{{1 + {u^2}}} = 0\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({u^3} - 7{u^2} + 15u - 9 = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(u = 1\) or \(u = 3\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x = \arctan (1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = \arctan (3)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Only accept answers given the required form.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A function \(f\) is defined by \(f(x) = \frac{1}{2}\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right),{\text{ }}x \in \mathbb{R}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; Explain why the inverse function \({f^{ - 1}}\) does not exist.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the equation of the normal to the curve at the point P where \(x = \ln 3\) is given by \(9x + 12y - 9\ln 3 - 20 = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the <em>x</em>-coordinates of the points Q and R on the curve such that the tangents at Q and R pass through \({\text{(0, 0)}}\).</span></p>
<div class="marks">[14]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The domain of \(f\) is now restricted to \(x \geqslant 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \({f^{ - 1}}(x)\)<em>.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the volume generated when the region bounded by the curve \(y = f(x)\) and the lines \(x = 0\) and \(y = 5\) is rotated through an angle of \(2\pi \) radians about the <em>y</em>-axis.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; either counterexample or sketch or</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">recognising that \(y = k{\text{ }}(k &gt; 1)\) intersects the graph of \(y = f(x)\) twice &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">function is not \(1 - 1\) (does not obey horizontal line test) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so \({f^{ - 1}}\) does not exist &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; \(f'(x) = \frac{1}{2}\left( {{{\text{e}}^x} - {{\text{e}}^{ - x}}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(\ln 3) = \frac{4}{3}{\text{ }}( = 1.33)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(m =&nbsp; - \frac{3}{4}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(\ln 3) = \frac{5}{3}{\text{ }}( = 1.67)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{y - \frac{5}{3}}}{{x - \ln 3}} =&nbsp; - \frac{3}{4}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(4y - \frac{{20}}{3} =&nbsp; - 3x + 3\ln 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{5}{3} =&nbsp; - \frac{3}{4}\ln 3 + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = \frac{5}{3} + \frac{3}{4}\ln 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y =&nbsp; - \frac{3}{4}x + \frac{5}{3} + \frac{3}{4}\ln 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(12y =&nbsp; - 9x + 20 + 9\ln 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(9x + 12y - 9\ln 3 - 20 = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; The tangent at \(\left( {a,{\text{ }}f(a)} \right)\) has equation \(y - f(a) = f'(a)(x - a)\). &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(a) = \frac{{f(a)}}{a}\) (or equivalent) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^a} - {{\text{e}}^{ - a}} = \frac{{{{\text{e}}^a} + {{\text{e}}^{ - a}}}}{a}\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve for <em>a</em> &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(a =&nbsp; \pm 1.20\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[14 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(2y = {{\text{e}}^x} + {{\text{e}}^{ - x}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{2x}} - 2y{{\text{e}}^x} + 1 = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for either attempting to rearrange or interchanging <em>x </em>and <em>y</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} = \frac{{2y \pm \sqrt {4{y^2} - 4} }}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} = y \pm \sqrt {{y^2} - 1} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \ln \left( {y \pm \sqrt {{y^2} - 1} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \ln \left( {x + \sqrt {{x^2} - 1} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for correct notation and for stating the positive &ldquo;branch&rdquo;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(V = \pi \int_1^5 {{{\left( {\ln \left( {y + \sqrt {{y^2} - 1} } \right)} \right)}^2}{\text{d}}y} \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for attempting to use \(V = \pi \int_c^d {{x^2}{\text{d}}y} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 37.1{\text{ }}\left( {{\text{unit}}{{\text{s}}^3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a) (i), successful candidates typically sketched the graph of \(y = f(x)\), applied the horizontal line test to the graph and concluded that the function was not \(1 - 1\) (it did not obey the horizontal line test).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a) (ii), a large number of candidates were able to show that the equation of the normal at point P was \(9x + 12y - 9\ln 3 - 20 = 0\). A few candidates used the gradient of the tangent rather than using it to find the gradient of the normal.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) (iii) challenged most candidates. Most successful candidates graphed \(y = f(x)\) and \(y = xf'(x)\) on the same set of axes and found the <em>x</em>-coordinates of the intersection points.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) (i) challenged most candidates. While a large number of candidates seemed to understand how to find an inverse function, poor algebra skills (e.g. erroneously taking the natural logarithm of both sides) meant that very few candidates were able to form a quadratic in either \({{\text{e}}^x}\) or \({{\text{e}}^y}\).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Engineers need to lay pipes to connect two cities A and B that are separated by a river of width 450 metres as shown in the following diagram. They plan to lay the pipes under the river from A to X and then under the ground from X to B. The cost of laying the pipes under the river is five times the cost of laying the pipes under the ground.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \({\text{EX}} = x\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-15_om_15.01.31.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>k </em>be the cost, in dollars per metre, of laying the pipes under the ground.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that the total cost <em>C</em>, in dollars, of laying the pipes from A to B is given by \(C = 5k\sqrt {202\,500 + {x^2}}&nbsp; + (1000 - x)k\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; Find \(\frac{{{\text{d}}C}}{{{\text{d}}x}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; Hence find the value of <em>x </em>for which the total cost is a minimum, justifying that this value is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the minimum total cost in terms of <em>k</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The angle at which the pipes are joined is \({\rm{A\hat XB}} = \theta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Find \(\theta \) for the value of <em>x </em>calculated in (b).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">For safety reasons \(\theta \) must be at least 120&deg;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given this new requirement,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; find the new value of <em>x </em>which minimises the total cost;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; find the percentage increase in the minimum total cost.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(C = {\text{AX}} \times 5k + {\text{XB}} \times k\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong>(<em>M1) </em></strong>for attempting to express the cost in terms of AX<em>, </em>XB and <em>k.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5k\sqrt {{{450}^2} + {x^2}}&nbsp; + (1000 - x)k\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5k\sqrt {202\,500 + {x^2}}&nbsp; + (1000 - x)k\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(\frac{{{\text{d}}C}}{{{\text{d}}x}} = k\left[ {\frac{{5 \times 2x}}{{2\sqrt {202\,500 + {x^2}} }} - 1} \right] = k\left( {\frac{{5x}}{{\sqrt {202\,500 + {x^2}} }} - 1} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for an attempt to differentiate and <strong><em>A1 </em></strong>for the correct derivative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; attempting to solve \(\frac{{{\text{d}}C}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(\frac{5}{{\sqrt {202\,500 + {x^2}} }} = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(x = 91.9{\text{ (m) }}\left( { = \frac{{75\sqrt 6 }}{2}{\text{ (m)}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; for example,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; at \(x = 91\frac{{{\text{d}}C}}{{{\text{d}}x}} =&nbsp; - 0.00895k &lt; 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; at&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;"><span style="background-color: #ffffff;">\(x = 92\frac{{{\text{d}}C}}{{{\text{d}}x}} = &nbsp;0.001506k &gt; 0\)</span>&nbsp; &nbsp; &nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for attempting to find the gradient either side of \(x = 91.9\) and <strong><em>A1 </em></strong>for two correct values.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; thus \(x = 91.9\) gives a minimum &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(\frac{{{{\text{d}}^2}C}}{{{\text{d}}{x^2}}} = \frac{{1\,012\,500k}}{{{{\left( {{x^2} + 202\,500} \right)}^{\frac{3}{2}}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; at \(x = 91.9\frac{{{{\text{d}}^2}C}}{{{\text{d}}{x^2}}} = 0.010451k &gt; 0\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for attempting to find the second derivative and <strong><em>A1 </em></strong>for the correct value.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; If \(\frac{{{{\text{d}}^2}C}}{{{\text{d}}{x^2}}}\) is obtained and its value at \(x = 91.9\) is not calculated, award <strong><em>(M1)A1 </em></strong>for correct reasoning <em>eg</em>, both numerator and denominator are positive at \(x = 91.9\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; thus \(x = 91.9\) gives a minimum &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Sketching the graph of either <em>C </em>versus <em>x </em>or \(\frac{{{\text{d}}C}}{{{\text{d}}x}}\) versus <em>x</em>. &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Clearly indicating that \(x = 91.9\) gives the minimum on their graph. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \({C_{\min }} = 3205k\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept 3200<em>k</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Accept 3204<em>k</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; \(\arctan \left( {\frac{{450}}{{91.855865{\text{K}}}}} \right) = 78.463{\text{K}}^\circ \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(180 - 78.463{\text{K = 101.537K}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 102^\circ \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; when \(\theta&nbsp; = 120^\circ ,{\text{ }}x = 260{\text{ (m) }}\left( {\frac{{450}}{{\sqrt 3 }}{\text{ (m)}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; \(\frac{{133.728{\text{K}}}}{{3204.5407685{\text{K}}}} \times 100\% \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( = 4.17{\text{ (% )}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [15 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The line \(y = m(x - m)\) is a tangent to the curve \((1 - x)y = 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine <em>m</em> and the coordinates of the point where the tangent meets the curve.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{1}{{1 - x}} \Rightarrow y' = \frac{1}{{{{(1 - x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solve simultaneously &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{1 - x}} = m(x - m){\text{ and }}\frac{1}{{{{(1 - x)}^2}}} = m\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{1 - x}} = \frac{1}{{{{(1 - x)}^2}}}\left( {x - \frac{1}{{{{(1 - x)}^2}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept equivalent forms.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 - x)^3} - x{(1 - x)^2} + 1 = 0,{\text{ }}x \ne 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1.65729 \ldots&nbsp; \Rightarrow y = \frac{1}{{1 - 1.65729 \ldots }} = - 1.521379 \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">tangency point (1.66, &ndash;1.52) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(m = {( - 1.52137 \ldots )^2} = 2.31\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((1 - x)y = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(m(1 - x)(x - m) = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(m(x - {x^2} - m + mx) = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(m{x^2} - x(m + {m^2}) + ({m^2} + 1) = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({b^2} - 4ac = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(m + {m^2})^2} - 4m({m^2} + 1) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(m = 2.31\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(m = 2.31 \ldots {\text{ into }}m{x^2} - x(m + {m^2}) + ({m^2} + 1) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1.66\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{1}{{1 - 1.65729}} = - 1.52\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">tangency point (1.66, &ndash;1.52)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Very few candidates answered this question well but among those a variety of nice approaches were seen. This question required some organized thinking and good understanding of the concepts involved and therefore just strong candidates were able to go beyond the first steps. Sadly a few good answers were spoiled due to early rounding.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows a circle with centre at the origin O and radius \(r &gt; 0\) .</span></p>
<p style="text-align: center;"><br><img src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A point P(\(x\) , \(y\)) , (\(x &gt; 0\), \(y &gt; 0\)) is moving round the circumference of the circle.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Let \(m = \tan \left( {\arcsin \frac{y}{r}} \right)\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; Given that \(\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0.001r\)</span><span style="font-family: times new roman,times; font-size: medium;"> , show that \(\frac{{{\text{d}}m}}{{{\text{d}}t}} = {\left( {\frac{r}{{10\sqrt {{r^2} - {y^2}} }}} \right)^3}\)</span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) &nbsp; &nbsp; State the geometrical meaning of \(\frac{{{\text{d}}m}}{{{\text{d}}t}}\) </span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; \(\frac{{{\text{d}}m}}{{{\text{d}}t}} = \frac{{{\text{d}}m}}{{{\text{d}}y}}\frac{{{\text{d}}y}}{{{\text{d}}t}}\) &nbsp; &nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(M1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({ = {{\sec }^2}\left( {\arcsin \frac{y}{r}} \right) \times \left( {\arcsin \frac{y}{r}} \right)' \times \frac{r}{{1000}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{1}{{{{\cos }^2}\left( {\arcsin \frac{y}{r}} \right)}} \times \frac{{\frac{1}{r}}}{{\sqrt {1 - {{\left( {\frac{y}{r}} \right)}^2}} }} \times \frac{r}{{1000}}\)&nbsp;&nbsp; (or equivalent) &nbsp; &nbsp; <em><strong>A1A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{\frac{1}{{\sqrt {{r^2} - {y^2}} }}}}{{\frac{{{r^2} - {y^2}}}{{{r^2}}}}}\frac{r}{{1000}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(A1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{{r^3}}}{{{{10}^3}\sqrt {{{\left( {{r^2} - {y^2}} \right)}^3}} }}\)&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">(or equivalent) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = {\left( {\frac{r}{{10\sqrt {{r^2} - {y^2}} }}} \right)^3}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">AG&nbsp;&nbsp;&nbsp;&nbsp; N0</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}m}}{{{\text{d}}t}}\) </span><span style="font-family: times new roman,times; font-size: medium;">represents the rate of change of the gradient of the line OP&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Few students were able to complete this question successfully, although many did obtain partial marks. Many students failed to recognise the difference between differentiating with respect to \(t\) or with respect to \(y\) . Very few were able to give a satisfactory geometrical meaning in part (b).</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The cubic curve \(y = 8{x^3} + b{x^2} + cx + d\) has two distinct points P and Q, where the gradient is zero.</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; Show that \({b^2} &gt; 24c\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Given that the coordinates of P and Q are \(\left( {\frac{1}{2},{\text{ }} - 12} \right)\) </span><span style="font-family: times new roman,times; font-size: medium;">and \(\left( { - \frac{3}{2},{\text{ }}20} \right)\)</span><span style="font-family: times new roman,times; font-size: medium;"> respectively,</span> <span style="font-family: times new roman,times; font-size: medium;">find the values of \(b\) , \(c\) and \(d\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 24{x^2} + 2bx + c\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(A1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(24{x^2} + 2bx + c = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\Delta&nbsp; = {\left( {2b} \right)^2} - 96\left( c \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(4{b^2} - 96c &gt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({b^2} &gt; 24c\) &nbsp; &nbsp; <em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp; \(1 + \frac{1}{4}b + \frac{1}{2}c + d = - 12\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(6 + b + c = 0\)<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( - 27 + \frac{9}{4}b - \frac{3}{2}c + d = 20\)<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(54 - 3b + c = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct equation, up to \(3\), not necessarily simplified.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(b = 12\), \(c = - 18\), \(d = - 7\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[8 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates throughout almost the whole mark range were able to score well on this question. It was pleasing that most candidates were aware of the discriminant condition for distinct real roots of a quadratic. Some who dropped marks on part (b) either didn't write down a sufficient number of linear equations to determine the three unknowns or made arithmetic errors in their manual solution &ndash; few GDC solutions were seen.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Richard, a marine soldier, steps out of a stationary helicopter, 1000 m above the ground, at time \(t = 0\). Let his height, in metres, above the ground be given by \(s(t)\). For the first 10 seconds his velocity, \(v(t){\text{m}}{{\text{s}}^{ - 1}}\), is given by \(v(t) =&nbsp; - 10t\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find his acceleration \(a(t)\) for \(t &lt; 10\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate \(v(10)\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(s(10) = 500\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At \(t = 10\) his parachute opens and his acceleration \(a(t)\) is subsequently given by \(a(t) =&nbsp; - 10 - 5v,{\text{ }}t \ge 10\).</p>
<p>Given that \(\frac{{{\text{d}}t}}{{{\text{d}}v}} = \frac{1}{{\frac{{{\text{d}}v}}{{{\text{d}}t}}}}\), write down \(\frac{{{\text{d}}t}}{{{\text{d}}v}}\) in terms of \(v\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>You are told that Richard&rsquo;s acceleration, \(a(t) =&nbsp; - 10 - 5v\), is always positive, for \(t \ge 10\).</p>
<p>Hence show that \(t = 10 + \frac{1}{5}\ln \left( {\frac{{98}}{{ - 2 - v}}} \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>You are told that Richard&rsquo;s acceleration, \(a(t) =&nbsp; - 10 - 5v\), is always positive, for \(t \ge 10\).</p>
<p>Hence find an expression for the velocity, \(v\), for \(t \ge 10\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>You are told that Richard&rsquo;s acceleration, \(a(t) =&nbsp; - 10 - 5v\), is always positive, for \(t \ge 10\).</p>
<p>Find an expression for his height, \(s\), above the ground for \(t \ge 10\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>You are told that Richard&rsquo;s acceleration, \(a(t) =&nbsp; - 10 - 5v\), is always positive, for \(t \ge 10\).</p>
<p>Find the value of \(t\) when Richard lands on the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \(a(t) = \frac{{{\text{d}}v}}{{{\text{d}}t}} =&nbsp; - 10{\text{ (m}}{{\text{s}}^{ - 2}}{\text{)}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(t = 10 \Rightarrow v =&nbsp; - 100{\text{ (m}}{{\text{s}}^{ - 1}}{\text{)}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>(iii) &nbsp; &nbsp; \(s = \int { - 10t{\text{d}}t =&nbsp; - 5{t^2}( + c)} \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></p>
<p>\(s = 1000{\text{ for }}t = 0 \Rightarrow c = 1000\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p>\(s =&nbsp; - 5{t^2} + 1000\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>at \(t = 10,{\text{ }}s = 500{\text{ (m)}}\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept use of definite integrals.</p>
<p><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}t}}{{{\text{d}}v}} = \frac{1}{{( - 10 - 5v)}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(t = \int {\frac{1}{{ - 10 - 5v}}{\text{d}}v =&nbsp; - \frac{1}{5}\ln ( - 10 - 5v)( + c)} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept equivalent forms using modulus signs.</p>
<p>&nbsp;</p>
<p>\(t = 10,{\text{ }}v =&nbsp; - 100\)</p>
<p>\(10 =&nbsp; - \frac{1}{5}\ln (490) + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(c = 10 + \frac{1}{5}\ln (490)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = 10 + \frac{1}{5}\ln 490 - \frac{1}{5}\ln ( - 10 - 5v)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept equivalent forms using modulus signs.</p>
<p>&nbsp;</p>
<p>\(t = 10 + \frac{1}{5}\ln \left( {\frac{{98}}{{ - 2 - v}}} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept use of definite integrals.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>\(t = \int {\frac{1}{{ - 10 - 5v}}{\text{d}}v =&nbsp; - \frac{1}{5}\int {\frac{1}{{2 + v}}{\text{d}}v =&nbsp; - \frac{1}{5}\ln \left| {2 + v} \right|( + c)} } \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept equivalent forms.</p>
<p>&nbsp;</p>
<p>\(t = 10,{\text{ }}v =&nbsp; - 100\)</p>
<p>\(10 =&nbsp; - \frac{1}{5}\ln \left| { - 98} \right| + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; If \(\ln ( - 98)\) is seen do not award further A marks.</p>
<p>&nbsp;</p>
<p>\(c = 10 + \frac{1}{5}\ln 98\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = 10 + \frac{1}{5}\ln 98 - \frac{1}{5}\ln \left| {2 + v} \right|\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept equivalent forms.</p>
<p>&nbsp;</p>
<p>\(t = 10 + \frac{1}{5}\ln \left( {\frac{{98}}{{ - 2 - v}}} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept use of definite integrals.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5(t - 10) = \ln \frac{{98}}{{( - 2 - v)}}\)</p>
<p>\(\frac{{2 + v}}{{98}} =&nbsp; - {{\text{e}}^{ - 5(t - 10)}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(v =&nbsp; - 2 - 98{{\text{e}}^{ - 5(t - 10)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} =&nbsp; - 2 - 98{{\text{e}}^{ - 5(t - 10)}}\)</p>
<p>\(s =&nbsp; - 2t + \frac{{98}}{5}{{\text{e}}^{ - 5(t - 10)}}( + k)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>at \(t = 10,{\text{ }}s = 500 \Rightarrow 500 =&nbsp; - 20 + \frac{{98}}{5} + k \Rightarrow k = 500.4\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(s =&nbsp; - 2t + \frac{{98}}{5}{{\text{e}}^{ - 5(t - 10)}} + 500.4\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept use of definite integrals.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(t = 250{\text{ for }}s = 0\) &nbsp; &nbsp;<strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p><strong><em>Total [21 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (i) and (ii) were well answered by most candidates.</p>
<p class="p1">In (iii) the constant of integration was often forgotten. Most candidates calculated the displacement and then used different strategies, mostly incorrect, to remove the negative sign from \( - 500\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Surprisingly part (b) was not well done as the question stated the method. Many candidates simply wrote down \(\frac{{{\text{d}}v}}{{{\text{d}}t}}\) while others seemed unaware that \(\frac{{{\text{d}}v}}{{{\text{d}}t}}\) was the acceleration.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) was not always well done as it followed from (b) and at times there was very little to allow follow through. Once again some candidates started with what they were trying to prove. Among the candidates that attempted to integrate many did not consider the constant of integration properly.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (d) many candidates ignored the answer given in (c) and attempted to manipulate different expressions.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (e) was poorly answered: the constant of integration was often again forgotten and some inappropriate uses of Physics formulas assuming that the acceleration was constant were used. There was unclear thinking with the two sides of an equation being integrated with respect to different variables.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although part (e) was often incorrect, some follow through marks were gained in part (f).</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The curve \(C\) is defined by equation \(xy - \ln y = 1,{\text{ }}y &gt; 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of \(x\) and \(y\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the tangent to \(C\) at the point \(\left( {\frac{2}{{\text{e}}},{\text{ e}}} \right)\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} - \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>A1 </em></strong>for the first two terms, <strong><em>A1 </em></strong>for the third term and the 0.</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{y^2}}}{{1 - xy}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept \(\frac{{ - {y^2}}}{{\ln y}}\).</p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept \(\frac{{ - y}}{{x - \frac{1}{y}}}\).</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({m_T} = \frac{{{{\text{e}}^2}}}{{1 - {\text{e}} \times \frac{2}{{\text{e}}}}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\({m_T} = - {{\text{e}}^2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(y - {\text{e}} = - {{\text{e}}^2}x + 2{\text{e}}\)</p>
<p>\( - {{\text{e}}^2}x - y + 3{\text{e}} = 0\) or equivalent&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept \(y = - 7.39x + 8.15\).</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A skydiver jumps from a stationary balloon at a height of 2000 m above the ground.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Her velocity, \(v{\text{ m}}{{\text{s}}^{ - 1}}\) , <em>t</em> seconds after jumping, is given by \(v = 50(1 - {{\text{e}}^{ - 0.2t}})\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find her acceleration 10 seconds after jumping.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">How far above the ground is she 10 seconds after jumping?</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 10{{\text{e}}^{ - 0.2t}}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at \(t = 10\) , \(a = 1.35{\text{ }}({\text{m}}{{\text{s}}^{ - 2}})\,\,\,\,\,{\text{(accept }}10{e^{ - 2}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(d = \int_0^{10} {50(1 - {{\text{e}}^{ - 0.2t}}){\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 283.83&hellip;\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so distance above ground \( = 1720{\text{ (m) (3 sf) }}\left( {{\text{accept 1716 (m)}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{s}} = \int {50(1 - {{\text{e}}^{ - 0.2t}}){\text{d}}t = 50t + 250{{\text{e}}^{ - 0.2t}}( + c)} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Taking <em>s</em> = 0 when <em>t</em> = 0 gives <em>c</em> = &minus;250 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So when <em>t</em>&nbsp; = 10, <em>s</em> = 283.3...</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so distance above ground \( = 1720{\text{ (m) (3 sf) }}\left( {{\text{accept 1716 (m)}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally correctly answered. A few candidates suffered the Arithmetic Penalty for giving their answer to more than 3sf. A smaller number were unable to differentiate the exponential function correctly. Part (b) was less well answered, many candidates not thinking clearly about the position and direction associated with the initial conditions.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally correctly answered. A few candidates suffered the Arithmetic Penalty for giving their answer to more than 3sf. A smaller number were unable to differentiate the exponential function correctly. Part (b) was less well answered, many candidates not thinking clearly about the position and direction associated with the initial conditions.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \(f\) be a function defined by \(f(x) = x + 2\cos x\) , \(x \in \left[ {0,{\text{ }}2\pi } \right]\) . The diagram below </span><span style="font-family: times new roman,times; font-size: medium;">shows a region \(S\) bound by the graph of \(f\) and the line \(y = x\) .</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A and C are the points of intersection of the line \(y = x\) and the graph of \(f\) , and B is </span><span style="font-family: times new roman,times; font-size: medium;">the minimum point of \(f\) .</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; If A, B and C have <em>x</em>-coordinates \(a\frac{\pi }{2}\)</span><span style="font-family: times new roman,times; font-size: medium;">, \(b\frac{\pi }{6}\) and \(c\frac{\pi }{2}\)</span><span style="font-family: times new roman,times; font-size: medium;">, where \(a\) , \(b\), \(c \in \mathbb{N}\) ,</span> <span style="font-family: times new roman,times; font-size: medium;">find the values of \(a\) , \(b\) and \(c\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Find the range of \(f\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; Find the equation of the normal to the graph of f at the point C, giving your </span><span style="font-family: times new roman,times; font-size: medium;">answer in the form \(y = px + q\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d)&nbsp;&nbsp;&nbsp;&nbsp; The region \(S\) is rotated through \({2\pi }\) about the <em>x</em>-axis to generate a solid.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Write down an integral that represents the volume \(V\) of this solid.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(V = 6{\pi ^2}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; <strong>METHOD 1</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">using GDC</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(a = 1\)</span>, \(b = 5\), \(c = 3\) &nbsp;&nbsp;&nbsp; <em><strong>A1A2A1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">METHOD 2</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = x + 2\cos x \Rightarrow \cos x = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow x = \frac{\pi }{2}\), \(\frac{{3\pi }}{2}\) ... &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(a = 1\)</span>, \(c = 3\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(1 - 2\sin x = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow \sin x = \frac{1}{2} \Rightarrow x = \frac{\pi }{6}\) or \(\frac{{5\pi }}{6}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(b = 5\)</span>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Final <em><strong>M1A1</strong></em> is independent of previous work.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">\(f\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} - \sqrt 3 \) &nbsp;</span><span style="font-family: times new roman,times; font-size: medium;"> (or \(0.886\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(f(2\pi ) = 2\pi&nbsp; + 2\) (or \(8.28\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the range is </span><span style="font-family: times new roman,times; font-size: medium;">\(\left[ {\frac{{5\pi }}{6} - \sqrt 3 ,{\text{ }}2\pi&nbsp; + 2} \right]\) (</span><span style="font-family: times new roman,times; font-size: medium;">or [\(0.886\), \(8.28\)]) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; \(f'(x) = 1 - 2\sin x\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(f'\left( {\frac{{3\pi }}{6}} \right) = 3\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">gradient of normal \( = - \frac{1}{3}\)</span><span style="font-family: times new roman,times; font-size: medium;"> &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> (M1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">equation of the normal is </span><span style="font-family: times new roman,times; font-size: medium;">\(y - \frac{{3\pi }}{2} = - \frac{1}{3}\left( {x - \frac{{3\pi }}{2}} \right)\)</span><span style="font-family: times new roman,times; font-size: medium;"> &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(M1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = - \frac{1}{3}x + 2\pi \) &nbsp;</span><span style="font-family: times new roman,times; font-size: medium;"> (or equivalent decimal values)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1&nbsp;&nbsp;&nbsp;&nbsp; N4</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d)&nbsp;&nbsp;&nbsp;&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; \(V = \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{\left( {x + 2\cos x} \right)}^2}} \right)} {\text{d}}x\) &nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">(or equivalent) &nbsp; &nbsp; <em><strong>A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for limits and <em><strong>A1</strong></em> for \(\pi \) and integrand.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; \(V = \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{\left( {x + 2\cos x} \right)}^2}} \right)} {\text{d}}x\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = - \pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {4x\cos x + 4{{\cos }^2}x} \right)} {\text{d}}x\)<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">using integration by parts&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">and the identity \(4{\cos ^2}x = 2\cos 2x + 2\) ,&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(V = - \pi \left[ {\left( {4x\sin x + 4\cos x} \right) + \left( {\sin 2x + 2x} \right)} \right]_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for \({4x\sin x + 4\cos x}\) and <em><strong>A1</strong></em> for sin \({2x + 2x}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = - \pi \left[ {\left( {6\pi \sin \frac{{3\pi }}{2} + 4\cos \frac{{3\pi }}{2} + \sin 3\pi&nbsp; + 3\pi } \right) - \left( {2\pi sin\frac{\pi }{2} + 4\cos \frac{\pi }{2} + \sin \pi&nbsp; + \pi } \right)} \right]\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = - \pi \left( { - 6\pi&nbsp; + 3\pi&nbsp; - \pi } \right)\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = 6{\pi ^2}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>AG&nbsp;&nbsp;&nbsp;&nbsp; N0</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Do not accept numerical answers.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">Total [19 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Generally there were many good attempts to this, more difficult, question. A number of </span><span style="font-family: times new roman,times; font-size: medium;">students found \(b\) to be equal to 1, rather than 5. In the final part few students could </span><span style="font-family: times new roman,times; font-size: medium;">successfully work through the entire integral successfully.</span></p>
</div>
<br><hr><br><div class="specification">
<p>A curve <em>C</em> is given by the implicit equation&nbsp;\(x + y - {\text{cos}}\left( {xy} \right) = 0\).</p>
</div>

<div class="specification">
<p>The curve&nbsp;\(xy =&nbsp; - \frac{\pi }{2}\)&nbsp;intersects <em>C</em> at P and Q.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of P and Q.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the gradients of the tangents to <em>C</em> at P and Q are <em>m</em><sub>1</sub> and <em>m</em><sub>2</sub> respectively, show that <em>m</em><sub>1</sub> × <em>m</em><sub>2</sub> = 1.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the three points on <em>C</em>, nearest the origin, where the tangent is parallel to the line \(y =  - x\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at implicit differentiation      <em><strong>M1</strong></em></p>
<p>\(1 + \frac{{{\text{d}}y}}{{{\text{d}}x}} + \left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right){\text{sin}}\left( {xy} \right) = 0\)     <em><strong>A1M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for first two terms. Award <em><strong>M1</strong> </em>for an attempt at chain rule <em><strong>A1</strong> </em>for last term.</p>
<p>\(\left( {1 + x\,{\text{sin}}\left( {xy} \right)} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - 1 - y\,{\text{sin}}\left( {xy} \right)\)     <em><strong>A1</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \left( {\frac{{1 + y\,{\text{sin}}\left( {xy} \right)}}{{1 + x\,{\text{sin}}\left( {xy} \right)}}} \right)\)     <em><strong>AG</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>when \(xy =  - \frac{\pi }{2},\,\,{\text{cos}}\,xy = 0\)     <em><strong>M1</strong></em></p>
<p>\( \Rightarrow x + y = 0\)    <em><strong>(A1)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(x - \frac{\pi }{{2x}} - {\text{cos}}\left( {\frac{{ - \pi }}{2}} \right) = 0\) or equivalent      <em><strong>M1</strong></em></p>
<p>\(x - \frac{\pi }{{2x}} = 0\)     <em><strong>(A1)</strong></em></p>
<p><strong>THEN</strong></p>
<p>therefore \({x^2} = \frac{\pi }{2}\left( {x =  \pm \sqrt {\frac{\pi }{2}} } \right)\left( {x =  \pm 1.25} \right)\)     <em><strong>A1</strong></em></p>
<p>\({\text{P}}\left( {\sqrt {\frac{\pi }{2}} ,\, - \sqrt {\frac{\pi }{2}} } \right),\,\,{\text{Q}}\left( { - \sqrt {\frac{\pi }{2}} ,\,\sqrt {\frac{\pi }{2}} } \right)\) <strong>or</strong> \(P\left( {1.25,\, - 1.25} \right),\,Q\left( { - 1.25,\,1.25} \right)\)     <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>m</em><sub>1 </sub>= \( - \left( {\frac{{1 - \sqrt {\frac{\pi }{2}}  \times  - 1}}{{1 + \sqrt {\frac{\pi }{2}}  \times  - 1}}} \right)\)     <em><strong>M1A1</strong></em></p>
<p><em>m</em><sub>2 </sub>= \( - \left( {\frac{{1 + \sqrt {\frac{\pi }{2}}  \times  - 1}}{{1 - \sqrt {\frac{\pi }{2}}  \times  - 1}}} \right)\)     <em><strong>A1</strong></em></p>
<p><em>m</em><sub>1 </sub><em>m</em><sub>2 </sub>= 1     <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0A0</strong> </em>if decimal approximations are used.<br><strong>Note:</strong> No <strong>FT</strong> applies.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>equate derivative to −1    <em><strong>M1</strong></em></p>
<p>\(\left( {y - x} \right){\text{sin}}\left( {xy} \right) = 0\)     <em><strong>(A1)</strong></em></p>
<p>\(y = x,\,{\text{sin}}\left( {xy} \right) = 0\)     <em><strong>R1</strong></em></p>
<p>in the first case, attempt to solve \(2x = {\text{cos}}\left( {{x^2}} \right)\)     <em><strong>M1</strong></em></p>
<p>(0.486,0.486)      <strong>A1</strong></p>
<p>in the second case, \({\text{sin}}\left( {xy} \right) = 0 \Rightarrow xy = 0\) and \(x + y = 1\)     <em><strong>(M1)</strong></em></p>
<p>(0,1), (1,0)    <em><strong>  A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve with equation \({\left( {{x^2} + {y^2}} \right)^2} = 4x{y^2}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use implicit differentiation to find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve at the point (1, 1).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">expanding the brackets first:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^4} + 2{x^2}{y^2} + {y^4} = 4x{y^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4{x^3} + 4x{y^2} + 4{x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 4{y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for an attempt at implicit differentiation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for each side correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{x{y^2} - 2xy + {y^3}}}\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\left( {{x^2} + {y^2}} \right)\left( {2x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = 4{y^2} + 8xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for an attempt at implicit differentiation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for each side correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {{x^2} + {y^2}} \right)\left( {x + y\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3} + {x^2}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + {y^2}x + {y^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = {y^2} + 2xy\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - {x^3} - x{y^2} + {y^2}}}{{y{x^2} - 2xy + {y^3}}}\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at (1, 1), \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) is undefined &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of normal \( =&nbsp; - \frac{1}{{\frac{{{\text{d}}y}}{{{\text{d}}x}}}} =&nbsp; - \frac{{\left( {y{x^2} - 2xy + {y^3}} \right)}}{{\left( { - {x^3} - x{y^2} + {y^2}} \right)}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at (1, 1) gradient \( = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">An open glass is created by rotating the curve \(y = {x^2}\) , defined in the domain \(x \in [0,10]\), \(2\pi \) radians about the <em>y</em>-axis. Units on the coordinate axes are defined to be in centimetres.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">When the glass contains water to a height \(h\) cm, find the volume \(V\) of water in terms of \(h\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">If the water in the glass evaporates at the rate of 3 cm<sup>3</sup> per hour for each cm<sup>2</sup> of exposed surface area of the water, show that,</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = - 3\sqrt {2\pi V} \)</span><span style="font-family: times new roman,times; font-size: medium;"> , where \(t\) is measured in hours.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">If the glass is filled completely, how long will it take for all the water to evaporate?</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">volume \( = \pi \int_0^h {{x^2}{\text{d}}y} \) &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(M1)</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(\pi \int_0^h {y{\text{d}}y} \)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\pi \left[ {\frac{{{y^2}}}{2}} \right]_0^h = \frac{{\pi {h^2}}}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = - 3 \times \)</span><span style="font-family: times new roman,times; font-size: medium;"> surface area &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">surface area \( = \pi {x^2}\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \pi h\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(V = \frac{{\pi {h^2}}}{2} \Rightarrow h\sqrt {\frac{{2V}}{\pi }} \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = - 3\pi \sqrt {\frac{{2V}}{\pi }} \)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = - 3\sqrt {2\pi V} \) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> AG</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Assuming that </span><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = - 3\)</span><span style="font-family: times new roman,times; font-size: medium;"> without justification gains no marks.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\({V_0} = 5000\pi \) (\( = 15700\) cm<sup>3</sup>) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} =&nbsp; - 3\sqrt {2\pi V} \)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">attempting to separate variables &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\int {\frac{{{\text{d}}V}}{{\sqrt V }}}&nbsp; =&nbsp; - 3\sqrt {2\pi } \int {{\text{d}}t} \)&nbsp;&nbsp;&nbsp;  <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(2\sqrt V&nbsp; =&nbsp; - 3\sqrt {2\pi t}&nbsp; + c\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(c = 2\sqrt {5000\pi } \) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(V = 0\) &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow t = \frac{2}{3}\sqrt {\frac{{5000\pi }}{{2\pi }}}&nbsp; = 33\frac{1}{3}\) hours &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\int_{5000\pi }^0 {\frac{{{\text{d}}V}}{{\sqrt V }}}&nbsp; =&nbsp; - 3\sqrt {2\pi } \int_0^T {{\text{d}}t} \) &nbsp; &nbsp; <em><strong>M1A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>M1</strong></em> for attempt to use definite integrals, <em><strong>A1</strong></em> for correct limits </span><span style="font-family: times new roman,times; font-size: medium;">and <em><strong>A1</strong></em> for correct integrands.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left[ {2\sqrt V } \right]_{5000\pi }^0 = 3\sqrt {2\pi } T\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(T = \frac{2}{3}\sqrt {\frac{{5000\pi }}{{2\pi }}}&nbsp; = 33\frac{1}{3}\) hours</span> &nbsp;&nbsp;&nbsp; <em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was found to be challenging by many candidates and there were very few completely correct solutions. Many candidates did not seem able to find the volume of revolution when taken about the <em>y</em>-axis in (a). Candidates did not always recognize that part (b) did not involve related rates. Those candidates who attempted the question made some progress by separating the variables and integrating in (c) but very few were able to identify successfully the values necessary to find the correct answer.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was found to be challenging by many candidates and there were very few completely correct solutions. Many candidates did not seem able to find the volume of revolution when taken about the <em>y</em>-axis in (a). Candidates did not always recognize that part (b) did not involve related rates. Those candidates who attempted the question made some progress by separating the variables and integrating in (c) but very few were able to identify successfully the values necessary to find the correct answer.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was found to be challenging by many candidates and there were very few completely correct solutions. Many candidates did not seem able to find the volume of revolution when taken about the <em>y</em>-axis in (a). Candidates did not always recognize that part (b) did not involve related rates. Those candidates who attempted the question made some progress by separating the variables and integrating in (c) but very few were able to identify successfully the values necessary to find the correct answer.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Xavier, the parachutist, jumps out of a plane at a height of \(h\) metres above the ground. After free falling for 10 seconds his parachute opens. His velocity, \(v\,{\text{m}}{{\text{s}}^{ - 1}}\), \(t\) seconds after jumping from the plane, can be modelled by the function</p>
<p>\(v(t) = \left\{ {\begin{array}{*{20}{l}} {9.8t{\text{,}}}&amp;{0 \leqslant t \leqslant 10} \\ {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }},}&amp;{t &gt; 10} \end{array}} \right.\)</p>
</div>

<div class="specification">
<p>His velocity when he reaches the ground is \(2.8{\text{ m}}{{\text{s}}^{ - 1}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find his velocity when \(t = 15\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the vertical distance Xavier travelled in the first 10 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of \(h\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(v(15) = \frac{{98}}{{\sqrt {1 + {{(15 - 10)}^2}} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(v(15) = 19.2{\text{ }}({\text{m}}{{\text{s}}^{ - 1}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int\limits_0^{10} {9.8t\,{\text{d}}t} \)&nbsp;&nbsp; &nbsp;<strong><em>(M1)</em></strong></p>
<p>\( = 490{\text{ }}({\text{m}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }} = 2.8\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t = 44.985 \ldots {\text{ }}({\text{s}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(h = 490 + \int\limits_{10}^{44.9...} {\frac{{98}}{{\sqrt {1 + {{(t - 10)}^2}} }}{\text{d}}t} \)&nbsp;&nbsp; &nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p>\(h = 906{\text{ (m}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f(x) = 3\sin x + 4\cos x\) is defined for \(0 &lt; x &lt; 2\pi \) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the coordinates of the minimum point on the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The points \({\text{P}}(p,{\text{ }}3)\)&nbsp;and \({\text{Q}}(q,{\text{ }}3){\text{, }}q &gt; p\), lie on the graph of \(y = f(x)\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find <em>p </em>and <em>q </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point, on \(y = f(x)\)&nbsp;, where the gradient of the&nbsp;graph is 3.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point of intersection of the normals to the graph at the&nbsp;points P and Q.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((3.79, - 5)\) &nbsp; &nbsp;&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1&nbsp;</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]&nbsp;</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(p = 1.57{\text{ or }}\frac{\pi }{2},{\text{ }}q = 6.00\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 3\cos x - 4\sin x\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(3\cos x - 4\sin x = 3 \Rightarrow x = 4.43...\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((y = -4)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">Coordinates are&nbsp;\((4.43, -4)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({m_{{\text{normal}}}} = \frac{1}{{{m_{{\text{tangent}}}}}}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">gradient at P is \( - 4\) so gradient of normal at P is \(\frac{1}{4}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(A1)</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">gradient at Q is 4 so gradient of normal at Q is \( - \frac{1}{4}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(A1)</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">equation of normal at P is \(y - 3 = \frac{1}{4}(x - 1.570...){\text{ }}({\text{or }}y = 0.25x + 2.60...)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of normal at Q is \(y - 3 = \frac{1}{4}(x - 5.999...){\text{ }}({\text{or }}y = -0.25x + \underbrace {4.499...}_{})\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Award the previous two </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>M1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">even if the gradients are incorrect in \(y - b = m(x - a)\)&nbsp;where \((a,b)\) are coordinates of P and Q&nbsp;(or in \(y = mx + c\) with </span><em style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">c </em><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">determined using coordinates of P and Q.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">intersect at \((3.79,{\text{ }}3.55)\)&nbsp; &nbsp; &nbsp;<strong><em>A1A1</em></strong></span>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>N2 </em></strong>for 3.79 without other working.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]<br></em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve \({x^3}{y^3} - xy = 0\) at the point (1, 1).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3}{y^3} - xy = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2}{y^3} + 3{x^3}{y^2}y' - y - xy' = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correctly differentiating each term.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1,{\text{ }}y = 1\) &nbsp; &nbsp; \(3 + 3y' - 1 - y' = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(2y' = - 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(y' = - 1\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of normal = 1 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of the normal \(y - 1 = x - 1\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A2R5</em></strong> for correct answer and correct justification.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This implicit differentiation question was well answered by most candidates with many achieving full marks. Some candidates made algebraic errors which prevented them from scoring well in this question.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Other candidates realised that the equation of the curve could be simplified although the simplification was seldom justified.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A curve is defined \({x^2} - 5xy + {y^2} = 7\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5y - 2x}}{{2y - 5x}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the equation of the normal to the curve at the point \((6,{\text{ }}1)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the distance between the two points on the curve where each tangent is parallel to the line \(y = x\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt at implicit differentiation <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">\(2x - 5x\frac{{{\text{d}}y}}{{{\text{d}}x}} - 5y + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong> for differentiation of \({x^2} - 5xy\), <strong><em>A1</em></strong> for differentiation of \({y^2}\) and \(7\).</p>
<p class="p3">&nbsp;</p>
<p class="p2">\(2x - 5y + \frac{{{\text{d}}y}}{{{\text{d}}x}}(2y - 5x) = 0\)</p>
<p class="p2">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5y - 2x}}{{2y - 5x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{5 \times 1 - 2 \times 6}}{{2 \times 1 - 5 \times 6}} = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>gradient of normal \( =&nbsp; - 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>equation of normal \(y =&nbsp; - 4x + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>substitution of \((6,{\text{ }}1)\)</p>
<p>\(y =&nbsp; - 4x + 25\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept \(y - 1 =&nbsp; - 4(x - 6)\)</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>setting \(\frac{{5y - 2x}}{{2y - 5x}} = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(y =&nbsp; - x\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>substituting into original equation &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({x^2} + 5{x^2} + {x^2} = 7\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(7{x^2} = 7\)</p>
<p>\(x =&nbsp; \pm 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>points \((1,{\text{ }} - 1)\) and \(( - 1,{\text{ }}1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>distance \( = \sqrt 8 \;\;\;\left( { = 2\sqrt 2 } \right)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<p><strong><em>Total [15 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point P, with coordinates \((p,{\text{ }}q)\) , lies on the graph of \({x^{\frac{1}{2}}} + {y^{\frac{1}{2}}} = {a^{\frac{1}{2}}}\) , \(a &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The tangent to the curve at P cuts the axes at (0, <em>m</em>) and (<em>n</em>, 0) . Show that <em>m</em> + <em>n</em> = <em>a</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^{\frac{1}{2}}} + {y^{\frac{1}{2}}} = {a^{\frac{1}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}{x^{ - \frac{1}{2}}} + \frac{1}{2}{y^{ - \frac{1}{2}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{\frac{1}{{2\sqrt x }}}}{{\frac{1}{{2\sqrt y }}}} = - \sqrt {\frac{y}{x}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1 - \frac{{{a^{\frac{1}{2}}}}}{{{x^{\frac{1}{2}}}}}\) from making </span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;"> the subject of the equation, and all correct subsequent working</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore the gradient at the point P is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \sqrt {\frac{q}{p}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of tangent is \(y - q = - \sqrt {\frac{q}{p}} (x - p)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((y = - \sqrt {\frac{q}{p}} x + q + \sqrt q \sqrt p )\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em>-intercept: <em>y</em> = 0, \(n = \frac{{q\sqrt p }}{{\sqrt q }} + p = \sqrt q \sqrt p&nbsp; + p\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>y</em>-intercept: <em>x</em> = 0, \(m = \sqrt q \sqrt p&nbsp; + q\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n + m = \sqrt q \sqrt p&nbsp; + p + \sqrt q \sqrt p&nbsp; + q\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\sqrt q \sqrt p&nbsp; + p + q\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {\left( {\sqrt p&nbsp; + \sqrt q } \right)^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = a\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to perform the implicit differentiation. Few gained any further marks.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \cos 2x\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that the function \(y = \cos x + \sin x\) satisfies the differential equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the general solution of the differential equation. Express your solution in the form \(y = f(x)\), involving a constant of integration.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; For which value of the constant of integration does your solution coincide with the function given in part (i)?</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A different solution of the differential equation, satisfying <em>y</em> = 2 when \(x = \frac{\pi }{4}\), defines a curve <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Determine the equation of <em>C</em> in the form \(y = g(x)\) , and state the range of the function <em>g</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A region <em>R</em> in the <em>xy</em> plane is bounded by <em>C</em>, the <em>x</em>-axis and the vertical lines <em>x</em> = 0 and \(x = \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the area of <em>R</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the volume generated when that part of <em>R</em> above the line <em>y</em> = 1 is rotated about the <em>x</em>-axis through \(2\pi \) radians.</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =&nbsp; - \sin x + \cos x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y\frac{{{\text{d}}y}}{{{\text{d}}x}} = (\cos x + \sin x)( - \sin x + \cos x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {\cos ^2}x - {\sin ^2}x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \cos 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = {(\sin x + \cos x)^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2(\cos x + \sin x)(\cos x - \sin x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y\frac{{{\text{d}}y}}{{{\text{d}}x}} = {\cos ^2}x - {\sin ^2}x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \cos 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempting to separate variables \(\int {y{\text{ d}}y = \int {\cos 2x{\text{ d}}x} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}{y^2} = \frac{1}{2}\sin 2x + C\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for a correct LHS and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for a correct RHS.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y =&nbsp; \pm {(\sin 2x + A)^{\frac{1}{2}}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \(\sin 2x + A \equiv {(\cos x + \sin x)^2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(\cos x + \sin x)^2} = {\cos ^2}x + 2\sin x\cos x + {\sin ^2}x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of \(\sin 2x \equiv 2\sin x\cos x\). &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>A</em> = 1 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; substituting \(x = \frac{\pi }{4}\) and <em>y</em> = 2 into \(y = {(\sin 2x + A)^{\frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(g(x) = {(\sin 2x + 3)^{\frac{1}{2}}}\). &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">range <em>g</em> is \(\left[ {\sqrt 2 ,{\text{ }}2} \right]\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept [1.41, 2]. Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for each correct endpoint and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the correct closed interval.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(\int_0^{\frac{\pi }{2}} {{{(\sin 2x + 3)}^{\frac{1}{2}}}{\text{d}}x} \) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)(A1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 2.99 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \(\pi \int_0^{\frac{\pi }{2}} {(\sin 2x + 3){\text{d}}x - \pi (1)\left( {\frac{\pi }{2}} \right)} \) (or equivalent) &nbsp; &nbsp; <strong><em>(M1)(A1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)(A1)(A1)</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\pi \int_0^{\frac{\pi }{2}} {(\sin 2x + 2){\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 17.946 - 4.935{\text{ }}( = \frac{\pi }{2}(3\pi&nbsp; + 2) - \pi \left( {\frac{\pi }{2}} \right))\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\pi (\pi&nbsp; + 1)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[12 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was not well done and was often difficult to mark. In part (a) (i), a large number of candidates did not know how to verify a solution, \(y(x)\), to the given differential equation. Instead, many candidates attempted to solve the differential equation. In part (a) (ii), a large number of candidates began solving the differential equation by correctly separating the variables but then either neglected to add a constant of integration or added one as an afterthought. Many simple algebraic and basic integral calculus errors were seen. In part (a) (iii), many candidates did not realize that the solution given in part (a) (i) and the general solution found in part (a) (ii) were to be equated. Those that did know to equate these two solutions, were able to square both solution forms and correctly use the trigonometric identity \(\sin 2x = 2\sin x\cos x\). Many of these candidates however started with incorrect solution(s).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), a large number of candidates knew how to find a required area and a required volume of solid of revolution using integral calculus. Many candidates, however, used incorrect expressions obtained in part (a). In part (b) (ii), a number of candidates either neglected to state &lsquo;&pi;&rsquo; or attempted to calculate the volume of a solid of revolution of &lsquo;radius&rsquo; \(f(x) - g(x)\).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">By using the substitution \(x = 2\tan u\), show that \(\int {\frac{{{\text{d}}x}}{{{x^2}\sqrt {{x^2} + 4} }} = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}} + C} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}u}} = 2\,{\text{se}}{{\text{c}}^2}u\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4 + 4{{\tan }^2}u} }}} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u \times 2\,\sec u}}} \) &nbsp; \(( = \int {\frac{{{\text{d}}u}}{{4{{\sin }^2}u\sqrt {{{\tan }^2}u + 1} }}{\text{ or }} = \int {\frac{{2\,{\text{se}}{{\text{c}}^2}u{\text{d}}u}}{{4{{\tan }^2}u\sqrt {4{{\sec }^2}u} }})} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = \arctan \frac{x}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{2}{{{x^2} + 4}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\sqrt {4{{\tan }^2}u + 4{\text{d}}u} }}{{2 \times 4{{\tan }^2}u}}} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{2\,\sec u{\text{d}}u}}{{2 \times 4{{\tan }^2}u}}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\int {\frac{{\sec u{\text{d}}u}}{{{{\tan }^2}u}}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\int {{\text{cosec}}\,u\cot u{\text{d}}u{\text{ }}\left( { = \frac{1}{4}\int {\frac{{\cos u}}{{{{\sin }^2}u}}{\text{d}}u} } \right)} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - \frac{1}{4}{\text{cosec}}\,u( + C){\text{ }}\left( { =&nbsp; - \frac{1}{{4\sin u}}( + C)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">use of either \(u = \frac{x}{2}\) or an appropriate trigonometric identity &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">either \(\sin u = \frac{x}{{\sqrt {{x^2} + 4} }}\) or \({\text{cosec}}\,u = \frac{{\sqrt {{x^2} + 4} }}{x}\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - \sqrt {{x^2} + 4} }}{{4x}}( + C)\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates found this a challenging question. A large majority of candidates were able to change variable from <em>x</em> to <em>u</em> but were not able to make any further progress.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = x\sqrt {9 - {x^2}}&nbsp; + 2\arcsin \left( {\frac{x}{3}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Write down the largest possible domain, for each of the two terms of the function, <em>f</em> , and hence state the largest possible domain, <em>D</em> , for <em>f</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the volume generated when the region bounded by the curve <em>y</em> = <em>f</em>(<em>x</em>) , the <em>x</em>-axis, the <em>y</em>-axis and the line <em>x</em> = 2.8 is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find \(f'(x)\) in simplified form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; <strong>Hence</strong> show that \(\int_{ - p}^p {\frac{{11 - 2{x^2}}}{{\sqrt {9 - {x^2}} }}} {\text{d}}x = 2p\sqrt {9 - {p^2}}&nbsp; + 4\arcsin \left( {\frac{p}{3}} \right)\), where \(p \in D\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Find the value of <em>p</em> which maximises the value of the integral in (d).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; (i) &nbsp; &nbsp; Show that \(f''(x) = \frac{{x(2{x^2} - 25)}}{{{{(9 - {x^2})}^{\frac{3}{2}}}}}\).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 22px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; Hence justify that <em>f</em>(<em>x</em>) has a point of inflexion at <em>x</em> = 0 , but not at \(x = \pm \sqrt {\frac{{25}}{2}} \) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; For \(x\sqrt {9 - {x^2}} \), \( - 3 \leqslant x \leqslant 3\) and for \(2\arcsin \left( {\frac{x}{3}} \right)\), \( - 3 \leqslant x \leqslant 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow D{\text{ is }} - 3 \leqslant x \leqslant 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp;&nbsp;\(V = \pi \int_0^{2.8} {{{\left( {x\sqrt {9 - {x^2}}&nbsp; = 2\arcsin \frac{x}{3}} \right)}^2}{\text{d}}x} \) &nbsp; &nbsp; <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 181<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp;&nbsp;\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {(9 - {x^2})^{\frac{1}{2}}} - \frac{{{x^2}}}{{{{(9 - {x^2})}^{\frac{1}{2}}}}} + \frac{{\frac{2}{3}}}{{\sqrt {1 - \frac{{{x^2}}}{9}} }}\) &nbsp; &nbsp; <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {(9 - {x^2})^{\frac{1}{2}}} - \frac{{{x^2}}}{{{{(9 - {x^2})}^{\frac{1}{2}}}}} + \frac{2}{{{{(9 - {x^2})}^{\frac{1}{2}}}}}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{9 - {x^2} - {x^2} + 2}}{{{{(9 - {x^2})}^{\frac{1}{2}}}}}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{11 - 2{x^2}}}{{\sqrt {9 - {x^2}} }}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp;&nbsp;\(\int_{ - p}^p {\frac{{11 - 2{x^2}}}{{\sqrt {9 - {x^2}} }}{\text{d}}x = \left[ {x\sqrt {9 - {x^2}} + 2\arcsin \frac{x}{3}} \right]_{ - p}^p} \) &nbsp; &nbsp; <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = p\sqrt {9 - {p^2}} + 2\arcsin \frac{p}{3} + p\sqrt {9 - {p^2}}&nbsp; + 2\arcsin \frac{p}{3}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2p\sqrt {9 - {p^2}} + 4\arcsin \left( {\frac{p}{3}} \right)\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp;&nbsp;\(11 - 2{p^2} = 0\) &nbsp; &nbsp; <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(p = 2.35\,\,\,\,\,\left( {\sqrt {\frac{{11}}{2}} } \right)\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A0</em></strong> for \(p = \pm 2.35\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; (i) &nbsp; &nbsp;&nbsp;\(f''(x) = \frac{{{{(9 - {x^2})}^{\frac{1}{2}}}( - 4x) + x(11 - 2{x^2}){{(9 - {x^2})}^{ - \frac{1}{2}}}}}{{9 - {x^2}}}\) &nbsp; &nbsp; <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 4x(9 - {x^2}) + x(11 - 2{x^2})}}{{{{(9 - {x^2})}^{\frac{3}{2}}}}}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 36x + 4{x^3} + 11x - 2{x^3}}}{{{{(9 - {x^2})}^{\frac{3}{2}}}}}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{x(2{x^2} - 25)}}{{{{(9 - {x^2})}^{\frac{3}{2}}}}}\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(0 &lt; x &lt; 3\), \(f''(x) &lt; 0\). When \( - 3 &lt; x &lt; 0\), \(f''(x) &gt; 0\).<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(0) = 0\)<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence \(f''(x)\) changes sign through <em>x</em> = 0 , giving a point of inflexion.<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \pm \sqrt {\frac{{25}}{2}} \) is outside the domain of <em>f</em>.<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \pm \sqrt {\frac{{25}}{2}} \) is not a root of \(f''(x) = 0\) .<span style="font: 20.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [21 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It was disappointing to note that some candidates did not know the domain for arcsin. Most candidates knew what to do in (b) but sometimes the wrong answer was obtained due to the calculator being in the wrong mode. In (c), the differentiation was often disappointing with \(\arcsin \left( {\frac{x}{3}} \right)\) causing problems. In (f)(i), some candidates who failed to do (c) guessed the correct form of \(f'(x)\) (presumably from (d)) and then went on to find \(f''(x)\) correctly. In (f)(ii), the justification of a point of inflexion at <em>x</em> = 0 was sometimes incorrect &ndash; for example, some candidates showed simply that \(f'(x)\) is positive on either side of the origin which is not a valid reason.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A body is moving through a liquid so that its acceleration can be expressed as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left( { - \frac{{{v^2}}}{{200}} - 32} \right){\text{m}}{{\text{s}}^{ - 2}},\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where \(v{\text{ m}}{{\text{s}}^{ - 1}}\) is the velocity of the body at time <em>t</em> seconds.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The initial velocity of the body was known to be \(40{\text{ m}}{{\text{s}}^{ - 1}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that the time taken, <em>T</em> seconds, for the body to slow to \(V{\text{ m}}{{\text{s}}^{ - 1}}\) is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[T = 200\int_V^{40} {\frac{1}{{{v^2} + {{80}^2}}}{\text{d}}v.} \]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; Explain why acceleration can be expressed as \(v\frac{{{\text{d}}v}}{{{\text{d}}s}}\), where <em>s</em> is displacement, in metres, of the body at time <em>t</em> seconds.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 26px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; <strong>Hence</strong> find a similar integral to that shown in part (a) for the distance, <em>S</em> metres, travelled as the body slows to \(V{\text{ m}}{{\text{s}}^{ - 1}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; <strong>Hence</strong>, using parts (a) and (b), find the distance travelled and the time taken until the body momentarily comes to rest.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = - \frac{{{v^2}}}{{200}} - 32\left( { = \frac{{ - {v^2} - 6400}}{{200}}} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^T {{\text{d}}t = \int_{40}^V { - \frac{{200}}{{{v^2} + {{80}^2}}}{\text{d}}v} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(T = 200\int_V^{40} {\frac{1}{{{v^2} + {{80}^2}}}{\text{d}}v} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(a = \frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}v}}{{{\text{d}}s}} \times \frac{{{\text{d}}s}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(v\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{{ - {v^2} - {{80}^2}}}{{200}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^S {{\text{d}}s = \int_{40}^V -{\frac{{200v}}{{{v^2} + {{80}^2}}}{\text{d}}v} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^S {{\text{d}}s = \int_V^{40} {\frac{{200v}}{{{v^2} + {{80}^2}}}{\text{d}}v} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(S = 200\int_V^{40} {\frac{v}{{{v^2} + {{80}^2}}}{\text{d}}v} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; letting <em>V</em> = 0 &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">distance \( = 200\int_0^{40} {\frac{v}{{{v^2} + {{80}^2}}}{\text{d}}v = 22.3{\text{ metres}}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">time \( = 200\int_0^{40} {\frac{1}{{{v^2} + {{80}^2}}}{\text{d}}v = 1.16{\text{ seconds}}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many students failed to understand the problem as one of solving differential equations. In addition there were many problems seen in finding the end points for the definite integrals. Part (b) (i) should have been a simple point having used the chain rule, but it seemed that many students had not seen this, even though it is clearly in the syllabus.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A helicopter H is moving vertically upwards with a speed of 10 ms<sup>&minus;1</sup> . The helicopter is \(h\) m directly above the point Q which is situated on level ground. The helicopter is observed from the point P which is also at ground level and PQ \( = 40\) m. This information is represented in the diagram below.</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">When \(h = 30\),<br></span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; show that the rate of change of \({\rm{H}}\hat {\text{P}}{\text{Q}}\) is \(0.16\) radians per second;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; find the rate of change of PH.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; let \({\text{H}}\hat {\text{P}}{\text{Q}} = \theta \)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\tan \theta&nbsp; = \frac{h}{{40}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\sec ^2}\theta \frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{1}{{40}}\frac{{{\text{d}}h}}{{{\text{d}}t}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{1}{{4{{\sec }^2}\theta }}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(A1)</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{16}}{{4 \times 25}}\)&nbsp;&nbsp; \(\left( {\sec \theta&nbsp; = \frac{5}{4}{\text{ or }}\theta&nbsp; = 0.6435} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\( = 0.16\)</span> radians per second&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; \({x^2} = {h^2} + 1600\), where PH \( = x\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(2x\frac{{{\text{d}}x}}{{{\text{d}}t}} = 2h\frac{{{\text{d}}h}}{{{\text{d}}t}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{h}{x} \times 10\)&nbsp; &nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{10h}}{{\sqrt {{h^2} + 1600} }}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(A1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(h = 30\) , \(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 6\)</span><span style="font-family: times new roman,times; font-size: medium;"> ms<sup>&ndash;1</sup></span><span style="font-family: times new roman,times; font-size: medium;"><sup> &nbsp; &nbsp; </sup></span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Accept solutions that begin\(x = 40\sec \theta \) or use \(h = 10t\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">For those candidates who realized this was an applied calculus problem involving related rates of change, the main source of error was in differentiating inverse tan in part (a). Some found part (b) easier than part (a), involving a changing length rather than an angle. A number of alternative approaches were reported by examiners.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows a vertical cross section of a building. The cross section of the roof of the building can be modelled by the curve \(f(x) = 30{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}}\), <span class="s1">where \( - 20 \le x \le 20\).</span></p>
<p class="p1">Ground level is represented by the <span class="s1">\(x\)</span>-axis.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-29_om_16.39.22.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f''(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the gradient of the roof function is greatest when \(x =&nbsp; - \sqrt {200} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The cross section of the living space under the roof can be modelled by a rectangle&nbsp;<span class="s1">\(CDEF\)</span> with points \({\text{C}}( - a,{\text{ }}0)\) and \({\text{D}}(a,{\text{ }}0)\), where \(0 &lt; a \le 20\).</p>
<p class="p2">Show that the maximum area \(A\) <span class="s1">of the rectangle&nbsp;\(CDEF\) </span>is \(600\sqrt 2 {{\text{e}}^{ - \frac{1}{2}}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A function \(I\) <span class="s1">is known as the Insulation Factor of </span>\(CDEF\). The function is defined as \(I(a) = \frac{{P(a)}}{{A(a)}}\) where \({\text{P}} = {\text{Perimeter}}\) and \({\text{A}} = {\text{Area of the rectangle}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find an expression for \(P\) in terms of \(a\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the value of&nbsp;<span class="s1">\(a\) </span>which minimizes \(I\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Using the value of \(a\)&nbsp;found in part (ii) calculate the percentage of the cross sectional area under the whole roof that is not included in the cross section of the living space.</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f'(x) = 30{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}} \bullet&nbsp; - \frac{{2x}}{{400}}\;\;\;\left( { =&nbsp; - \frac{{3x}}{{20}}{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for attempting to use the chain rule.</p>
<p>&nbsp;</p>
<p>\(f''(x) =&nbsp; - \frac{3}{{20}}{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}} + \frac{{3{x^2}}}{{4000}}{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}}\;\;\;\left( { = \frac{3}{{20}}{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}}\left( {\frac{{{x^2}}}{{200}} - 1} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for attempting to use the product rule.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the roof function has maximum gradient when \(f''(x) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>(M1) </em></strong>for attempting to find \(f''\left( { - \sqrt {200} } \right)\).</p>
<p>&nbsp;</p>
<p><strong>EITHER</strong></p>
<p>\( = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(f''(x) = 0 \Rightarrow x =&nbsp; \pm \sqrt {200} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>valid argument for maximum such as reference to an appropriate graph or change in the sign of \(f''(x)\) <em>eg</em> \(f''( - 15) = 0.010 \ldots ( &gt; 0)\) and \(f''( - 14) =&nbsp; - 0.001 \ldots ( &lt; 0)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>\( \Rightarrow x =&nbsp; - \sqrt {200} \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(A = 2a \bullet 30{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}}\;\;\;\left( { = 60a{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}} =&nbsp; - 400g'(a)} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(\frac{{{\text{d}}A}}{{{\text{d}}a}} = 60a{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}} \bullet&nbsp; - \frac{a}{{200}} + 60{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}} = 0 \Rightarrow a = \sqrt {200} {\text{ }}\left( { - 400f''(a) = 0 \Rightarrow a = \sqrt {200} } \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p>by symmetry <em>eg</em> \(a =&nbsp; - \sqrt {200} \) found in (b) or \({A_{{\text{max}}}}\) coincides with \(f''(a) = 0\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>\( \Rightarrow a = \sqrt {200} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A0(M1)(A1)M0M1 </em></strong>for candidates who start with \(a = \sqrt {200} \) and do not provide any justification for the maximum area. Condone use of \(x\).</p>
<p>&nbsp;</p>
<p><strong>THEN</strong></p>
<p>\({A_{{\text{max}}}} = 60 \bullet \sqrt {200} {{\text{e}}^{ - \frac{{200}}{{400}}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = 600\sqrt 2 {{\text{e}}^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; perimeter \( = 4a + 60{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone use of \(x\).</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; \(I(a) = \frac{{4a + 60{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}}}}{{60a{{\text{e}}^{ - \frac{{{a^2}}}{{400}}}}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>graphing \(I(a)\) or other valid method to find the minimum &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(a = 12.6\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(iii) &nbsp; &nbsp; area under roof \( = \int_{ - 20}^{20} {30{{\text{e}}^{ - \frac{{{x^2}}}{{400}}}}} {\text{d}}x\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = 896.18 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>area of living space \( = 60 \cdot (12.6...) \cdot e - {\frac{{(12.6...)}}{{400}}^2} = 508.56...\)</p>
<p>percentage of empty space \( = 43.3\% \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[9 marks]</em></strong></p>
<p><strong><em>Total [21 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the curve with equation \({x^3} + {y^3} = 4xy\).</p>
</div>

<div class="specification">
<p class="p1">The tangent to this curve is parallel to the \(x\)-axis at the point where \(x = k,{\text{ }}k &gt; 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use implicit differentiation to show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y - 3{x^2}}}{{3{y^2} - 4x}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(k\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4\left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\)    </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\((3{y^2} - 4x)\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4y - 3{x^2}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{4y - 3{x^2}}}{{3{y^2} - 4x}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow 4y - 3{x^2} = 0\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1">substituting \(x = k\) and \(y = \frac{3}{4}{k^2}\) into \({x^3} + {y^3} = 4xy\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">attempting to solve \({k^3} + \frac{{27}}{{64}}{k^6} = 3{k^3}\) for \(k\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(k = 1.68{\text{ }}\left( { = \frac{4}{3}\sqrt[3]{2}} \right)\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Condone substituting \(y = \frac{3}{4}{x^2}\) into \({x^3} + {y^3} = 4xy\) and solving for \(x\).</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was generally well done. Some use of partial differentiation accompanied by rudimentary partial derivative notation was observed in a few candidate&rsquo;s solutions.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b), a large number of candidates knew to use \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) and seemingly understood the required solution plan but were unable to correctly substitute \(x = k\) and \(y = \frac{{3{k^2}}}{4}\) into the relation and solve for \(k\).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 &lt; x &lt; \pi \).</p>
</div>

<div class="specification">
<p>Consider the region bounded by the curve \(y = f(x)\), the \(x\)-axis and the lines \(x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the \(x\)-coordinate of the minimum point on the curve \(y = f(x)\) satisfies the equation \(\tan x = 2x\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of \(x\) for which \(f(x)\) is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of \(f\) where the normal to the graph is parallel to the line \(y =&nbsp; - x\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through \(2\pi \) radians about the \(x\)-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(f&rsquo;(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \(\frac{1}{{2\sqrt x \sin x}}\) or equivalent and <strong><em>A1 </em></strong>for \( - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}\) or equivalent.</p>
<p>&nbsp;</p>
<p>setting \(f&rsquo;(x) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0\)</p>
<p>\(\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\tan x = 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = 1.17\)</p>
<p>\(0 &lt; x \leqslant 1.17\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \(0 &lt; x\) and <strong><em>A1 </em></strong>for \(x \leqslant 1.17\). Accept \(x &lt; 1.17\).</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the \(x\)-axis. &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches \(x = 0\) asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches \(x = \pi \) asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p>Note: &nbsp; &nbsp; For the final <strong><em>A1 </em></strong>an asymptote must be seen, and \(\pi \) must be seen on the \(x\)-axis or in an equation.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f&rsquo;(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>attempt to solve for \(x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x = 1.96\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = f(1.96 \ldots )\)</p>
<p>\( = 1.51\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or \(\pi \)).</p>
<p>&nbsp;</p>
<p>\( = 2.68{\text{ }}( = 0.852\pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The acceleration of a car is \(\frac{1}{{40}}(60 - v){\text{ m}}{{\text{s}}^{ - 2}}\), when its velocity is \(v{\text{ m}}{{\text{s}}^{ - 2}}\). Given the car starts from rest, find the velocity of the car after 30 seconds.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{1}{{40}}(60 - v)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to separate variables \(\int {\frac{{{\text{d}}v}}{{60 - v}} = \int {\frac{{{\text{d}}t}}{{40}}} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - \ln (60 - v) = \frac{t}{{40}} + c\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = - \ln 60\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve for <em>v</em> when <em>t</em> = 30 &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = 60 - 60{e^{ - \frac{3}{4}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = 31.7{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{1}{{40}}(60 - v)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}t}}{{{\text{d}}v}} = \frac{{40}}{{60 - v}}\) (or equivalent) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{{v_f}} {\frac{{40}}{{60 - v}}{\text{d}}v = 30} \) where \({v_f}\) is the velocity of the car after 30 seconds. &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve \(\int_0^{{v_f}} {\frac{{40}}{{60 - v}}{\text{d}}v = 30} \) for \({v_f}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = 31.7{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates experienced difficulties with this question. A large number of candidates did not attempt to separate the variables and instead either attempted to integrate with respect to <em>v </em>or employed constant acceleration formulae. Candidates that did separate the variables and attempted to integrate both sides either made a sign error, omitted the constant of integration or found an incorrect value for this constant. Almost all candidates were not aware that this question could be solved readily on a GDC.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle moves along a straight line so that after <em>t</em><em>&nbsp;</em>seconds its displacement <em>s</em> ,&nbsp;in metres,&nbsp;satisfies the equation \({s^2} + s - 2t = 0\) .&nbsp;Find, in terms of <em>s</em> , expressions for its velocity and its&nbsp;acceleration.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2s\frac{{{\text{d}}s}}{{{\text{d}}t}} + \frac{{{\text{d}}s}}{{{\text{d}}t}} - 2 = 0\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{2}{{2s + 1}}\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: bold;">EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}v}}{{{\text{d}}s}}\frac{{{\text{d}}s}}{{{\text{d}}t}}\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{{ - 4}}{{{{(2s + 1)}^2}}}\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \frac{{ - 4}}{{{{(2s + 1)}^2}}}\frac{{{\text{d}}s}}{{{\text{d}}t}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: bold;">OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{\left( {\frac{{{\text{d}}s}}{{{\text{d}}t}}} \right)^2} + 2s\frac{{{{\text{d}}^2}s}}{{{\text{d}}{t^2}}} + \frac{{{{\text{d}}^2}s}}{{{\text{d}}{t^2}}} = 0\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}s}}{{\underbrace {{\text{d}}{t^2}}_a}} = \frac{{ - 2{{\left( {\frac{{{\text{d}}s}}{{{\text{d}}t}}} \right)}^2}}}{{2s + 1}}\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: bold;">THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \frac{{ - 8}}{{{{(2s + 1)}^3}}}\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: bold;"><em style="font-style: italic;">[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Despite the fact that many candidates were able to calculate the speed of the particle, many of them failed to calculate the acceleration. Implicit differentiation turned out to be challenging in this exercise showing in many cases a lack of understanding of independent/dependent variables. Very often candidates did not use the chain rule or implicit differentiation when attempting to find the acceleration. It was not uncommon to see candidates trying to differentiate implicitly with respect to <em>t </em>rather than <em>s</em>, but getting the variables muddled.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider \(f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)\)</p>
</div>

<div class="specification">
<p>The function \(f\) is defined by \(f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D\)</p>
</div>

<div class="specification">
<p>The function \(g\) is defined by \(g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain \(D\) for \(f\) to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why \(f\) is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function \({f^{ - 1}}\) does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function \({g^{ - 1}}\) and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to&nbsp;\(g'(x) = 0\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to&nbsp;\(({g^{ - 1}})'(x) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} - 1 &gt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x &lt; - 1\) or \(x &gt; 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(x = 1\) and \(x = - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(x\)-intercepts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(f\) is symmetrical about the \(y\)-axis&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(f( - x) = f(x)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(f\) is not one-to-one function&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept any equivalent correct statement.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\({{\text{e}}^{2x + 2}} = {y^2} - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\({g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(g'(x) = \frac{x}{{{x^2} - 1}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>which is not in the domain of \(g\) (hence no solutions to \(g'(x) = 0\))&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>as \({{\text{e}}^{2x + 2}} &gt; 0 \Rightarrow ({g^{ - 1}})'(x) &gt; 0\) so no solutions to \(({g^{ - 1}})'(x) = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept: equation \({{\text{e}}^{2x + 2}} = 0\) has no solutions.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Particle <em>A </em>moves such that its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\), at time <em>t </em>seconds, is given by \(v(t) = \frac{t}{{12 + {t^4}}},{\text{ }}t \geqslant 0\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Particle <em>B </em>moves such that its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\) is related to its displacement \(s{\text{ m}}\), by the equation \(v(s) = \arcsin \left( {\sqrt s } \right)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = v(t)\). Indicate clearly the local maximum and write down its coordinates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(u = {t^2}\) to find \(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times;"><span style="font-size: medium; line-height: normal; background-color: #f7f7f7;">Find the exact distance travelled by particle </span>\(A\) <span style="font-size: medium; line-height: normal; background-color: #f7f7f7;">between \(t = 0\) and \(t = 6\) seconds.</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give your answer in the form \(k\arctan (b),{\text{ }}k,{\text{ }}b \in \mathbb{R}\).</span></p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acceleration of particle B when \(s = 0.1{\text{ m}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)<br><img src="images/maths_14a_markscheme.png" alt> &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong> for</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;correct shape and correct domain</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\((1.41,{\text{ }}0.0884){\text{ }}\left( {\sqrt 2 ,{\text{ }}\frac{{\sqrt 2 }}{{16}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = {t^2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}t}} = 2t\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = {u^{\frac{1}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}t}}{{{\text{d}}u}} = \frac{1}{2}{u^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t = \frac{1}{2}\int {\frac{{{\text{d}}u}}{{12 + {u^2}}}} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{2\sqrt {12} }}\arctan \left( {\frac{u}{{\sqrt {12} }}} \right)( + c)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)( + c)\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^6 {\frac{t}{{12 + {t^4}}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)} \right]_0^6\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{36}}{{2\sqrt 3 }}} \right)} \right){\text{ }}\left( { = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{18}}{{\sqrt 3 }}} \right)} \right)} \right){\text{ (m)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept \(\frac{{\sqrt 3 }}{{12}}\arctan \left( {6\sqrt 3 } \right)\) or equivalent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica; min-height: 26.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{1}{{2\sqrt {s(1 - s)} }}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \arcsin \left( {\sqrt s } \right) \times \frac{1}{{2\sqrt {s(1 - s)} }}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \arcsin \left( {\sqrt {0.1} } \right) \times \frac{1}{{2\sqrt {0.1 \times 0.9} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 0.536{\text{ (m}}{{\text{s}}^{ - 2}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function is defined by \(f(x) = {x^2} + 2,{\text{ }}x \ge 0\). A region \(R\) is enclosed by \(y = f(x)\),the \(y\)-axis and the line \(y = 4\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) &nbsp; &nbsp; Express the area of the region \(R\)&nbsp;as an integral with respect to&nbsp;\(y\).</p>
<p class="p1">(ii) &nbsp; &nbsp; Determine the area of&nbsp;\(R\), giving your answer correct to four significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the exact volume generated when the region \(R\)&nbsp;is rotated through \(2\pi \)&nbsp;radians about the \(y\)-axis.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{area}} = \int_2^4 {\sqrt {y - 2} {\text{d}}y} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( = 1.886{\text{ (4 sf only)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M0A0A1 </em></strong>for finding&nbsp;\(1.886\) from \(\int_0^{\sqrt 2 } {4 - f(x){\text{d}}x} \).</p>
<p class="p1">Award <strong><em>A1FT </em></strong>for a 4sf answer obtained from an integral involving \(x\).</p>
<p class="p1"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{volume}} = \pi \int_2^4 {(y - 2){\text{d}}y} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong>for the correct integral with incorrect limits.</p>
<p class="p1">\( = \pi \left[ {\frac{{{y^2}}}{2} - 2y} \right]_2^4\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(A1)</em></strong></p>
<p class="p1">\( = 2\pi {\text{ (exact only)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A function \(f\) is defined by \(f(x) = {x^3} + {{\text{e}}^x} + 1,{\text{ }}x \in \mathbb{R}\). By considering \(f'(x)\) determine whether \(f\) is a one-to-one or a many-to-one function.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(f'(x) = 3{x^2} + {{\text{e}}^x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept labelled diagram showing the graph \(y = f'(x)\) above the <span class="s2"><em>x</em></span>-axis;</p>
<p class="p3">do not accept unlabelled graphs nor graph of \(y = f(x)\).</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>EITHER</strong></p>
<p class="p1">this is always \( &gt; 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p3">so the function is (strictly) increasing <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p3">and thus \(1 - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s3"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">this is always \( &gt; 0\;\;\;{\text{(accept }} \ne 0{\text{)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">so there are no turning points <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p3"><span class="s3">and thus </span>\(1 - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong> is dependent on the first <strong><em>R1</em></strong>.</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The differentiation was normally completed correctly, but then a large number did not realise what was required to determine the type of the original function. Most candidates scored 1/4 and wrote explanations that showed little or no understanding of the relation between first derivative and the given function. For example, it was common to see comments about horizontal and vertical line tests but applied to the incorrect function.In term of mathematical language, it was noted that candidates used many terms incorrectly showing no knowledge of the meaning of terms like &lsquo;parabola&rsquo;, &lsquo;even&rsquo; or &lsquo;odd&rsquo; ( or no idea about these concepts).</p>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; Integrate \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta \)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Given that \(\int_{\frac{\pi }{2}}^a {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta&nbsp; = \frac{1}{2}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(\frac{\pi }{2} &lt; a &lt; \pi \)</span><span style="font-family: times new roman,times; font-size: medium;">, find the value of \(a\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; \(\int {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta&nbsp; = \int {\frac{{\left( {1 - \cos \theta } \right)'}}{{1 - \cos \theta }}} {\text{d}}\theta&nbsp; = \ln \left( {1 - \cos \theta } \right) + C\) &nbsp; &nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(M1)A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for \(\ln \left( {1 - \cos \theta } \right)\) and <em><strong>A1</strong></em> for <em>C</em>.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; \(\int_{\frac{\pi }{2}}^a {\frac{{\sin \theta }}{{1 - \cos \theta }}} {\text{d}}\theta&nbsp; = \frac{1}{2} \Rightarrow \left[ {\ln \left( {1 - \cos \theta } \right)} \right]_{\frac{\pi }{2}}^a = \frac{1}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(1 - \cos a = {{\text{e}}^{\frac{1}{2}}} \Rightarrow a = \arccos \left( {1 - \sqrt {\text{e}} } \right)\)) or \(2.28\) &nbsp;&nbsp;&nbsp; <em><strong>A1&nbsp;&nbsp;&nbsp;&nbsp; N2</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Generally well answered, although many students did not include the constant of integration.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the graph of \(y = {x^3} - 6{x^2} + kx - 4\)&nbsp;has exactly one point at which the&nbsp;gradient is zero, find the value of <em>k </em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 3{x^2} - 12x + k\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">For use of discriminant \({b^2} - 4ac = 0\) or completing the square \(3{(x - 2)^2} + k - 12\)&nbsp; &nbsp; &nbsp;(<strong><em>M1)</em></strong></span></p>
<p>&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;">\(144 - 12k = 0\) &nbsp; &nbsp;&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Accept trial and error, sketches of parabolas with vertex (2,0) or use of&nbsp;second derivative.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 12\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]&nbsp;</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally candidates answer this question well using a diversity of methods. Surprisingly, a small number of candidates were successful in answering this question using the discriminant of the quadratic and in many cases reverted to trial and error to obtain the correct answer.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A ladder of length 10 m on horizontal ground rests against a vertical wall. The bottom of the ladder is moved away from the wall at a constant speed of \(0.5{\text{ m}}{{\text{s}}^{ - 1}}\). Calculate the speed of descent of the top of the ladder when the bottom of the ladder is 4 m away from the wall.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>x</em>, <em>y</em> (m) denote respectively the distance of the bottom of the ladder from the wall and the distance of the top of the ladder from the ground</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} + {y^2} = 100\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 2y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 4,{\text{ }}y = \sqrt {84} \) and \(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 0.5\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting, \(2 \times 4 \times 0.5 + 2\sqrt {84} \frac{{{\text{d}}y}}{{{\text{d}}t}} = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = - 0.218{\text{ m}}{{\text{s}}^{ - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(speed of descent is \(0.218{\text{ m}}{{\text{s}}^{ - 1}}\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1">Let the function \(f\) be defined by \(f(x) = \frac{{2 - {{\text{e}}^x}}}{{2{{\text{e}}^x} - 1}},{\text{ }}x \in D\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine \(D\), the largest possible domain of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the graph of \(f\) has three asymptotes and state their equations.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f'(x) =  - \frac{{3{{\text{e}}^x}}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your answers from parts (b) and (c) to justify that \(f\) <span class="s1">has an inverse and state its domain.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Consider the region \(R\) </span>enclosed by the graph of \(y = f(x)\) and the axes.</p>
<p class="p1">Find the volume of the solid obtained when \(R\) is rotated through \(2\pi \) about the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to solve either \(2{{\text{e}}^x} - 1 = 0\) or \(2{{\text{e}}^x} - 1 \ne 0\) for \(x\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(D = \mathbb{R}\backslash \left\{ { - \ln 2} \right\}\) (or equivalent <em>eg</em> \(x \ne  - \ln 2\)) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept \(D = \mathbb{R}\backslash \left\{ { - 0.693} \right\}\) or equivalent <em>eg</em> \(x \ne  - 0.693\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">considering \(\mathop {\lim }\limits_{x \to  - \ln 2} f(x)\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(x =  - \ln 2{\text{ }}(x =  - 0.693)\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1">considering one of \(\mathop {\lim }\limits_{x \to  - \infty } f(x)\)<span class="s1"> </span>or \(\mathop {\lim }\limits_{x \to  + \infty } f(x)\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2 \Rightarrow y =  - 2\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{x \to  + \infty } f(x) =  - \frac{1}{2} \Rightarrow y =  - \frac{1}{2}\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<div> </div>
<p class="p1"><strong>Note: </strong>Award <strong><em>A0A0 </em></strong>for \(y =  - 2\)<span class="s1"> </span>and \(y =  - \frac{1}{2}\)<span class="s1"> </span>stated without any justification.</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(f'(x) = \frac{{ - {{\text{e}}^x}(2{{\text{e}}^x} - 1) - 2{{\text{e}}^x}(2 - {{\text{e}}^x})}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\)    </span><strong><em>M1A1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( =  - \frac{{3{{\text{e}}^x}}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f'(x) &lt; 0{\text{ (for all }}x \in D) \Rightarrow f\) is (strictly) decreasing <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>R1 </em></strong>for a statement such as \(f'(x) \ne 0\) and so the graph of \(f\) has no turning points.</p>
<p class="p2"> </p>
<p class="p1">one branch is above the upper horizontal asymptote and the other branch is below the lower horizontal asymptote <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1">\(f\) has an inverse <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( - \infty  &lt; x &lt;  - 2 \cup  - \frac{1}{2} &lt; x &lt; \infty \)    </span><strong><em>A2</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>A2 </em></strong>if the domain of the inverse is seen in either part (d) or in part (e).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(x = \frac{{2 - {{\text{e}}^y}}}{{2{{\text{e}}^y} - 1}}\)    </span><strong><em>M1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for interchanging \(x\) and \(y\) (can be done at a later stage).</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\(2x{{\text{e}}^y} - x = 2 - {{\text{e}}^y}\)    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({{\text{e}}^y}(2x + 1) = x + 2\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({f^{ - 1}}(x) = \ln \left( {\frac{{x + 2}}{{2x + 1}}} \right){\text{ }}\left( {{f^{ - 1}}(x) = \ln (x + 2) - \ln (2x + 1)} \right)\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of \(V = \pi \int_a^b {{x^2}{\text{d}}y} \) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \pi \int_0^1 {{{\left( {\ln \left( {\frac{{y + 2}}{{2y + 1}}} \right)} \right)}^2}{\text{d}}y} \)    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for the correct integrand and <strong><em>(A1) </em></strong>for the limits.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 0.331\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The vertical cross-section of a container is shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-10_om_11.45.14.png" alt></p>
<p class="p1">The curved sides of the cross-section are given by the equation \(y = 0.25{x^2} - 16\). The horizontal cross-sections are circular. The depth of the container is&nbsp;\(48\) cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the container is filled with water to a depth of \(h\,{\text{cm}}\), show that the volume, \(V\,{\text{c}}{{\text{m}}^3}\), of the water is given by \(V = 4\pi \left( {\frac{{{h^2}}}{2} + 16h} \right)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The container, initially full of water, begins leaking from a small hole at a rate given by \(\frac{{{\text{d}}V}}{{{\text{d}}t}} =<span class="Apple-converted-space">&nbsp; </span>- \frac{{250\sqrt h }}{{\pi(h + 16)}}\) where&nbsp;<em>\(t\) </em>is measured in seconds.</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(\frac{{{\text{d}}h}}{{{\text{d}}t}} =<span class="Apple-converted-space">&nbsp; </span>- \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State \(\frac{{{\text{d}}t}}{{{\text{d}}h}}\) and hence show that \(t = \frac{{ - 4{\pi ^2}}}{{250}}\int {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{2}}}} \right){\text{d}}h} \).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find, correct to the nearest minute, the time taken for the container to become empty. (\(60\) seconds = 1 minute)</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Once empty, water is pumped back into the container at a rate of \(8.5\;{\text{c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\). At the same time, water continues leaking from the container at a rate of \(\frac{{250\sqrt h }}{{\pi (h + 16)}}{\text{c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\).</p>
<p class="p1">Using an appropriate sketch graph, determine the depth at which the water ultimately stabilizes in the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to use \(V = \pi \int_a^b {{x^2}{\text{d}}y} \) &nbsp; &nbsp;&nbsp;<span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">attempting to express \({x^2}\) in terms of&nbsp;<em>\(y\) ie</em> \({x^2} = 4(y + 16)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">for \(y = h,{\text{ }}V = 4\pi \int_0^h {y + 16{\text{d}}y} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(V = 4\pi \left( {\frac{{{h^2}}}{2} + 16h} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}h}}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}h}} = 4\pi (h + 16)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{4\pi (h + 16)}} \times \frac{{ - 250\sqrt h }}{{\pi (h + 16)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for substitution into \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}h}}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 4\pi (h + 16)\frac{{{\text{d}}h}}{{{\text{d}}t}}\;\;\;\)(implicit differentiation)<strong><em>(M1)</em></strong></p>
<p>\(\frac{{ - 250\sqrt h }}{{\pi (h + 16)}} = 4\pi (h + 16)\frac{{{\text{d}}h}}{{{\text{d}}t}}\;\;\;\)(or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{4\pi (h + 16)}} \times \frac{{ - 250\sqrt h }}{{\pi (h + 16)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(\frac{{{\text{d}}t}}{{{\text{d}}h}} =&nbsp; - \frac{{4{\pi ^2}{{(h + 16)}^2}}}{{250\sqrt h }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = \int { - \frac{{4{\pi ^2}{{(h + 16)}^2}}}{{250\sqrt h }}} {\text{d}}h\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t = \int { - \frac{{4{\pi ^2}({h^2} + 32h + 256)}}{{250\sqrt h }}} {\text{d}}h\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\int {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{{2}}}}} \right){\text{d}}h} \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(iii) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\int_{48}^0 {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{2}}}} \right)} {\text{d}}h\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t = 2688.756 \ldots {\text{ (s)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(45\) minutes (correct to the nearest minute) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\left( {\frac{2}{5}{h^{\frac{5}{2}}} + \frac{{64}}{3}{h^{\frac{3}{2}}} + 512{h^{\frac{1}{2}}}} \right) + c\)</p>
<p>when \(t = 0,{\text{ }}h = 48 \Rightarrow c = 2688.756 \ldots \left( {c = \frac{{4{\pi ^2}}}{{250}}\left( {\frac{2}{5} \times {{48}^{\frac{5}{2}}} + \frac{{64}}{3} \times {{48}^{\frac{3}{2}}} + 512 \times {{48}^{\frac{1}{2}}}} \right)} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>when \(h = 0,{\text{ }}t = 2688.756 \ldots \left( {t = \frac{{4{\pi ^2}}}{{250}}\left( {\frac{2}{5} \times {{48}^{\frac{5}{2}}} + \frac{{64}}{3} \times {{48}^{\frac{3}{2}}} + 512 \times {{48}^{\frac{1}{2}}}} \right)} \right){\text{ (s)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>45 minutes (correct to the nearest minute) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[10 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1">the depth stabilizes when \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 0\;\;\;ie\;\;\;8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}} = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">attempting to solve \(8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}} = 0\;\;\;{\text{for }}h\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">the depth stabilizes when \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 0\;\;\;ie\;\;\;\frac{1}{{4\pi (h + 16)}}\left( {8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}}} \right) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">attempting to solve \(\frac{1}{{4\pi (h + 16)}}\left( {8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}}} \right) = 0\;\;\;{\text{for }}h\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1">\(h = 5.06{\text{ (cm)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [16 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was done reasonably well by a large proportion of candidates. Many candidates however were unable to show the required result in part (a). A number of candidates seemingly did not realize how the container was formed while other candidates attempted to fudge the result.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was quite well done. In part (b) (i), most candidates were able to correctly calculate \(\frac{{{\text{d}}V}}{{{\text{d}}h}}\) and correctly apply a related rates expression to show the given result. Some candidates however made a sign error when stating \(\frac{{{\text{d}}V}}{{{\text{d}}t}}\). A large number of candidates successfully answered part (b) (ii). In part (b) (iii), successful candidates either set up and calculated an appropriate definite integral or antidifferentiated and found that \(t = C\) when \(h = 0\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), a pleasing number of candidates realized that the water depth stabilized when either \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 0\) or \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 0\), sketched an appropriate graph and found the correct value of \(h\). Some candidates misinterpreted the situation and attempted to find the coordinates of the local minimum of their graph.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{{{{\text{e}}^{2x}} + 1}}{{{{\text{e}}^x} - 2}}\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The line \({L_2}\) is parallel to \({L_1}\) and tangent to the curve \(y = f(x)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equations of the horizontal and vertical asymptotes of the curve \(y = f(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the curve has exactly one point where its tangent is horizontal.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the coordinates of this point.</span></p>
<p>&nbsp;</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of \({L_1}\), the normal to the curve at the point where it crosses the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the line \({L_2}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \to&nbsp; - \infty&nbsp; \Rightarrow y \to&nbsp; - \frac{1}{2}\) so \(y =&nbsp; - \frac{1}{2}\) is an asymptote &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} - 2 = 0 \Rightarrow x = \ln 2\) so \(x = \ln 2{\text{ }}( = 0.693)\) is an asymptote &nbsp; &nbsp;&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = \frac{{2\left( {{{\text{e}}^x} - 2} \right){{\text{e}}^{2x}} - \left( {{{\text{e}}^{2x}} + 1} \right){{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( = \frac{{{{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f'(x) = 0\) when \({{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \({{\text{e}}^x}\left( {{{\text{e}}^{2x}} - 4{{\text{e}}^x} - 1} \right) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \({{\text{e}}^x} = 0,{\text{ }}{{\text{e}}^x} =&nbsp; - 0.236,{\text{ }}{{\text{e}}^x} = 4.24{\text{ }}({\text{or }}{{\text{e}}^x} = 2 \pm \sqrt 5 )\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for zero, <strong><em>A1 </em></strong>for other two solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Accept any answers which show a zero, a negative and a positive.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; as \({{\text{e}}^x} &gt; 0\) exactly one solution &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award marks for purely graphical solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; (1.44, 8.47) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0) =&nbsp; - 4\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so gradient of normal is \(\frac{1}{4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so equation of \({L_1}\) is \(y = \frac{1}{4}x - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x = 1.46\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1.46) = 8.47\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of \({L_2}\) is \(y - 8.47 = \frac{1}{4}(x - 1.46)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or \(y = \frac{1}{4}x + 8.11\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The region \(A\) is enclosed by the graph of \(y = 2\arcsin (x - 1) - \frac{\pi }{4}\), the \(y\)-axis and the line \(y = \frac{\pi }{4}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a definite integral to represent the area of \(A\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of \(A\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(2\arcsin (x - 1) - \frac{\pi }{4} = \frac{\pi }{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x = 1 + \frac{1}{{\sqrt 2 }}\,\,\,( = 1.707 \ldots )\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(\int\limits_0^{1 + \frac{1}{{\sqrt 2 }}} {\frac{\pi }{4} - \left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} \)&nbsp;&nbsp;&nbsp;<strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1 </em></strong>for an attempt to find the difference between two functions, <strong><em>A1 </em></strong>for all correct.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>when \(x = 0,{\text{ }}y = \frac{{ - 5\pi }}{4}\,\,\,( = - 3.93)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(x = 1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)\)&nbsp;&nbsp; &nbsp;<strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1 </em></strong>for an attempt to find the inverse function.</p>
<p>&nbsp;</p>
<p>\(\int_{\frac{{ - 5\pi }}{4}}^{\frac{\pi }{4}} {\left( {1 + \sin \left( {\frac{{4y + \pi }}{8}} \right)} \right){\text{d}}y} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>\(\int_0^{1.38...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right){\text{d}}x} \left|&nbsp; +&nbsp; \right.\int\limits_0^{1.71...} {\frac{\pi }{4}{\text{d}}x - \int\limits_{1.38...}^{1.71...} {\left( {2\arcsin \left( {x - 1} \right) - \frac{\pi }{4}} \right)dx} } \)&nbsp;&nbsp; &nbsp;<strong><em>M1A1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1 </em></strong>for considering the area below the \(x\)-axis and above the \(x\)-axis and <strong><em>A1 </em></strong>for each correct integral.</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{area}} = 3.30{\text{ (square units)}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A2</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The displacement, \(s\), in metres, of a particle \(t\) seconds after it passes through the origin is given by the expression \(s = \ln (2 - {e^{ - t}}),{\text{ }}t \geqslant 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for the velocity, \(v\), of the particle at time \(t\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for the acceleration, \(a\), of the particle at time \(t\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the acceleration of the particle at time \(t = 0\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(v - \frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{{{{\text{e}}^{ - t}}}}{{2 - {{\text{e}}^{ - t}}}}{\text{ }}\left( { = \frac{1}{{2{{\text{e}}^t} - 1}}{\text{ or }} - 1 + \frac{2}{{2 - {{\text{e}}^{ - t}}}}} \right)\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(a = \frac{{{{\text{d}}^2}s}}{{{\text{d}}{t^2}}} = \frac{{ - {{\text{e}}^{ - t}}(2 - {{\text{e}}^{ - t}}{\text{)}} - {{\text{e}}^{ - t}} \times {{\text{e}}^{ - t}}}}{{{{(2 - {{\text{e}}^{ - t}})}^2}}}{\text{ }}\left( { = \frac{{ - 2{{\text{e}}^{ - t}}}}{{{{(2 - {{\text{e}}^{ - t}})}^2}}}} \right)\) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>If simplified in part (a) award <strong><em>(M1)A1 </em></strong>for \(a = \frac{{{{\text{d}}^2}s}}{{{\text{d}}{t^2}}} = \frac{{ - 2{{\text{e}}^t}}}{{{{(2{{\text{e}}^t} - 1)}^2}}}\).</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1A1 </em></strong>for \(a =  - {{\text{e}}^{ - t}}{(2 - {{\text{e}}^{ - t}})^{ - 2}}({{\text{e}}^{ - t}}) - {{\text{e}}^{ - t}}{(2 - {{\text{e}}^{ - t}})^{ - 1}}\).</p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(a =  - 2{\text{ }}({\text{m}}{{\text{s}}^{ - 2}})\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Mostly well done. There were a few sign errors but most candidates were correctly applying the quotient or chain rules.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Mostly well done. There were a few sign errors but most candidates were correctly applying the quotient or chain rules.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Mostly well done. There were a few sign errors but most candidates were correctly applying the quotient or chain rules.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; Differentiate \(f(x) = \arcsin x + 2\sqrt {1 - {x^2}} \) , \(x \in [ - 1, 1]\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Find the coordinates of the point on the graph of \(y = f (x)\) in \([ - 1, 1]\), where the </span><span style="font-family: times new roman,times; font-size: medium;">gradient of the tangent to the curve is zero.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; \(f'(x) = \frac{1}{{\sqrt {1 - {x^2}} }} - \frac{{2x}}{{\sqrt {1 - {x^2}} }}\) &nbsp; \(\left( { = \frac{{1 - 2x}}{{\sqrt {1 - {x^2}} }}} \right)\) &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for first term,</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1</strong></em> for second term (<em><strong>M1</strong></em> for attempting chain rule).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; \(f'(x) = 0\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(x = 0.5\)</span></span> , </span><span style="font-family: times new roman,times; font-size: medium;">\(y = 2.26\)</span> <span style="font-family: times new roman,times; font-size: medium;">or </span><span style="font-family: times new roman,times; font-size: medium;">\(\frac{\pi }{6} + \sqrt 3 \)&nbsp;&nbsp; (</span><span style="font-family: times new roman,times; font-size: medium;">accept (\(0.500\), \(2.26\))&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1&nbsp;&nbsp;&nbsp;&nbsp; N3</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates scored well on this question, showing competence at non-trivial </span><span style="font-family: times new roman,times; font-size: medium;">differentiation. The follow through rules allowed candidates to recover from minor errors in </span><span style="font-family: times new roman,times; font-size: medium;">part (a). Some candidates demonstrated their resourcefulness in using their GDC to answer </span><span style="font-family: times new roman,times; font-size: medium;">part (b) even when they had been unable to gain full marks on part (a).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the volume of the solid formed when the region bounded by the graph of \(y = \sin (x - 1)\), and the lines <em>y</em> = 0 and <em>y</em> = 1 is rotated by \(2\pi \) about the <em>y</em>-axis.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">volume \( = \pi \int {{x^2}{\text{d}}y} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \arcsin y + 1\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">volume \( = \pi \int_0^1 {{{(\arcsin y + 1)}^2}{\text{d}}y} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> is for the limits, provided a correct integration of </span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2.608993 \ldots \pi&nbsp; = 8.20\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A2 &nbsp; &nbsp; N5</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Although it was recognised that the imprecise nature of the wording of the question caused some difficulties, these were overwhelmingly by candidates who were attempting to rotate around the \(x\)-axis. The majority of students who understood to rotate about the \(y\)-axis had no difficulties in writing the correct integral. Marks lost were for inability to find the correct value of the integral on the GDC (some clearly had the calculator in degrees) and also for poor rounding where the GDC had been used correctly. In the few instances where students seemed confused by the lack of precision in the question, benefit of the doubt was given and full points awarded.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using an appropriate substitution find</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int {\frac{{\tan (\ln y)}}{y}{\text{d}}y,{\text{ }}y &gt; 0{\text{ .}}} \]</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(u = \ln y \Rightarrow {\text{d}}u = \frac{1}{y}{\text{d}}y\) &nbsp; &nbsp; <strong><em>A1(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\tan (\ln y)}}{y}{\text{d}}y}&nbsp; = \int {\tan u{\text{d}}u} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {\frac{{\sin u}}{{\cos u}}{\text{d}}u = - \ln \left| {\cos u} \right| + c} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\tan (\ln y)}}{y}{\text{d}}y}&nbsp; = - \ln \left| {\cos (\ln y)} \right| + c\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\tan (\ln y)}}{y}{\text{d}}y}&nbsp; = \ln \left| {\sec (\ln y)} \right| + c\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates obtained the first three marks, but then attempted various methods unsuccessfully. Quite a few candidates attempted integration by parts rather than substitution. The candidates who successfully integrated the expression often failed to put the absolute value sign in the final answer.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A stalactite has the shape of a circular cone. Its height is 200 mm and is increasing at a rate of 3 mm per century. Its base radius is 40 mm and is decreasing at a rate of 0.5 mm per century. Determine if its volume is increasing or decreasing, and the rate at which the volume is changing.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \frac{\pi }{3}{r^2}h\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{\pi }{3}\left[ {2rh\frac{{{\text{d}}r}}{{{\text{d}}t}} + {r^2}\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right]\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at the given instant</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{\pi }{3}\left[ {2(4)(200)\left( { - \frac{1}{2}} \right) + {{40}^2}(3)} \right]\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 3200\pi }}{3} = - 3351.03 \ldots&nbsp; \approx 3350\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, the volume is decreasing (at approximately 3350 \({\text{m}}{{\text{m}}^3}\) per century) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates applied the method of implicit differentiation and related rates correctly. Some candidates incorrectly interpreted this question as one of constant linear rates.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the triangle \({\text{PQR}}\) where \({\rm{Q\hat PR = 30^\circ }}\), \({\text{PQ}} = (x + 2){\text{ cm}}\) and \({\text{PR}} = {(5 - x)^2}{\text{ cm}}\), where \( - 2 &lt; x &lt; 5\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the area, \(A\;{\text{c}}{{\text{m}}^2}\), of the triangle is given by \(A = \frac{1}{4}({x^3} - 8{x^2} + 5x + 50)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State \(\frac{{{\text{d}}A}}{{{\text{d}}x}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Verify that \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find \(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{x^2}}}\) and hence justify that \(x = \frac{1}{3}\) gives the maximum area of triangle \(PQR\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the maximum area of triangle \(PQR\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find&nbsp;\(QR\) when the area of triangle&nbsp;\(PQR\) is a maximum.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of \(A = \frac{1}{2}qr\sin \theta \) to obtain \(A = \frac{1}{2}(x + 2){(5 - x)^2}\sin 30^\circ \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( = \frac{1}{4}(x + 2)(25 - 10x + {x^2})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(A = \frac{1}{4}({x^3} - 8{x^2} + 5x + 50)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = \frac{1}{4}(3{x^2} - 16x + 5) = \frac{1}{4}(3x - 1)(x - 5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong>METHOD 1</strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p1">\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = \frac{1}{4}\left( {3{{\left( {\frac{1}{3}} \right)}^2} - 16\left( {\frac{1}{3}} \right) + 5} \right) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = \frac{1}{4}\left( {3\left( {\frac{1}{3}} \right) - 1} \right)\left( {\left( {\frac{1}{3}} \right) - 5} \right) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1">so \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">solving \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) for&nbsp;\(x\)<em> <span class="Apple-converted-space">&nbsp; &nbsp; </span></em><strong><em>M1</em></strong></p>
<p class="p1">\( - 2 &lt; x &lt; 5 \Rightarrow x = \frac{1}{3}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 3</strong></p>
<p class="p1">a correct graph of \(\frac{{{\text{d}}A}}{{{\text{d}}x}}\) versus&nbsp;\(x\)<em> <span class="Apple-converted-space">&nbsp; &nbsp; </span></em><strong><em>M1</em></strong></p>
<p class="p1">the graph clearly showing that \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\) when \(x = \frac{1}{3}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{x^2}}} = \frac{1}{2}(3x - 8)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>for \(x = \frac{1}{3},{\text{ }}\frac{{{{\text{d}}^2}A}}{{{\text{d}}{x^2}}} =&nbsp; - 3.5{\text{ }}( &lt; 0)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>so \(x = \frac{1}{3}\) gives the maximum area of triangle&nbsp;\(PQR\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \({A_{\max }} = \frac{{343}}{{27}}{\text{ }}( = 12.7){\text{ (c}}{{\text{m}}^2}{\text{)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(iii) &nbsp; &nbsp; \({\text{PQ}} = \frac{7}{3}{\text{ (cm)}}\) and \({\text{PR}} = {\left( {\frac{{14}}{3}} \right)^2}{\text{ (cm)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\({\text{Q}}{{\text{R}}^2} = {\left( {\frac{7}{3}} \right)^2} + {\left( {\frac{{14}}{3}} \right)^4} - 2\left( {\frac{7}{3}} \right){\left( {\frac{{14}}{3}} \right)^2}\cos 30^\circ \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\( = 391.702 \ldots \)</p>
<p>\({\text{QR = 19.8 (cm)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<p><strong><em>Total [12 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally well done. Parts (a) and (b) were straightforward and well answered.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally well done. Parts (a) and (b) were straightforward and well answered.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was generally well done. Parts (c) (i) and (ii) were also well answered with most candidates correctly applying the second derivative test and displaying sound reasoning skills.</p>
<p>Part (c) (iii) required the use of the cosine rule and was reasonably well done. The most common error committed by candidates in attempting to find the value of&nbsp;\(QR\) was to use \({\text{PR}} = \frac{{14}}{3}{\text{ (cm)}}\) rather than \({\text{PR}} = {\left( {\frac{{14}}{3}} \right)^2}{\text{ (cm)}}\). The occasional candidate used \(\cos 30^\circ&nbsp; = \frac{1}{2}\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The particle <em>P</em> moves along the <em>x</em>-axis such that its velocity, \(v{\text{ m}}{{\text{s}}^{ - 1}}\) , at time <em>t</em> seconds is given by \(v = \cos ({t^2})\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>P</em> is at the origin O at time <em>t</em> = 0 , calculate</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; the displacement of <em>P</em> from O after 3 seconds;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the total distance travelled by <em>P</em> in the first 3 seconds.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the time at which the total distance travelled by <em>P</em> is 1 m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; displacement \( = \int_0^3 {v{\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.703{\text{ (m)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; total distance \({\text{ = }}\int_0^3 {\left| v \right|{\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2.05{\text{ (m)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solving the equation \(\int_0^t {\left| {\cos ({u^2})} \right|{\text{d}}u = 1} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = 1.39{\text{ (s)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows the graphs of \(y = \left| {\frac{3}{2}x - 3} \right|,{\text{ }}y = 3\) and a quadratic function, that all intersect in the same two points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the minimum value of the quadratic function is &minus;3, find an expression for the area of the shaded region in the form \(\int_0^t {(a{x^2} + bx + c){\text{d}}x} \), where the constants <em>a</em>, <em>b</em>, <em>c</em> and <em>t</em> are to be determined. (Note: The integral does not need to be evaluated.)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {\frac{3}{2}x - 3} \right| = 0\) when <em>x</em> = 2 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation of the parabola is \(y = p{(x - 2)^2} - 3\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">through \((0,{\text{ }}3) \Rightarrow 3 = 4p - 3 \Rightarrow p = \frac{3}{2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation of the parabola is \(y = \frac{3}{2}{(x - 2)^2} - 3{\text{ }}\left( { = \frac{3}{2}{x^2} - 6x + 3} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">area \( = 2\int_0^2 {\left( {3 - \frac{3}{2}x} \right) - \left( {\frac{3}{2}{x^2} - 6x + 3} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for recognizing symmetry to obtain \(2\int_0^2 , \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>M1</em></strong> for the difference,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for getting all parts correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_0^2 {( - 3{x^2} + 9x){\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was a difficult question and, although many students obtained partial marks, there were few completely correct solutions.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The shaded region <em>S </em>is enclosed between the curve \(y = x + 2\cos x\), for \(0 \leqslant x \leqslant 2\pi \), and the line \(y = x\), as shown in the diagram below.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-12_om_06.15.17.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points where the line meets the curve.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The region \(S\)&nbsp;is rotated by \(2\pi \) about the \(x\)-axis to generate a solid.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down an integral that represents the volume \(V\) of the solid.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the volume \(V\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(\frac{\pi }{2}(1.57),{\text{ }}\frac{{3\pi }}{2}(4.71)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the coordinates are \(\left( {\frac{\pi }{2},{\text{ }}\frac{\pi }{2}} \right),{\text{ }}\left( {\frac{{3\pi }}{2},{\text{ }}\frac{{3\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]<br></em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">(i) &nbsp; &nbsp; \(\pi \int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left( {{x^2} - {{(x + 2\cos x)}^2}} \right){\text{d}}x} \) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;"><strong style="font-weight: bold;">Note:</strong>&nbsp;&nbsp; &nbsp; Award&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1&nbsp;</em></strong>for \({x^2} - {(x + 2\cos x)^2}\),&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1&nbsp;</em></strong>for correct limits and&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A1&nbsp;</em></strong>for \(\pi \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">(ii) &nbsp; &nbsp; \(6{\pi ^2}{\text{ }}( = 59.2)\) &nbsp; &nbsp;&nbsp;<strong style="font-weight: bold;"><em style="font-style: italic;">A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;"><strong style="font-weight: bold;">Notes:</strong>&nbsp;&nbsp; &nbsp; Do not award&nbsp;<strong style="font-weight: bold;">ft&nbsp;</strong>from (b)(i).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;"><strong style="font-weight: bold;"><em style="font-style: italic;">[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the curve, \(C\) defined by the equation \({y^2} - 2xy = 5 - {{\text{e}}^x}\)<span class="s1">. The point A </span>lies on \(C\) <span class="s1">and has coordinates \((0,{\text{ }}a),{\text{ }}a &gt; 0\)</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y - {{\text{e}}^x}}}{{2(y - x)}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the equation of the normal to \(C\) <span class="s1">at the point A</span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of the second point at which the normal found in part (c) intersects \(C\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(v = {y^3},{\text{ }}y &gt; 0\)<span class="s1">, find \(\frac{{{\text{d}}v}}{{{\text{d}}x}}\) </span>at \(x = 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({a^2} = 5 - 1\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(a = 2\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} - \left( {2x\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2y} \right) =  - {{\text{e}}^x}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1A1A1A1</em></strong></span></p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for an attempt at implicit differentiation, <strong><em>A1 </em></strong><span class="s2">for each part.</span></p>
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2y - {{\text{e}}^x}}}{{2(y - x)}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at \(x = 0,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{3}{4}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1">finding the negative reciprocal of a number <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">gradient of normal is \( - \frac{4}{3}\)</p>
<p class="p2">\(y =  - \frac{4}{3}x + 2\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">substituting linear expression <span class="Apple-converted-space">    </span>(<strong><em>M1)</em></strong></p>
<p class="p2">\({\left( { - \frac{4}{3}x + 2} \right)^2} - 2x\left( { - \frac{4}{3}x + 2} \right) + {{\text{e}}^x} - 5 = 0\) <span class="s1">or equivalent</span></p>
<p class="p1">\(x = 1.56\) <span class="Apple-converted-space">    </span><span class="s2"><strong><em>(M1)A1</em></strong></span></p>
<p class="p3">\(y =  - 0.0779\) <span class="Apple-converted-space">    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p3">\((1.56,{\text{ }} - 0.0779)\)</p>
<p class="p4"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}}\)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 3 \times 4 \times \frac{3}{4} = 9\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) to (c) were generally well done.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (a) to (c) were generally well done.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) to (c) were generally well done although a significant number of students found the equation of the tangent rather than the normal in part (c).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Whilst many were able to make a start on part (d), fewer students had the necessary calculator skills to work it though correctly.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">There were many overly complicated solutions to part (e), some of which were successful.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(y = \ln \left( {\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})} \right)\), show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \ln \left( {\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - \frac{2}{3}{{\text{e}}^{ - 2x}}}}{{\frac{1}{3}(1 + {{\text{e}}^{ - 2x}})}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2{{\text{e}}^{ - 2x}}}}{{1 + {{\text{e}}^{ - 2x}}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^y} = \frac{1}{3}(1 + {{\text{e}}^{ - 2x}})\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Now \({{\text{e}}^{ - 2x}} = 3{{\text{e}}^y} - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2(3{{\text{e}}^y} - 1)}}{{1 + 3{{\text{e}}^y} - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{2}{{3{{\text{e}}^y}}}(3{{\text{e}}^y} - 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \frac{2}{3}(3 - {{\text{e}}^{ - y}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^y} = \frac{1}{3}(1 + {{\text{e}}^{ - 2x}})\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}{{\text{e}}^{ - 2x}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Now \({{\text{e}}^{ - 2x}} = 3{{\text{e}}^y} - 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}(3{{\text{e}}^y} - 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}{{\text{e}}^{ - y}}(3{{\text{e}}^y} - 1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{2}{3}( - 3 + {{\text{e}}^{ - y}})\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{2}{3}({{\text{e}}^{ - y}} - 3)\) &nbsp; &nbsp; <strong>AG</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Only two of the three <strong><em>(A1)</em></strong> marks may be implied.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions were generally disappointing with many candidates being awarded the first 2 or 3 marks, but then going no further.</span></p>
</div>
<br><hr><br><div class="specification">
<p>A point P moves in a straight line with velocity \(v\)&thinsp;ms<sup>&minus;1</sup> given by \(v\left( t \right) = {{\text{e}}^{ - t}} - 8{t^2}{{\text{e}}^{ - 2t}}\) at time&nbsp;<em>t</em> seconds, where&nbsp;<em>t</em>&nbsp;&ge; 0.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the first time <em>t</em><sub>1</sub> at which P has zero velocity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the acceleration of P at time <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the acceleration of P at time <em>t</em><sub>1</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to solve \(v\left( t \right) = 0\) for <em>t</em> or equivalent     <em><strong>(M1)</strong></em></p>
<p><em>t</em><sub>1</sub> = 0.441(s)    <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(a\left( t \right) = \frac{{{\text{d}}v}}{{{\text{d}}t}} =  - {{\text{e}}^{ - t}} - 16t{{\text{e}}^{ - 2t}} + 16{t^2}{{\text{e}}^{ - 2t}}\)      <em><strong>M1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for attempting to differentiate using the product rule.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(a\left( {{t_1}} \right) =  - 2.28\) (ms<sup>−2</sup>)      <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = x{(x + 2)^6}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the inequality \(f(x) &gt; x\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {f(x){\text{d}}x} \).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch showing where the lines cross or zeros of \(y = x{(x + 2)^6} - x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x =&nbsp; - 1\) and \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">separating into two cases \(x &gt; 0\) and \(x &lt; 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">if \(x &gt; 0\) then \({(x + 2)^6} &gt; 1 \Rightarrow \) always true &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">if \(x &lt; 0\) then \({(x + 2)^6} &lt; 1 \Rightarrow&nbsp; - 3 &lt; x &lt;&nbsp; - 1\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = {x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 64x\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solutions to \({x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 63x = 0\) are &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,{\text{ }}x =&nbsp; - 1\) and \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 4</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = x\) when \(x{(x + 2)^6} = x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either \(x = 0\) or \({(x + 2)^6} = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">if \({(x + 2)^6} = 1\) then \(x + 2 =&nbsp; \pm 1\) so \(x =&nbsp; - 1\) or \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1 </strong>(by substitution)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(u = x + 2\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{d}}u = {\text{d}}x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {(u - 2){u^6}{\text{d}}u} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{u^8} - \frac{2}{7}{u^7}( + c)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{(x + 2)^8} - \frac{2}{7}{(x + 2)^7}( + c)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2 </strong>(by parts)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = 1,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = {(x + 2)^6} \Rightarrow v = \frac{1}{7}{(x + 2)^7}\)&nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {x{{(x + 2)}^6}{\text{d}}x = \frac{1}{7}x{{(x + 2)}^7} - \frac{1}{7}\int {{{(x + 2)}^7}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{7}x{(x + 2)^7} - \frac{1}{{56}}{(x + 2)^8}( + c)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3 </strong>(by expansion)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {f(x){\text{d}}x = \int {\left( {{x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 64x} \right){\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{x^8} + \frac{{12}}{7}{x^7} + 10{x^6} + 32{x^5} + 60{x^4} + 64{x^3} + 32{x^2}( + c)\) &nbsp; &nbsp;&nbsp;<strong><em>M1A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1A1 </em></strong>if at least four terms are correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f\) , defined by \(f(x) = x - a\sqrt x \) , where \(x \geqslant 0\), \(a \in {\mathbb{R}^ + }\) .</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; Find in terms of \(a\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; the zeros of \(f\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; the values of \(x\) for which \(f\) is decreasing;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii) &nbsp; &nbsp; the values of \(x\) for which \(f\) is increasing;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iv)&nbsp;&nbsp;&nbsp;&nbsp; the range of \(f\) . </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; State the concavity of the graph of \(f\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; \(x - a\sqrt x \)&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;</strong></em></span><span style="font-family: times new roman,times; font-size: medium;">\(\sqrt x \sqrt x&nbsp; - a = 0\) &nbsp; &nbsp; <em><strong>(A1)</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp; </strong></em></span><span style="font-family: times new roman,times; font-size: medium;">2 \(x = 0\), \(x = {a^2}\) &nbsp; &nbsp; <em><strong>A1&nbsp;&nbsp;&nbsp;&nbsp; N2</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; \(f'(x) = 1 - \frac{a}{{2\sqrt x }}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(f\)</span></span><span style="font-family: times new roman,times; font-size: medium;"> is decreasing when \(f' &lt; 0\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; \(1 - \frac{a}{{2\sqrt x }} &lt; 0 \Rightarrow \frac{{2\sqrt x&nbsp; - a}}{{2\sqrt x }} &lt; 0 \Rightarrow x &gt; \frac{{{a^2}}}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(f\)</span> is increasing when \(f' &gt; 0\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp; \(1 - \frac{a}{{2\sqrt x }} &gt; 0 \Rightarrow \frac{{2\sqrt x&nbsp; - a}}{{2\sqrt x }} &gt; 0 \Rightarrow x &gt; \frac{{{a^2}}}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><strong>&nbsp; Note:</strong> Award the <em><strong>M1</strong> </em>mark for either (ii) or (iii).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iv)&nbsp;&nbsp;&nbsp;&nbsp; minimum occurs at \(x = \frac{{{a^2}}}{4}\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp; minimum value is </span><span style="font-family: times new roman,times; font-size: medium;">\(y = - \frac{{{a^2}}}{4}\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> (M1)A1</span></strong></em></p>
<p style="margin-left: 30px;"><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp; </span></strong></em><span style="font-family: times new roman,times; font-size: medium;">hence \(y \geqslant&nbsp; - \frac{{{a^2}}}{4}\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[10 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; concave up for all values of \(x\) &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[1 mark]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">Total [11 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">This was generally a well answered question.</span></p>
</div>
<br><hr><br><div class="question">
<p>By using the substitution \({x^2} = 2\sec \theta \), show that \(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }} = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>EITHER</strong></p>
<p>\({x^2} = 2\sec \theta \)</p>
<p>\(2x\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sec \theta \tan \theta \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} \)</p>
<p>\( = \int {\frac{{\sec \theta \tan \theta {\text{d}}\theta }}{{2\sec \theta \sqrt {4{{\sec }^2}\theta&nbsp; - 4} }}} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(x = \sqrt 2 {(\sec \theta )^{\frac{1}{2}}}{\text{ }}\left( { = \sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}} \right)\)</p>
<p>\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = \frac{{\sqrt 2 }}{2}{(\sec \theta )^{\frac{1}{2}}}\tan \theta {\text{ }}\left( { = \frac{{\sqrt 2 }}{2}{{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta } \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\int {\frac{{{\text{d}}x}}{{x\sqrt {{x^4} - 4} }}} \)</p>
<p>\( = \int {\frac{{\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\tan \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\sec \theta )}^{\frac{1}{2}}}\sqrt {4{{\sec }^2}\theta&nbsp; - 4} }}{\text{ }}\left( { = \int {\frac{{\sqrt 2 {{(\cos \theta )}^{ - \frac{3}{2}}}\sin \theta {\text{d}}\theta }}{{2\sqrt 2 {{(\cos \theta )}^{ - \frac{1}{2}}}\sqrt {4{{\sec }^2}\theta&nbsp; - 4} }}} } \right)} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>\( = \frac{1}{2}\int {\frac{{\tan \theta {\text{d}}\theta }}{{2\tan \theta }}} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( = \frac{1}{4}\int {{\text{d}}\theta } \)</p>
<p>\( = \frac{\theta }{4} + c\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({x^2} = 2\sec \theta&nbsp; \Rightarrow \cos \theta&nbsp; = \frac{2}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>This <strong><em>M1 </em></strong>may be seen anywhere, including a sketch of an appropriate triangle.</p>
<p>&nbsp;</p>
<p>so \(\frac{\theta }{4} + c = \frac{1}{4}\arccos \left( {\frac{2}{{{x^2}}}} \right) + c\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1">The graph of \(y = \ln (5x + 10)\) is obtained from the graph of \(y = \ln x\) by a translation of \(a\) units in the direction of the \(x\)-axis followed by a translation of \(b\) units in the direction of the \(y\)-axis.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\) and the value of \(b\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The region bounded by the graph of \(y = \ln (5x + 10)\), the \(x\)-axis and the lines \(x = {\text{e}}\) and \(x = 2{\text{e}}\), is rotated through \(2\pi \) radians about the \(x\)-axis. Find the volume generated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(y = \ln (x - a) + b = \ln (5x + 10)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(y = \ln (x - a) + \ln c = \ln (5x + 10)\)</p>
<p>\(y = \ln \left( {c(x - a)} \right) = \ln (5x + 10)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p>\(y = \ln (5x + 10) = \ln \left( {5(x + 2)} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(y = \ln (5) + \ln (x + 2)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>THEN</strong></p>
<p>\(a =&nbsp; - 2,{\text{ }}b = \ln 5\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept graphical approaches.</p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept \(a = 2,{\text{ }}b = 1.61\)</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(V = \pi {\int_e^{2e} {\left[ {\ln (5x + 10)} \right]} ^2}{\text{d}}x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\( = 99.2\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>Total [6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Two cyclists are at the same road intersection. One cyclist travels north at \(20\,{\text{km}}\,{{\text{h}}^{ - 1}}\). The other cyclist travels west at \(15\,{\text{km}}\,{{\text{h}}^{ - 1}}\).</p>
<p class="p1">Use calculus to show that the rate at which the distance between the two cyclists changes is independent of time.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>attempt to set up (diagram, vectors) &nbsp; &nbsp; <em>(</em><strong><em>M1)</em></strong></p>
<p>correct distances \(x = 15t,{\text{ }}y = 20t\) &nbsp; &nbsp; <strong><em>(A1) (A1)</em></strong></p>
<p>the distance between the two cyclists at time&nbsp;\(t\) is \(s = \sqrt {{{(15t)}^2} + {{(20t)}^2}}&nbsp; = 25t{\text{ (km)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = 25{\text{ (km}}\,{{\text{h}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>hence the rate is independent of time &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>attempting to differentiate \({x^2} + {y^2} = {s^2}\) implicitly &nbsp; &nbsp; <em>(</em><strong><em>M1)</em></strong></p>
<p>\(2x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 2y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 2s\frac{{{\text{d}}s}}{{{\text{d}}t}}\) &nbsp; &nbsp; <em>(</em><strong><em>A1)</em></strong></p>
<p>the distance between the two cyclists at time \(t\) is \(\sqrt {{{(15t)}^2} + {{(20t)}^2}}&nbsp; = 25t{\text{ (km)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(2(15t)(15 + 2(20t)(20) = 2(25t)\frac{{{\text{d}}s}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1</em></strong> for substitution of correct values into their equation involving \(\frac{{{\text{d}}s}}{{{\text{d}}t}}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = 25{\text{ (km}}\,{{\text{h}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>hence the rate is independent of time &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>\(s = \sqrt {{x^2} + {y^2}} \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{{x\frac{{{\text{d}}x}}{{{\text{d}}t}} + y\frac{{{\text{d}}y}}{{{\text{d}}t}}}}{{\sqrt {{x^2} + {y^2}} }}\) &nbsp; &nbsp; <strong>(<em>M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1</em></strong> for attempting to differentiate the expression for \(s\).</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = \frac{{(15t)(15) + (20t)(20)}}{{\sqrt {{{(15t)}^2} + {{(20t)}^2}} }}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1</em></strong> for substitution of correct values into their \(\frac{{{\text{d}}s}}{{{\text{d}}t}}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = 25{\text{ (km}}\,{{\text{h}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>hence the rate is independent of time &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Reasonably well done. Most successful candidates determined that \(s = 25t \Rightarrow \frac{{{\text{d}}s}}{{{\text{d}}t}} = 25\) from \(x = 15t\) and \(y = 20t\). A number of candidates did not use calculus while a few candidates correctly used implicit differentiation.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A bicycle inner tube can be considered as a joined up cylinder of fixed length&nbsp;<span class="s1">\(200\) cm </span>and radius \(r\) cm. The radius \(r\) increases as the inner tube is pumped up. Air is being pumped into the inner tube so that the volume of air in the tube increases at a constant rate of \(30{\text{ c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\). Find the rate at which the radius of the inner tube is increasing when \(r = 2{\text{ cm}}\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(V = 200\pi {r^2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Allow \(V = \pi h{r^2}\) if value of \(h\) is substituted later in the question.</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>EITHER</strong></p>
<p class="p1">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 200\pi 2r\frac{{{\text{d}}r}}{{{\text{d}}t}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p4">&nbsp;</p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Award <strong><em>M1</em></strong> for an attempt at implicit differentiation.</p>
<p class="p4">&nbsp;</p>
<p class="p1">at \(r = 2\) we have \(30 = 200\pi 4\frac{{{\text{d}}r}}{{{\text{d}}t}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p3"><strong>OR</strong></p>
<p class="p1">\(\frac{{{\text{d}}r}}{{{\text{d}}t}} = \frac{{\frac{{{\text{d}}V}}{{{\text{d}}t}}}}{{\frac{{{\text{d}}V}}{{{\text{d}}r}}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\(\frac{{{\text{d}}V}}{{{\text{d}}r}} = 400\pi r\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\(r = 2\) we have \(\frac{{{\text{d}}V}}{{{\text{d}}r}} = 800\pi \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><strong>THEN</strong></p>
<p class="p1">\(\frac{{{\text{d}}r}}{{{\text{d}}t}} = \frac{{30}}{{800\pi }}\;\;\;\left( { = \frac{3}{{80\pi }} = 0.0119} \right){\text{ }}({\text{cm}}\,{{\text{s}}^{ - 1}}{\text{)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This question was well understood and a large percentage appreciated the need for implicit differentiation although some candidates did not recognise the need to treat h as a constant till late in the question. A number of candidates found the answer \(\frac{{3\pi }}{{80}}\) instead of \(\frac{3}{{80\pi }}\) due to a basic incorrect use of the GDC.</p>
</div>
<br><hr><br><div class="question">
<p>The region \(R\) is enclosed by the graph of \(y = {e^{ - {x^2}}}\), the \(x\)-axis and the lines \(x =&nbsp; - 1\) and \(x = 1\).</p>
<p>Find the volume of the solid of revolution that is formed when \(R\) is rotated through \(2\pi \) about the \(x\)-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\(\int_{ - 1}^1 {\pi {{\left( {{{\text{e}}^{ - {x^2}}}} \right)}^2}{\text{d}}x} \;\;\;\left( {\int_{ - 1}^1 {\pi {{\text{e}}^{ - 2{x^2}}}{\text{d}}x} \;\;\;{\text{or}}\;\;\;\int_0^1 {2\pi {{\text{e}}^{ - 2{x^2}}}{\text{d}}x} } \right)\) &nbsp; &nbsp; <strong><em>(M1)(A1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1</em></strong> for integral involving the function given; <strong><em>A1</em></strong> for correct limits; <strong><em>A1</em></strong> for \(\pi \) and \({{{\left( {{{\text{e}}^{ - {x^2}}}} \right)}^2}}\)</p>
<p>&nbsp;</p>
<p>\( = 3.758249 \ldots&nbsp; = 3.76\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Most candidates answered this question correctly. Those candidates who attempted to manipulate the function or attempt an integration wasted time and obtained 3/4 marks. The most common errors were an extra factor &lsquo;2&rsquo; and a fourth power when attempting to square the function. Many candidates wrote down the correct expression but not all were able to use their calculator correctly.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve defined by the equation \(4{x^2} + {y^2} = 7\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the normal to the curve at the point&nbsp;\(\left( {1,{\text{ }}\sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the solid formed when the region bounded by the curve, the \(x\)-axis for \(x \geqslant 0\) and the \(y\)-axis for \(y \geqslant 0\) is rotated through \(2\pi \) about the \(x\)-axis.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(4{x^2} + {y^2} = 7\)</p>
<p>\(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{4x}}{y}\)</p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1A1 </em></strong>for finding \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 2.309 \ldots \) using any alternative method.</p>
<p>&nbsp;</p>
<p>hence gradient of normal \( = \frac{y}{{4x}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>hence gradient of normal at \(\left( {1,{\text{ }}\sqrt 3 } \right)\) is \(\frac{{\sqrt 3 }}{4}\,\,\,( = 0.433)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>hence equation of normal is \(y - \sqrt 3 = \frac{{\sqrt 3 }}{4}(x - 1)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p>\(\left( {y = \frac{{\sqrt 3 }}{4}x + \frac{{3\sqrt 3 }}{4}} \right)\,\,\,(y = 0.433x + 1.30)\)</p>
<p><strong>METHOD 2</strong></p>
<p>\(4{x^2} + {y^2} = 7\)</p>
<p>\(y = \sqrt {7 - 4{x^2}} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{4x}}{{\sqrt {7 - 4{x^2}} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1A1 </em></strong>for finding \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 2.309 \ldots \) using any alternative method.</p>
<p>&nbsp;</p>
<p>hence gradient of normal \( = \frac{{\sqrt {7 - 4{x^2}} }}{{4x}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>hence gradient of normal at \(\left( {1,{\text{ }}\sqrt 3 } \right)\) is \(\frac{{\sqrt 3 }}{4}\,\,\,( = 0.433)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>hence equation of normal is \(y - \sqrt 3 = \frac{{\sqrt 3 }}{4}(x - 1)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p>\(\left( {y = \frac{{\sqrt 3 }}{4}x + \frac{{3\sqrt 3 }}{4}} \right)\,\,\,(y = 0.433x + 1.30)\)</p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Use of \(V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {{y^2}{\text{d}}x} \)</p>
<p>\(V = \pi \int\limits_0^{\frac{{\sqrt 7 }}{2}} {\left( {7 - 4{x^2}} \right){\text{d}}x} \)&nbsp;&nbsp; &nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Condone absence of limits or incorrect limits for <strong><em>M </em></strong>mark.</p>
<p>Do not condone absence of or multiples of \(\pi \).</p>
<p>&nbsp;</p>
<p>\( = 19.4\,\,\,\left( { = \frac{{7\sqrt 7 \pi }}{3}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove by mathematical induction that, for \(n \in {\mathbb{Z}^ + }\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + ... + n{\left( {\frac{1}{2}} \right)^{n - 1}} = 4 - \frac{{n + 2}}{{{2^{n - 1}}}}.\]</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">A.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Using integration by parts, show that \(\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = \frac{1}{5}{{\text{e}}^{2x}}} (2\sin x - \cos x) + C\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Solve the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \sqrt {1 - {y^2}} {{\text{e}}^{2x}}\sin x\), given that <em>y</em> = 0 when <em>x</em> = 0,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">writing your answer in the form \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\) , found in part (b), for \(0 \leqslant x \leqslant 1.5\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the coordinates of the point P, the first positive intercept on the <em>x</em>-axis, and mark it on your sketch.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; The region bounded by the graph of \(y = f(x)\) and the <em>x</em>-axis, between the origin and P, is rotated 360&deg; about the <em>x</em>-axis to form a solid of revolution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the volume of this solid.</span></p>
<div class="marks">[17]</div>
<div class="question_part_label">B.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">prove that \(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + ... + n{\left( {\frac{1}{2}} \right)^{n - 1}} = 4 - \frac{{n + 2}}{{{2^{n - 1}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for <em>n</em> = 1</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{LHS}} = 1,{\text{ RHS}} = 4 - \frac{{1 + 2}}{{{2^0}}} = 4 - 3 = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so true for <em>n</em> = 1 &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">assume true for <em>n</em> = <em>k</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + ... + k{\left( {\frac{1}{2}} \right)^{k - 1}} = 4 - \frac{{k + 2}}{{{2^{k - 1}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">now for <em>n</em> = <em>k</em> +1</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">LHS: \(1 + 2\left( {\frac{1}{2}} \right) + 3{\left( {\frac{1}{2}} \right)^2} + 4{\left( {\frac{1}{2}} \right)^3} + ... + k{\left( {\frac{1}{2}} \right)^{k - 1}} + (k + 1){\left( {\frac{1}{2}} \right)^k}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 4 - \frac{{k + 2}}{{{2^{k - 1}}}} + (k + 1){\left( {\frac{1}{2}} \right)^k}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 4 - \frac{{2(k + 2)}}{{{2^k}}} + \frac{{k + 1}}{{{2^k}}}\,\,\,\,\,\)(or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 4 - \frac{{(k + 1) + 2}}{{{2^{(k + 1) - 1}}}}\,\,\,\,\,\)(accept \(4 - \frac{{k + 3}}{{{2^k}}}\)) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Therefore if it is true for <em>n</em> = <em>k</em> it is true for <em>n</em> = <em>k</em> + 1. It has been shown to be true for <em>n</em> = 1 so it is true for all \(n{\text{ }}( \in {\mathbb{Z}^ + })\). &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> To obtain the final <strong><em>R</em></strong> mark, a reasonable attempt at induction must have been made.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">A.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = - \cos x{{\text{e}}^{2x}} + \int {2{{\text{e}}^{2x}}\cos x{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \cos x{{\text{e}}^{2x}} + 2{{\text{e}}^{2x}}\sin x - \int {4{{\text{e}}^{2x}}\sin x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = - \cos x{{\text{e}}^{2x}} + 2{{\text{e}}^{2x}}\sin x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = \frac{1}{5}{{\text{e}}^{2x}}(2\sin x - \cos x) + C} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\sin x{{\text{e}}^{2x}}{\text{d}}x = \frac{{\sin x{{\text{e}}^{2x}}}}{2} - \int {\cos x\frac{{{{\text{e}}^{2x}}}}{2}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\sin x{{\text{e}}^{2x}}}}{2} - \cos x\frac{{{{\text{e}}^{2x}}}}{4} - \int {\sin x\frac{{{{\text{e}}^{2x}}}}{4}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{5}{4}\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = \frac{{{{\text{e}}^{2x}}\sin x}}{2} - \frac{{\cos x{{\text{e}}^{2x}}}}{4}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\text{e}}^{2x}}\sin x{\text{d}}x = \frac{1}{5}{{\text{e}}^{2x}}(2\sin x - \cos x) + C} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{\text{d}}y}}{{\sqrt {1 - {y^2}} }} = \int {{{\text{e}}^{2x}}\sin x{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arcsin y = \frac{1}{5}{{\text{e}}^{2x}}(2\sin x - \cos x)( + C)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 0,{\text{ }}y = 0 \Rightarrow C = \frac{1}{5}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \sin \left( {\frac{1}{5}{{\text{e}}^{2x}}(2\sin x - \cos x) + \frac{1}{5}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; </span><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">P is (1.16, 0) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for 1.16 seen anywhere, <strong><em>A1</em></strong> for complete sketch.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Allow FT on their answer from (b)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(V = \int_0^{1.162...} {\pi {y^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1.05\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Allow FT on their answers from (b) and (c)(i).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">B.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part A: Given that this question is at the easier end of the &lsquo;proof by induction&rsquo; spectrum, it was disappointing that so many candidates failed to score full marks. The <em>n</em> = 1 case was generally well done. The whole point of the method is that it involves logic, so &lsquo;let n = k&rsquo; or &lsquo;put n = k&rsquo;, instead of &lsquo;assume ... to be true for n = k&rsquo;, gains no marks. The algebraic steps need to be more convincing than some candidates were able to show. It is astonishing that the R1 mark for the final statement was so often not awarded.</span></p>
<div class="question_part_label">A.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part B: Part (a) was often well done, although some faltered after the first integration. Part (b) was also generally well done, although there were some errors with the constant of integration. In (c) the graph was often attempted, but errors in (b) usually led to manifestly incorrect plots. Many attempted the volume of integration and some obtained the correct value.</span></p>
<div class="question_part_label">B.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A rocket is rising vertically at a speed of \(300{\text{ m}}{{\text{s}}^{ - 1}}\) when it is 800 m directly above the launch site. Calculate the rate of change of the distance between the rocket and an observer, who is 600 m from the launch site and on the same horizontal level as the launch site.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>x</em> = distance from observer to rocket</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>h</em> = the height of the rocket above the ground</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 300{\text{ when }}h = 800\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \sqrt {{h^2} + 360\,000}&nbsp; = {({h^2} + 360\,000)^{\frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}h}} = \frac{h}{{\sqrt {{h^2} + 360\,000} }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when h = 800</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{{{\text{d}}x}}{{{\text{d}}h}} \times \frac{{{\text{d}}h}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{300h}}{{\sqrt {{h^2} + 360\,000} }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 240{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({h^2} + {600^2} = {x^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2h = 2x\frac{{{\text{d}}x}}{{{\text{d}}h}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}h}} = \frac{h}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{800}}{{1000}}\left( { = \frac{4}{5}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 300\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{{{\text{d}}x}}{{{\text{d}}h}} \times \frac{{{\text{d}}h}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{4}{5} \times 300\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 240{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 3</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} = {600^2} + {h^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2x\frac{{{\text{d}}x}}{{{\text{d}}t}} = 2h\frac{{{\text{d}}h}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>h</em> = 800, <em>x</em> =1000</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{{800}}{{1000}} \times \frac{{{\text{d}}h}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 240{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 4</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Distance between the observer and the rocket \( = {({600^2} + {800^2})^{\frac{1}{2}}} = 1000\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Component of the velocity in the line of sight \( = \sin \theta \times 300\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(where \(\theta = \) angle of elevation) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin \theta = \frac{{800}}{{1000}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">component \( = 240{\text{ (m}}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Questions of this type are often open to various approaches, but most full solutions require the application of &lsquo;related rates of change&rsquo;. Although most candidates realised this, their success rate was low. This was particularly apparent in approaches involving trigonometric functions. Some candidates assumed constant speed &ndash; this gained some small credit. Candidates should be encouraged to state what their symbols stand for.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A particle moves such that its velocity \(v\,{\text{m}}{{\text{s}}^{ - 1}}\) is related to its displacement \(s\,{\text{m}}\), by the equation \(v(s) = \arctan (\sin s),{\text{ }}0 \leqslant s \leqslant 1\). The particle&rsquo;s acceleration is \(a\,{\text{m}}{{\text{s}}^{ - 2}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the particle’s acceleration in terms of \(s\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using an appropriate sketch graph, find the particle’s displacement when its acceleration is \(0.25{\text{ m}}{{\text{s}}^{ - 2}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{{\cos s}}{{{{\sin }^2}s + 1}}\)    </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\(a = \frac{{\arctan (\sin s)\cos s}}{{{{\sin }^2}s + 1}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2017-02-03_om_15.30.17.png" alt="M16/5/MATHL/HP2/ENG/TZ2/08.b_01/M">     <strong><em>(M1)</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2017-02-03_om_15.31.30.png" alt="M16/5/MATHL/HP2/ENG/TZ2/08.b_02/M">     <strong><em>(M1)</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1">\(s = 0.296,{\text{ }}0.918{\text{ (m)}}\)     <strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a), a large number of candidates thought that \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}v}}{{{\text{d}}s}}\) rather than \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{{\text{d}}s}}{{{\text{d}}t}} \times \frac{{{\text{d}}v}}{{{\text{d}}s}} = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b), quite a few of these candidates then went on to find a value of \(s\) that was outside the domain \(0 \leqslant s \leqslant 1\).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> has inverse \({f^{ - 1}}\) and derivative \(f'(x)\) for all \(x \in \mathbb{R}\). For all functions with these properties you are given the result that for \(a \in \mathbb{R}\) with \(b = f(a)\) and \(f'(a) \ne 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[({f^{ - 1}})'(b) = \frac{1}{{f'(a)}}.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Verify that this is true for \(f(x) = {x^3} + 1\) at <em>x</em> = 2.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(g(x) = x{{\text{e}}^{{x^2}}}\), show that \(g'(x) &gt; 0\) for all values of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result given at the start of the question, find the value of the gradient function of \(y = {g^{ - 1}}(x)\) at <em>x</em> = 2.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; With <em>f</em> and <em>g</em> as defined in parts (a) and (b), solve \(g \circ f(x) = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Let \(h(x) = {(g \circ f)^{ - 1}}(x)\). Find \(h'(2)\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(2) = 9\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = {(x - 1)^{\frac{1}{3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({f^{ - 1}})'(x) = \frac{1}{3}{(x - 1)^{ - \frac{2}{3}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({f^{ - 1}})'(9) = \frac{1}{{12}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 3{x^2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{f'(2)}} = \frac{1}{{3 \times 4}} = \frac{1}{{12}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The last </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> are independent of previous marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'(x) = {{\text{e}}^{{x^2}}} + 2{x^2}{{\text{e}}^{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'(x) &gt; 0\) as each part is positive &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to find the <em>x</em>-coordinate on \(y = g(x)\) solve</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 = x{{\text{e}}^{{x^2}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0.89605022078 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient \( = ({g^{ - 1}})'(2) = \frac{1}{{g'(0.896 \ldots )}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{{{\text{e}}^{{{(0.896 \ldots )}^2}}}\left( {1 + 2 \times {{(0.896 \ldots )}^2}} \right)}} = 0.172\) to 3sf &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(using the \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) function on gdc \(g'(0.896 \ldots ) = 5.7716028 \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{g'(0.896 \ldots )}} = 0.173\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(({x^3} + 1){{\text{e}}^{{{({x^3} + 1)}^2}}} = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - 0.470191 \ldots \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((g \circ f)'(x) = 3{x^2}{{\text{e}}^{{{({x^3} + 1)}^2}}}\left( {2{{({x^3} + 1)}^2} + 1} \right)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((g \circ f)'( - 0.470191 \ldots ) = 3.85755 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(2) = \frac{1}{{3.85755 \ldots }} = 0.259{\text{ }}(232 \ldots )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The solution can be found without the student obtaining the explicit form of the composite function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h(x) = ({f^{ - 1}} \circ {g^{ - 1}})(x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(x) = ({f^{ - 1}})'\left( {{g^{ - 1}}(x)} \right) \times ({g^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}{\left( {{g^{ - 1}}(x) - 1} \right)^{ - \frac{2}{3}}} \times ({g^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(2) = \frac{1}{3}{\left( {{g^{ - 1}}(2) - 1} \right)^{ - \frac{2}{3}}} \times ({g^{ - 1}})'(2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}{(0.89605 \ldots&nbsp; - 1)^{ - \frac{2}{3}}} \times 0.171933 \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.259{\text{ }}(232 \ldots )\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many good attempts at parts (a) and (b), although in (b) many were unable to give a thorough justification.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many good attempts at parts (a) and (b), although in (b) many were unable to give a thorough justification.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Few good solutions to parts (c) and (d)(ii) were seen although many were able to answer (d)(i) correctly.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Few good solutions to parts (c) and (d)(ii) were seen although many were able to answer (d)(i) correctly.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A family of cubic functions is defined as \({f_k}(x) = {k^2}{x^3} - k{x^2} + x,{\text{ }}k \in {\mathbb{Z}^ + }\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Express in terms of <em>k</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({{f'}_k}(x){\text{ and }}{{f''}_k}(x)\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the coordinates of the points of inflexion \({P_k}\) on the graphs of \({f_k}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that all \({P_k}\) lie on a straight line and state its equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that for all values of <em>k</em>, the tangents to the graphs of \({f_k}\) at \({P_k}\) are parallel, and find the equation of the tangent lines.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; \({{f'}_k}(x) = 3{k^2}{x^2} - 2kx + 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{f''}_k}(x) = 6{k^2}x - 2k\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span>Setting \(f''(x) = 0\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 6{k^2}x - 2k = 0 \Rightarrow x = \frac{1}{{3k}}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f\left( {\frac{1}{{3k}}} \right) = {k^2}{\left( {\frac{1}{{3k}}} \right)^3} - k{\left( {\frac{1}{{3k}}} \right)^2} + \left( {\frac{1}{{3k}}} \right)\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{7}{{27k}}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, \({P_k}{\text{ is }}\left( {\frac{1}{{3k}},\frac{7}{{27k}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span>Equation of the straight line is \(y = \frac{7}{9}x\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">As this equation is independent of <em>k</em>, all \({P_k}\) lie on this straight line<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span>Gradient of tangent at \({P_k}\) :</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'({P_k}) = f'\left( {\frac{1}{{3k}}} \right) = 3{k^2}{\left( {\frac{1}{{3k}}} \right)^2} - 2k\left( {\frac{1}{{3k}}} \right) + 1 = \frac{2}{3}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">As the gradient is independent of <em>k</em>, the tangents are parallel.<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{7}{{27k}} = \frac{2}{3} \times \frac{1}{{3k}} + c \Rightarrow c = \frac{1}{{27k}}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The equation is \(y = \frac{2}{3}x + \frac{1}{{27k}}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [13 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates scored the full 6 marks for part (a). The main mistake evidenced was to treat <em>k</em> as a variable, and hence use the product rule to differentiate. Of the many candidates who attempted parts (b) and (c), few scored the R1 marks in either part, but did manage to get the equations of the straight lines.&nbsp;</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A triangle is formed by the three lines \(y = 10 - 2x,{\text{ }}y = mx\) and \(y = -\frac{1}{m}x\), where \(m &gt; \frac{1}{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>m </em>for which the area of the triangle is a minimum.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to find intersections &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">intersections are&nbsp;\(\left( {\frac{{10}}{{m + 2}},\frac{{10m}}{{m + 2}}} \right){\text{ and }}\left( {\frac{{10m}}{{2m - 1}}, - \frac{{10}}{{2m - 1}}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">area of triangle&nbsp;\( = \frac{1}{2} \times \frac{{\sqrt {100 + 100{m^2}} }}{{(m + 2)}} \times \frac{{\sqrt {100 + 100{m^2}} }}{{(2m - 1)}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{50(1 + {m^2})}}{{(m + 2)(2m - 1)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum when&nbsp;\(m = 3\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[8 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates had difficulties with this question and did not go beyond the determination of the intersection points of the lines; in a few cases candidates set up the expression of the area, in some cases using unsimplified expressions of the coordinates.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A particle moves in a straight line such that its velocity, \(v\,{\text{m}}\,{{\text{s}}^{ - 1}}\)&nbsp; , at time <em>t </em>seconds, is given by</p>
<p class="p1">\(v(t) = \left\{ {\begin{array}{*{20}{c}} {5 - {{(t - 2)}^2},}&amp;{0 \le t \le 4} \\ {3 - \frac{t}{2},}&amp;{t &gt; 4} \end{array}.} \right.\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of&nbsp;<em>\(t\) </em>when the particle is instantaneously at rest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The particle returns to its initial position at \(t = T\).</p>
<p class="p1">Find the value of <em>T</em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(3 - \frac{t}{2} = 0 \Rightarrow t = 6{\text{ (s)}}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A0</em></strong> if either \(t =&nbsp; - 0.236\) or \(t = 4.24\) or both are stated with \(t = 6\).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let&nbsp;<em>\(d\) </em>be the distance travelled before coming to rest</p>
<p class="p1">\(d = \int_0^4 {5 - {{(t - 2)}^2}{\text{d}}t + \int_4^6 {3 - \frac{t}{2}{\text{d}}t} } \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong>for two correct integrals even if the integration limits are incorrect. The second integral can be specified as the area of a triangle.</p>
<p class="p3">&nbsp;</p>
<p class="p1">\(d = \frac{{47}}{3}\;\;\;( = 15.7){\text{ (m)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><em>(</em><strong><em>A1)</em></strong></span></p>
<p class="p1">attempting to solve \(\int_6^T {\left( {\frac{t}{2} - 3} \right){\text{d}}t = \frac{{47}}{3}} \) (or equivalent) for&nbsp;<em>\(T\) <span class="Apple-converted-space">&nbsp; &nbsp; </span></em><strong><em>M1</em></strong></p>
<p class="p1">\(T = 13.9{\text{ (s)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<p class="p1"><strong><em>Total [7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was not done as well as expected. A large number of candidates attempted to solve \(5 - {(t - 2)^2} = 0\) for \(t\). Some candidates attempted to find when the particle&rsquo;s acceleration was zero.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates had difficulty with part (b) with a variety of errors committed. A significant proportion of candidates did not understand what was required. Many candidates worked with indefinite integrals rather than with definite integrals. Only a small percentage of candidates started by correctly finding the distance travelled by the particle before coming to rest. The occasional candidate made adroit use of a GDC and found the correct value of \(t\) by finding where the graph of \(\int_0^4 {5 - {{(t - 2)}^2}{\text{d}}t + \int_4^x {3 - \frac{t}{2}{\text{d}}t} } \) crossed the horizontal axis.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{{a + b{{\text{e}}^x}}}{{a{{\text{e}}^x} + b}}\), where \(0 &lt; b &lt; a\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that \(f'(x) = \frac{{({b^2} - {a^2}){{\text{e}}^x}}}{{{{(a{{\text{e}}^x} + b)}^2}}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp;&nbsp;<strong>Hence</strong> justify that the graph of <em>f</em> has no local maxima or minima.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Given that the graph of <em>f</em> has a point of inflexion, find its coordinates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Show that the graph of <em>f</em> has exactly two asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Let <em>a</em> = 4 and <em>b</em> =1. Consider the region <em>R</em> enclosed by the graph of \(y = f(x)\), the <em>y</em>-axis and the line with equation \(y = \frac{1}{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the volume <em>V</em> of the solid obtained when <em>R</em> is rotated through \(2\pi \) about the <em>x</em>-axis.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f'(x) = \frac{{b{{\text{e}}^x}(a{{\text{e}}^x} + b) - a{{\text{e}}^x}(a + b{{\text{e}}^x})}}{{{{(a{{\text{e}}^x} + b)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ab{{\text{e}}^{2x}} + {b^2}{{\text{e}}^x} - {a^2}{{\text{e}}^x} - ab{{\text{e}}^{2x}}}}{{{{(a{{\text{e}}^x} + b)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{({b^2} - {a^2}){{\text{e}}^x}}}{{{{(a{{\text{e}}^x} + b)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong><em>EITHER</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 0 \Rightarrow ({b^2} - {a^2}){{\text{e}}^x} = 0 \Rightarrow b =&nbsp; \pm a{\text{ or }}{{\text{e}}^x} = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">which is impossible as \(0 &lt; b &lt; a\) and \({{\text{e}}^x} &gt; 0\) for all \(x \in \mathbb{R}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) &lt; 0\) for all \(x \in \mathbb{R}\) since \(0 &lt; b &lt; a\) and \({{\text{e}}^x} &gt; 0\) for all \(x \in \mathbb{R}\) &nbsp; &nbsp; <strong><em>A1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x)\) cannot be equal to zero because \({{\text{e}}^x}\) is never equal to zero &nbsp; &nbsp; <strong><em>A1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{({b^2} - {a^2}){{\text{e}}^x}{{(a{{\text{e}}^x} + b)}^2} - 2a{{\text{e}}^x}(a{{\text{e}}^x} + b)({b^2} - {a^2}){{\text{e}}^x}}}{{{{(a{{\text{e}}^x} + b)}^4}}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for each term in the numerator.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{({b^2} - {a^2}){{\text{e}}^x}(a{{\text{e}}^x} + b - 2a{{\text{e}}^x})}}{{{{(a{{\text{e}}^x} + b)}^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{({b^2} - {a^2})(b - a{{\text{e}}^x}){{\text{e}}^x}}}{{{{(a{{\text{e}}^x} + b)}^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = ({b^2} - {a^2}){{\text{e}}^x}{(a{{\text{e}}^x} + b)^{ - 2}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = ({b^2} - {a^2}){{\text{e}}^x}{(a{{\text{e}}^x} + b)^{ - 2}} + ({b^2} - {a^2}){{\text{e}}^x}( - 2a{{\text{e}}^x}){(a{{\text{e}}^x} + b)^{ - 3}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for each term.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = ({b^2} - {a^2}){{\text{e}}^x}{(a{{\text{e}}^x} + b)^{ - 3}}\left( {(a{{\text{e}}^x} + b) - 2a{{\text{e}}^x}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = ({b^2} - {a^2}){{\text{e}}^x}{(a{{\text{e}}^x} + b)^{ - 3}}(b - a{{\text{e}}^x})\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0 \Rightarrow b - a{{\text{e}}^x} = 0 \Rightarrow x = \ln \frac{b}{a}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f\left( {\ln \frac{b}{a}} \right) = \frac{{{a^2} + {b^2}}}{{2ab}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates are \(\left( {\ln \frac{b}{a},\frac{{{a^2} + {b^2}}}{{2ab}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; \(\mathop {\lim }\limits_{x - \infty } f(x) = \frac{a}{b} \Rightarrow y = \frac{a}{b}\) horizontal asymptote &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\mathop {\lim }\limits_{x \to&nbsp; + \infty } f(x) = \frac{b}{a} \Rightarrow y = \frac{b}{a}\) horizontal asymptote &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; b &lt; a \Rightarrow a{{\text{e}}^x} + b &gt; 0\) for all \(x \in \mathbb{R}\) (accept \(a{{\text{e}}^x} + b \ne 0\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so no vertical asymptotes &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Statement on vertical asymptote must be seen for <strong><em>R1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; \(y = \frac{{4 + {{\text{e}}^x}}}{{4{{\text{e}}^x} + 1}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{1}{2} \Leftrightarrow x = \ln \frac{7}{2}\) (or 1.25 to 3 sf) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_0^{\ln \frac{7}{2}} {\left( {{{\left( {\frac{{4 + {{\text{e}}^x}}}{{4{{\text{e}}^x} + 1}}} \right)}^2} - \frac{1}{4}} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1.09\) (3 sf) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [19 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well attempted by many candidates. In some cases, candidates who skipped other questions still answered, with some success, parts of this question. Part (a) was in general well done but in (b) candidates found difficulty in justifying that f&rsquo;(x) was non-zero. Performance in part (c) was mixed: it was pleasing to see good levels of algebraic ability of good candidates who successfully answered this question; weaker candidates found the simplification required difficult. There were very few good answers to part (d) which showed the weaknesses of most candidates in dealing with the concept of asymptotes. In part (e) there were a large number of good attempts, with many candidates evaluating correctly the limits of the integral and a smaller number scoring full marks in this part.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Points A , B and T lie on a line on an indoor soccer field. The goal, [AB] , is 2 metres wide. A player situated at point P kicks a ball at the goal. [PT] is perpendicular to (AB) and is 6 metres from a parallel line through the centre of [AB] . Let PT <span class="s1">be \(x\) metros and let \(\alpha &nbsp;= {\rm{A\hat PB}}\) measured in degrees. Assume that the ball travels along the floor.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2017-02-03_om_11.38.31.png" alt="M16/5/MATHL/HP2/ENG/TZ2/11"></span></p>
</div>

<div class="specification">
<p class="p1"><span class="s1">The maximum for \(\tan \alpha \)&nbsp;</span>gives the maximum for \(\alpha \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(\alpha \) when \(x = 10\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\tan \alpha  = \frac{{2x}}{{{x^2} + 35}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha )\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Hence or otherwise find the value of \(\alpha \) <span class="s1">such that \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha ) = 0\).</span></p>
<p class="p2"><span class="s1">(iii) <span class="Apple-converted-space">    </span>Find \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha )\) </span>and hence show that the value of \(\alpha \) <span class="s1">never exceeds 10°.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the set of values of \(x\) for which \(\alpha  \geqslant 7^\circ \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><span class="s1">\(\alpha  = \arctan \frac{7}{{10}} - \arctan \frac{5}{{10}}{\text{ }}( = 34.992 \ldots ^\circ  - 26.5651 \ldots ^\circ )\) <span class="Apple-converted-space">    </span></span><strong><em>(M1)(A1)(A1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for \(\alpha  = {\rm{A\hat PT}} - {\rm{B\hat PT}}\), <strong><em>(A1) </em></strong><span class="s1">for a correct \({\rm{A\hat PT}}\) </span>and <strong><em>(A1) </em></strong><span class="s1">for a correct \({\rm{B\hat PT}}\)</span>.</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="s1">\(\alpha  = \arctan {\text{ }}2 - \arctan \frac{{10}}{7}{\text{ }}( = 63.434 \ldots ^\circ  - 55.008 \ldots ^\circ )\) <span class="Apple-converted-space">    </span></span><strong><em>(M1)(A1)(A1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for \(\alpha  = {\rm{P\hat BT}} - {\rm{P\hat AT}}\), <strong><em>(A1) </em></strong><span class="s1">for a correct \({\rm{P\hat BT}}\) </span>and <strong><em>(A1) </em></strong><span class="s1">for a correct \({\rm{P\hat AT}}\).</span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="s1">\(\alpha  = \arccos \left( {\frac{{125 + 149 - 4}}{{2 \times \sqrt {125}  \times \sqrt {149} }}} \right)\) <span class="Apple-converted-space">    </span></span><strong><em>(M1)(A1)(A1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for use of cosine rule, <strong><em>(A1) </em></strong>for a correct numerator and <strong><em>(A1) </em></strong>for a correct denominator.</p>
<p class="p1"><strong>THEN</strong></p>
<p class="p3"><span class="Apple-converted-space">\( = 8.43^\circ \)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\tan \alpha  = \frac{{\frac{7}{x} - \frac{5}{x}}}{{1 + \left( {\frac{7}{x}} \right)\left( {\frac{5}{x}} \right)}}\)    </span><span class="s1"><strong><em>M1A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong><span class="s2">for use of \(\tan (A - B)\)</span>, <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator.</p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{\frac{2}{x}}}{{1 + \frac{{35}}{{{x^2}}}}}\)    </span><strong><em>M1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\tan \alpha  = \frac{{\frac{x}{5} - \frac{x}{7}}}{{1 + \left( {\frac{x}{5}} \right)\left( {\frac{x}{7}} \right)}}\)    </span><span class="s1"><strong><em>M1A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong><span class="s2">for use of xxx</span>, <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator.</p>
<p class="p1">\( = \frac{{\frac{{2x}}{{35}}}}{{1 + \frac{{{x^2}}}{{35}}}}\)       <strong><em>M1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\cos \alpha  = \frac{{{x^2} + 35}}{{\sqrt {({x^2} + 25)({x^2} + 49)} }}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong></span>for either use of the cosine rule or use of \(\cos (A - B)\)<span class="s1">.</span></p>
<p class="p1"><span class="Apple-converted-space">\(\sin \alpha \frac{{2x}}{{\sqrt {({x^2} + 25)({x^2} + 49)} }}\)    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\tan \alpha  = \frac{{\frac{{2x}}{{\sqrt {({x^2} + 25)({x^2} + 49)} }}}}{{\frac{{{x^2} + 35}}{{\sqrt {({x^2} + 25)({x^2} + 49)} }}}}\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p2"><span class="Apple-converted-space">\(\tan \alpha  = \frac{{2x}}{{{x^2} + 35}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha ) = \frac{{2({x^2} + 35) - (2x)(2x)}}{{{{({x^2} + 35)}^2}}}{\text{ }}\left( { = \frac{{70 - 2{x^2}}}{{{{({x^2} + 35)}^2}}}} \right)\)</span>     <strong><em>M1A1A1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for attempting product or quotient rule differentiation, <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span><strong>METHOD 1</strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p3"><span class="Apple-converted-space">\(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha ) = 0 \Rightarrow 70 - 2{x^2} = 0\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\(x = \sqrt {35} {\text{ (m) }}\left( { = 5.9161 \ldots {\text{ (m)}}} \right)\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\(\tan \alpha  = \frac{1}{{\sqrt {35} }}{\text{ }}( = 0.16903 \ldots )\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">attempting to locate the stationary point on the graph of</p>
<p class="p1"><span class="Apple-converted-space">\(\tan \alpha  = \frac{{2x}}{{{x^2} + 35}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(x = 5.9161 \ldots {\text{ (m) }}\left( { = \sqrt {35} {\text{ (m)}}} \right)\)    </span><strong><em>A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\(\tan \alpha  = 0.16903 \ldots {\text{ }}\left( { = \frac{1}{{\sqrt {35} }}} \right)\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p4"><span class="Apple-converted-space">\(\alpha  = 9.59^\circ \)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p5"><strong>METHOD 2</strong></p>
<p class="p5"><strong>EITHER</strong></p>
<p class="p6"><span class="Apple-converted-space">\(\alpha  = \arctan \left( {\frac{{2x}}{{{x^2} + 35}}} \right) \Rightarrow \frac{{{\text{d}}\alpha }}{{{\text{d}}x}} = \frac{{70 - 2{x^2}}}{{{{({x^2} + 35)}^2} + 4{x^2}}}\)    </span><span class="s2"><strong><em>M1</em></strong></span></p>
<p class="p6"><span class="Apple-converted-space">\(\frac{{{\text{d}}\alpha }}{{{\text{d}}x}} = 0 \Rightarrow x = \sqrt {35} {\text{ (m) }}\left( { = 5.9161{\text{ (m)}}} \right)\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p5"><strong>OR</strong></p>
<p class="p5">attempting to locate the stationary point on the graph of</p>
<p class="p5"><span class="Apple-converted-space">\(\alpha  = \arctan \left( {\frac{{2x}}{{{x^2} + 35}}} \right)\)    </span><strong><em>(M1)</em></strong></p>
<p class="p5"><span class="Apple-converted-space">\(x = 5.9161 \ldots {\text{ (m) }}\left( { = \sqrt {35} {\text{ (m)}}} \right)\)    </span><strong><em>A1</em></strong></p>
<p class="p5"><strong>THEN</strong></p>
<p class="p7"><span class="Apple-converted-space">\(\alpha  = 0.1674 \ldots {\text{ }}\left( { = \arctan \frac{1}{{\sqrt {35} }}} \right)\)    </span><span class="s2"><strong><em>(A1)</em></strong></span></p>
<p class="p6"><span class="Apple-converted-space">\( = 9.59^\circ \)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p5">(iii) <span class="Apple-converted-space">    \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha ) = \frac{{{{({x^2} + 25)}^2}( - 4x) - (2)(2x)({x^2} + 35)(70 - 2{x^2})}}{{{{({x^2} + 35)}^4}}}{\text{ }}\left( { = \frac{{4x({x^2} - 105)}}{{{{({x^2} + 35)}^3}}}} \right)\)</span> <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p5">substituting \(x = \sqrt {35} {\text{ }}( = 5.9161 \ldots )\) into \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha )\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p5"><span class="s3">\(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha ) &lt; 0{\text{ }}( =- 0.004829 \ldots )\) </span>and so \(\alpha  = 9.59^\circ \) is the maximum value of \(\alpha \) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p6">\(\alpha \) never exceeds 10° <span class="Apple-converted-space">    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p5"><strong><em>[11 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to solve \(\frac{{2x}}{{{x^2} + 35}} \geqslant \tan 7^\circ \) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for attempting to solve \(\frac{{2x}}{{{x^2} + 35}} = \tan 7^\circ \).</p>
<p class="p1">\(x = 2.55\) and \(x = 13.7\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\(2.55 \leqslant x \leqslant 13.7{\text{ (m)}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally accessible to a large majority of candidates. It was pleasing to see a number of different (and quite clever) trigonometric methods successfully employed to answer part (a) and part (b).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally accessible to a large majority of candidates. It was pleasing to see a number of different (and quite clever) trigonometric methods successfully employed to answer part (a) and part (b).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The early parts of part (c) were generally well done. In part (c) (i), a few candidates correctly found \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha )\)&nbsp;in unsimplified form but then committed an algebraic error when endeavouring to simplify further. A few candidates merely stated that \(\frac{{\text{d}}}{{{\text{d}}x}}(\tan \alpha ) = {\sec ^2}\alpha \).</p>
<p class="p1">Part (c) (ii) was reasonably well done with a large number of candidates understanding what was required to find the correct value of \(\alpha \) in degrees. In part (c)(iii), a reasonable number of candidates were able to successfully find \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha )\) in unsimplified form. Some however attempted to solve \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha ) = 0\) for \(\chi \) rather than examine the value of \(\frac{{{{\text{d}}^2}}}{{{\text{d}}{x^2}}}(\tan \alpha )\) at \(x = \sqrt {35} \).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (d), which required use of a GCD to determine an inequality, was surprisingly often omitted by candidates. Of the candidates who attempted this part, a number stated that \(x \geqslant 2.55\). Quite a sizeable proportion of candidates who obtained the correct inequality did not express their answer to 3 significant figures.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A lighthouse L is located offshore, 500 metres from the nearest point P on a long straight shoreline. The narrow beam of light from the lighthouse rotates at a constant rate of \(8\pi \) radians per minute, producing an illuminated spot S that moves along the shoreline. You may assume that the height of the lighthouse can be ignored and that the beam of light lies in the horizontal plane defined by sea level.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When S is 2000 metres from P,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; show that the speed of S, correct to three significant figures, is \({\text{214}}\,{\text{000}}\) metres per minute;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; find the acceleration of S.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; the distance of the spot from P is \(x = 500\tan \theta \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the speed of the spot is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 500{\sec ^2}\theta \frac{{{\text{d}}\theta }}{{{\text{d}}t}}{\text{ }}( = 4000\pi {\sec ^2}\theta )\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 2000,{\text{ }}{\sec ^2}\theta = 17{\text{ }}(\theta = 1.32581 \ldots )\left( {\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 8\pi } \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}t}} = 500 \times 17 \times 8\pi \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">speed is \({\text{214 000}}\) (metres per minute) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> If their displayed answer does not round to \({\text{214 000}}\), they lose the final <strong><em>A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(\frac{{{{\text{d}}^2}x}}{{{\text{d}}{t^2}}} = 8000\pi {\sec ^2}\theta \tan \theta \frac{{{\text{d}}\theta }}{{{\text{d}}t}}\) <strong>or</strong> \(500 \times 2{\sec ^2}\theta \tan \theta {\left( {\frac{{{\text{d}}\theta }}{{{\text{d}}t}}} \right)^2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left( {{\text{since }}\frac{{{{\text{d}}^2}\theta }}{{{\text{d}}{t^2}}} = 0} \right)\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {\text{43}}\,{\text{000}}\,{\text{000 (}} = 4.30 \times {10^7}){\text{ (metres per minut}}{{\text{e}}^2})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was a wordy question with a clear diagram, requiring candidates to state variables and do some calculus. Very few responded appropriately.</span></p>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Using the substitution \(x = 2\sin \theta \) , show that\[\int {\sqrt {4 - {x^2}} } {\text{d}}x = Ax\sqrt {4 - {x^2}}&nbsp; + B\arcsin \frac{x}{2} + {\text{constant ,}}\]where \(A\) and \(B\) are constants whose values you are required to find.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">\(\int {\sqrt {4 - {x^2}} } {\text{d}}x\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = 2\sin \theta \)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\text{d}}x = 2\cos \theta {\text{d}}\theta \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \int {\sqrt {4 - 4{{\sin }^2}\theta } }&nbsp; \times 2\cos \theta {\text{d}}\theta \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \int {2\cos \theta&nbsp; \times } 2\cos \theta {\text{d}}\theta \)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = 4\int {{{\cos }^2}\theta {\text{d}}\theta } \)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">now \(\int {{{\cos }^2}\theta {\text{d}}\theta } \)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \int {\left( {\frac{1}{2}\cos 2\theta&nbsp; + \frac{1}{2}} \right)} {\text{d}}\theta \) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> M1A1</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \left( {\frac{{\sin 2\theta }}{4} + \frac{1}{2}\theta } \right)\)&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so original integral</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = 2\sin 2\theta&nbsp; + 2\theta \)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = 2\sin \theta \cos \theta&nbsp; + 2\theta \)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \left( {2 \times \frac{x}{2} \times \frac{{\sqrt {4 - {x^2}} }}{2}} \right) + 2\arcsin \left( {\frac{x}{2}} \right)\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{x\sqrt {4 - {x^2}} }}{2} + 2\arcsin \left( {\frac{x}{2}} \right) + C\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Do not penalise omission of \(C\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {A = \frac{1}{2},{\text{ }}B = 2} \right)\)</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[8 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">For many candidates this was an all or nothing question. Examiners were surprised at the number of candidates who were unable to change the variable in the integral using the given substitution. Another stumbling block, for some candidates, was a lack of care with the application of the trigonometric version of Pythagoras' Theorem to reduce the integrand to a multiple of \({\cos ^2}\theta \) . However, candidates who obtained the latter were generally successful in completing the question.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle moves in a straight line in a positive direction from a fixed point O.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The velocity <em>v</em> m \({{\text{s}}^{ - 1}}\) , at time <em>t</em> seconds, where \(t \geqslant 0\) , satisfies the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{\text{d}}v}}{{{\text{d}}t}} = \frac{{ - v(1 + {v^2})}}{{50}}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The particle starts from O with an initial velocity of 10 m \({{\text{s}}^{ - 1}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; Express as a definite integral, the time taken for the particle&rsquo;s velocity to decrease from 10 m \({{\text{s}}^{ - 1}}\) to 5 m \({{\text{s}}^{ - 1}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>Hence</strong> calculate the time taken for the particle&rsquo;s velocity to decrease from 10 m \({{\text{s}}^{ - 1}}\) to 5 m \({{\text{s}}^{ - 1}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; Show that, when \(v &gt; 0\) , the motion of this particle can also be described by the differential equation \(\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{ - (1 + {v^2})}}{{50}}\) where <em>x</em> metres is the displacement from O.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Given that <em>v</em> =10 when <em>x</em> = 0 , solve the differential equation expressing <em>x</em> in terms of <em>v</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; <strong>Hence</strong> show that \(v = \frac{{10 - \tan \frac{x}{{50}}}}{{1 + 10\tan \frac{x}{{50}}}}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to separate the variables &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{ - v(1 + {v^2})}} = \frac{{{\text{d}}t}}{{50}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Inverting to obtain \(\frac{{{\text{d}}t}}{{{\text{d}}v}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}t}}{{{\text{d}}v}} = \frac{{ - 50}}{{v(1 + {v^2})}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = - 50\int_{10}^5 {\frac{1}{{v(1 + {v^2})}}} {\text{d}}v\,\,\,\,\,\left( { = 50\int_5^{10} {\frac{1}{{v(1 + {v^2})}}{\text{d}}v} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(t = 0.732{\text{ (sec)}}\,\,\,\,\,\left( { = 25\ln \frac{{104}}{{101}}(\sec )} \right)\) &nbsp; &nbsp; <strong><em>A2</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(\frac{{{\text{d}}v}}{{{\text{d}}t}} = v\frac{{{\text{d}}v}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Must see division by <em>v</em> \((v &gt; 0)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{{ - (1 + {v^2})}}{{50}}\) &nbsp; &nbsp; <strong><em>AG</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Either attempting to separate variables or inverting to obtain \(\frac{{{\text{d}}x}}{{{\text{d}}v}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\frac{{{\text{d}}v}}{{1 + {v^2}}} = - \frac{1}{{50}}\int {{\text{d}}x} }\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to integrate both sides &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan v = - \frac{x}{{50}} + C\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for a correct LHS and <strong><em>A1</em></strong> for a correct RHS that must include <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(x = 0{\text{ , }}v = 10{\text{ and so }}C = \arctan 10\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 50(\arctan 10 - \arctan v)\) &nbsp; &nbsp; <strong><em>A1 N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Attempting to make \(\arctan v\) the subject. &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan v = \arctan 10 - \frac{x}{{50}}\) &nbsp; &nbsp; <strong>A1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \tan \left( {\arctan 10 - \frac{x}{{50}}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using tan(<em>A</em> &minus; <em>B</em>) formula to obtain the desired form. &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \frac{{10 - \tan \frac{x}{{50}}}}{{1 + 10\tan \frac{x}{{50}}}}\) &nbsp; &nbsp; <strong><em>AG &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[14 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [19 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">No comment.</span></p>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the gradient of the curve \({{\text{e}}^{xy}} + \ln \left( {{y^2}} \right) + {{\text{e}}^y} = 1 + {\text{e}}\) at the point (0, 1) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">\({{\text{e}}^{xy}} + \ln \left( {{y^2}} \right) + {{\text{e}}^y} = 1 + {\text{e}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({{\text{e}}^{xy}}\left( {y + x\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) + \frac{2}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) , at (0, 1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1A1A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(1\left( {1 + 0} \right) + 2\frac{{{\text{d}}y}}{{{\text{d}}x}} + {\text{e}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(1 + 2\frac{{{\text{d}}y}}{{{\text{d}}x}} + {\text{e}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{1}{{2 + {\text{e}}}}\)&nbsp;&nbsp; (\( = -0.212\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1&nbsp;&nbsp;&nbsp;&nbsp; N2</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Implicit differentiation is usually found to be difficult, but on this occasion there were many </span><span style="font-family: times new roman,times; font-size: medium;">correct solutions. There were also a number of errors in the differentiation of \({e^{xy}}\) , and </span><span style="font-family: times new roman,times; font-size: medium;">although these often led to the correct final answer, marks could not be awarded.</span></p>
</div>
<br><hr><br><div class="specification">
<p>A water trough which is 10 metres long has a uniform cross-section in the shape of a semicircle with radius 0.5 metres. It is partly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O and the angle KOL is \(\theta \) radians.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_11.09.30.png" alt="M17/5/MATHL/HP2/ENG/TZ1/08"></p>
</div>

<div class="specification">
<p>The volume of water is increasing at a constant rate of \(0.0008{\text{ }}{{\text{m}}^3}{{\text{s}}^{ - 1}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the volume of water \(V{\text{ }}({{\text{m}}^3})\) in the trough in terms of \(\theta \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\) when \(\theta = \frac{\pi }{3}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>area of segment \( = \frac{1}{2} \times {0.5^2} \times (\theta - \sin \theta )\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(V = {\text{area of segment}} \times 10\)</p>
<p>\(V = \frac{5}{4}(\theta - \sin \theta )\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{5}{4}(1 - \cos \theta )\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(0.0008 = \frac{5}{4}\left( {1 - \cos \frac{\pi }{3}} \right)\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128{\text{ }}({\text{rad}}\,{s^{ - 1}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}\theta }} = \frac{5}{4}(1 - \cos \theta )\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{4 \times 0.0008}}{{5\left( {1 - \cos \frac{\pi }{3}} \right)}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.00128\left( {\frac{4}{{3125}}} \right)({\text{rad }}{s^{ - 1}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows two concentric circles with centre O and radii 2 cm and 4 cm.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The points P and Q lie on the larger circle and \({\rm{P}}\hat {\text{O}}{\text{Q}} = x\) , where \(0 &lt; x &lt; \frac{\pi }{2}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; Show that the area of the shaded region is \(8\sin x - 2x\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Find the maximum area of the shaded region.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; shaded area area of triangle area of sector, <em>i.e.</em> &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {\frac{1}{2} \times {4^2}\sin x} \right) - \left( {\frac{1}{2}{2^2}x} \right) = 8\sin x - 2x\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1AG</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; <strong>EITHER</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">any method from GDC gaining \(x \approx 1.32\) &nbsp; &nbsp; <em><strong>(M1)(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">maximum value for given domain is \(5.11\) &nbsp;&nbsp;&nbsp; <em><strong>A2</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 8\cos x - 2\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">set \(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0\)</span><span style="font-family: times new roman,times; font-size: medium;">, hence \(8\cos x - 2 = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\cos x = \frac{1}{4} \Rightarrow x \approx 1.32\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">hence \({A_{\max }} = 5.11\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Generally a well answered question.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">An earth satellite moves in a path that can be described by the curve \(72.5{x^2} + 71.5{y^2} = 1\) where \(x = x(t)\) and \(y = y(t)\) are in thousands of kilometres and \(t\) is time in seconds.</p>
<p class="p1">Given that \(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 7.75 \times {10^{ - 5}}\) when \(x = 3.2 \times {10^{ - 3}}\), find the possible values of \(\frac{{{\text{d}}y}}{{{\text{d}}t}}\).</p>
<p class="p1">Give your answers in standard form.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">substituting for \(x\) and attempting to solve for \(y\) (or vice versa) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(y = ( \pm )0.11821 \ldots \)    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><span class="Apple-converted-space">\(145x + 143y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \frac{{145x}}{{143y}}} \right)\)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="Apple-converted-space">\(145x\frac{{{\text{d}}x}}{{{\text{d}}t}} + 143y\frac{{{\text{d}}y}}{{{\text{d}}t}} = 0\)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1">attempting to find \(\frac{{{\text{d}}x}}{{{\text{d}}t}}{\text{ }}\left( {\frac{{{\text{d}}y}}{{{\text{d}}t}} =  - \frac{{145(3.2 \times {{10}^{ - 3}})}}{{143\left( {( \pm )0.11821 \ldots } \right)}} \times (7.75 \times {{10}^{ - 5}})} \right)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}t}} =  \pm 2.13 \times {10^{ - 6}}\)    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p class="p2"> </p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><span class="Apple-converted-space">\(y = ( \pm )\sqrt {\frac{{1 - 72.5{x^2}}}{{71.5}}} \)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = ( \pm )0.0274 \ldots \)    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = ( \pm )0.0274 \ldots  \times 7.75 \times {10^{ - 5}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}t}} =  \pm 2.13 \times {10^{ - 6}}\)    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award all marks except the final <strong><em>A1 </em></strong>to candidates who do not consider ±.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Find the equation of the normal to the curve \(y = \frac{{{{\text{e}}^x}\cos x\ln (x + {\text{e}})}}{{{{({x^{17}} + 1)}^5}}}\) at the point where \(x = 0\).</p>
<p class="p1">In your answer give the value of the gradient, of the normal, to three decimal places.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\(x = 0 \Rightarrow y = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(y'(0) = 1.367879 \ldots \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; The exact answer is \(y'(0) = \frac{{{\text{e}} + 1}}{{\text{e}}} = 1 + \frac{1}{{\text{e}}}\).</p>
<p>&nbsp;</p>
<p>so gradient of normal is \(\frac{{ - 1}}{{1.367879 \ldots }}\;\;\;( =&nbsp; - 0.731058 \ldots )\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>equation of normal is \(y =&nbsp; - 0.731058 \ldots x + c\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>gives \(y =&nbsp; - 0.731x + 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; The exact answer is \(y =&nbsp; - \frac{{\text{e}}}{{{\text{e}} + 1}}x + 1\).</p>
<p>Accept \(y - 1 =&nbsp; - 0.731058 \ldots (x - 0)\)</p>
<p>&nbsp;</p>
<p><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Surprisingly many candidates ignored that fact that paper 2 is a calculator paper, attempted an algebraic approach and wasted lots of time. Candidates that used the GDC were in general successful and achieved 7/7. A number of candidates either found the equation of the tangent or used the positive reciprocal for the normal and many did not find the value of \(y\) corresponding to \(f(0)\).</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sand is being poured to form a cone of height \(h\) cm and base radius \(r\) cm. The height remains equal to the base radius at all times. The height of the cone is increasing at a rate of \(0.5{\text{ cm}}\,{\text{mi}}{{\text{n}}^{ - 1}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the rate at which sand is being poured, in \({\text{c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}}\), when the height is 4 cm.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">volume of a cone is \(V = \frac{1}{3}\pi {r^2}h\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">given \(h = r,{\text{ }}V = \frac{1}{3}\pi {h^3}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {h^2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">when \(h = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \pi&nbsp; \times {4^2} \times 0.5{\text{ (using }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{{{\text{d}}V}}{{{\text{d}}h}} \times \frac{{{\text{d}}h}}{{{\text{d}}t}})\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">volume of a cone is \(V = \frac{1}{3}\pi {r^2}h\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">given \(h = r,{\text{ }}V = \frac{1}{3}\pi {h^3}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi&nbsp; \times 3{h^2} \times \frac{{{\text{d}}h}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">when \(h = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \pi&nbsp; \times {4^2} \times 0.5\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \frac{1}{3}\pi {r^2}h\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi \left( {2rh\frac{{{\text{d}}r}}{{{\text{d}}t}} + {r^2}\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for attempted implicit differentiation and <strong><em>A1 </em></strong>for each correct term on the RHS.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">when \(h = 4,{\text{ }}r = 4,{\text{ }}\frac{{{\text{d}}V}}{{{\text{d}}t}} = \frac{1}{3}\pi \left( {2 \times 4 \times 4 \times 0.5 + {4^2} \times 0.5} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 8\pi {\text{ }}( = 25.1){\text{ (c}}{{\text{m}}^3}\,{\text{mi}}{{\text{n}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">By using the substitution \(x = \sin t\)&nbsp;, find \(\int {\frac{{{x^3}}}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \)&nbsp;.<br></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \sin t,{\text{ d}}x = \cos t\,{\text{d}}t\)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{{x^3}}}{{\sqrt {1 - {x^2}} }}{\text{d}}x} &nbsp;= \int {\frac{{{{\sin }^3}t}}{{\sqrt {1 - {{\sin }^2}t} }}\cos t\,{\text{d}}t} \)</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp;&nbsp;</span><em style="font-style: italic;"><strong>M1</strong></em></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {{{\sin }^3}t\,{\text{d}}t} \) &nbsp; &nbsp;<strong>&nbsp;<em>(A1)</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {{{\sin }^2}t\sin t\,{\text{d}}t} \)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {(1 - {{\cos }^2}t)\sin t\,{\text{d}}t} \)</span><span style="font-family: 'times new roman', times; font-size: medium;"> &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {\sin t\,{\text{d}}t - \int {{{\cos }^2}t\sin t\,{\text{d}}t} } \)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \cos t + \frac{{{{\cos }^3}t}}{3} + C\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \sqrt {1 - {x^2}} &nbsp;+ \frac{1}{3}{\left( {\sqrt {1 - {x^2}} } \right)^3} + C\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = - \sqrt {1 - {x^2}} \left( {1 - \frac{1}{3}(1 - {x^2})} \right) + C} \right)\)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = - \frac{1}{3}\sqrt {1 - {x^2}} (2 + {x^2}) + C} \right)\)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Just a few candidates got full marks in this question. Substitution was usually incorrectly done and lead to wrong results. A cosine term in the denominator was a popular error. Candidates often chose unhelpful trigonometric identities and attempted integration by parts. Results such as \(\int {{{\sin }^3}t\,{\text{d}}t = \frac{{{{\sin }^4}t}}{4} + C} \) were often seen along with other misconceptions concerning the manipulation/simplification of integrals were also noticed. Some candidates unsatisfactorily attempted to use \(\arcsin x\)&nbsp;. However, there were some good solutions involving an expression for the cube of \(\sin t\) in terms of \(\sin t\) and \(\sin 3t\) . Very few candidates re-expressed their final result in terms of <em>x</em>.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">A cone has height <em>h </em>and base radius <em>r </em>. Deduce the formula for the volume of&nbsp;this cone by rotating the triangular region, enclosed by the line \(y = h - \frac{h}{r}x\)&nbsp;and the&nbsp;coordinate axes, through \(2\pi \) about the <em>y</em>-axis.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(x = r - \frac{r}{h}y{\text{ or }}x = \frac{r}{h}(h - y){\text{ (or equivalent)}}\) &nbsp; &nbsp;&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>(A1)</em></strong></span></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\pi {x^2}{\text{d}}y} \)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \int_0^h {{{\left( {r - \frac{r}{h}y} \right)}^2}{\text{d}}y} \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for \(\int {{x^2}{\text{d}}y} \) and <strong><em>A1 </em></strong>for correct expression.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">Accept \(\pi \int_0^h {{{\left( {\frac{r}{h}y - r} \right)}^2}{\text{d}}y{\text{ and }}\pi \int_0^h {{{\left( { \pm \left( {r - \frac{r}{h}x} \right)} \right)}^2}{\text{d}}x} } \)</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \int_0^h {\left( {{r^2} - \frac{{2{r^2}}}{h}y + \frac{{{r^2}}}{{{h^2}}}{y^2}} \right){\text{d}}y} \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Accept substitution method and apply markscheme to corresponding steps.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {{r^2}y - \frac{{{r^2}{y^2}}}{h} + \frac{{{r^2}{y^3}}}{{3{h^2}}}} \right]_0^h\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempted integration of any quadratic trinomial.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left( {{r^2}h - {r^2}h + \frac{1}{3}{r^2}h} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempted substitution of limits in a trinomial.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}\pi {r^2}h\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Throughout the question do not penalize missing d<em>x</em>/d<em>y </em>as long as the integrations&nbsp;are done with respect to correct variable.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[9 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates attempted this question using either the formula given in the information booklet or the disk method. However, many were not successful, either because they started off with the incorrect expression or incorrect integration limits or even attempted to integrate the correct expression with respect to the incorrect variable.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Two non-intersecting circles C<sub>1</sub> , containing points M and S , and C<sub>2</sub> , containing points N and R, have centres P and Q where PQ \( = 50\) . The line segments [MN] and [SR] are common tangents to the circles. The size of the reflex angle MPS is \( \alpha\), the size of the obtuse angle NQR is \( \beta\) , and the size of the angle MPQ is \( \theta\) . The arc length MS is \({l_1}\) and the arc length NR is \({l_2}\) . This information is represented in the diagram below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The radius of C<sub>1</sub> is \(x\) , where \(x \geqslant 10\) and the radius of C<sub>2</sub> is \(10\).</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) &nbsp; &nbsp; Explain why \(x &lt; 40\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Show that cos&theta; = x &minus;10 </span><span style="font-family: times new roman,times; font-size: medium;">50</span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Find an expression for MN in terms of \(x\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Find the value of \(x\) that maximises MN.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d) &nbsp; &nbsp; Find an expression in terms of \(x\) for</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; \( \alpha\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; \( \beta\) .<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e)&nbsp;&nbsp;&nbsp;&nbsp; The length of the perimeter is given by \({l_1} + {l_2} + {\text{MN}} + {\text{SR}}\).</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Find an expression, \(b (x)\) , for the length of the perimeter in terms of \(x\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Find the maximum value of the length of the perimeter.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; Find the value of \(x\) that gives a perimeter of length \(200\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; PQ \( = 50\) and non-intersecting&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[1 mark]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) &nbsp; &nbsp; a construction QT (where T is on the radius MP), parallel to MN, so that </span><span style="font-family: times new roman,times; font-size: medium;">\({\text{Q}}\hat {\text{T}}{\text{M}} = 90^\circ \) (angle between tangent and radius \( = 90^\circ \) )&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">lengths \(50\), \(x - 10\) and angle \( \theta\) marked on a diagram, or equivalent &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Other construction lines are possible.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[2 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c) &nbsp; &nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; MN \( = \sqrt {{{50}^2} - {{\left( {x - 10} \right)}^2}} \) &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; maximum for MN occurs when \(x = 10\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[2 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d) &nbsp; &nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; \(\alpha&nbsp; = 2\pi&nbsp; - 2\theta \) &nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = 2\pi&nbsp; - 2\arccos \left( {\frac{{x - 10}}{{50}}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; \(\beta&nbsp; = 2\pi&nbsp; - \alpha \)&nbsp;&nbsp; ( \( = 2\theta \) )&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = 2\left( {{{\cos }^{ - 1}}\left( {\frac{{x - 10}}{{50}}} \right)} \right)\)</span><span style="font-family: times new roman,times; font-size: medium;"> &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e)&nbsp;&nbsp;&nbsp;&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">\(b(x) = x\alpha&nbsp; + 10\beta&nbsp; + 2\sqrt {{{50}^2} - {{\left( {x - 10} \right)}^2}} \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1A1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = x\left( {2\pi&nbsp; - 2\left( {{{\cos }^{ - 1}}\left( {\frac{{x - 10}}{{50}}} \right)} \right)} \right) + 20\left( {\left( {{{\cos }^{ - 1}}\left( {\frac{{x - 10}}{{50}}} \right)} \right)} \right) + 2\sqrt {{{50}^2} - {{\left( {x - 10} \right)}^2}} \)</span><span style="font-family: times new roman,times; font-size: medium;"> &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; maximum value of perimeter \( = 276\) &nbsp;&nbsp;&nbsp; <em><strong>A2</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; perimeter of \(200\) cm \(b(x) = 200\) &nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">when \(x = 21.2\) &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[9 marks]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">Total [18 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">This is not an inherently difficult question, but candidates either made heavy weather of it or avoided it almost entirely. The key to answering the question is in obtaining the displayed answer to part (b), for which a construction line parallel to MN through Q is required. Diagrams seen by examiners on some scripts tend to suggest that the perpendicularity property of a tangent to a circle and the associated radius is not as firmly known as they had expected. Some candidates mixed radians and degrees in their expressions.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A straight street of width 20 metres is bounded on its parallel sides by two vertical walls, one of height 13 metres, the other of height 8 metres. The intensity of light at point P at ground level on the street is proportional to the angle \(\theta \) where \(\theta&nbsp; = {\rm{A\hat PB}}\), as shown in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(\theta \) in terms of <em>x</em>, where <em>x</em> is the distance of P from the base of the wall of height 8 m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Calculate the value of \(\theta \) when <em>x</em> = 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Calculate the value of \(\theta \) when <em>x</em> = 20.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(\theta \), for \(0 \leqslant x \leqslant 20\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{{5(744 - 64x - {x^2})}}{{({x^2} + 64)({x^2} - 40x + 569)}}\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result in part (d), or otherwise, determine the value of <em>x</em> corresponding to the maximum light intensity at P. Give your answer to four significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point P moves across the street with speed \(0.5{\text{ m}}{{\text{s}}^{ - 1}}\). Determine the rate of change of \(\theta \) with respect to time when P is at the midpoint of the street.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \pi&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(\theta&nbsp; = 180^\circ&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\) (or equivalent).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">OR</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \left( {\frac{x}{8}} \right) + \arctan \left( {\frac{{20 - x}}{{13}}} \right)\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(\theta&nbsp; = 0.994{\text{ }}\left( { = \arctan \frac{{20}}{{13}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(\theta&nbsp; = 1.19{\text{ }}\left( { = \arctan \frac{5}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct shape. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct domain indicated. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to differentiate one \(\arctan \left( {f(x)} \right)\) term &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \pi&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{8}{{{x^2}}} \times \frac{1}{{1 + {{\left( {\frac{8}{x}} \right)}^2}}} - \frac{{13}}{{{{(20 - x)}^2}}} \times \frac{1}{{1 + {{\left( {\frac{{13}}{{20 - x}}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \left( {\frac{x}{8}} \right) + \arctan \left( {\frac{{20 - x}}{{13}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{{\frac{1}{8}}}{{1 + {{\left( {\frac{x}{8}} \right)}^2}}} + \frac{{ - \frac{1}{{13}}}}{{1 + {{\left( {\frac{{20 - x}}{{13}}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{8}{{{x^2} + 64}} - \frac{{13}}{{569 - 40x + {x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{8(569 - 40x + {x^2}) - 13({x^{2}} + 64)}}{{({x^2} + 64)({x^2} - 40x + 569)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5(744 - 64x - {x^2})}}{{({x^2} + 64)({x^2} - 40x + 569)}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Maximum light intensity at P occurs when \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0\). &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either attempting to solve \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0\) for <em>x</em> or using the graph of either \(\theta \) or \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 10.05 (m) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 0.5\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At <em>x</em> = 10, \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0.000453{\text{ }}\left( { = \frac{5}{{11029}}} \right)\). &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}x}} \times \frac{{{\text{d}}x}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.000227{\text{ }}\left( { = \frac{5}{{22058}}} \right){\text{ (rad }}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(A1)</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\frac{{{\text{d}}x}}{{{\text{d}}t}} =&nbsp; - 0.5\) and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = - 0.000227{\text{ }}\left( { = - \frac{5}{{22058}}} \right){\text{ }}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Implicit differentiation can be used to find \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\). Award as above.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was reasonably well done. While many candidates exhibited sound trigonometric knowledge to correctly express <em>&theta; </em>in terms of <em>x</em>, many other candidates were not able to use elementary trigonometry to formulate the required expression for <em>&theta;</em>.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), a large number of candidates did not realize that <em>&theta; </em>could only be acute and gave obtuse angle values for <em>&theta;</em>. Many candidates also demonstrated a lack of insight when substituting endpoint <em>x</em>-values into <em>&theta;</em>.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (c), many candidates sketched either inaccurate or implausible graphs.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (d), a large number of candidates started their differentiation incorrectly by failing to use the chain rule correctly.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">For a question part situated at the end of the paper, part (e) was reasonably well done. A large number of candidates demonstrated a sound knowledge of finding where the maximum value of <em>&theta; </em>occurred and rejected solutions that were not physically feasible.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (f), many candidates were able to link the required rates, however only a few candidates were able to successfully apply the chain rule in a related rates context.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">An electricity station is on the edge of a straight coastline. A lighthouse is located in the sea 200 m from the electricity station. The angle between the coastline and the line joining the lighthouse with the electricity station is 60&deg;. A cable needs to be laid connecting the lighthouse to the electricity station. It is decided to lay the cable in a straight line to the coast and then along the coast to the electricity station. The length of cable laid along the coastline is <em>x</em> metres. This information is illustrated in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 24px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The cost of laying the cable along the sea bed is US$80 per metre, and the cost of laying it on land is US$20 per metre.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find, in terms of <em>x</em>, an expression for the cost of laying the cable.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>x</em>, to the nearest metre, such that this cost is minimized.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let the distance the cable is laid along the seabed be <em>y</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = {x^2} + {200^2} - 2 \times x \times 200\cos 60^\circ \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or equivalent method)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = {x^2} - 200x + 40000\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">cost</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;= <em>C</em> = 80<em>y</em> + 20<em>x</em> &nbsp; &nbsp;&nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(C = 80{({x^2} - 200x + 40000)^{\frac{1}{2}}} + 20x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 55.2786 \ldots&nbsp; = 55\) (m to the nearest metre) &nbsp; &nbsp; <strong><em>(A1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {x = 100 - \sqrt {2000} } \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Some surprising misconceptions were evident here, using right angled trigonometry in non right angled triangles etc. Those that used the cosine rule, usually managed to obtain the correct answer to part (a).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Some surprising misconceptions were evident here, using right angled trigonometry in non right angled triangles etc. Many students attempted to find the value of the minimum algebraically instead of the simple calculator solution.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the curve \(y = \frac{{\cos x}}{{\sqrt {{x^2} + 1} }},{\text{ }} - 4 \leqslant x \leqslant 4\)&nbsp;showing clearly the coordinates of the&nbsp;<em>x-</em>intercepts, any maximum points and any minimum points.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the gradient of the curve at <em>x </em>= 1 .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve at <em>x </em>= 1 .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct shape. Do not penalise if too large a domain is used,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct <em>x</em>-intercepts,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct coordinates of two minimum points,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct coordinates of maximum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Accept answers which correctly indicate the position of the intercepts,&nbsp;maximum point and minimum points.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient at <em>x</em> = 1 is &ndash;0.786 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of normal is \(\frac{{ - 1}}{{ - 0.786}}( = 1.272...)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = 1, <em>y</em> = 0.3820... &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Equation of normal is <em>y</em> &ndash; 0.382 = 1.27(<em>x</em> &ndash; 1) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(( \Rightarrow y = 1.27x - 0.890)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A jet plane travels horizontally along a straight path for one minute, starting at time \(t = 0\) , where \(t\) is measured in seconds. The acceleration, \(a\) , measured in ms<sup>&minus;2</sup>, of the jet plane is given by the straight line graph below.</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find an expression for the acceleration of the jet plane during this time, in terms of \(t\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Given that when \(t = 0\) the jet plane is travelling at \(125\) ms<sup>&minus;1</sup>, find its maximum velocity in ms<sup>&minus;1</sup> during the minute that follows.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Given that the jet plane breaks the sound barrier at \(295\) ms<sup>&minus;1</sup>, find out for how long the jet plane is travelling greater than this speed.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">equation of line in graph \(a = - \frac{{25}}{{60}}t + 15\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {a = - \frac{5}{{12}}t + 15} \right)\)</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[1 mark]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}t}} = - \frac{5}{{12}}t + 15\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> (M1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(v = - \frac{5}{{24}}{t^2} + 15t + c\) &nbsp; &nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">when \(t = 0\) , \(v = 125\) ms<sup>&minus;1</sup></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(v = - \frac{5}{{24}}{t^2} + 15t + 125\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">from graph or by finding time when \(a = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">maximum \(= 395\) ms<sup>&minus;1</sup>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><br><img src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">graph drawn and intersection with \(v = 295\) ms<sup>&minus;1</sup>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>\(</strong></em></span><span style="font-family: times new roman,times; font-size: medium;">t = 57.91 - 14.09 = 43.8\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(295 = - \frac{5}{{24}}{t^2} + 15t + 125 \Rightarrow t = 57.91...\)</span><span style="font-family: times new roman,times; font-size: medium;">; \(14.09...\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(t = 57.91... - 14.09... = 43.8\left( {8\sqrt {30} } \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by a large number of candidates and indicated a good understanding of calculus, kinematics and use of the graphing calculator. Some candidates worked in \(x\) and \(y\) rather than \(a\), \(v\) and \(t\) but mostly obtained correct solutions. Although the majority of candidate used integration throughout the question some correct solutions were obtained by considering the areas in the diagram.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by a large number of candidates and indicated a good understanding of calculus, kinematics and use of the graphing calculator. Some candidates worked in \(x\) and \(y\) rather than \(a\), \(v\) and \(t\) but mostly obtained correct solutions. Although the majority of candidate used integration throughout the question some correct solutions were obtained by considering the areas in the diagram.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by a large number of candidates and indicated a good understanding of calculus, kinematics and use of the graphing calculator. Some candidates worked in \(x\) and \(y\) rather than \(a\), \(v\) and \(t\) but mostly obtained correct solutions. Although the majority of candidate used integration throughout the question some correct solutions were obtained by considering the areas in the diagram.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle, A, is moving along a straight line. The velocity, \({v_A}{\text{ m}}{{\text{s}}^{ - 1}}\), of A <em>t</em> seconds after its motion begins is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{v_A} = {t^3} - 5{t^2} + 6t.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \({v_A} = {t^3} - 5{t^2} + 6t\) for \(t \geqslant 0\), with \({v_A}\) on the vertical axis and <em>t</em> on the horizontal. Show on your sketch the local maximum and minimum points, and the intercepts with the <em>t</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the times for which the velocity of the particle is increasing.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the times for which the magnitude of the velocity of the particle is increasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At <em>t</em> = 0 the particle is at point O on the line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the particle&rsquo;s displacement, \({x_A}{\text{m}}\), from O at time <em>t</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A second particle, B, moving along the same line, has position \({x_B}{\text{ m}}\), velocity \({v_B}{\text{ m}}{{\text{s}}^{ - 1}}\) and acceleration, \({a_B}{\text{ m}}{{\text{s}}^{ - 2}}\), where \({a_B} = - 2{v_B}\) for \(t \geqslant 0\). At \(t = 0,{\text{ }}{x_B} = 20\) and \({v_B} = - 20\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \({v_B}\) in terms of <em>t</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>t</em> when the two particles meet.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for general shape, <strong><em>A1</em></strong> for correct maximum and minimum, <strong><em>A1</em></strong> for intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Follow through applies to (b) and (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant t &lt; 0.785,{\text{ }}\left( {{\text{or }}0 \leqslant t &lt; \frac{{5 - \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(allow \(t &lt; 0.785\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(t &gt; 2.55{\text{ }}\left( {{\text{or }}t &gt; \frac{{5 + \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant t &lt; 0.785,{\text{ }}\left( {{\text{or }}0 \leqslant t &lt; \frac{{5 - \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(allow \(t &lt; 0.785\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 &lt; t &lt; 2.55,{\text{ }}\left( {{\text{or }}2 &lt; t &lt; \frac{{5 + \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t &gt; 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">position of A: \({x_A} = \int {{t^3} - 5{t^2} + 6t{\text{ d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_A} = \frac{1}{4}{t^4} - \frac{5}{3}{t^3} + 3{t^2}\,\,\,\,\,( + c)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(t = 0,{\text{ }}{x_A} = 0\), so \(c = 0\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}{v_B}}}{{{\text{d}}t}} = - 2{v_B} \Rightarrow \int {\frac{1}{{{v_B}}}{\text{d}}{v_B} = \int { - 2{\text{d}}t} } \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln \left| {{v_B}} \right| = - 2t + c\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v_B} = A{e^{ - 2t}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v_B} = - 20\) when <em>t</em> = 0 so \({v_B} = - 20{e^{ - 2t}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_B} = 10{e^{ - 2t}}( + c)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_B} = 20{\text{ when }}t = 0{\text{ so }}{x_B} = 10{e^{ - 2t}} + 10\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">meet when \(\frac{1}{4}{t^4} - \frac{5}{3}{t^3} + 3{t^2} = 10{e^{ - 2t}} + 10\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = 4.41(290 \ldots )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was generally well done, although correct accuracy was often a problem.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (b) and (c) were also generally quite well done.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (b) and (c) were also generally quite well done.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A variety of approaches were seen in part (d) and many candidates were able to obtain at least 2 out of 3. A number missed to consider the \(+c\) , thereby losing the last mark.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Surprisingly few candidates were able to solve part (e) correctly. Very few could recognise the easy variable separable differential equation. As a consequence part (f) was frequently left.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Surprisingly few candidates were able to solve part (e) correctly. Very few could recognise the easy variable separable differential equation. As a consequence part (f) was frequently left.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = {({x^3} + 6{x^2} + 3x - 10)^{\frac{1}{2}}},{\text{ for }}x \in D,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where \(D \subseteq \mathbb{R}\) is the greatest possible domain of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the roots of \(f(x) = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence specify the set <em>D</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the coordinates of the local maximum on the graph \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Solve the equation \(f(x) = 3\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Sketch the graph of \(\left| y \right| = f(x),{\text{ for }}x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; Find the area of the region completely enclosed by the graph of \(\left| y \right| = f(x)\)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; solving to obtain one root: 1, &ndash; 2 or &ndash; 5 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain other roots &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(D = x \in [ - 5,{\text{ }} - 2] \cup [1,{\text{ }}\infty {\text{)}}\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> <strong><em>M1</em></strong> is for 1 finite and 1 infinite interval.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; coordinates of local maximum \( - 3.73 - 2 - \sqrt 3 ,{\text{ }}3.22\sqrt {6\sqrt 3 } \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; use GDC to obtain one root: 1.41, &ndash; 3.18 or &ndash; 4.23 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain other roots &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for shape, <strong><em>A1</em></strong> for max and for min clearly in correct places, <strong><em>A1</em></strong> for all intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1A0A0</em></strong> if only the complete top half is shown.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; required area is twice that of \(y = f(x)\) between &ndash; 5 and &ndash; 2 &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">answer 14.9 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1A0A0</em></strong> for \(\int_{ - 5}^{ - 2} {f(x){\text{d}}x = 7.47 \ldots } \) or <strong><em>N1</em></strong> for 7.47.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was a multi-part question that was well answered by many candidates. The main difficulty was sketching the graph and this meant that the last part was not well answered.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain [0, 2] by \(f(x) = \ln (x + 1)\sin (\pi x)\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain an expression for \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graphs of <em>f</em> and \(f'\) on the same axes, showing clearly all <em>x</em>-intercepts.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the <em>x</em>-coordinates of the two points of inflexion on the graph of <em>f</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the graph of <em>f</em> where <em>x</em> = 0.75 , giving your answer in the form <em>y</em> = <em>mx</em> + <em>c</em> .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the points \({\text{A}}\left( {a{\text{ }},{\text{ }}f(a)} \right)\) , \({\text{B}}\left( {b{\text{ }},{\text{ }}f(b)} \right)\) and \({\text{C}}\left( {c{\text{ }},{\text{ }}f(c)} \right)\) where <em>a</em> , <em>b</em> and <em>c</em> \((a &lt; b &lt; c)\) are the solutions of the equation \(f(x) = f'(x)\) . Find the area of the triangle ABC.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{x + 1}}\sin (\pi x) + \pi \ln (x + 1)\cos (\pi x)\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <em><strong>A4</strong></em></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A1</em></strong> for graphs, <strong><em>A1A1</em></strong> for intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">0.310, 1.12 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0.75) = - 0.839092\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so equation of normal is \(y - 0.39570812 = \frac{1}{{0.839092}}(x - 0.75)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 1.19x - 0.498\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{A}}(0,{\text{ }}0)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{B(}}\overbrace {0.548 \ldots }^c,\overbrace {0.432 \ldots }^d)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{C(}}\overbrace {1.44 \ldots }^e,\overbrace { - 0.881 \ldots }^f)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept coordinates for B and C rounded to 3 significant figures.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">area \(\Delta {\text{ABC}} = \frac{1}{2}|\)(</span><em style="font-family: 'times new roman', times; font-size: medium;">c</em><strong style="font-family: 'times new roman', times; font-size: medium;"><em>i</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> + </span><em style="font-family: 'times new roman', times; font-size: medium;">d</em><strong style="font-family: 'times new roman', times; font-size: medium;"><em>j</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">) \( \times \) (</span><em style="font-family: 'times new roman', times; font-size: medium;">e</em><strong style="font-family: 'times new roman', times; font-size: medium;"><em>i</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> + </span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><strong style="font-family: 'times new roman', times; font-size: medium;"><em>j</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">)\(|\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}(de - cf)\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.554\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the graph of \(y = x + \sin (x - 3),{\text{ }} - \pi&nbsp; \leqslant x \leqslant \pi \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph, clearly labelling the <em>x</em> and <em>y</em> intercepts with their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of the region bounded by the graph and the <em>x</em> and <em>y</em> axes.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for shape,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;">-intercept is 0.820, accept \(\sin ( - 3){\text{ or }} - \sin (3)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for </span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;">-intercept is &minus;0.141.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^{0.8202} {\left| {x + \sin (x - 3)} \right|{\text{d}}x \approx 0.0816{\text{ sq units}}} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates attempted this question successfully. In (a), however, a large number of candidates did not use the zoom feature of the GDC to draw an accurate sketch of the given function. In (b), some candidates used the domain as the limits of the integral. Other candidates did not take the absolute value of the integral.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates attempted this question successfully. In (a), however, a large number of candidates did not use the zoom feature of the GDC to draw an accurate sketch of the given function. In (b), some candidates used the domain as the limits of the integral. Other candidates did not take the absolute value of the integral.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve with equation \(f(x) = {{\text{e}}^{ - 2{x^2}}}{\text{ for }}x &lt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point of inflexion and justify that it is a point of inflexion.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the graph of \(y = f'(x)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The maximum of \(f'(x)\) occurs at <em>x</em> = &minus;0.5 . &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the graph of \(y = f''(x)\). &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The zero of \(f''(x)\) occurs at <em>x</em> = &minus;0.5 . &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not award this <strong><em>A1</em></strong> for stating <em>x</em> = &plusmn;0.5 as the final answer for <em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 0.5) = 0.607( = {{\text{e}}^{ - 0.5}})\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not award this <strong><em>A1</em></strong> for also stating (0.5, 0.607) as a coordinate.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Correctly labelled graph of \(f'(x)\) for \(x &lt; 0\) denoting the maximum \(f'(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f'( - 0.6) = 1.17\) and \(f'( - 0.4) = 1.16\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Correctly labelled graph of \(f''(x)\) for \(x &lt; 0\) denoting the maximum \(f'(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f''( - 0.6) = 0.857\) and \(f''( - 0.4) = - 1.05\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0.5) \approx 1.21\). \(f'(x) &lt; 1.21\) just to the left of \(x = - \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(f'(x) &lt; 1.21\) just to the right of \(x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f'( - 0.6) = 1.17\) and \(f'( - 0.4) = 1.16\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) &gt; 0\) just to the left of \(x = - \frac{1}{2}\) and \(f''(x) &lt; 0\) just to the right of \(x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f''( - 0.6) = 0.857\) and \(f''( - 0.4) = - 1.05\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = - 4x{{\text{e}}^{ - 2{x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = - 4{{\text{e}}^{ - 2{x^2}}} + 16{x^2}{{\text{e}}^{ - 2{x^2}}}\,\,\,\,\,\left( { = (16{x^2} - 4){{\text{e}}^{ - 2{x^2}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve \(f''(x) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not award this <strong><em>A1</em></strong> for stating \(x = \pm \frac{1}{2}\) as the final answer for <em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f\left( { - \frac{1}{2}} \right) = \frac{1}{{\sqrt {\text{e}} }}{\text{ }}( = 0.607)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not award this <strong><em>A1</em></strong> for also stating \(\left( {\frac{1}{2},\frac{1}{{\sqrt {\text{e}} }}} \right)\) as a coordinate.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Correctly labelled graph of \(f'(x)\) for \(x &lt; 0\) denoting the maximum \(f'(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f'( - 0.6) = 1.17\) and \(f'( - 0.4) = 1.16\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Correctly labelled graph of \(f''(x)\) for \(x &lt; 0\) denoting the maximum \(f'(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f''( - 0.6) = 0.857\) and \(f''( - 0.4) = - 1.05\) stated) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0.5) \approx 1.21\). \(f'(x) &lt; 1.21\) just to the left of \(x = - \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(f'(x) &lt; 1.21\) just to the right of \(x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f'( - 0.6) = 1.17\) and \(f'( - 0.4) = 1.16\) stated) &nbsp; &nbsp; <em><strong>A1</strong> &nbsp; &nbsp; <strong>N2</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) &gt; 0\) just to the left of \(x = - \frac{1}{2}\) and \(f''(x) &lt; 0\) just to the right of \(x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(<em>e.g.</em> \(f''( - 0.6) = 0.857\) and \(f''( - 0.4) = - 1.05\) stated) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates adopted an algebraic approach rather than a graphical approach. Most candidates found \(f'(x)\) correctly, however when attempting to find \(f''(x)\), a surprisingly large number either made algebraic errors using the product rule or seemingly used an incorrect form of the product rule. A large number ignored the domain restriction and either expressed \(x = \pm \frac{1}{2}\) as the <em>x</em>-coordinates of the point of inflection or identified \(x = \frac{1}{2}\) rather than \(x = - \frac{1}{2}\). Most candidates were unsuccessful in their attempts to justify the existence of the point of inflection.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Below is a sketch of a Ferris wheel, an amusement park device carrying passengers </span><span style="font-family: times new roman,times; font-size: medium;">around the rim of the wheel.</span></p>
<p><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; The circular Ferris wheel has a radius of 10 metres and is revolving at a rate of 3 radians per minute. Determine how fast a passenger on the wheel is going vertically upwards when the passenger is at point A, 6 metres higher than the centre of the wheel, and is rising.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; The operator of the Ferris wheel stands directly below the centre such that the bottom of the Ferris wheel is level with his eyeline. As he watches the passenger his line of sight makes an angle \(\alpha \) with the horizontal. Find the rate of change of \(\alpha \) at point A.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)</span></p>
<p><img src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 3\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(A1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = 10\sin \theta \) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 10\cos \theta \)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}t}} = \frac{{{\text{d}}y}}{{{\text{d}}\theta }}\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 30\cos \theta \)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">at \(y = 6\) , </span><span style="font-family: times new roman,times; font-size: medium;">\(\cos \theta&nbsp; = \frac{8}{{10}}\) &nbsp; &nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">(M1)(A1)</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}t}} = 24\) (metres per minute) (accept \(24.0\))&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; </span><span style="font-family: times new roman,times; font-size: medium;">\(\alpha&nbsp; = \frac{\theta }{2} + \frac{\pi }{4}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}\alpha }}{{{\text{d}}t}} = \frac{1}{2}\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 1.5\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">Total [10 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Many students were unable to get started with this question, and those that did were generally very poor at defining their variables at the start.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle moves in a straight line with velocity <em>v </em>metres per second. At any time&nbsp;<em>t </em>seconds, \(0 \leqslant t &lt; \frac{{3\pi }}{4}\), the velocity is given by the differential equation \(\frac{{{\text{d}}v}}{{{\text{d}}t}} + {v^2} + 1 = 0\)&nbsp;&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It is also given that <em>v </em>= 1 when <em>t </em>= 0 .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for <em>v </em>in terms of <em>t </em>.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>v </em>against <em>t </em>, clearly showing the coordinates of any intercepts,&nbsp;and the equations of any asymptotes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down the time <em>T </em>at which the velocity is zero.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the distance travelled in the interval [0, <em>T</em>] .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for <em>s </em>, the displacement, in terms of <em>t </em>, given that <em>s </em>= 0&nbsp;when <em>t </em>= 0 .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, show that \(s = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}t}} = - {v^2} - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to separate the variables &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{1 + {v^2}}}{\text{d}}v = \int { - 1{\text{d}}t} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan v = - t + k\) &nbsp; &nbsp;<strong> <em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize the lack of constant at this stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>t</em> = 0, <em>v</em> = 1 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = \arctan 1 = \left( {\frac{\pi }{4}} \right) = (45^\circ )\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow v = \tan \left( {\frac{\pi }{4} - t} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp; &nbsp;&nbsp; A1A1A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for general shape,</span></p>
<p style="margin: 0px 0px 0px 30px; font: 11px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp; A1 </em></strong>for asymptote,</span></p>
<p style="margin: 0px 0px 0px 30px; font: 11px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; <strong><em>A1 </em></strong>for correct <em>t </em>and <em>v </em>intercept.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalise if a larger domain is used.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(T = \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; area under curve \( = \int_0^{\frac{\pi }{4}} {\tan \left( {\frac{\pi }{4} - t} \right){\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.347\left( { = \frac{1}{2}\ln 2} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \tan \left( {\frac{\pi }{4} - t} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \int {\tan \left( {\frac{\pi }{4} - t} \right){\text{d}}t} \) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\sin \left( {\frac{\pi }{4} - t} \right)}}{{\cos \left( {\frac{\pi }{4} - t} \right)}}} {\text{ d}}t\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> &nbsp; &nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;"> <em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \cos \left( {\frac{\pi }{4} - t} \right) + k\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(t = 0,{\text{ }}s = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><strong><em><br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \cos \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\left( { = \ln \left[ {\sqrt 2 \cos \left( {\frac{\pi }{4} - t} \right)} \right]} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{\pi }{4} - t = \arctan v\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{\pi }{4} - \arctan v\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos \left( {\frac{\pi }{4} - \frac{\pi }{4} + \arctan v} \right)} \right]\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos (\arctan v)} \right]\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos \left( {\arccos \frac{1}{{\sqrt {1 + {v^2}} }}} \right)} \right]\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{{\sqrt 2 }}{{\sqrt {1 + {v^2}} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \cos \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sec \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sqrt {1 + {{\tan }^2}\left( {\frac{\pi }{4} - t} \right)} &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sqrt {1 + {v^2}} &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{1}{{\sqrt {1 + {v^2}} }} + \ln \sqrt 2 \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v\frac{{dv}}{{ds}} = - {v^2} - 1\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{v}{{{v^2} + 1}}dv = - \int {1ds} } \) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}\ln ({v^2} + 1) = - s + k\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(s = 0\,,{\text{ }}t = 0 \Rightarrow v = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = \frac{1}{2}\ln 2\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow s = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the plan of an art gallery <em>a </em>metres wide. [AB] represents a doorway,&nbsp;leading to an exit corridor <em>b </em>metres wide. In order to remove a painting from the&nbsp;art gallery, CD (denoted by <em>L </em>) is measured for various values of \(\alpha \) , as represented in&nbsp;the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">If&nbsp;</span><span style="font: 12.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha \)</span>&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">is the angle between [CD] and the wall, show that \(L = \frac{a }{{\sin \alpha }} + \frac{b}{{\cos \alpha }}{\text{, }}0 &lt; \alpha &nbsp;&lt; \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: arial, helvetica, sans-serif;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>a </em>= 5 and <em>b </em>= 1, find the maximum length of a painting that can be removed&nbsp;through this doorway.</span><br></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find, in terms of <em>k </em>, the maximum length of a painting that can be removed from&nbsp;the gallery through this doorway.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>a </em>= 3<em>k </em>and <em>b </em>= <em>k </em>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the minimum value of <em>k </em>if a painting 8 metres long is to be removed through&nbsp;this doorway.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(L = {\text{CA}} + {\text{AD}}\) &nbsp; &nbsp;&nbsp;<em style="font-style: italic;"><strong style="font-weight: bold;">M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{sin}}\alpha {\text{ = }}\frac{a}{{{\text{CA}}}} \Rightarrow {\text{CA}} = \frac{a}{{\sin \alpha }}\) &nbsp; &nbsp;&nbsp;<em style="font-style: italic;"><strong style="font-weight: bold;">A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos \alpha &nbsp;= \frac{b}{{{\text{AD}}}} \Rightarrow {\text{AD}} = \frac{b}{{\cos \alpha }}\) &nbsp; &nbsp;&nbsp;<em style="font-style: italic;"><strong style="font-weight: bold;">A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(L = \frac{a}{{\sin \alpha }} + \frac{b}{{\cos \alpha }}\) &nbsp; &nbsp;&nbsp;<em style="font-style: italic;"><strong style="font-weight: bold;">AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><em style="font-style: italic;"><strong style="font-weight: bold;">[2 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 5{\text{ and }}b = 1 \Rightarrow L = \frac{5}{{\sin \alpha }} + \frac{1}{{\cos \alpha }}\)</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong style="font-weight: bold;">METHOD 1</strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><em style="font-style: italic;"><strong style="font-weight: bold;"><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; (M1)</strong></em></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum from graph \( \Rightarrow L = 7.77\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="font-family: arial, helvetica, sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum of&nbsp;<em>L&nbsp;</em>gives the max length of the painting &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></span></p>
<p style="font-family: arial, helvetica, sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="font-family: arial, helvetica, sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="font-family: arial, helvetica, sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }} = \frac{{ - 5\cos \alpha }}{{{{\sin }^2}\alpha }} + \frac{{\sin \alpha }}{{{{\cos }^2}\alpha }}\) &nbsp; &nbsp;<em style="font-style: italic;"><strong>&nbsp;(M1)</strong></em></span></p>
<p style="font-family: arial, helvetica, sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }} = 0 \Rightarrow \frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} = 5 \Rightarrow \tan \alpha &nbsp;= \sqrt[{3{\text{ }}}]{5}{\text{ }}(\alpha &nbsp;= 1.0416...)\) &nbsp; &nbsp;<strong>&nbsp;<em>(M1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum of&nbsp;<em>L&nbsp;</em>gives the max length of the paintin</span></span><span style="font-family: 'times new roman', times; font-size: medium;">g &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">maximum length = 7.77 &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }} = \frac{{ - 3k\cos \alpha }}{{{{\sin }^2}\alpha }} + \frac{{k\sin \alpha }}{{{{\cos }^2}\alpha }}\,\,\,\,\,{\text{(or equivalent)}}\) &nbsp; &nbsp;&nbsp;<em style="font-style: italic;"><strong style="font-weight: bold;">M1A1A1</strong></em></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 12px/normal Times; margin: 0px;"><em><strong><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }} = \frac{{ - 3k{{\cos }^3}\alpha &nbsp;+ k{{\sin }^3}\alpha }}{{{{\sin }^2}\alpha {{\cos }^2}\alpha }}\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}L}}{{{\text{d}}\alpha }} = 0 \Rightarrow \frac{{{{\sin }^3}\alpha }}{{{{\cos }^3}\alpha }} = \frac{{3k}}{k} \Rightarrow \tan \alpha &nbsp;= \sqrt[3]{3}\,\,\,\,\,(\alpha &nbsp;= 0.96454...)\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \alpha &nbsp;= \sqrt[3]{3} \Rightarrow \frac{1}{{\cos \alpha }} = \sqrt {1 + \sqrt[3]{9}} \,\,\,\,\,(1.755...)\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{and }}\frac{1}{{\sin \alpha }} = \frac{{\sqrt {1 + \sqrt[3]{9}} }}{{\sqrt[3]{3}}}\,\,\,\,\,(1.216...)\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(L = 3k\left( {\frac{{\sqrt {1 + \sqrt[3]{9}} }}{{\sqrt[3]{3}}}} \right) + k\sqrt {1 + \sqrt[3]{9}} \,\,\,\,\,(L = 5.405598...k)\) &nbsp; &nbsp;&nbsp;<strong><em>A1 &nbsp; &nbsp; N4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(L \leqslant 8 \Rightarrow k \geqslant 1.48\) &nbsp; &nbsp; <em><strong>M1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the minimum value is 1.48</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done by most candidates. Parts (b), (c) and (d) required a subtle balance between abstraction, differentiation skills and use of GDC.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), although candidates were asked to justify their reasoning, very few candidates offered an explanation for the maximum. Therefore most candidates did not earn the R1 mark in part (b). Also not as many candidates as anticipated used a graphical approach, preferring to use the calculus with varying degrees of success. In part (c), some candidates calculated the derivatives of inverse trigonometric functions. Some candidates had difficulty with parts (d) and (e). In part (d), some candidates erroneously used their alpha value from part (b). In part (d) many candidates used GDC to calculate decimal values for \(\alpha \) and <em>L</em>. The premature rounding of decimals led sometimes to inaccurate results. Nevertheless many candidates got excellent results in this question.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done by most candidates. Parts (b), (c) and (d) required a subtle balance between abstraction, differentiation skills and use of GDC.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), although candidates were asked to justify their reasoning, very few candidates offered an explanation for the maximum. Therefore most candidates did not earn the R1 mark in part (b). Also not as many candidates as anticipated used a graphical approach, preferring to use the calculus with varying degrees of success. In part (c), some candidates calculated the derivatives of inverse trigonometric functions. Some candidates had difficulty with parts (d) and (e). In part (d), some candidates erroneously used their alpha value from part (b). In part (d) many candidates used GDC to calculate decimal values for \(\alpha \) and <em>L</em>. The premature rounding of decimals led sometimes to inaccurate results. Nevertheless many candidates got excellent results in this question.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done by most candidates. Parts (b), (c) and (d) required a subtle balance between abstraction, differentiation skills and use of GDC.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), although candidates were asked to justify their reasoning, very few candidates offered an explanation for the maximum. Therefore most candidates did not earn the R1 mark in part (b). Also not as many candidates as anticipated used a graphical approach, preferring to use the calculus with varying degrees of success. In part (c), some candidates calculated the derivatives of inverse trigonometric functions. Some candidates had difficulty with parts (d) and (e). In part (d), some candidates erroneously used their alpha value from part (b). In part (d) many candidates used GDC to calculate decimal values for \(\alpha \) and <em>L</em>. The premature rounding of decimals led sometimes to inaccurate results. Nevertheless many candidates got excellent results in this question.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done by most candidates. Parts (b), (c) and (d) required a subtle balance between abstraction, differentiation skills and use of GDC.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), although candidates were asked to justify their reasoning, very few candidates offered an explanation for the maximum. Therefore most candidates did not earn the R1 mark in part (b). Also not as many candidates as anticipated used a graphical approach, preferring to use the calculus with varying degrees of success. In part (c), some candidates calculated the derivatives of inverse trigonometric functions. Some candidates had difficulty with parts (d) and (e). In part (d), some candidates erroneously used their alpha value from part (b). In part (d) many candidates used GDC to calculate decimal values for \(\alpha \) and <em>L</em>. The premature rounding of decimals led sometimes to inaccurate results. Nevertheless many candidates got excellent results in this question.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done by most candidates. Parts (b), (c) and (d) required a subtle balance between abstraction, differentiation skills and use of GDC.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), although candidates were asked to justify their reasoning, very few candidates offered an explanation for the maximum. Therefore most candidates did not earn the R1 mark in part (b). Also not as many candidates as anticipated used a graphical approach, preferring to use the calculus with varying degrees of success. In part (c), some candidates calculated the derivatives of inverse trigonometric functions. Some candidates had difficulty with parts (d) and (e). In part (d), some candidates erroneously used their alpha value from part (b). In part (d) many candidates used GDC to calculate decimal values for \(\alpha \) and <em>L</em>. The premature rounding of decimals led sometimes to inaccurate results. Nevertheless many candidates got excellent results in this question.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of the region enclosed by the curves \(y = {x^3}\) and \(x = {y^2} - 3\) .<br></span></p>
<p>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;">&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="" alt></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">intersection points &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:&nbsp;</strong><span style="font-family: 'times new roman', times; font-size: medium;">Only either the&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;">-coordinate or the&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;">-coordinate is needed.</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;">&nbsp;</p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = {y^2} - 3 \Rightarrow y = \pm \sqrt {x + 3} \,\,\,\,\,\left( {{\text{accept }}y = \sqrt {x + 3} } \right)\) &nbsp;<strong>&nbsp; &nbsp;<em>(M1)</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_{ - 3}^{ - 1.111...} {2\sqrt {x + 3} \,{\text{d}}x + \int_{ - 1.111...}^{1.2739...} {\sqrt {x + 3} &nbsp;- {x^3}{\text{d}}x} } \) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">= 3.4595... + 3.8841...</span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">= 7.34 (3sf) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {x^3} \Rightarrow x = \sqrt[3]{y}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_{ - 1.374...}^{2.067...} {\sqrt[3]{y}} &nbsp;- ({y^2} - 3){\text{d}}y\) &nbsp; &nbsp;<strong>&nbsp;<em>(M1)A1</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">= 7.34 (3sf) &nbsp; &nbsp;&nbsp;<strong><em>A2</em></strong></span></p>
<p style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font: normal normal normal 11px/normal Helvetica; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question proved challenging to most candidates. Just a few candidates were able to calculate the exact area between curves. Those candidates who tried to express the functions in terms <em>x</em> of instead of <em>y</em> showed better performances. Determining only \(\sqrt {x + 3} \) was a common error and forming appropriate definite integrals above and below the <em>x</em>-axis proved difficult. Although many candidates attempted to sketch the graphs, many found only one branch of the parabola and only one point of intersection; as the graph of the parabola was not complete, many candidates did not know which area they were trying to find. Not many split the integral correctly to find areas that would add up to the result. Premature rounding was usually seen and consequently final answers proved inaccurate.</span></p>
<p>&nbsp;</p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the graphs \(y = {{\text{e}}^{ - x}}\) and \(y = {{\text{e}}^{ - x}}\sin 4x\) , for \(0 \leqslant x \leqslant \frac{{5\pi }}{4}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; On the same set of axes draw, on graph paper, the graphs, for \(0 \leqslant x \leqslant \frac{{5\pi }}{4}\). </span><span style="font-family: times new roman,times; font-size: medium;">Use a scale of \(1\) cm to \(\frac{\pi }{8}\) </span><span style="font-family: times new roman,times; font-size: medium;">on your \(x\)-axis and \(5\) cm to \(1\) unit on your \(y\)-axis.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; Show that the \(x\)-intercepts of the graph \(y = {{\text{e}}^{ - x}}\) sin 4x are \(\frac{{n\pi }}{4}\)</span> <span style="font-family: times new roman,times; font-size: medium;">, \(n = 0\), \(1\), \(2\), \(3\), \(4\), \(5\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; Find the \(x\)-coordinates of the points at which the graph of \(y = {{\text{e}}^{ - x}}\sin 4x\) meets </span><span style="font-family: times new roman,times; font-size: medium;">the graph of \(y = {{\text{e}}^{ - x}}\) . Give your answers in terms of \( \pi\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(d)&nbsp;&nbsp;&nbsp;&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Show that when the graph of \(y = {{\text{e}}^{ - x}}\sin 4x\) meets the graph of \(y = {{\text{e}}^{ - x}}\) , </span><span style="font-family: times new roman,times; font-size: medium;">their gradients are equal.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence explain why these three meeting points are not local maxima of the </span><span style="font-family: times new roman,times; font-size: medium;">graph \(y = {{\text{e}}^{ - x}}\sin 4x\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; Determine the \(y\)-coordinates, \({y_1}\) , \({y_2}\) and \({y_3}\), where \({y_1} &gt; {y_2} &gt; {y_3}\) , of the </span><span style="font-family: times new roman,times; font-size: medium;">local maxima of \(y = {{\text{e}}^{ - x}}\sin 4x\) for \(0 \leqslant x \leqslant \frac{{5\pi }}{4}\)</span><span style="font-family: times new roman,times; font-size: medium;"> . You do not need to show </span><span style="font-family: times new roman,times; font-size: medium;">that they are maximum values, but the values should be simplified.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({y_1}\) , \({y_2}\) and \({y_3}\)</span> form a geometric sequence and determine the common ratio \(r\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp;<em><strong> A3</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct shape,</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;&nbsp; A1</strong></em> for correct relative position.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; \({{\text{e}}^{ - x}}\sin \left( {4x} \right) = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\sin \left( {4x} \right) = 0\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(4x = 0\), </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\pi \), </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(2\pi \), </span></span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(3\pi \), </span></span></span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(4\pi \), </span></span></span></span>\(5\pi \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = 0\), \(\frac{\pi }{4}\), </span><span style="font-family: times new roman,times; font-size: medium;">\(\frac{2\pi }{4}\), </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{3\pi }{4}\), </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{4\pi }{4}\), </span></span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{5\pi }{4}\</span></span></span>)</span>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong><span style="font-family: times new roman,times; font-size: medium;">AG</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp; &nbsp;&nbsp; \({{\text{e}}^{ - x}} = {{\text{e}}^{ - x}}\sin \left( {4x} \right) = 0\) </span><span style="font-family: times new roman,times; font-size: medium;">or reference to graph</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\sin 4x = 1\),&nbsp; &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\sin 4x = 1\), \(frac{\pi }{2}\), </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(frac{5\pi }{2}\), </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(frac{9\pi }{2}\)</span></span> &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<address><span style="font-family: times new roman,times; font-size: medium;">\(x = \frac{\pi }{8}\), </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{5\pi }{8}\), </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{9\pi }{8}\)</span></span> &nbsp;&nbsp;&nbsp;<em><strong> A1 &nbsp; &nbsp; N3</strong></em></span></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></address><address><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></address><address><span style="font-family: times new roman,times; font-size: medium;">(d) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(y = {{\text{e}}^{ - x}}\sin 4x\)</span></address><address><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - {{\text{e}}^{ - x}}\sin 4x + 4{{\text{e}}^{ - x}}\cos 4x\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></address><address><span style="font-family: times new roman,times; font-size: medium;">\(y = {{\text{e}}^{ - x}}\)</span></address><address><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - {{\text{e}}^{ - x}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></address><address><span style="font-family: times new roman,times; font-size: medium;">verifying equality of gradients at one point &nbsp; &nbsp; <em><strong>R1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">verifying at the other two&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; since \(\frac{{{\text{d}}y}}{{{\text{d}}x}} \ne 0\) </span><span style="font-family: times new roman,times; font-size: medium;">at these points they cannot be local maxima&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></address><address><span style="font-family: times new roman,times; font-size: medium;">(e) &nbsp; &nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; maximum when \(y' = 4{{\text{e}}^{ - x}}\cos 4x - {{\text{e}}^{ - x}}\sin 4x = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">\(x = \frac{{\arctan \left( 4 \right)}}{4}\), \(\frac{{\arctan \left( 4 \right) + \pi }}{4}\), \(\frac{{\arctan \left( 4 \right) + 2\pi }}{4}\), ...</span></address><address><span style="font-family: times new roman,times; font-size: medium;">maxima occur at</span></address><address><span style="font-family: times new roman,times; font-size: medium;">\(x = \frac{{\arctan \left( 4 \right)}}{4}\),&nbsp; \(\frac{{\arctan \left( 4 \right) + 2\pi }}{4}\), \(\frac{{\arctan \left( 4 \right) + 4\pi }}{4}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">so \({y_1} = {{\text{e}}^{ - \frac{1}{4}\left( {\arctan \left( 4 \right)} \right)}}\sin \left( {\arctan \left( 4 \right)} \right)\) &nbsp; (\( = 0.696\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">\({y_2} = {{\text{e}}^{ - \frac{1}{4}\left( {\arctan \left( 4 \right) + 2\pi } \right)}}\sin \left( {\arctan \left( 4 \right) + 2\pi } \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></address><address style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(\left( { = {{\text{e}}^{ - \frac{1}{4}\left( {\arctan \left( 4 \right) + 2\pi } \right)}}\sin \left( {\arctan \left( 4 \right)} \right) = 0.145} \right)\)</span></address><address><span style="font-family: times new roman,times; font-size: medium;">\({y_3} = {{\text{e}}^{ - \frac{1}{4}\left( {\arctan \left( 4 \right) + 4\pi } \right)}}\sin \left( {\arctan \left( 4 \right) + 4\pi } \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></address><address style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(\left( { = {{\text{e}}^{ - \frac{1}{4}\left( {\arctan \left( 4 \right) + 4\pi } \right)}}\sin \left( {\arctan \left( 4 \right)} \right) = 0.0301} \right)\)&nbsp;&nbsp;&nbsp;&nbsp;<em><strong> N3</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; for finding and comparing \(\frac{{{y_3}}}{{{y_2}}}\) and \(\frac{{{y_2}}}{{{y_1}}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;">\(r = {{\text{e}}^{ - \frac{\pi }{2}}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></address><address><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Exact values must be used to gain the <em><strong>M1</strong></em> and the <em><strong>A1</strong></em>.</span></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></address><address><em><strong><span style="font-family: times new roman,times; font-size: medium;">Total [22 marks]</span></strong></em></address>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Although the final question on the paper it had parts accessible even to the weakest candidates. The vast majority of candidates earned marks on part (a), although some graphs were rather scruffy. Many candidates also tackled parts (b), (c) and (d). In part (b), however, as the answer was given, it should have been clear that some working was required rather than reference to a graph, which often had no scale indicated. In part d(i), although the functions were usually differentiated correctly, it was often the case that only one point was checked for the equality of the gradients. In part e(i) many candidates who got this far were able to determine the \(y\)-coordinates of the local maxima numerically using a GDC, and that was given credit. Only the exact values, however, could be used in part e(ii).</span></p>
</div>
<br><hr><br>