File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 6/markSceme-HL-paper1html
File size: 2.38 MB
MIME-type: application/octet-stream
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the points (0, 0) and (\(\sqrt {2\pi } \) , \( - \sqrt {2\pi } \)) on the curve \({{\text{e}}^{\left( {x + y} \right)}} = \cos \left( {xy} \right)\) have a</span> <span style="font-family: times new roman,times; font-size: medium;">common tangent.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">attempt at implicit differentiation&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({{\text{e}}^{\left( {x + y} \right)}}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = - \sin \left( {xy} \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y} \right)\) &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">let \(x = 0\), \(y = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({{\text{e}}^0}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 1\)</span>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">let \(x = \sqrt {2\pi } \) , \(y = - \sqrt {2\pi } \)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({{\text{e}}^0}\left( {1 + \frac{{{\text{d}}y}}{{{\text{d}}x}}} \right) = - \sin \left( {- 2\pi } \right)\left( {x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y} \right) = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 1\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">since both points lie on the line \(y = - x\) this is a common tangent&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> \(y = - x\) must be seen for the final <em><strong>R1</strong></em>. It is not sufficient to note that the gradients </span><span style="font-family: times new roman,times; font-size: medium;">are equal.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Implicit differentiation was attempted by many candidates, some of whom obtained the correct value for the gradient of the tangent. However, very few noticed the need to go further and prove that both points were on the same line.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \sqrt {\frac{x}{{1 - x}}} ,{\text{ }}0 &lt; x &lt; 1\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f'(x) = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\)&nbsp;and deduce that <em>f </em>is an increasing function.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the curve&nbsp;\(y = f(x)\)&nbsp;has one point of inflexion, and find its coordinates.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(x = {\sin ^2}\theta \)&nbsp;to show that \(\int {f(x){\text{d}}x} &nbsp;= \arcsin \sqrt x &nbsp;- \sqrt {x - {x^2}} &nbsp;+ c\)&nbsp;.</span></p>
<p>&nbsp;</p>
<div class="marks">[11]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">derivative of \(\frac{x}{{1 - x}}\) is \(\frac{{(1 - x) - x( - 1)}}{{{{(1 - x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{2}{\left( {\frac{x}{{1 - x}}} \right)^{ - \frac{1}{2}}}\frac{1}{{{{(1 - x)}^2}}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) &gt; 0\)&nbsp;(for all \(0 &lt; x &lt; 1\)) so the function is increasing &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><strong>OR<br></strong></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = \frac{{{x^{\frac{1}{2}}}}}{{{{(1 - x)}^{\frac{1}{2}}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{{{(1 - x)}^{\frac{1}{2}}}\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \frac{1}{2}{x^{\frac{1}{2}}}{{(1 - x)}^{ - \frac{1}{2}}}( - 1)}}{{1 - x}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{1}{2}}} + \frac{1}{2}{x^{\frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}[1 - x + x]\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) &gt; 0\)&nbsp;(for all \(0 &lt; x &lt; 1\)) so the function is increasing &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: times new roman,times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{2}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{3}{2}}}\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow f''(x) = -\frac{1}{4}{x^{ - \frac{3}{2}}}{(1 - x)^{ - \frac{3}{2}}} + \frac{3}{4}{x^{ - \frac{1}{2}}}{(1 - x)^{ - \frac{5}{2}}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = -\frac{1}{4}{x^{ - \frac{3}{2}}}{(1 - x)^{ - \frac{5}{2}}}[1 - 4x]\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0 \Rightarrow x = \frac{1}{4}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x)\) changes sign at \(x = \frac{1}{4}\)&nbsp;hence there is a point of inflexion &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{1}{4} \Rightarrow y = \frac{1}{{\sqrt 3 }}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the coordinates are \(\left( {\frac{1}{4},\frac{1}{{\sqrt 3 }}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(x = {\sin ^2}\theta &nbsp;\Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}\theta }} = 2\sin \theta \cos \theta \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\sqrt {\frac{x}{{1 - x}}} {\text{d}}x = \int {\sqrt {\frac{{{{\sin }^2}\theta }}{{1 - {{\sin }^2}\theta }}} 2\sin \theta \cos \theta {\text{d}}\theta } } \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {2{{\sin }^2}\theta {\text{d}}\theta } \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {1 - \cos 2\theta } {\text{d}}\theta \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \theta &nbsp;- \frac{1}{2}\sin 2\theta &nbsp;+ c\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta &nbsp;= \arcsin \sqrt x \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}\sin 2\theta &nbsp;= \sin \theta \cos \theta &nbsp;= \sqrt x \sqrt {1 - x} &nbsp;= \sqrt {x - {x^2}} \) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">hence \(\int {\sqrt {\frac{x}{{1 - x}}} {\text{d}}x = \arcsin \sqrt x } &nbsp;- \sqrt {x - {x^2}} &nbsp;+ c\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;">&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well done, although few candidates made the final deduction asked for. Those that lost other marks in this part were generally due to mistakes in algebraic manipulation. In part (b) whilst many students found the second derivative and set it equal to zero, few then confirmed that it was a point of inflexion. There were several good attempts for part (c), even though there were various points throughout the question that provided stopping points for other candidates.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The first set of axes below shows the graph of \(y = {\text{ }}f(x)\) for \( - 4 \leqslant x \leqslant 4\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-11_om_12.03.04.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g(x) = \int_{ - 4}^x {f(t){\text{d}}t} \) for \( - 4 \leqslant x \leqslant 4\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; State the value of <em>x </em>at which \(g(x)\) is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; On the second set of axes, sketch the graph of \(y = g(x)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(x = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong><em>A1 </em></strong>for point (&ndash;4, 0)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong> for (0, &minus; 4)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for min at \(x = 1\) in approximately the correct place</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for (4, 0)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for shape including continuity at \(x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;<img style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;" src="images/maths_6_markscheme.png" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [6 marks]</em></strong></span></p>
<div><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = {{\text{e}}^{{x^2} - 2x - 1.5}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; You are given that \(y = \frac{{f(x)}}{{x - 1}}\) has a local minimum at <em>x</em> = <em>a</em>, <em>a</em> &gt; 1. Find the</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">value of <em>a</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(\left( {u = {x^2} - 2x - 1.5;\frac{{{\text{d}}u}}{{{\text{d}}x}} = 2x - 2} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}f}}{{{\text{d}}x}} = \frac{{{\text{d}}f}}{{{\text{d}}u}}\frac{{{\text{d}}u}}{{{\text{d}}x}} = {{\text{e}}^u}(2x - 2)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2(x - 1){{\text{e}}^{{x^2} - 2x - 1.5}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(x - 1) \times 2(x - 1){{\text{e}}^{{x^2} - 2x - 1.5}} - 1 \times {{\text{e}}^{{x^2} - 2x - 1.5}}}}{{{{(x - 1)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2{x^2} - 4x + 1}}{{{{(x - 1)}^2}}}{{\text{e}}^{{x^2} - 2x - 1.5}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum occurs when \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1 \pm \sqrt {\frac{1}{2}} \,\,\,\,\,\left( {{\text{accept }}x = \frac{{4 \pm \sqrt 8 }}{4}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 1 + \sqrt {\frac{1}{2}} \,\,\,\,\,\left( {{\text{accept }}a = \frac{{4 + \sqrt 8 }}{4}} \right)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was successfully answered by most candidates. Most candidates were able to make significant progress with part (b) but were then let down by being unable to simplify the expression or by not understanding the significance of being told that <em>a</em> &gt; 1.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the graph of \(y = \frac{{{{(\ln x)}^2}}}{x},{\text{ }}x &gt; 0\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_06.37.32.png" alt="M16/5/MATHL/HP1/ENG/TZ1/13"></p>
</div>

<div class="specification">
<p class="p1">The region \(R\) is enclosed by the curve, the \(x\)-axis and the line \(x = e\).</p>
</div>

<div class="specification">
<p class="p1">Let \({I_n} = \int_1^{\text{e}} {\frac{{{{(\ln x)}^n}}}{{{x^2}}}{\text{d}}x,{\text{ }}n \in \mathbb{N}} \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the curve passes through the point \((a,{\text{ }}0)\)<span class="s1">, state the value of \(a\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the substitution \(u = \ln x\) to find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the value of \({I_0}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Prove that \({I_n} = \frac{1}{{\text{e}}} + n{I_{n - 1}},{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Hence find the value of \({I_1}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the volume of the solid formed when the region \(R\) <span class="s1">is rotated through \(2\pi \) </span>about the \(x\)-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(a = 1\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)    </span><strong><em>(A1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\int {\frac{{{{(\ln x)}^2}}}{x}{\text{d}}x = \int {{u^2}{\text{d}}u} } \)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">area \( = \left[ {\frac{1}{3}{u^3}} \right]_0^1\) or \(\left[ {\frac{1}{3}{{(\ln x)}^3}} \right]_1^{\text{e}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( = \frac{1}{3}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \({I_0} = \left[ { - \frac{1}{x}} \right]_1^{\text{e}}\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = 1 - \frac{1}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>use of integration by parts <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\({I_n} = \left[ { - \frac{1}{x}{{(\ln x)}^n}} \right]_1^{\text{e}} + \int_1^{\text{e}} {\frac{{n{{(\ln x)}^{n - 1}}}}{{{x^2}}}{\text{d}}x} \)    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + n{I_{n - 1}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p4"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>If the substitution \(u = \ln x\) is used <strong><em>A1A1 </em></strong>can be awarded for \({I_n} = [ - {{\text{e}}^{ - u}}{u^n}]_0^1 + \int_0^1 n {{\text{e}}^{ - u}}{u^{n - 1}}{\text{d}}u\).</p>
<p class="p4"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    \({I_1} =  - \frac{1}{{\text{e}}} + 1 \times {I_0}\)</span> <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = 1 - \frac{2}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(d) <span class="Apple-converted-space">    </span>volume \( = \pi \int_1^{\text{e}} {\frac{{{{(\ln x)}^4}}}{{{x^2}}}{\text{d}}x{\text{ }}( = \pi {I_4})} \) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p2"><span class="Apple-converted-space">\({I_4} =  - \frac{1}{{\text{e}}} + 4{I_3}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + 4\left( { - \frac{1}{{\text{e}}} + 3{I_2}} \right)\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p3">\( =  - \frac{5}{{\text{e}}} + 12{I_2} =  - \frac{5}{{\text{e}}} + 12\left( { - \frac{1}{{\text{e}}} + 2{I_1}} \right)\)</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">using parts \(\int_1^{\text{e}} {\frac{{{{(\ln x)}^4}}}{{{x^2}}}{\text{d}}x =  - \frac{1}{{\text{e}}} + 4\int_1^{\text{e}} {\frac{{{{(\ln x)}^3}}}{{{x^2}}}{\text{d}}x} } \) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + 4\left( { - \frac{1}{{\text{e}}} + 3\int_1^{\text{e}} {\frac{{{{(\ln x)}^2}}}{{{x^2}}}{\text{d}}x} } \right)\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p3"><span class="Apple-converted-space">\( =  - \frac{{17}}{{\text{e}}} + 24\left( {1 - \frac{2}{{\text{e}}}} \right) = 24 - \frac{{65}}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">volume \( = \pi \left( {24 - \frac{{65}}{{\text{e}}}} \right)\)</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a) and (b) were well done. Most candidates could integrate by substitution, though many did not change the limits during the substitution and, though they changed back to \(x\) at the end of their solution, under a different markscheme they might have lost marks for this in the intermediate stages.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a) and (b) were well done. Most candidates could integrate by substitution, though many did not change the limits during the substitution and, though they changed back to \(x\) at the end of their solution, under a different markscheme they might have lost marks for this in the intermediate stages.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(c)(i) This part was well done by the candidates.</p>
<p class="p1">(c)(ii) This proved to be the part that was done by fewest candidates. Those who spotted that they should use integration by parts obtained the answer fairly easily.</p>
<p class="p1">(c)(iii) Many candidates displayed good exam technique in this question and obtained full marks without being able to do part (ii).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The same good exam technique was on show here as many students who failed to prove the expression in (c)(ii) were able to use it to obtain full marks in this question. A few candidates failed to remember correctly the formula for a volume of revolution.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;\(f,\,\,g,\)&nbsp;defined for&nbsp;\(x \in \mathbb{R}\), given by \(f\left( x \right) = {{\text{e}}^{ - x}}\,{\text{sin}}\,x\) and \(g\left( x \right) = {{\text{e}}^{ - x}}\,{\text{cos}}\,x\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f'\left( x \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'\left( x \right)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find \(\int\limits_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at product rule      <em><strong>M1</strong></em></p>
<p>\(f'\left( x \right) =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + {{\text{e}}^{ - x}}\,{\text{cos}}\,x\)     <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g'\left( x \right) =  - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - {{\text{e}}^{ - x}}\,{\text{sin}}\,x\)     <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Attempt to add \(f'\left( x \right)\) and \(g'\left( x \right)\)      <em><strong>(M1)</strong></em></p>
<p>\(f'\left( x \right) + g'\left( x \right) =  - 2{{\text{e}}^{ - x}}\,{\text{sin}}\,x\)    <em><strong>A1</strong></em></p>
<p>\(\int\limits_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x}  = \left[ { - \frac{{{{\text{e}}^{ - x}}}}{2}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)} \right]_0^\pi \) (or equivalent)      <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: Condone absence of limits.</p>
<p>\( = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)\)    <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(I = \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x\)</p>
<p>\( =  - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x\) <strong>OR </strong>\( =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x + \int {{{\text{e}}^{ - x}}} \,{\text{cos}}\,x\,{\text{d}}x\)     <em><strong>M1A1</strong></em></p>
<p>\( =  - {{\text{e}}^{ - x}}\,{\text{sin}}\,x - {{\text{e}}^{ - x}}\,{\text{cos}}\,x - \int {{{\text{e}}^{ - x}}} \,{\text{sin}}\,x\,{\text{d}}x\)</p>
<p>\(I = \frac{1}{2}{{\text{e}}^{ - x}}\left( {{\text{sin}}\,x + {\text{cos}}\,x} \right)\)     <em><strong>A1</strong></em></p>
<p>\(\int_0^\pi  {{{\text{e}}^{ - x}}\,{\text{sin}}\,x\,{\text{d}}x = \frac{1}{2}\left( {1 + {{\text{e}}^{ - \pi }}} \right)} \)   <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A drinking glass is modelled by rotating the graph of \(y = {{\text{e}}^x}\) about the <em>y</em>-axis, for \(1 \leqslant y \leqslant 5\) . Find the volume of the glass.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = {{\text{e}}^x} \Rightarrow x = \ln y\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">volume \( = \pi \int_1^5 {{{(\ln y)}^2}{\text{d}}y} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using integration by parts &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\pi \int_1^5 {{{(\ln y)}^2}{\text{d}}y} = \pi \left[ {y{{(\ln y)}^2}} \right]_1^5 - 2\int_1^5 {\ln y{\text{d}}y} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {y{{(\ln y)}^2} - 2y\ln y + 2y} \right]_1^5\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> marks if \(\pi \) is present in at least one of the above lines.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \pi \int_1^5 {{{(\ln y)}^2}{\text{d}}y} = \pi {\text{ }}5{(\ln 5)^2} - 10\ln 5 + 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Only the best candidates were able to make significant progress with this question. Quite a few did not consider rotation about the <em>y</em>-axis. Others wrote the correct expression, but seemed daunted by needing to integrate by parts twice.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A curve is defined by \(xy = {y^2} + 4\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that there is no point where the tangent to the curve is horizontal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of the points where the tangent to the curve is vertical.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(x\frac{{{\text{d}}y}}{{{\text{d}}x}} + y = 2y\frac{{{\text{d}}y}}{{{\text{d}}x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">a horizontal tangent occurs if \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) <span class="s1">so </span>\(y = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">we can see from the equation of the curve that this solution is not possible <span class="s2">\((0 = 4)\) </span>and so there is not a horizontal tangent <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p2"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{2y - x}}\) or equivalent with \(\frac{{{\text{d}}x}}{{{\text{d}}y}}\)</p>
<p>the tangent is vertical when \(2y = x\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>substitute into the equation to give \(2{y^2} = {y^2} + 4\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(y =&nbsp; \pm 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>coordinates are \((4,{\text{ }}2),{\text{ }}( - 4,{\text{ }} - 2)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = x\sqrt {1 - {x^2}} \) <span class="s1">on the domain \( - 1 \le x \le 1\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(f\)&nbsp;is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the \(x\)-coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\) indicating clearly the coordinates of the \(x\)-intercepts and any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for \(x \ge 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f( - x) = ( - x)\sqrt {1 - {{( - x)}^2}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( =&nbsp; - x\sqrt {1 - {x^2}} \)</p>
<p>\( =&nbsp; - f(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>hence \(f\) is odd &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f'(x) = x \bullet \frac{1}{2}{(1 - {x^2})^{ - \frac{1}{2}}} \bullet&nbsp; - 2x + {(1 - {x^2})^{\frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f'(x) = \sqrt {1 - {x^2}}&nbsp; - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }}\;\;\;\left( { = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>This may be seen in part (b).</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Do not allow FT from part (b).</p>
<p>&nbsp;</p>
<p>\(f'(x) = 0 \Rightarrow 1 - 2{x^2} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(x =&nbsp; \pm \frac{1}{{\sqrt 2 }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y\)-coordinates of the Max Min Points are \(y =&nbsp; \pm \frac{1}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>so range of \(f(x)\) is \(\left[ { - \frac{1}{2},{\text{ }}\frac{1}{2}} \right]\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow FT from (c) if values of \(x\), within the domain, are used.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-28_om_19.00.15.png" alt></p>
<p class="p1">Shape: The graph of an odd function, on the given domain, s-shaped,</p>
<p class="p1">where the max(min) is the right(left) of \(0.5{\text{ }}( - 0.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\(x\)-intercepts <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">turning points <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{area}} = \int_0^1 {x\sqrt {1 - {x^2}} {\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>attempt at &ldquo;backwards chain rule&rdquo; or substitution &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( =&nbsp; - \frac{1}{2}\int_0^1 {( - 2x)\sqrt {1 - {x^2}} {\text{d}}x} \)</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absence of limits for first two marks.</p>
<p>&nbsp;</p>
<p>\( = \left[ {\frac{2}{3}{{(1 - {x^2})}^{\frac{3}{2}}} \bullet&nbsp; - \frac{1}{2}} \right]_0^1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \left[ { - \frac{1}{3}{{(1 - {x^2})}^{\frac{3}{2}}}} \right]_0^1\)</p>
<p>\( = 0 - \left( { - \frac{1}{3}} \right) = \frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; 0} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">\(\left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right| = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">so \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<p class="p1"><strong><em>Total [20 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y(x) = x{e^{3x}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove by induction that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\) for \(n \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any local maximum and minimum points on the graph of \(y(x)\).</p>
<p class="p1">Justify whether any such point is a maximum or a minimum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any points of inflexion on the graph of \(y(x)\). Justify whether any such point is a point of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence sketch the graph of \(y(x)\), indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = ({{\text{e}}^{3x}} + 3x{{\text{e}}^{3x}})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let \(P(n)\) be the statement \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\)</p>
<p class="p1">prove for \(n = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="s1">\(LHS\) of </span>\(P(1)\) is \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) which is \(1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}}\) and&nbsp;<span class="s1">\(RHS\)</span> is \({3^0}{{\text{e}}^{3x}} + x{3^1}{{\text{e}}^{3x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p1"><span class="s1">as </span>\({\text{LHS}} = {\text{RHS, }}P(1)\) is true</p>
<p class="p1">assume \(P(k)\) is true and attempt to prove \(P(k + 1)\) is true <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">assuming \(\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = k{3^{k - 1}}{{\text{e}}^{3x}} + x{3^k}{{\text{e}}^{3x}}\)</p>
<p class="p1">\(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1">(<strong><em>M1)</em></strong></span></p>
<p class="p1">\( = k{3^{k - 1}} \times 3{{\text{e}}^{3x}} + 1 \times {3^k}{{\text{e}}^{3x}} + x{3^k} \times 3{{\text{e}}^{3x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\( = (k + 1){3^k}{{\text{e}}^{3x}} + x{3^{k + 1}}{{\text{e}}^{3x}}\;\;\;\)<span class="s1">(as required) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Can award the <strong><em>A </em></strong>marks independent of the <strong><em>M </em></strong>marks</p>
<p class="p4">&nbsp;</p>
<p class="p1">since \(P(1)\) is true and \(P(k)\) is true \( \Rightarrow P(k + 1)\) is true</p>
<p class="p1">then (by <span class="s1">\(PMI\)</span>), \(P(n)\) is true \((\forall n \in {\mathbb{Z}^ + })\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: </strong>To gain last <strong><em>R1 </em></strong>at least four of the above marks must have been gained.</p>
<p class="p3"><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = 0 \Rightarrow 1 + 3x = 0 \Rightarrow x =&nbsp; - \frac{1}{3}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>point is \(\left( { - \frac{1}{3},{\text{ }} - \frac{1}{{3{\text{e}}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\)</p>
<p>when \(x =&nbsp; - \frac{1}{3},{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} &gt; 0\) therefore the point is a minimum &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_17.44.19.png" alt></p>
<p class="p1">nature table shows point is a minimum <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}} = 0 \Rightarrow 2 + 3x = 0 \Rightarrow x =&nbsp; - \frac{2}{3}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>point is \(\left( { - \frac{2}{3},{\text{ }} - \frac{2}{{3{{\text{e}}^2}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_17.52.15.png" alt></p>
<p>since the curvature does change (concave down to concave up) it is a point of inflection &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow \({3^{{\text{rd}}}}\) derivative is not zero at \( - \frac{2}{3}\)</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="image.html" alt></p>
<p class="p1">(general shape including asymptote and through origin) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1">showing minimum and point of inflection &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1">&nbsp;</p>
<p class="p1"><strong>Note: &nbsp; &nbsp;&nbsp;</strong>Only indication of position of answers to (c) and (d) required, not coordinates.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<p class="p1"><em><strong>Total [21 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The logic of an induction proof was not known well enough. Many candidates used what they had to prove rather than differentiating what they had assumed. They did not have enough experience in doing Induction proofs.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Good, some forgot to test for min/max, some forgot to give the \(y\) value.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Again quite good, some forgot to check for change in curvature and some forgot the \(y\) value.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some accurate sketches, some had all the information from earlier parts but could not apply it. The asymptote was often missed.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Using integration by parts find \(\int {x\sin x{\text{d}}x} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to integrate one factor and differentiate the other, leading to a sum of two terms &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\int {x\sin x{\text{d}}x = x( - \cos x) + } \int {\cos x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>(A1)(A1)</em></strong></p>
<p>\( =&nbsp; - x\cos x + \sin x + c\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Only award final <strong><em>A1 </em></strong>if \( + {\text{ }}c\) is seen.</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">By using the substitution \(u = {{\text{e}}^x} + 3\), find \(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 6{{\text{e}}^x} + 13}}{\text{d}}x} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = {{\text{e}}^x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"><strong>EITHER</strong></p>
<p class="p1"><span class="s1">integral is </span>\(\int {\frac{{{{\text{e}}^x}}}{{{{({{\text{e}}^x} + 3)}^2} + {2^2}}}{\text{d}}x} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\( = \frac{1}{{{u^2} + {2^2}}}{\text{d}}u\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong>only if the integral has completely changed to one in \(u\).</p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>\({\text{d}}u\) needed for final <strong><em>A1</em></strong></p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>OR</strong></p>
<p class="p1">\({{\text{e}}^x} = u - 3\)</p>
<p class="p1">integral is \(\int {\frac{1}{{{{(u - 3)}^2} + 6(u - 3) + 13}}{\text{d}}u} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>Note: </strong>Award <strong><em>M1 </em></strong>only if the integral has completely changed to one in \(u\).</p>
<p class="p4">&nbsp;</p>
<p class="p1">\( = \int {\frac{1}{{{u^2} + {2^2}}}{\text{d}}u} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>In both solutions the two method marks are independent.</p>
<p class="p3">&nbsp;</p>
<p class="p2"><strong>THEN</strong></p>
<p class="p1">\( = \frac{1}{2}\arctan \left( {\frac{u}{2}} \right)( + c)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">\( = \frac{1}{2}\arctan \left( {\frac{{{{\text{e}}^x} + 3}}{2}} \right)( + c)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><strong><em>Total [7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Many good complete answers. Some did not realise it was arctan. Some had poor understanding of the method.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = {x^3} - 3{x^2} + 4\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the values of \(x\) for which \(f(x)\) is a decreasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">There is a point of inflexion, \(P\)<span class="s1">, on the curve \(y = f(x)\)</span>.</p>
<p class="p1">Find the coordinates of \(P\)<span class="s1">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to differentiate \(f(x) = {x^3} - 3{x^2} + 4\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\(f'(x) = 3{x^2} - 6x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\( = 3x(x - 2)\)</p>
<p class="p2">(Critical values occur at) <span class="s2">\(x = 0,{\text{ }}x = 2\) <span class="Apple-converted-space">&nbsp; &nbsp; </span></span><span class="s3">(</span><strong><em>A1)</em></strong></p>
<p class="p1"><span class="s1">so </span>\(f\) decreasing on \(x \in ]0,{\text{ }}2[\;\;\;({\text{or }}0 &lt; x &lt; 2)\) &nbsp; &nbsp;&nbsp;<span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f''(x) = 6x - 6\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><span class="s1">setting </span>\(f''(x) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">\( \Rightarrow x = 1\)</p>
<p class="p2">coordinate is \((1,{\text{ }}2)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="s2"><strong><em>[3 marks]</em></strong></span></p>
<p class="p2"><span class="s2"><strong><em>Total [7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\sin \left( {\theta&nbsp; + \frac{\pi }{2}} \right) = \cos \theta \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider \(f(x) = \sin (ax)\) where \(a\) is a constant. Prove by mathematical induction that \({f^{(n)}}(x) = {a^n}\sin \left( {ax + \frac{{n\pi }}{2}} \right)\) where \(n \in {\mathbb{Z}^ + }\) and \({f^{(n)}}(x)\) represents the \({{\text{n}}^{{\text{th}}}}\) derivative of \(f(x)\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\sin \left( {\theta&nbsp; + \frac{\pi }{2}} \right) = \sin \theta \cos \frac{\pi }{2} + \cos \theta \sin \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \cos \theta \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Accept a transformation/graphical based approach.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">consider \(n = 1,{\text{ }}f'(x) = a\cos (ax)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="s1">since </span>\(\sin \left( {ax + \frac{\pi }{2}} \right) = \cos ax\) then the proposition is true for \(n = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">assume that the proposition is true for \(n = k\) so \({f^{(k)}}(x) = {a^k}\sin \left( {ax + \frac{{k\pi }}{2}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\({f^{(k + 1)}}(x) = \frac{{{\text{d}}\left( {{f^{(k)}}(x)} \right)}}{{{\text{d}}x}}\;\;\;\left( { = a\left( {{a^k}\cos \left( {ax + \frac{{k\pi }}{2}} \right)} \right)} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( = {a^{k + 1}}\sin \left( {ax + \frac{{k\pi }}{2} + \frac{\pi }{2}} \right)\) (using part (a)) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\( = {a^{k + 1}}\sin \left( {ax + \frac{{(k + 1)\pi }}{2}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">given that the proposition is true for \(n = k\) then we have shown that the proposition is true for \(n = k + 1\). Since we have shown that the proposition is true for \(n = 1\) then the proposition is true for all \(n \in {\mathbb{Z}^ + }\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award final <strong><em>R1 </em></strong>only if all prior <em><strong>M</strong></em> and <em><strong>R</strong></em> marks have been awarded.</p>
<p class="p3"><em><strong>[7 marks]</strong></em></p>
<p class="p3"><em><strong>Total [8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of the integral \(\int_0^{\sqrt 2 } {\sqrt {4 - {x^2}} {\text{d}}x} \) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of the integral \(\int_0^{0.5} {\arcsin x {\text{d}}x} \) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the substitution \(t = \tan \theta \) , find the value of the integral</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_0^{\frac{\pi }{4}} {\frac{{{\text{d}}\theta }}{{3{{\cos }^2}\theta + {{\sin }^2}\theta }}} {\text{ }}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(x = 2\sin \theta \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{d}}x = 2\cos \theta {\text{d}}\theta \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int_0^{\frac{\pi }{4}} {2\cos \theta \times 2\cos \theta {\text{d}}\theta \,\,\,\,\,\left( { = 4\int_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } } \right)} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for limits and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for expression.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\int_0^{\frac{\pi }{4}} {(1 + \cos 2\theta ){\text{d}}\theta } \) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\left[ {\theta + \frac{1}{2}\sin 2\theta } \right]_0^{\frac{\pi }{4}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = [x\arcsin x]_0^{0.5} - \int_0^{0.5} {x \times \frac{1}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = [x\arcsin x]_0^{0.5} + \left[ {\sqrt {1 - {x^2}} } \right]_0^{0.5}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{{12}} + \frac{{\sqrt 3 }}{2} - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{d}}t = {\sec ^2}\theta {\text{d}}\theta {\text{ , }}\left[ {0,\frac{\pi }{4}} \right] \to [0,{\text{ 1]}}\) &nbsp; &nbsp; <strong><em>A1(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int_0^1 {\frac{{\frac{{{\text{d}}t}}{{(1 + {t^2})}}}}{{\frac{3}{{(1 + {t^2})}} + \frac{{{t^2}}}{{(1 + {t^2})}}}}} \) &nbsp; &nbsp; <strong><em>M1(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_0^1 {\frac{{{\text{d}}t}}{{3 + {t^2}}}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{\sqrt 3 }}\left[ {\arctan \left( {\frac{x}{{\sqrt 3 }}} \right)} \right]_0^1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{{6\sqrt 3 }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(f(x) = \frac{{x + 1}}{{{x^2} + 1}}\) is shown below.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-15_om_08.53.43.png" alt></span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The point (1, 1) is a point of inflexion. There are two other points of inflexion.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f'(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the \(x\)-coordinates of the points where the gradient of the graph of \(f\) is zero.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f''(x)\) expressing your answer in the form \(\frac{{p(x)}}{{{{({x^2} + 1)}^3}}}\), where \(p(x)\) is a polynomial of degree 3.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the \(x\)-coordinates of the other two points of inflexion.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="background-color: #f7f7f7;">Find the area of the shaded region. Express your answer in the form \(\frac{\pi }{a} - \ln \sqrt b \), where </span>\(a\) <span style="background-color: #f7f7f7;">and </span>\(b\) <span style="background-color: #f7f7f7;">are integers.</span></span></p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f'(x) = \frac{{\left( {{x^2} + 1} \right) - 2x(x + 1)}}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{ }}\left( { = \frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{ - {x^2} - 2x + 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x =&nbsp; - 1 \pm \sqrt 2 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{( - 2x - 2){{\left( {{x^2} + 1} \right)}^2} - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^4}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \(( - 2x - 2){\left( {{x^2} + 1} \right)^2}\) or equivalent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \( - 2(2x)\left( {{x^2} + 1} \right)\left( { - {x^2} - 2x + 1} \right)\) or equivalent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{( - 2x - 2)\left( {{x^2} + 1} \right) - 4x\left( { - {x^2} - 2x + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2{x^3} + 6{x^2} - 6x - 2}}{{{{\left( {{x^2} + 1} \right)}^3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = \frac{{2\left( {{x^3} + 3{x^2} - 3x - 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^3}}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">recognition that \((x - 1)\) is a factor &nbsp; &nbsp; <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((x - 1)\left( {{x^2} + bx + c} \right) = \left( {{x^3} + 3{x^2} - 3x - 1} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^2} + 4x + 1 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x =&nbsp; - 2 \pm \sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Allow long division / synthetic division.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{ - 1}^0 {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{x + 1}}{{{x^2} + 1}}{\text{d}}x = \int {\frac{x}{{{x^2} + 1}}{\text{d}}x + \int {\frac{1}{{{x^2} + 1}}{\text{d}}x} } } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{1}{2}\ln \left( {{x^2} + 1} \right) + \arctan (x)} \right]_{ - 1}^0 = \frac{1}{2}\ln 1 + \arctan 0 - \frac{1}{2}\ln 2 - \arctan ( - 1)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{4} - \ln \sqrt 2 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the complex number \(z = \cos \theta&nbsp; + {\text{i}}\sin \theta \).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The region <em>S</em> is bounded by the curve \(y = \sin x{\cos ^2}x\) and the <em>x</em>-axis between \(x = 0\) and \(x = \frac{\pi }{2}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use De Moivre&rsquo;s theorem to show that \({z^n} + {z^{ - n}} = 2\cos n\theta ,{\text{ }}n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Expand \({\left( {z + {z^{ - 1}}} \right)^4}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({\cos ^4}\theta&nbsp; = p\cos 4\theta&nbsp; + q\cos 2\theta&nbsp; + r\), where \(p,{\text{ }}q\) and \(r\) are constants to&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">be determined.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({\cos ^6}\theta&nbsp; = \frac{1}{{32}}\cos 6\theta&nbsp; + \frac{3}{{16}}\cos 4\theta&nbsp; + \frac{{15}}{{32}}\cos 2\theta&nbsp; + \frac{5}{{16}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\int_0^{\frac{\pi }{2}} {{{\cos }^6}\theta {\text{d}}\theta } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>S</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis. Find the value of the volume generated.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down an expression for the constant term in the expansion of \({\left( {z + {z^{ - 1}}} \right)^{2k}}\), \(k \in {\mathbb{Z}^ + }\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine an expression for \(\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta } \) in terms of <em>k</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({z^n} + {z^{ - n}} = \cos n\theta&nbsp; + i\sin n\theta&nbsp; + \cos ( - n\theta ) + i\sin ( - n\theta )\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \cos n\theta&nbsp; + \cos n\theta&nbsp; + i\sin n\theta&nbsp; - i\sin n\theta \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\cos n\theta \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({\left( {z + {z^{ - 1}}} \right)^4} = {z^4} + 4{z^3}\left( {\frac{1}{z}} \right) + 6{z^2}\left( {\frac{1}{{{z^2}}}} \right) + 4z\left( {\frac{1}{{{z^3}}}} \right) + \frac{1}{{{z^4}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept \({\left( {z + {z^{ - 1}}} \right)^4} = 16{\cos ^4}\theta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\left( {z + {z^{ - 1}}} \right)^4} = \left( {{z^4} + \frac{1}{{{z^4}}}} \right) + 4\left( {{z^2} + \frac{1}{{{z^2}}}} \right) + 6\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(2\cos \theta )^4} = 2\cos 4\theta&nbsp; + 8\cos 2\theta&nbsp; + 6\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for RHS, <strong><em>A1 </em></strong>for LHS, independent of the <strong><em>M1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\cos ^4}\theta&nbsp; = \frac{1}{8}\cos 4\theta&nbsp; + \frac{1}{2}\cos 2\theta&nbsp; + \frac{3}{8}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {{\text{or }}p = \frac{1}{8},{\text{ }}q = \frac{1}{2},{\text{ }}r = \frac{3}{8}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\cos ^4}\theta&nbsp; = {\left( {\frac{{\cos 2\theta&nbsp; + 1}}{2}} \right)^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}({\cos ^2}2\theta&nbsp; + 2\cos 2\theta&nbsp; + 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\left( {\frac{{\cos 4\theta&nbsp; + 1}}{2} + 2\cos 2\theta&nbsp; + 1} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\cos ^4}\theta&nbsp; = \frac{1}{8}\cos 4\theta&nbsp; + \frac{1}{2}\cos 2\theta&nbsp; + \frac{3}{8}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {{\text{or }}p = \frac{1}{8},{\text{ }}q = \frac{1}{2},{\text{ }}r = \frac{3}{8}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({\left( {z + {z^{ - 1}}} \right)^6} = {z^6} + 6{z^5}\left( {\frac{1}{z}} \right) + 15{z^4}\left( {\frac{1}{{{z^2}}}} \right) + 20{z^3}\left( {\frac{1}{{{z^3}}}} \right) + 15{z^2}\left( {\frac{1}{{{z^4}}}} \right) + 6z\left( {\frac{1}{{{z^5}}}} \right) + \frac{1}{{{z^6}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\left( {z + {z^{ - 1}}} \right)^6} = \left( {{z^6} + \frac{1}{{{z^6}}}} \right) + 6\left( {{z^4} + \frac{1}{{{z^4}}}} \right) + 15\left( {{z^2} + \frac{1}{{{z^2}}}} \right) + 20\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(2\cos \theta )^6} = 2\cos 6\theta&nbsp; + 12\cos 4\theta&nbsp; + 30\cos 2\theta&nbsp; + 20\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for RHS, <strong><em>A1 </em></strong>for LHS, independent of the <strong><em>M1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\cos ^6}\theta&nbsp; = \frac{1}{{32}}\cos 6\theta&nbsp; + \frac{3}{{16}}\cos 4\theta&nbsp; + \frac{{15}}{{32}}\cos 2\theta&nbsp; + \frac{5}{{16}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept a purely trigonometric solution as for (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{2}} {{{\cos }^6}\theta {\text{d}}\theta&nbsp; = \int_0^{\frac{\pi }{2}} {\left( {\frac{1}{{32}}\cos 6\theta&nbsp; + \frac{3}{{16}}\cos 4\theta&nbsp; + \frac{{15}}{{32}}\cos 2\theta&nbsp; + \frac{5}{{16}}} \right){\text{d}}\theta } } \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{1}{{192}}\sin 6\theta&nbsp; + \frac{3}{{64}}\sin 4\theta&nbsp; + \frac{{15}}{{64}}\sin 2\theta&nbsp; + \frac{5}{{16}}\theta } \right]_0^{\frac{\pi }{2}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5\pi }}{{32}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{V}} = \pi \int_0^{\frac{\pi }{2}} {{{\sin }^2}x{{\cos }^4}x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \int_0^{\frac{\pi }{2}} {{{\cos }^4}x{\text{d}}x - \pi \int_0^{\frac{\pi }{2}} {{{\cos }^6}x{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{2}} {{{\cos }^4}x{\text{d}}x}&nbsp; = \frac{{3\pi }}{{16}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{V}} = \frac{{3{\pi ^2}}}{{16}} - \frac{{5{\pi ^2}}}{{32}} = \frac{{{\pi ^2}}}{{32}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Follow through from an incorrect <em>r</em> in (c) provided the final answer is positive.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; constant term = \(\left( \begin{array}{c}2k\\k\end{array} \right)\) \( = \frac{{(2k)!}}{{k!k!}} = \frac{{(2k)!}}{{{{(k!)}^2}}}{\text{ (accept }}C_k^{2k})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({2^{2k}}\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta&nbsp; = \frac{{(2k)!\pi }}{{{{(k!)}^2}}}\frac{\pi }{2}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(\int_0^{\frac{\pi }{2}} {{{\cos }^{2k}}\theta {\text{d}}\theta&nbsp; = \frac{{(2k)!\pi }}{{{2^{2k + 1}}{{(k!)}^2}}}} \) \(\left( {{\rm{or}}\frac{{\left( \begin{array}{c}2k\\k\end{array} \right)\pi }}{{{2^{2k + 1}}}}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) has appeared several times before, though with it again being a &lsquo;show that&rsquo; question, some candidates still need to be more aware of the need to show every step in their working, including the result that \(\sin ( - n\theta ) =&nbsp; - \sin (n\theta )\).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part b) was usually answered correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part c) was again often answered correctly, though some candidates often less successfully utilised a trig-only approach rather than taking note of part b).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part d) was a good source of marks for those who kept with the spirit of using complex numbers for this type of question. Some limited attempts at trig-only solutions were seen, and correct solutions using this approach were extremely rare.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part e) was well answered, though numerical slips were often common. A small number integrated \(\sin n\theta \) as \(n\cos n\theta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A large number of candidates did not realise the help that part e) inevitably provided for part f). Some correctly expressed the volume as \(\pi \int {{{\cos }^4}x{\text{d}}x - \pi \int {{{\cos }^6}x{\text{d}}x} } \) and thus gained the first 2 marks but were able to progress no further. Only a small number of able candidates were able to obtain the correct answer of \(\frac{{{\pi ^2}}}{{32}}\).</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part g) proved to be a challenge for the vast majority, though it was pleasing to see some of the highest scoring candidates gain all 3 marks.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graphs of \(f(x) = - {x^2} + 2\) and \(g(x) = {x^3} - {x^2} - bx + 2,{\text{ }}b &gt; 0\), intersect and create two closed regions. Show that these two regions have equal areas.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to find the points of intersection of the two curves</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - {x^2} + 2 = {x^3} - {x^2} - bx + 2\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3} - bx = x({x^2} - b) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 0;{\text{ }}x = \pm \sqrt b \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({A_1} = \int_{ - \sqrt b }^0 {\left[ {({x^3} - {x^2} - bx + 2) - ( - {x^2} + 2)} \right]} {\text{d}}x\left( { = \int_{ - \sqrt b }^0 {({x^3} - bx){\text{d}}x} } \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{x^4}}}{4} - \frac{{b{x^2}}}{2}} \right]_{ - \sqrt b }^0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \left( {\frac{{{{( - \sqrt b )}^4}}}{4} - \frac{{b{{( - \sqrt b )}^2}}}{2}} \right) = - \frac{{{b^2}}}{4} + \frac{{{b^2}}}{2} = \frac{{{b^2}}}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({A_2} = \int_0^{\sqrt b } {\left[ {( - {x^2} + 2) - ({x^3} - {x^2} - bx + 2)} \right]{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_0^{\sqrt b } {( - {x^3} + bx){\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - \frac{{{x^4}}}{4} + \frac{{b{x^2}}}{2}} \right]_0^{\sqrt b } = \frac{{{b^2}}}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \({A_1} = {A_2} = \frac{{{b^2}}}{4}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates knew how to tackle this question. The most common error was in giving +<em>b</em> and &ndash;<em>b</em> as the <em>x</em>-coordinates of the point of intersection.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the part of the curve \(4{x^2} + {y^2} = 4\) shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x</em> and <em>y</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the gradient of the tangent at the point \(\left( {\frac{2}{{\sqrt 5 }},\frac{2}{{\sqrt 5 }}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; A bowl is formed by rotating this curve through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the volume of this bowl.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1A0</em></strong> for \(8x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{4x}}{y}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; &ndash; 4 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \(V = \int {\pi {y^2}{\text{d}}x} \) or equivalent &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_0^1 {(4 - 4{x^2}){\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {4x - \frac{4}{3}{x^3}} \right]_0^1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{8\pi }}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> If it is correct except for the omission of \(\pi \) , award 2 marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The first part of this question was done well by many, the only concern being the number that did not simplify the result from \( - \frac{{8x}}{{2y}}\). There were many variations on the formula for the volume in part c), the most common error being a multiple of \(2\pi \) rather than \(\pi \). On the whole this question was done well by many.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve C with equation \(y = f(x)\) satisfies the differential equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{\ln y}}(x + 2),{\text{ }}y &gt; 1,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and <em>y</em> = e when <em>x</em> = 2.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to C at the point (2, e).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(f(x)\).</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the largest possible domain of <em>f</em>.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the equation \(f(x) = f'(x)\) has no solution.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\text{e}}}{{\ln {\text{e}}}}(2 + 2) = 4{\text{e}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at (2, e) the tangent line is \(y - {\text{e}} = 4{\text{e}}(x - 2)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(y = 4{\text{e}}x - 7{\text{e}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{y}{{\ln y}}(x + 2) \Rightarrow \frac{{\ln y}}{y}{\text{d}}y = (x + 2){\text{d}}x\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\ln y}}{y}{\text{d}}y = \int {(x + 2){\text{d}}x} } \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using substitution \(u = \ln y;{\text{ d}}u = \frac{1}{y}{\text{d}}y\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \int {\frac{{\ln y}}{y}{\text{d}}y = \int {u{\text{d}}u = \frac{1}{2}{u^2}} } \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{(\ln y)}^2}}}{2} = \frac{{{x^2}}}{2} + 2x + c\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at (2, e), \(\frac{{{{(\ln {\text{e}})}^2}}}{2} = 6 + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow c = - \frac{{11}}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{(\ln y)}^2}}}{2} = \frac{{{x^2}}}{2} + 2x - \frac{{11}}{2} \Rightarrow {(\ln y)^2} = {x^2} + 4x - 11\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln y = \pm \sqrt {{x^2} + 4x - 11}&nbsp; \Rightarrow y = {{\text{e}}^{ \pm \sqrt {{x^2} + 4x - 11} }}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since y &gt; 1, \(f(x) = {{\text{e}}^{\sqrt {{x^2} + 4x - 11} }}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for attempt to make </span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;"> the subject.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><em><strong><span style="font-family: 'times new roman', times; font-size: medium;">[11 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} + 4x - 11 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the quadratic formula &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">critical values are \(\frac{{ - 4 \pm \sqrt {60} }}{2}{\text{ }}\left( { = - 2 \pm \sqrt {15} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using a sign diagram or algebraic solution &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x &lt; - 2 - \sqrt {15} ;{\text{ }}x &gt; - 2 + \sqrt {15} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} + 4x - 11 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by methods of completing the square &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(x + 2)^2} &gt; 15\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x + 2 &lt; - \sqrt {15} {\text{ or }}x + 2 &gt; \sqrt {15} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x &lt; - 2 - \sqrt {15} ;{\text{ }}x &gt; - 2 + \sqrt {15} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = f'(x) \Rightarrow f(x) = \frac{{f(x)}}{{\ln f(x)}}(x + 2)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \ln \left( {f(x)} \right) = x + 2\,\,\,\,\,\left( { \Rightarrow x + 2 = \sqrt {{x^2} + 4x - 11} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {(x + 2)^2} = {x^2} + 4x - 11 \Rightarrow {x^2} + 4x + 4 = {x^2} + 4x - 11\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4 = - 11,{\text{ hence }}f(x) \ne f'(x)\) &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Nearly always correctly answered.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates separated the variables and attempted the integrals. Very few candidates made use of the condition <em>y</em> &gt; 1, so losing 2 marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (c) was often well answered, sometimes with follow through.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Only the best candidates were successful on part (d).</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<address>Find the area enclosed by the curve \(y = \arctan x\) , the x-axis and the line \(x = \sqrt 3 \) .</address>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">METHOD 1</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\text{area}} = \mathop \smallint \limits_0^{\sqrt 3 } \arctan x{\text{d}}x\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">attempting to integrate by parts &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \left[ {x\arctan x} \right]_0^{\sqrt 3 } - \mathop \smallint \limits_0^{\sqrt 3 } x\frac{1}{{1 + {x^2}}}{\text{d}}x\) &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \left[ {x\arctan x} \right]_0^{\sqrt 3 } - \left[ {\frac{1}{2}\ln \left( {1 + {x^2}} \right)} \right]_0^{\sqrt 3 }\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award A1 even if limits are absent.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{\pi }{{\sqrt 3 }} - \frac{1}{2}\ln 4\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( { = \frac{{\pi \sqrt 3 }}{3} - \ln 2} \right)\)</span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">METHOD 2</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\text{area}} = \frac{{\pi \sqrt 3 }}{3} - \mathop \smallint \limits_0^{\frac{\pi }{3}} \tan y{\text{d}}y\) &nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\ { = \frac{{\pi \sqrt 3 }}{3} + \left[ {\ln \left| {\cos y} \right|} \right]_0^{\frac{\pi }{3}}} \)</span> &nbsp;&nbsp;&nbsp; <em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{\pi \sqrt 3 }}{3} + \ln \frac{1}{2}\) &nbsp; &nbsp; \(\left( { = \frac{{\pi \sqrt 3 }}{3} - \ln 2} \right)\) &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates were able to write down the correct expression for the required area, although in some cases with incorrect integration limits. However, very few managed to achieve any further marks due to a number of misconceptions, in particular \(\arctan x = \cot x = \frac{{\cos x}}{{\sin x}}\). Candidates who realised they should use integration by parts were in general very successful in answering this question. It was pleasing to see a few alternative correct approaches to this question.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A curve has equation \(3x - 2{y^2}{{\text{e}}^{x - 1}} = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>in terms of \(x\) and \(y\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the equations of the tangents to this curve at the points where the curve intersects <span class="s1">the line \(x = 1\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to differentiate implicitly <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(3 - \left( {4y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2{y^2}} \right){{\text{e}}^{x - 1}} = 0\)    </span><span class="s1"><strong><em>A1A1A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p4"><span class="s1"><strong>Note: </strong>Award <strong><em>A1 </em></strong></span>for correctly differentiating each term.</p>
<p class="p5"> </p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 \bullet {{\text{e}}^{1 - x}} - 2{y^2}}}{{4y}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: </strong>This final answer may be expressed in a number of different ways.</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(3 - 2{y^2} = 2 \Rightarrow {y^2} = \frac{1}{2} \Rightarrow y =  \pm \sqrt {\frac{1}{2}} \)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3 - 2 \bullet \frac{1}{2}}}{{ \pm 4\sqrt {\frac{1}{2}} }} =  \pm \frac{{\sqrt 2 }}{2}\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="s1">at \(\left( {1,{\text{ }}\sqrt {\frac{1}{2}} } \right)\)</span> the tangent is \(y - \sqrt {\frac{1}{2}}  = \frac{{\sqrt 2 }}{2}(x - 1)\) <span class="s1">and <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1">at \(\left( {1,{\text{ }} - \sqrt {\frac{1}{2}} } \right)\)</span> the tangent is \(y + \sqrt {\frac{1}{2}}  =  - \frac{{\sqrt 2 }}{2}(x - 1)\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: </strong>These equations simplify to \(y =  \pm \frac{{\sqrt 2 }}{2}x\)<span class="s2">.</span></p>
<p class="p4"> </p>
<p class="p3"><strong>Note: </strong>Award <strong><em>A0M1A1A0 </em></strong>if just the positive value of \(y\) is considered and just one tangent is found.</p>
<p class="p2"> </p>
<p class="p3"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A curve has equation \(\arctan {x^2} + \arctan {y^2} = \frac{\pi }{4}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x </em>and <em>y</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the gradient of the curve at the point where \(x = \frac{1}{{\sqrt 2 }}\) and \(y &lt; 0\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{2x}}{{1 + {x^4}}} + \frac{{2y}}{{1 + {y^4}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>M1 </em></strong>for implicit differentiation, <strong><em>A1 </em></strong>for LHS and <strong><em>A1 </em></strong>for RHS.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =&nbsp; - \frac{{x\left( {1 + {y^4}} \right)}}{{y\left( {1 + {x^4}} \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = \tan \left( {\frac{\pi }{4} - \arctan {x^2}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\tan \frac{\pi }{4} - \tan \left( {\arctan {x^2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan {x^2}} \right)} \right)}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{1 - {x^2}}}{{1 + {x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2x\left( {1 + {x^2}} \right) - 2x\left( {1 - {x^2}} \right)}}{{{{\left( {1 + {x^2}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 4x}}{{{{\left( {1 + {x^2}} \right)}^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =&nbsp; - \frac{{2x}}{{y{{\left( {1 + {x^2}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = \frac{{2x\sqrt {1 + {x^2}} }}{{\sqrt {1 - {x^2}} {{\left( {1 + {x^2}} \right)}^2}}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({y^2} = \tan \left( {\frac{\pi }{4} - \arctan \frac{1}{2}} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\tan \frac{\pi }{4} - \tan \left( {\arctan \frac{1}{2}} \right)}}{{1 + \left( {\tan \frac{\pi }{4}} \right)\left( {\tan \left( {\arctan \frac{1}{2}} \right)} \right)}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; The two</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;<strong><em>M1</em></strong>s may be awarded for working in part (a).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{1 - \frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y =&nbsp; - \frac{1}{{\sqrt 3 }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">substitution into \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{4\sqrt 6 }}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept \(\frac{{8\sqrt 3 }}{{9\sqrt 2 }}\) <em>etc</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \({x^3}y = a\sin nx\)<em>&nbsp;</em>. Using implicit differentiation, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + ({n^2}{x^2} + 6)xy = 0\] .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3}y = a\sin nx\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to differentiate implicitly &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 3{x^2}y + {x^3}\frac{{{\text{d}}y}}{{{\text{d}}x}} = an\cos nx\) &nbsp; &nbsp;&nbsp;<em><strong>A2</strong></em></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for two out of three correct, <strong><em>A0 </em></strong>otherwise.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 6xy + 3{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 3{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = -a{n^2}\sin nx\) &nbsp; &nbsp;<strong> <em>A2</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for three or four out of five correct, <strong><em>A0 </em></strong>otherwise.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 6xy + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = -a{n^2}\sin nx\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 6xy + {n^2}{x^3}y = 0\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^3}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + 6{x^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + ({n^2}{x^2} + 6)xy = 0\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates who are comfortable using implicit differentiation found this to be a fairly straightforward question and were able to answer it in just a few lines. Many candidates, however, were unable to differentiate \({x^3}y\) with respect to <em>x </em>and were therefore unable to proceed. Candidates whose first step was to write \(y = \frac{{a\sin nx}}{{{x^3}}}\) were given no credit since the question required the use of implicit differentiation.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y = {{\text{e}}^x}\sin x\).</p>
</div>

<div class="specification">
<p class="p1">Consider the function \(f\)<span class="Apple-converted-space">&nbsp; </span>defined by \(f(x) = {{\text{e}}^x}\sin x,{\text{ }}0 \leqslant x \leqslant \pi \).</p>
</div>

<div class="specification">
<p class="p1">The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa &nbsp;= \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^x}\cos x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that the function \(f\) </span>has a local maximum value when \(x = \frac{{3\pi }}{4}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find the \(x\)</span>-coordinate of the point of inflexion of the graph of <span class="s1">\(f\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Sketch the graph of \(f\)</span>, clearly indicating the position of the local maximum point, the point of inflexion and the axes intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(f\) <span class="s1">and the </span>\(x\)<span class="s1">-axis.</span></p>
<p class="p2">The curvature at any point \((x,{\text{ }}y)\) on a graph is defined as \(\kappa  = \frac{{\left| {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right|}}{{{{\left( {1 + {{\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)}^2}} \right)}^{\frac{3}{2}}}}}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of the curvature of the graph of \(f\) <span class="s1">at the local maximum point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value \(\kappa \) for \(x = \frac{\pi }{2}\) and comment on its meaning with respect to the shape of the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x{\text{ }}\left( { = {{\text{e}}^x}(\sin x + \cos x)} \right)\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = {{\text{e}}^x}(\sin x + \cos x) + {{\text{e}}^x}(\cos x - \sin x)\)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = 2{{\text{e}}^x}\cos x\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {{\text{e}}^{\frac{{3\pi }}{4}}}\left( {\sin \frac{{3\pi }}{4} + \cos \frac{{3\pi }}{4}} \right) = 0\)    </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2{{\text{e}}^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} &lt; 0\)    </span><strong><em>R1</em></strong></p>
<p class="p2">hence maximum at \(x = \frac{{3\pi }}{4}\)<span class="s1"> <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 0 \Rightarrow 2{{\text{e}}^x}\cos x = 0\)    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( \Rightarrow x = \frac{\pi }{2}\)    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>M1A0 </em></strong>if extra zeros are seen.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-02-28_om_14.29.02.png" alt="N16/5/MATHL/HP1/ENG/TZ0/11.e/M"></p>
<p class="p1">correct shape and correct domain <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2">max at \(x = \frac{{3\pi }}{4}\), point of inflexion at \(x = \frac{\pi }{2}\)<span class="s1"> <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></span></p>
<p class="p1">zeros at \(x = 0\) and \(x = \pi \) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: </strong>Penalize incorrect domain with first <strong><em>A </em></strong>mark; allow <strong><em>FT </em></strong>from (d) on extra points of inflexion.</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^x {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  - \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} } \)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [{{\text{e}}^x}\sin x]_0^\pi  - \left( {[{{\text{e}}^x}\cos x]_0^x + \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)} \)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]_0^\pi  + \int_0^\pi  {{{\text{e}}^x}\cos x{\text{d}}x} } \)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = [ - {{\text{e}}^x}\cos x]} _0^\pi  + \left( {[{{\text{e}}^x}\sin x]_0^\pi  - \int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x} } \right)\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}\left( {[{{\text{e}}^x}\sin x]_0^x - [{{\text{e}}^x}\cos x]_0^x} \right)} \)    </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int_0^\pi  {{{\text{e}}^x}\sin x{\text{d}}x = \frac{1}{2}({{\text{e}}^x} + 1)} \)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space"> </span><span class="s1">\(\frac{{{d^2}y}}{{d{x^2}}} = 2{e^{\frac{{3\pi }}{4}}}\cos \frac{{3\pi }}{4} =  - \sqrt 2 {e^{\frac{{3\pi }}{4}}}\) <strong><em>(A1)</em></strong><br></span></p>
<p class="p1"><span class="Apple-converted-space">\(\kappa  = \frac{{\left| { - \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}} \right|}}{1} = \sqrt 2 {{\text{e}}^{\frac{{3\pi }}{4}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\kappa  = 0\)    </span><strong><em>A1</em></strong></p>
<p class="p1">the graph is approximated by a straight line <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a circular lake with centre O, diameter AB and radius 2 km.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Jorg needs to get from A to B as quickly as possible. He considers rowing to point P and then walking to point B. He can row at \(3{\text{ km}}\,{{\text{h}}^{ - 1}}\) and walk at \(6{\text{ km}}\,{{\text{h}}^{ - 1}}\). Let \({\rm{P\hat AB}} = \theta \) radians, and <em>t</em> be the time in hours taken by Jorg to travel from A to B.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(t = \frac{2}{3}(2\cos \theta + \theta )\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\theta \) for which \(\frac{{{\text{d}}t}}{{{\text{d}}\theta }} = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">What route should Jorg take to travel from A to B in the least amount of time?</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give reasons for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">angle APB is a right angle</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \cos \theta = \frac{{{\text{AP}}}}{4} \Rightarrow {\text{AP}} = 4\cos \theta \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow correct use of cosine rule.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{arc PB}} = 2 \times 2\theta = 4\theta \) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{{{\text{AP}}}}{3} + \frac{{{\text{PB}}}}{6}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow use of their AP and their PB for the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t = \frac{{4\cos \theta }}{3} + \frac{{4\theta }}{6} = \frac{{4\cos \theta }}{3} + \frac{{2\theta }}{3} = \frac{2}{3}(2\cos \theta + \theta )\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>AG</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}t}}{{{\text{d}}\theta }} = \frac{2}{3}( - 2\sin \theta + 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{2}{3}( - 2\sin \theta + 1) = 0 \Rightarrow \sin \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi }{6}\) (or 30 degrees) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}t}}{{{\text{d}}{\theta ^2}}} = - \frac{4}{3}\cos \theta &lt; 0\,\,\,\,\left( {{\text{at }}\theta = \frac{\pi }{6}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t\) is maximized at \(\theta = \frac{\pi }{6}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">time needed to walk along arc AB is \(\frac{{2\pi }}{6}{\text{ (}} \approx {\text{1 hour)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">time needed to row from A to B is \(\frac{4}{3}{\text{ (}} \approx {\text{1.33 hour)}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, time is minimized in walking from A to B &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The fairly easy trigonometry challenged a large number of candidates.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: small;">Part (b) was very well done.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Satisfactory answers were very rarely seen for (c). Very few candidates realised that a minimum can occur at the beginning or end of an interval.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the definition of a derivative as \(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x + h) - f(x)}}{h}} \right)\)&nbsp;, show that&nbsp;the derivative of \(\frac{1}{{2x + 1}}{\text{ is }}\frac{{ - 2}}{{{{(2x + 1)}^2}}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove by induction that the \({n^{{\text{th}}}}\) derivative of \({(2x + 1)^{ - 1}}\) is \({( - 1)^n}\frac{{{2^n}n!}}{{{{(2x + 1)}^{n + 1}}}}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(f(x) = \frac{1}{{2x + 1}}\) and using the result \(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{f(x + h) - f(x)}}{h}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{\frac{1}{{2(x + h) + 1}} - \frac{1}{{2x + 1}}}}{h}} \right)\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{[2x + 1] - [2(x + h) + 1]}}{{h[2(x + h) + 1][2x + 1]}}} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow f'(x) = \mathop {\lim }\limits_{h \to 0} \left( {\frac{{ - 2}}{{[2(x + h) + 1][2x + 1]}}} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow f'(x) = \frac{{ - 2}}{{{{(2x + 1)}^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(y = \frac{1}{{2x + 1}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">we want to prove that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = {( - 1)^n}\frac{{{2^n}n!}}{{{{(2x + 1)}^{n + 1}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(n = 1 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = {( - 1)^1}\frac{{{2^1}1!}}{{{{(2x + 1)}^{1 + 1}}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - 2}}{{{{(2x + 1)}^2}}}\) which is the same result as part (a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the result is true for \(n = 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">assume the result is true for \(n = k{\text{ : }}\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = {( - 1)^k}\frac{{{2^k}k!}}{{{{(2x + 1)}^{k + 1}}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left[ {{{( - 1)}^k}\frac{{{2^k}k!}}{{{{(2x + 1)}^{k + 1}}}}} \right]\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left[ {{{( - 1)}^k}{2^k}k!{{(2x + 1)}^{ - k - 1}}} \right]\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( - 1)^k}{2^k}k!( - k - 1){(2x + 1)^{ - k - 2}} \times 2\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( - 1)^{k + 1}}{2^{k + 1}}(k + 1)!{(2x + 1)^{ - k - 2}}\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = {( - 1)^{k + 1}}\frac{{{2^{k + 1}}(k + 1)!}}{{{{(2x + 1)}^{k + 2}}}}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">hence if the result is true for \(n = k\) , it is true for \(n = k + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">since the result is true for \(n = 1\) , the result is proved by mathematical induction &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Only award final <strong><em>R1 </em></strong>if all the <strong><em>M </em></strong>marks have been gained.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[9 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Even though the definition of the derivative was given in the question, solutions to (a) were often disappointing with algebraic errors fairly common, usually due to brackets being omitted or manipulated incorrectly. Solutions to the proof by induction in (b) were often poor. Many candidates fail to understand that they have to assume that the result is true for \(n = k\) and then show that this leads to it being true for \(n = k + 1\). Many candidates just write &lsquo;Let \(n = k\)&rsquo;&nbsp;which is of course meaningless. The conclusion is often of the form &lsquo;True for \(n = 1,{\text{ }}n = k{\text{ and }}n = k + 1\) therefore true by induction&rsquo;. Credit is only given for a conclusion which includes a statement such as &lsquo;True for \(n = k \Rightarrow \) true for \(n = k + 1\)&rsquo;.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Even though the definition of the derivative was given in the question, solutions to (a) were often disappointing with algebraic errors fairly common, usually due to brackets being omitted or manipulated incorrectly. Solutions to the proof by induction in (b) were often poor. Many candidates fail to understand that they have to assume that the result is true for \(n = k\) and then show that this leads to it being true for \(n = k + 1\). Many candidates just write &lsquo;Let \(n = k\)&rsquo;&nbsp;which is of course meaningless. The conclusion is often of the form &lsquo;True for \(n = 1,{\text{ }}n = k{\text{ and }}n = k + 1\) therefore true by induction&rsquo;. Credit is only given for a conclusion which includes a statement such as &lsquo;True for \(n = k \Rightarrow \) true for \(n = k + 1\)&rsquo;.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the exact value of \(\int_1^{\text{e}} {{x^2}\ln x{\text{d}}x} \) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Recognition of integration by parts &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{x^2}\ln x{\text{d}}x = \left[ {\frac{{{x^3}}}{3}\ln x} \right] - \int {\frac{{{x^3}}}{3} \times \frac{1}{x}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{x^3}}}{3}\ln x} \right] - \int {\frac{{{x^2}}}{3}{\text{d}}x} \)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 28px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{x^3}}}{3}\ln x - \frac{{{x^3}}}{9}} \right]\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \int_1^{\text{e}} {{x^2}\ln x{\text{d}}x}&nbsp; = \left( {\frac{{{{\text{e}}^3}}}{3} - \frac{{{{\text{e}}^3}}}{9}} \right) - \left( {0 - \frac{1}{9}} \right)\,\,\,\,\,\left( { = \frac{{2{{\text{e}}^3} + 1}}{9}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates recognised that a method of integration by parts was appropriate for this question. However, although a good number of correct answers were seen, a number of candidates made algebraic errors in the process. A number of students were also unable to correctly substitute the limits.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ \begin{array}{r}1 - 2x,\\{\textstyle{3 \over 4}}{(x - 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \le 2}\\{x &gt; 2}\end{array}\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \(f\)is continuous.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained by applying the following transformations to the graph of \(f\):</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">a reflection in the \(y\)&ndash;axis followed by a translation by the vector \(\left( \begin{array}{l}2\\0\end{array} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(g(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 - 2(2) = - &nbsp;3\) and \(\frac{3}{4}{(2 - 2)^2} - 3 =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">both answers are the same, hence <em>f</em> is continuous (at \(x = 2\)) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; <strong><em>R1</em></strong> may be awarded for justification using a graph or referring to limits. Do not award <strong><em>A0R1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">reflection in the <em>y</em>-axis</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = \left\{ \begin{array}{r}1 + 2x,\\{\textstyle{3 \over 4}}{(x + 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge &nbsp;- 2}\\{x &lt; &nbsp;- 2}\end{array}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for evidence of reflecting a graph in <em>y</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( \begin{array}{l}2\\0\end{array} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = \left\{ \begin{array}{r}2x - 3,\\{\textstyle{3 \over 4}}{x^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge 0}\\{x &lt; 0}\end{array}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>(M1) </em></strong>for attempting to substitute \((x - 2)\) for <span style="font: 20.0px 'Times New Roman';"><em>x</em></span>, or&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">translating a graph along positive <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for the correct domains (this mark can be awarded independent of the <strong><em>M1</em></strong>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for the correct expressions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined, for \( - \frac{\pi }{2} \leqslant x \leqslant \frac{\pi }{2}\) , by \(f(x) = 2\cos x + x\sin x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether <em>f</em> is even, odd or neither even nor odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(0) = 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John states that, because \(f''(0) = 0\) , the graph of <em>f</em> has a point of inflexion at the point (0, 2) . Explain briefly whether John&rsquo;s statement is correct or not.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = 2\cos ( - x) + ( - x)\sin ( - x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\cos x + x\sin x\,\,\,\,\,\left( { = f(x)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore <em>f</em> is even &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = - 2\sin x + \sin x + x\cos x\,\,\,\,\,( = - \sin x + x\cos x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = - \cos x + \cos x - x\sin x\,\,\,\,\,( = - x\sin x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(f''(0) = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John&rsquo;s statement is incorrect because</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either; there is a stationary point at (0, 2) and since <em>f</em> is an even function and therefore symmetrical about the <em>y</em>-axis it must be a maximum or a minimum</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">or; \(f''(x)\) is even and therefore has the same sign either side of (0, 2) &nbsp; &nbsp; <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A window is made in the shape of a rectangle with a semicircle of radius \(r\) metres on top, as shown in the diagram. The perimeter of the window is a constant P metres.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-08_om_17.46.34.png" alt="M17/5/MATHL/HP1/ENG/TZ2/10"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the window in terms of P and \(r\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the width of the window in terms of P when the area is a maximum, justifying that this is a maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that in this case the height of the rectangle is equal to the radius of the semicircle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the width of the rectangle is \(2r\) and let the height of the rectangle be \(h\)</p>
<p>\(P = 2r + 2h + \pi r\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(A = 2rh + \frac{{\pi {r^2}}}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)</p>
<p>\(A = 2r\left( {\frac{{{\text{P}} - 2r - \pi r}}{2}} \right) + \frac{{\pi {r^2}}}{2}\,\,\,\left( { = \operatorname{P} r - 2{r^2} - \frac{{\pi {r^2}}}{2}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = {\text{P}} - 4r - \pi r\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow r = \frac{{\text{P}}}{{4 + \pi }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>hence the width is \(\frac{{2{\text{P}}}}{{4 + \pi }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{r^2}}} = - 4 - \pi &lt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>hence maximum&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)</p>
<p>\(h = \frac{{{\text{P}} - \frac{{2{\text{P}}}}{{4 + \pi }} - \frac{{{\text{P}}\pi }}{{4 + \pi }}}}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\(h = \frac{{4{\text{P}} + \pi {\text{P}} - 2{\text{P}} - \pi {\text{P}}}}{{2(4 + \pi )}}\)&nbsp;&nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>\(h = \frac{{\text{P}}}{{(4 + \pi )}} = r\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong>OR</strong></p>
<p>\(h = \frac{{{\text{P}} - 2r - \pi r}}{2}\)</p>
<p>\(P = r(4 + \pi )\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\(h = \frac{{r(4 + \pi ) - 2r - \pi r}}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(h = \frac{{4r + \pi r - 2r - \pi r}}{2} = r\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A tranquilizer is injected into a muscle from which it enters the bloodstream.</p>
<p class="p1">The concentration \(C\) in \({\text{mg}}{{\text{l}}^{ - 1}}\), of tranquilizer in the bloodstream can be modelled by the function \(C(t) = \frac{{2t}}{{3 + {t^2}}},{\text{ }}t \ge 0\) where \(t\) is the number of minutes after the injection.</p>
<p class="p1">Find the maximum concentration of tranquilizer in the bloodstream.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>use of the quotient rule or the product rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(C'(t) = \frac{{(3 + {t^2}) \times 2 - 2t \times 2t}}{{{{\left( {3 + {t^2}} \right)}^2}}}\;\;\;\left( { = \frac{{6 - 2{t^2}}}{{{{\left( {3 + {t^2}} \right)}^2}}}} \right)\;\;\;{\text{or}}\;\;\;\frac{2}{{3 + {t^2}}} - \frac{{4{t^2}}}{{{{\left( {3 + {t^2}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator in the quotient rule, and <strong><em>A1 </em></strong>for each correct term in the product rule.</p>
<p>&nbsp;</p>
<p>attempting to solve \(C'(t) = 0\;\;\;{\text{for }}t\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t =&nbsp; \pm \sqrt 3 \;\;\;{\text{(minutes)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(C\left( {\sqrt 3 } \right) = \frac{{\sqrt 3 }}{3}\;\;\;\left( {{\text{mg}}{{\text{l}}^{ - 1}}} \right)\;\;\;{\text{or equivalent.}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This question was generally well done. A significant number of candidates did not calculate the maximum value of \(C\).</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\cot \alpha  = \tan \left( {\frac{\pi }{2} - \alpha } \right)\) for \(0 &lt; \alpha  &lt; \frac{\pi }{2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find \(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x,{\text{ }}0 &lt; \alpha  &lt; \frac{\pi }{2}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1">use of a diagram and trig ratios</p>
<p class="p1"><em>eg</em>,</p>
<p class="p1"><img src="images/Schermafbeelding_2017-01-27_om_10.18.06.png" alt="M16/5/MATHL/HP1/ENG/TZ2/03/M"></p>
<p class="p1">\(\tan \alpha  = \frac{O}{A} \Rightarrow \cot \alpha  = \frac{A}{O}\)</p>
<p class="p1">from diagram, \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \frac{A}{O}\)     <strong><em>R1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">use of \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \frac{{\sin \left( {\frac{\pi }{2} - \alpha } \right)}}{{\cos \left( {\frac{\pi }{2} - \alpha } \right)}} = \frac{{\cos \alpha }}{{\sin \alpha }}\)     <strong><em>R1</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p2">\(\cot \alpha  = \tan \left( {\frac{\pi }{2} - \alpha } \right)\)     <strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int_{\tan \alpha }^{\cot \alpha } {\frac{1}{{1 + {x^2}}}{\text{d}}x}  = [\arctan x]_{\tan \alpha }^{\cot \alpha }\)     <strong><em>(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Note:     </strong>Limits (or absence of such) may be ignored at this stage.</p>
<p class="p1"> </p>
<p class="p1">\( = \arctan (\cot \alpha ) - \arctan (\tan \alpha )\)     <strong><em>(M1)</em></strong></p>
<p class="p1">\( = \frac{\pi }{2} - \alpha  - \alpha \)     <strong><em>(A1)</em></strong></p>
<p class="p1">\( = \frac{\pi }{2} - 2\alpha \)     <strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well done.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was generally well done. Some weaker candidates tried to solve part (b) through use of a substitution, though the standard result \(\arctan x\) was well known. A small number used \(\arctan x + c\) and went on to obtain an incorrect final answer.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Given that&nbsp;\(\int_{ - 2}^2 {f\left( x \right){\text{d}}x = 10} \) and \(\int_0^2 {f\left( x \right){\text{d}}x = 12} \), find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\int_{ - 2}^0 {f\left( x \right){\text{d}}x = 10}  - 12 =  - 2\)     <em><strong>(M1)(A1)</strong></em></p>
<p>\(\int_{ - 2}^0 {2{\text{d}}x = \left[ {2x} \right]} _{ - 2}^0 = 4\)     <em><strong>A1</strong></em></p>
<p>\(\int_{ - 2}^0 {\left( {f\left( x \right){\text{ + 2}}} \right){\text{d}}x}  = 2\)    <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int_{ - 2}^0 {f\left( {x{\text{ + 2}}} \right){\text{d}}x}  = \int_0^2 {f\left( x \right){\text{d}}x} \)    <em><strong>(M1)</strong></em></p>
<p>= 12     <em><strong>A</strong><strong>1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1"><span class="s1">By using the substitution \(t = \tan x\)</span>, find \(\int {\frac{{{\text{d}}x}}{{1 + {{\sin }^2}x}}} \)<span class="s1">.</span></p>
<p class="p2">Express your answer in the form \(m\arctan (n\tan x) + c\), where \(m\), \(n\) are constants to be determined.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><strong>EITHER</strong></p>
<p class="p2">\(x = \arctan t\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = \frac{1}{{1 + {t^2}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><strong>OR</strong></p>
<p class="p2">\(t = \tan x\)</p>
<p class="p2">\(\frac{{{\text{d}}t}}{{{\text{d}}x}} = {\sec ^2}x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s2"><strong><em>(M1)</em></strong></span></p>
<p class="p2">\( = 1 + {\tan ^2}x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p2">\( = 1 + {t^2}\)</p>
<p class="p3"><strong>THEN</strong></p>
<p class="p2">\(\sin x = \frac{t}{{\sqrt {1 + {t^2}} }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p4">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>This <strong><em>A1 </em></strong>is independent of the first two marks</p>
<p class="p5">&nbsp;</p>
<p class="p2">\(\int {\frac{{{\text{d}}x}}{{1 + {{\sin }^2}x}} = \int {\frac{{\frac{{{\text{d}}t}}{{1 + {t^2}}}}}{{1 + {{\left( {\frac{t}{{\sqrt {1 + {t^2}} }}} \right)}^2}}}} } \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p4">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong>for attempting to obtain integral in terms of \(t\) <span class="s3">and \({\text{d}}t\)</span></p>
<p class="p6">&nbsp;</p>
<p class="p2">\( = \int {\frac{{{\text{d}}t}}{{(1 + {t^2}) + {t^2}}} = \int {\frac{{{\text{d}}t}}{{1 + 2{t^2}}}} } \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\( = \frac{1}{2}\int {\frac{{{\text{d}}t}}{{\frac{1}{2} + {t^2}}} = \frac{1}{2} \times \frac{1}{{\frac{1}{{\sqrt 2 }}}}\arctan \left( {\frac{t}{{\frac{1}{{\sqrt 2 }}}}} \right)} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\( = \frac{{\sqrt 2 }}{2}\arctan \left( {\sqrt 2 \tan x} \right)( + c)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve \(5x{y^2} - 2{x^2} = 18\) at the point (1, 2) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5{y^2} + 10xy\frac{{{\text{d}}y}}{{{\text{d}}x}} - 4x = 0\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A1</em></strong> for correct differentiation of \(5x{y^2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct differentiation of \( - 2{x^2}\) and 18.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At the point (1, 2), \(20 + 20\frac{{{\text{d}}y}}{{{\text{d}}x}} - 4 = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{4}{5}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Gradient of normal \( = \frac{5}{4}\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Equation of normal \(y - 2 = \frac{5}{4}(x - 1)\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{5}{4}x - \frac{5}{4} + \frac{8}{4}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{5}{4}x + \frac{3}{4}\,\,\,\,\,(4y = 5x + 3)\)<span style="font: 19.0px Helvetica;"> &nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It was pleasing to see that a significant number of candidates understood that implicit differentiation was required and that they were able to make a reasonable attempt at this. A small number of candidates tried to make the equation explicit. This method will work, but most candidates who attempted this made either arithmetic or algebraic errors, which stopped them from gaining the correct answer.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x},{\text{ }}x &gt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The sketch below shows the graph of \(y = {\text{ }}f(x)\) and its tangent at a point A.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-11_om_14.26.30.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f'(x) = \frac{{1 - \ln x}}{{{x^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, at which the curve reaches its maximum value.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of C, the point of inflexion on the curve.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to the graph of \(f\) at the point A.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {\text{ }}f(x)\) crosses the \(x\)-axis at the point A.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area enclosed by the curve \(y = f(x)\), the tangent at A, and the line \(x = {\text{e}}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{{x \times \frac{1}{x} - \ln x}}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{1 - \ln x}}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{1 - \ln x}}{{{x^2}}} = 0\) has solution \(x = {\text{e}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{1}{{\text{e}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence maximum at the point \(\left( {{\text{e, }}\frac{1}{{\text{e}}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{{x^2}\left( { - \frac{1}{x}} \right) - 2x(1 - \ln x)}}{{{x^4}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2\ln x - 3}}{{{x^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; The <strong><em>M1A1 </em></strong>should be awarded if the correct working appears in part (b).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">point of inflexion where \(f''(x) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x = {{\text{e}}^{\frac{3}{2}}},{\text{ }}y = \frac{3}{2}{{\text{e}}^{\frac{{ - 3}}{2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">C has coordinates \(\left( {{{\text{e}}^{\frac{3}{2}}},{\text{ }}\frac{3}{2}{{\text{e}}^{\frac{{ - 3}}{2}}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1) = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(1) = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = x + c\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">through (1, 0)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation is \(y = x - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">area \( = \int_1^{\text{e}} {x - 1 - \frac{{\ln x}}{x}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for integration of difference between line and curve, <strong><em>A1 </em></strong>for correct limits, <strong><em>A1 </em></strong>for correct expressions in either order.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}} ( + c)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {(x - 1){\text{d}}x = \frac{{{x^2}}}{2} - x( + c)} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{1}{2}{x^2} - x - \frac{1}{2}{{(\ln x)}^2}} \right]_1^{\text{e}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {\frac{1}{2}{{\text{e}}^2} - {\text{e}} - \frac{1}{2}} \right) - \left( {\frac{1}{2} - 1} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{{\text{e}}^2} - {\text{e}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">area = area of triangle \( - \int_1^e {\frac{{\ln x}}{x}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; <em>A1</em></strong> is for correct integral with limits and is dependent on the <strong><em>M1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\ln x}}{x}{\text{d}}x = \frac{{{{(\ln x)}^2}}}{2}( + c)} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">area of triangle \( = \frac{1}{2}(e - 1)(e - 1)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}(e - 1)(e - 1) - \left( {\frac{1}{2}} \right) = \frac{1}{2}{{\text{e}}^2} - {\text{e}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The region enclosed between the curves \(y = \sqrt x {{\text{e}}^x}\) and \(y = {\text{e}}\sqrt x \) is rotated through \(2\pi \) about the <em>x</em>-axis. Find the volume of the solid obtained.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt x {{\text{e}}^x} = {\text{e}}\sqrt x&nbsp; \Rightarrow x = 0{\text{ or 1}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to find \(\int {{y^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({V_1} = \pi \int_0^1 {{{\text{e}}^2}x{\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {\frac{1}{2}{{\text{e}}^2}{x^2}} \right]_0^1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\pi {{\text{e}}^2}}}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({V_2} = \pi \int_0^1 {x{{\text{e}}^{2x}}{\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left( {\left[ {\frac{1}{2}x{{\text{e}}^{2x}}} \right]_0^1 - \int_0^1 {\frac{1}{2}{{\text{e}}^{2x}}{\text{d}}x} } \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for attempt to integrate by parts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\pi {{\text{e}}^2}}}{2} - \pi \left[ {\frac{1}{4}{{\text{e}}^{2x}}} \right]_0^1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">finding difference of volumes &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">volume\( = {V_1} - {V_2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {\frac{1}{4}{{\text{e}}^{2x}}} \right]_0^1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\pi ({{\text{e}}^2} - 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">While only a minority of candidates achieved full marks in this question, many candidates made good attempts. Quite a few candidates obtained the limits correctly and many realized a square was needed in the integral, though a number of them subtracted then squared rather than squaring and then subtracting. There was evidence that quite a few knew about integration by parts. One common mistake was to have \(2\pi \), rather than \(\pi \) in the integral.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> is given by \(y = \frac{{x\cos x}}{{x + \cos x}}\), for \(x \geqslant 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{{\cos }^2}x - {x^2}\sin x}}{{{{(x + \cos x)}^2}}},{\text{ }}x \geqslant 0\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the tangent to <em>C</em> at the point \(\left( {\frac{\pi }{2},0} \right)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(x + \cos x)(\cos x - x\sin x) - x\cos x(1 - \sin x)}}{{{{(x + \cos x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for attempt at differentiation of a quotient and a product condoning sign errors in the quotient formula and the trig differentiations, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct derivative of &ldquo;</span><em style="font-family: 'times new roman', times; font-size: medium;">u</em><span style="font-family: 'times new roman', times; font-size: medium;">&rdquo;, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct derivative of &ldquo;</span><em style="font-family: 'times new roman', times; font-size: medium;">v</em><span style="font-family: 'times new roman', times; font-size: medium;">&rdquo;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{x\cos x + {{\cos }^2}x - {x^2}\sin x - x\cos x\sin x - x\cos x + x\cos x\sin x}}{{{{(x + \cos x)}^2}}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{{\cos }^2}x - {x^2}\sin x}}{{{{(x + \cos x)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the derivative has value &ndash;1 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation of the tangent line is \((y - 0) = ( - 1)\left( {x - \frac{\pi }{2}} \right)\left( {y = \frac{\pi }{2} - x} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates earned significant marks on this question. The product rule and the quotient rule were usually correctly applied, but a few candidates made an error in differentiating the denominator, obtaining \( - \sin x\) rather than \(1 - \sin x\). A disappointing number of candidates failed to calculate the correct gradient at the specified point.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates earned significant marks on this question. The product rule and the quotient rule were usually correctly applied, but a few candidates made an error in differentiating the denominator, obtaining \( - \sin x\) rather than \(1 - \sin x\). A disappointing number of candidates failed to calculate the correct gradient at the specified point.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\int {(1 + {{\tan }^2}x){\text{d}}x} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\int {{{\sin }^2}x{\text{d}}x} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\int {(1 + {{\tan }^2}x){\text{d}}x}&nbsp; = \int {{{\sec }^2}x{\text{d}}x = \tan x( + c)} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int {{{\sin }^2}x{\text{d}}x}&nbsp; = \int {\frac{{1 - \cos 2x}}{2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\( = \frac{x}{2} - \frac{{\sin 2x}}{4}( + c)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow integration by parts followed by trig identity.</p>
<p>Award <strong><em>M1 </em></strong>for parts, <strong><em>A1 </em></strong>for trig identity, <strong><em>A1 </em></strong>final answer.</p>
<p><strong><em>[3 marks]</em></strong></p>
<p><strong><em>Total [5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some correct answers but too many candidates had a poor approach and did not use the trig identity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Same as (a).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">By using the substitution \(u = 1 + \sqrt x \), find \(\int {\frac{{\sqrt x }}{{1 + \sqrt x }}{\text{d}}x} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{{2\sqrt x }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({\text{d}}x = 2(u - 1){\text{d}}u\)</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award the <strong><em>A1 </em></strong>for any correct relationship between \({\text{d}}x\) and \({\text{d}}u\).</p>
<p>\(\int {\frac{{\sqrt x }}{{1 + \sqrt x }}{\text{d}}x}&nbsp; = 2\int {\frac{{{{(u - 1)}^2}}}{u}{\text{d}}u} \) &nbsp; &nbsp; (<strong><em>M1)A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award the <strong><em>M1 </em></strong>for an attempt at substitution resulting in an integral only involving \(u\) .</p>
<p>\( = 2\int {u - 2 + \frac{1}{u}{\text{d}}u} \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = {u^2} - 4u + 2\ln u( + C)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = x - 2\sqrt x&nbsp; - 3 + 2\ln \left( {1 + \sqrt x } \right)( + C)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award the <strong><em>A1 </em></strong>for a correct expression in \(x\), but not necessarily fully expanded/simplified.</p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Many candidates worked through this question successfully. A significant minority either made algebraic mistakes with the substitution or tried to work with an integral involving both \(x\) and \(u\).</p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(y = {\text{si}}{{\text{n}}^2}\theta ,\,\,0 \leqslant \theta&nbsp; \leqslant \pi \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the values of <em>θ</em> for which \(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2y\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt at chain rule or product rule     <em><strong>(M1)</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = 2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta \)    <em><strong> A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2\,{\text{sin}}\,\theta \,{\text{cos}}\,\theta  = 2{\text{si}}{{\text{n}}^2}\theta \)</p>
<p>sin <em>θ </em>= 0     <strong><em>(A1)</em></strong></p>
<p><em>θ </em>= 0, \(\pi \)     <em><strong>A1</strong></em></p>
<p>obtaining cos <em>θ </em>= sin <em>θ<strong>     (M1)</strong></em></p>
<p>tan <em>θ</em> = 1     <em><strong>(M1)</strong></em></p>
<p>\(\theta  = \frac{\pi }{4}\)     <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A particle moves along a straight line. Its displacement, \(s\) metres, at time \(t\) seconds is given by \(s = t + \cos 2t,{\text{ }}t \geqslant 0\). The first two times when the particle is at rest are denoted by \({t_1}\) and \({t_2}\), where \({t_1} &lt; {t_2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \({t_1}\) and \({t_2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the displacement of the particle when \(t = {t_1}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(s = t + \cos 2t\)</p>
<p>\(\frac{{{\text{d}}s}}{{{\text{d}}t}} = 1 - 2\sin 2t\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\( = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow \sin 2t = \frac{1}{2}\)</p>
<p>\({t_1} = \frac{\pi }{{12}}(s),{\text{ }}{t_2} = \frac{{5\pi }}{{12}}(s)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>A0A0 </em></strong>if answers are given in degrees.</p>
<p>&nbsp;</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(s = \frac{\pi }{{12}} + \cos \frac{\pi }{6}\,\,\,\left( {s = \frac{\pi }{{12}} + \frac{{\sqrt 3 }}{2}(m)} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the substitution \(x = \tan \theta \) show that \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x = } \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x} \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>let \(x = \tan \theta \)</p>
<p>\( \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}\theta }} = {\sec ^2}\theta \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(\int {\frac{1}{{{{({x^2} + 1)}^2}}}{\text{d}}x = \int {\frac{{{{\sec }^2}\theta }}{{{{({{\tan }^2}\theta + 1)}^2}}}{\text{d}}\theta } } \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; The method mark is for an attempt to substitute for both \(x\) and \({\text{d}}x\).</p>
<p>&nbsp;</p>
<p>\( = \int {\frac{1}{{{{\sec }^2}\theta }}{\text{d}}\theta } \) (or equivalent)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>when \(x = 0,{\text{ }}\theta = 0\) and when \(x = 1,{\text{ }}\theta = \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } \)&nbsp;&nbsp; &nbsp;<strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {\int\limits_0^1 {\frac{1}{{{{\left( {{x^2} + 1} \right)}^2}}}{\text{d}}x}&nbsp; = \int\limits_0^{\frac{\pi }{4}} {{{\cos }^2}\theta {\text{d}}\theta } } \right) = \frac{1}{2}\int\limits_0^{\frac{\pi }{4}} {\left( {1 + \cos 2\theta } \right){\text{d}}\theta } \)&nbsp;&nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>\( = \frac{1}{2}\left[ {\theta + \frac{{\sin 2\theta }}{2}} \right]_0^{\frac{\pi }{4}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{\pi }{8} + \frac{1}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Use the substitution \(u = \ln x\) to find the value of \(\int_{\text{e}}^{{{\text{e}}^2}} {\frac{{{\text{d}}x}}{{x\ln x}}} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>\(\int_{\text{e}}^{{{\text{e}}^2}} {\frac{{{\text{d}}x}}{{x\ln x}}}&nbsp; = \left[ {\ln (\ln x)} \right]_{\text{e}}^{{{\text{e}}^2}}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p>\( = \ln (\ln {{\text{e}}^2}) - \ln (\ln {\text{e}})\;\;\;( = \ln 2 - \ln 1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = \ln 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(u = \ln x,{\text{ }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \int_1^2 {\frac{{{\text{d}}u}}{u}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absent or incorrect limits here.</p>
<p>&nbsp;</p>
<p>\( = [\ln u]_1^2\) or equivalent in \(x( = \ln 2 - \ln 1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = \ln 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the identity \(\cos 2\theta&nbsp; = 2{\cos ^2}\theta&nbsp; - 1\) to prove that \(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} ,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find a similar expression for \(\sin \frac{1}{2}x,{\text{ }}0 \leqslant x \leqslant \pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the value of \(\int_0^{\frac{\pi }{2}} {\left( {\sqrt {1 + \cos x}&nbsp; + \sqrt {1 - \cos x} } \right){\text{d}}x} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos x = 2{\cos ^2}\frac{1}{2}x - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos \frac{1}{2}x =&nbsp; \pm \sqrt {\frac{{1 + \cos x}}{2}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">positive as \(0 \leqslant x \leqslant \pi \) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos \frac{1}{2}x = \sqrt {\frac{{1 + \cos x}}{2}} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos 2\theta&nbsp; = 1 - 2{\sin ^2}\theta \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin \frac{1}{2}x = \sqrt {\frac{{1 - \cos x}}{2}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt 2 \int_0^{\frac{\pi }{2}} {\cos \frac{1}{2}x + \sin \frac{1}{2}x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sqrt 2 \left[ {2\sin \frac{1}{2}x - 2\cos \frac{1}{2}x} \right]_0^{\frac{\pi }{2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sqrt 2 (0) - \sqrt 2 (0 - 2)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\sqrt 2 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Paint is poured into a tray where it forms a circular pool with a uniform thickness of 0.5 cm. If the paint is poured at a constant rate of \(4{\text{ c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\), find the rate of increase of the radius of the circle when the radius is 20 cm.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = 0.5\pi {r^2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{dV}}{{dr}} = \pi r\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{dV}}{{dt}} = 4\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">applying chain rule &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for example \(\frac{{dr}}{{dt}} = \frac{{dV}}{{dt}} \times \frac{{dr}}{{dV}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{dV}}{{dt}} = \pi r\frac{{dr}}{{dt}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{dV}}{{dt}} = 4\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{dr}}{{dt}} = 4 \times \frac{1}{{\pi r}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(r = 20,{\text{ }}\frac{{dr}}{{dt}} = \frac{4}{{20\pi }}{\text{ or }}\frac{1}{{5\pi }}{\text{ (cm}}\,{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow </span><em style="font-family: 'times new roman', times; font-size: medium;">h</em><span style="font-family: 'times new roman', times; font-size: medium;"> instead of 0.5 up until the final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">There was a large variety of methods used in this question, with most candidates choosing</span><span style="font-family: 'times new roman', times; font-size: medium;"> to&nbsp;implicitly differentiate the expression for volume in terms of <em>r</em>.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider two functions \(f\) and \(g\) and their derivatives \(f'\) and \(g'\). The following table shows the values for the two functions and their derivatives at \(x = 1\),&nbsp;\(2\) and \(3\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-07_om_15.01.17.png" alt></p>
<p class="p1">Given that \(p(x) = f(x)g(x)\) and \(h(x) = g \circ f(x)\), find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(p'(3)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(h'(2)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(p'(3) = f'(3)g(3) + g'(3)f(3)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1">(<strong><em>M1)</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>M1 </em></strong>if the derivative is in terms of \(x\) or \(3\).</p>
<p class="p3">&nbsp;</p>
<p class="p1">\( = 2 \times 4 + 3 \times 1\)</p>
<p class="p1">\( = 11\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(h'(x) = g'\left( {f(x)} \right)f'(x)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p1">\(h'(2) = g'(1)f'(2)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\( = 4 \times 4\)</p>
<p class="p1">\( = 16\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<p class="p1"><strong><em>Total [6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was a problem question for many candidates. Some quite strong candidates, on the evidence of their performance on other questions, did not realise that &lsquo;composite functions&rsquo; and &lsquo;functions of a function&rsquo; were the same thing, and therefore that the chain rule applied.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was a problem question for many candidates. Some quite strong candidates, on the evidence of their performance on other questions, did not realise that &lsquo;composite functions&rsquo; and &lsquo;functions of a function&rsquo; were the same thing, and therefore that the chain rule applied.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the curve \(y = \frac{{\ln (x)}}{x}\) and the lines <em>x</em> = 1, <em>x</em> = <em>e</em>, <em>y</em> = 0 is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the volume of the solid generated.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Integrating by parts:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = {(\ln x)^2},{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{{2\ln x}}{x},{\text{ }}v = - \frac{1}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow V = \pi \left( { - \frac{{{{(\ln x)}^2}}}{x} + 2\int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = \ln x,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x},{\text{ }}v = - \frac{1}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore \int {\frac{{\ln x}}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} + \int {\frac{1}{{{x^2}}}{\text{d}}x = - \frac{{\ln x}}{x} - \frac{1}{x}} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore V = \pi \left[ { - \frac{{{{(\ln x)}^2}}}{x} + 2\left( { - \frac{{\ln x}}{x} - \frac{1}{x}} \right)} \right]_1^{\text{e}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\pi - \frac{{5\pi }}{e}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_1^{\text{e}} {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\ln x = u \Rightarrow x = {{\text{e}}^u},{\text{ }}\frac{{{\text{d}}x}}{x} = {\text{d}}u\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x = \int {\frac{{{u^2}}}{{{{\text{e}}^u}}}{\text{d}}u = \int {{{\text{e}}^{ - u}}} {u^2}{\text{d}}u = - {{\text{e}}^{ - u}}{u^2} + 2\int {{{\text{e}}^{ - u}}u{\text{d}}u} } } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - {{\text{e}}^{ - u}}{u^2} + 2\left( { - {{\text{e}}^{ - u}}u + \int {{{\text{e}}^{ - u}}{\text{d}}u} } \right) = - {{\text{e}}^{ - u}}{u^2} - 2{{\text{e}}^{ - u}}u - 2{{\text{e}}^{ - u}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - {{\text{e}}^{ - u}}({u^2} + 2u + 2)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When <em>x</em> = e, <em>u</em> = 1. When <em>x</em> = 1, <em>u</em> = 0 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore {\text{ Volume}} = \pi \left[ { - {{\text{e}}^{ - u}}({u^2} + 2u + 2)} \right]_0^1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi ( - 5{{\text{e}}^{ - 1}} + 2){\text{ }}\left( { = 2\pi&nbsp; - \frac{{5\pi }}{{\text{e}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Only the best candidates were able to make significant progress with this question. It was disappointing to see that many candidates could not state that the formula for the required volume was \(\pi \int_1^e {{{\left( {\frac{{\ln x}}{x}} \right)}^2}{\text{d}}x} \) . Of those who could, very few either attempted integration by parts or used an appropriate substitution.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the curve \(y = \frac{1}{{1 - x}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the equation of the normal to the curve at the point \(x = 3\) in the form \(ax + by + c = 0\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = {(1 - x)^{ - 2}}\;\;\;\left( { = \frac{1}{{{{(1 - x)}^2}}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of Tangent \( = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>gradient of Normal \( =&nbsp; - 4\) &nbsp; &nbsp; <strong>(<em>M1)</em></strong></p>
<p>\(y + \frac{1}{2} =&nbsp; - 4(x - 3)\) or attempt to find \(c\) in \(y = mx + c\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(8x + 2y - 23 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f\) is given by \(f(x) = x{{\text{e}}^{ - x}}{\text{ }}(x \geqslant 0)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine the coordinates of the point A, where \(f'(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(f''(x)\) and hence show the point A is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, the point of inflexion.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained from the graph of \(f\) by stretching it in the <em>x</em>-direction by a scale factor 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; Write down an expression for \(g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; State the coordinates of the maximum C of \(g\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; Determine the <em>x</em>-coordinates of D and E, the two points where \(f(x) = g(x)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graphs of \(y = f(x)\) and \(y = g(x)\) on the same axes, showing clearly the points A, B, C, D and E.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an exact value for the area of the region bounded by the curve \(y = g(x)\), the <em>x</em>-axis and the line \(x = 1\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = {{\text{e}}^{ - x}} - x{{\text{e}}^{ - x}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f'(x) = 0 \Rightarrow x = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates \(\left( {1,{\text{ }}{{\text{e}}^{ - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) =&nbsp; - {{\text{e}}^{ - x}} - {{\text{e}}^{ - x}} + x{{\text{e}}^{ - x}}{\text{ }}\left( { =&nbsp; - {{\text{e}}^{ - x}}(2 - x)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(x = 1\) into \(f''(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(1){\text{ }}\left( { =&nbsp; - {{\text{e}}^{ - 1}}} \right) &lt; 0\) hence maximum &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0{\text{ (}} \Rightarrow x = 2)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates \(\left( {2,{\text{ 2}}{{\text{e}}^{ - 2}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(g(x) = \frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; coordinates of maximum \(\left( {2,{\text{ }}{{\text{e}}^{ - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; equating \(f(x) = g(x)\) and attempting to solve \(x{{\text{e}}^{ - x}} = \frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x\left( {2{{\text{e}}^{\frac{x}{2}}} - {{\text{e}}^x}} \right) = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; or</strong> \(2{{\text{e}}^{\frac{x}{2}}} = {{\text{e}}^x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow {{\text{e}}^{\frac{x}{2}}} = 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x = 2\ln 2\) &nbsp; \((\ln 4)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award first (<strong><em>A1) </em></strong>only if factorisation seen or if two correct</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">solutions are seen.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_10e_markscheme.png" alt> &nbsp; &nbsp;&nbsp;<strong><em>A4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for shape of \(f\), including domain extending beyond \(x = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Ignore any graph shown for \(x &lt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for A and B correctly identified.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for shape of \(g\), including domain extending beyond \(x = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Ignore any graph shown for \(x &lt; 0\). Allow follow through from \(f\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for C, D and E correctly identified (D and E are&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">interchangeable).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^1 {\frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - x{{\text{e}}^{ - \frac{x}{2}}}} \right]_0^1 - \int_0^1 { - {{\text{e}}^{ - \frac{x}{2}}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Condone absence of limits or incorrect limits.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - {{\text{e}}^{ - \frac{1}{2}}} - \left[ {2{{\text{e}}^{ - \frac{x}{2}}}} \right]_0^1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - {{\text{e}}^{ - \frac{1}{2}}} - \left( {2{{\text{e}}^{ - \frac{1}{2}}} - 2} \right) = 2 - 3{{\text{e}}^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) proved to be an easy start for the vast majority of candidates.</span></p>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Full marks for part b) were again likewise seen, though a small number shied away from considering the sign of their second derivative, despite the question asking them to do so.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part c) again proved to be an easily earned 2 marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Full marks for part b) were again likewise seen, though a small number shied away from considering the sign of their second derivative, despite the question asking them to do so.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part c) again proved to be an easily earned 2 marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates lost their way in part d). A variety of possibilities for \(g(x)\) were suggested, commonly \(2x{{\text{e}}^{ - 2x}}\), \(\frac{{x{{\text{e}}^{ - 1}}}}{2}\) or similar variations. Despite section ii) being worth only one mark, (and &lsquo;state&rsquo; being present in the question), many laborious attempts at further differentiation were seen. Part diii was usually answered well by those who gave the correct function for \(g(x)\).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part e) was also answered well by those who had earned full marks up to that point.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">While the integration by parts technique was clearly understood, it was somewhat surprising how many careless slips were seen in this part of the question. Only a minority gained full marks for part f).</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(f(x) = x - 3{x^{\frac{2}{3}}},{\text{ }}x &gt; 0\) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; find the <em>x</em>-coordinate of the point P where \(f'(x) = 0\) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; determine whether P is a maximum or minimum point.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f'(x) = 1 - \frac{2}{{{x^{\frac{1}{3}}}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 1 - \frac{2}{{{x^{\frac{1}{3}}}}} = 0 \Rightarrow {x^{\frac{1}{3}}} = 2 \Rightarrow x = 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(f''(x) = \frac{2}{{3{x^{\frac{4}{3}}}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(8) &gt; 0 \Rightarrow {\text{ at }}x = 8,{\text{ }}f(x){\text{ has a minimum.}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to correctly differentiate the function and find the point where \(f'(x) = 0\) . They were less successful in determining the nature of the point.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The normal to the curve \(x{{\text{e}}^{ - y}} + {{\text{e}}^y} = 1 + x\), at the point (<em>c</em>, \(\ln c\)), has a <em>y</em>-intercept \({c^2} + 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of <em>c</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">differentiating implicitly:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 \times {{\text{e}}^{ - y}} - x{{\text{e}}^{ - y}}\frac{{{\text{d}}y}}{{{\text{d}}x}} + {{\text{e}}^y}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at the point (<em>c</em>, \(\ln c\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{c} - c \times \frac{1}{c}\frac{{{\text{d}}y}}{{{\text{d}}x}} + c\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{c}\,\,\,\,\,(c \ne 1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">reasonable attempt to make expression explicit &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x{{\text{e}}^{ - y}} + {{\text{e}}^y} = 1 + x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x + {{\text{e}}^{2y}} = {{\text{e}}^y}(1 + x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{2y}} - {{\text{e}}^y}(1 + x) + x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({{\text{e}}^y} - 1)({{\text{e}}^y} - x) = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^y} = 1,{\text{ }}{{\text{e}}^y} = x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 0,{\text{ }}y = \ln x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalize if <em>y</em> = 0 not stated.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of tangent \( = \frac{1}{c}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> If candidate starts with \(y = \ln x\) with no justification, award <strong><em>(M0)(A0)A1A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation of the normal is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y - \ln c = - c(x - c)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,{\text{ }}y = {c^2} + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({c^2} + 1 - \ln c = {c^2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln c = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = {\text{e}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the first question to cause the majority of candidates a problem and only the better candidates gained full marks. Weaker candidates made errors in the implicit differentiation and those who were able to do this often were unable to simplify the expression they gained for the gradient of the normal in terms of c; a significant number of candidates did not know how to simplify the logarithms appropriately.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> is given implicitly by the equation \(\frac{{{x^2}}}{y} - 2x = \ln y\) for \(y &gt; 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) in terms of <em>x</em> and <em>y</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) at the point on <em>C</em> where <em>y</em> = 1 and \(x &gt; 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt at implicit differentiation &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{2x}}{y} - \frac{{{x^2}}}{{{y^2}}}\frac{{{\text{d}}y}}{{{\text{d}}x}} - 2 = \frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for each side.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{{2x}}{y} - 2}}{{\frac{1}{y} + \frac{{{x^2}}}{{{y^2}}}}}{\text{ }}\left( { = \frac{{2xy - 2{y^2}}}{{{x^2} + y}}} \right)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">after multiplication by <em>y</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2x - 2y - 2x\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}x}}\ln y + y\frac{1}{y}\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for each side.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2(x - y)}}{{1 + 2x + \ln y}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(y = 1,{\text{ }}{x^2} - 2x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = (0{\text{ or) 2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(x = 2\), \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{2}{5}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were familiar with the concept of implicit differentiation and the majority found the correct derivative function. In part (b), a significant number of candidates didn&rsquo;t realise that the value of <em>x</em> was required.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-size: medium; font-family: 'times new roman', times;">Most candidates were familiar with the concept of implicit differentiation and the majority found the correct derivative function. In part (b), a significant number of candidates didn&rsquo;t realise that the value of <em>x</em> was required.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the graph of the function defined by \(y = x{(\ln x)^2}{\text{ for }}x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function has a local maximum at the point A and a local minimum at the point B.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points A and B.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the graph of the function has exactly one point of inflexion, find&nbsp;its coordinates.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = {(\ln x)^2} + \frac{{2x\ln x}}{x}\left( { = {{(\ln x)}^2} + 2\ln x = \ln x(\ln x + 2)} \right)\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 0{\text{ }}( \Rightarrow x = 1,{\text{ }}x = {e^{ - 2}})\) &nbsp; &nbsp;&nbsp;<em><strong>M1</strong></em></span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for an attempt to solve \(f'(x) = 0\).</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(A({e^{ - 2}},\,4{e^{ - 2}})\) </span><strong style="font-family: 'times new roman', times; font-size: medium;">and&nbsp;</strong><em style="font-family: 'times new roman', times; font-size: medium;">B</em><span style="font-family: 'times new roman', times; font-size: medium;">(1, 0) &nbsp; &nbsp;&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>A1A1</strong></em></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">The final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">is independent of prior working.</span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{2}{x}(\ln x + 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0{\text{ }}\left( { \Rightarrow x = {e^{ - 1}}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">inflexion point \(({e^{ - 1}},{\text{ }}{e^{ - 1}})\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>M1 </em></strong>for attempt to solve \(f''(x) = 0\).</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was answered very well. Candidates are very familiar with this type of question. Some lost a couple of marks by failing to find their final <em>y</em> coordinates, though only the weakest struggled with differentiation and so made little progress.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was answered very well. Candidates are very familiar with this type of question. Some lost a couple of marks by failing to find their final <em>y</em> coordinates, though only the weakest struggled with differentiation and so made little progress.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(h(x) = \arctan (x),{\text{ }}x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(g(x) = \frac{1}{x}\), \(x\in \mathbb{R}\)</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">, \({\text{ }}x \ne 0\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = h(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(h \circ g(x)\) and state its domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = h(x) + h \circ g(x)\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; find \(f'(x)\) in simplified form;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; show that \(f(x) = \frac{\pi }{2}\) for \(x &gt; 0\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Nigel states that \(f\) is an odd function and Tom argues that \(f\) is an even function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; State who is correct and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence find the value of \(f(x)\) for \(x &lt; 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_14a_markscheme_1.png" alt>&nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; <strong><em>A1</em></strong> for correct shape, <strong><em>A1 </em></strong>for asymptotic behaviour at \(y =&nbsp; \pm \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h \circ g(x) = \arctan \left( {\frac{1}{x}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">domain of \(h \circ g\) is equal to the domain of \(g:x \in&nbsp; \circ ,{\text{ }}x \ne 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f(x) = \arctan (x) + \arctan \left( {\frac{1}{x}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{1 + {x^2}}} + \frac{1}{{1 + \frac{1}{{{x^2}}}}} \times&nbsp; - \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{1 + {x^2}}} + \frac{{ - \frac{1}{{{x^2}}}}}{{\frac{{{x^2} + 1}}{{{x^2}}}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{1 + {x^2}}} - \frac{1}{{1 + {x^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f </em>is a constant &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x &gt; 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1) = \frac{\pi }{4} + \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_14c_markscheme.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">from diagram</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \frac{1}{x}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha&nbsp; = \arctan x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; + \alpha&nbsp; = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(f(x) = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \left( {f(x)} \right) = \tan \left( {\arctan (x) + \arctan \left( {\frac{1}{x}} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{x + \frac{1}{x}}}{{1 - x\left( {\frac{1}{x}} \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">denominator = 0, so \(f(x) = \frac{\pi }{2}{\text{ (for }}x &gt; 0)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Nigel is correct. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan (x)\) is an odd function and \(\frac{1}{x}\) is an odd function</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">composition of two odd functions is an odd function and sum of two odd functions is an odd function &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = \arctan ( - x) + \arctan \left( { - \frac{1}{x}} \right) =&nbsp; - \arctan (x) - \arctan \left( {\frac{1}{x}} \right) =&nbsp; - f(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore <em>f </em>is an odd function. &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f(x) =&nbsp; - \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = {{\text{e}}^x}\sin x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain a similar expression for \({f^{(4)}}(x)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Suggest an expression for \({f^{(2n)}}(x)\), \(n \in {\mathbb{Z}^ + }\), and prove your conjecture using mathematical induction.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = {{\text{e}}^x}\sin x + {{\text{e}}^x}\cos x + {{\text{e}}^x}\cos x - {{\text{e}}^x}\sin x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2{{\text{e}}^x}\cos x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{(4)}}(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) + 2{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right) - 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 4{{\text{e}}^x}\cos \left( {x + \frac{\pi }{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 4{{\text{e}}^x}\sin (x + \pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the conjecture is that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{(2n)}}(x) = {2^n}{{\text{e}}^x}\sin \left( {x + \frac{{n\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for <em>n</em>&nbsp; = 1, this formula gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 2{{\text{e}}^x}\sin \left( {x + \frac{\pi }{2}} \right)\) which is correct &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let the result be true for <em>n</em> = <em>k</em> , \(\left( {i.e.{\text{ }}{f^{(2k)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \({f^{(2k + 1)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{\left( {2(k + 1)} \right)}}(x) = {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) + {2^k}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right) - {2^k}{{\text{e}}^x}\sin \left( {x + \frac{{k\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {2^{k + 1}}{{\text{e}}^x}\cos \left( {x + \frac{{k\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {2^{k + 1}}{{\text{e}}^x}\sin \left( {x + \frac{{(k + 1)\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore true for \(n = k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the result is proved by induction. &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award the final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> only if the two </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> marks have been awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[8 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = x{{\text{e}}^{2x}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It can be shown that \({f^{(n)}}(x) = ({2^n}x + n{2^{n - 1}}){{\text{e}}^{2x}}\) for all \(n \in {\mathbb{Z}^ + }\), where \({f^{(n)}}(x)\) represents the \({n^{{\text{th}}}}\) derivative of \(f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; By considering \({f^{(n)}}(x){\text{ for }}n = 1{\text{ and }}n = 2\) , show that there is one minimum point P on the graph of <em>f</em> , and find the coordinates of P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that <em>f</em> has a point of inflexion Q at <em>x</em> = &minus;1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Determine the intervals on the domain of <em>f</em> where <em>f</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; concave up;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; concave down.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Sketch <em>f</em> , clearly showing any intercepts, asymptotes and the points P and Q.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Use mathematical induction to prove that \({f^{(n)}}(x) = ({2^n}x + n{2^{n - 1}}){{\text{e}}^{2x}}{\text{ for all }}n \in {\mathbb{Z}^ + },{\text{ where }}{f^{(n)}}{\text{ represents the }}{n^{{\text{th}}}}{\text{ derivative of }}f(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f'(x) = (1 + 2x){{\text{e}}^{2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (1 + 2x){{\text{e}}^{2x}} = 0 \Rightarrow x = - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = ({2^2}x + 2 \times {2^{2 - 1}}){{\text{e}}^{2x}} = (4x + 4){{\text{e}}^{2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''\left( { - \frac{1}{2}} \right) = \frac{2}{{\text{e}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{2}{{\text{e}}} &gt; 0 \Rightarrow {\text{at }}x = - \frac{1}{2},{\text{ }}f(x){\text{ has a minimum.}}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}\left( { - \frac{1}{2}, - \frac{1}{{2{\text{e}}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(f''(x) = 0 \Rightarrow 4x + 4 = 0 \Rightarrow x = - 1\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Using the }}{{\text{2}}^{{\text{nd}}}}{\text{ derivative }}f''\left( { - \frac{1}{2}} \right) = \frac{2}{{\text{e}}}{\text{ and }}f''( - 2) = - \frac{4}{{{{\text{e}}^4}}},\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the sign change indicates a point of inflexion. &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; <em>f</em>(<em>x</em>) is concave up for \(x &gt; - 1\) . &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <em>f</em>(<em>x</em>) is concave down for \(x &lt; - 1\) . &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica; min-height: 29.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for P and Q, with Q above P,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for asymptote at <em>y</em> = 0 ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for (0, 0) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Show true for <em>n</em> = 1 &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = {{\text{e}}^{2x}} + 2x{{\text{e}}^{2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {{\text{e}}^{2x}}(1 + 2x) = (2x + {2^0}){{\text{e}}^{2x}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Assume true for \(n = k{\text{ , }}i.e.{\text{ }}{f^{(k)}}x = ({2^k}x + k \times {2^{k - 1}}){{\text{e}}^{2x}}{\text{, }}k \geqslant 1\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider \(n = k + 1{\text{ , }}i.e.{\text{ an attempt to find }}\frac{{\text{d}}}{{{\text{d}}x}}\left( {{f^k}(x)} \right)\) . &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({F^{(k + 1)}}(x) = {2^k}{{\text{e}}^{2x}} + 2{{\text{e}}^{2x}}({2^k}x + k \times {2^{k - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {{2^k} + 2({2^k}x + k \times {2^{k - 1}})} \right){{\text{e}}^{2x}}\)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (2 \times {2^k}x + {2^k} + k \times 2 \times {2^{k - 1}}){{\text{e}}^{2x}}\)</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = ({2^{k + 1}}x + {2^k} + k \times {2^k}){{\text{e}}^{2x}}\) &nbsp; &nbsp; <strong><em>A1<br></em></strong>\( = \left( {{2^{k + 1}}x + \left( {k + 1} \right){2^k}} \right){{\text{e}}^{2x}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>P</em>(<em>n</em>) is true for \(k \Rightarrow P(n)\) is true for <em>k</em> + 1, and since true for <em>n</em> = 1, result proved by mathematical induction \(\forall n \in {\mathbb{Z}^ + }\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Only award <strong><em>R1</em></strong> if a reasonable attempt is made to prove the \({(k + 1)^{{\text{th}}}}\) step.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [27 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the most accessible question in section B for these candidates. A majority of candidates produced partially correct answers to part (a), but a significant number struggled with demonstrating that the point is a minimum, despite the hint being given in the question. Part (b) started quite successfully but many students were unable to prove it is a point of inflexion or, more commonly, did not attempt to justify it. Correct answers were often seen for part (c). Part (d) was dependent on the successful completion of the first three parts. If candidates made errors in earlier parts, this often became obvious when they came to sketch the curve. However, few candidates realised that this part was a good way of checking that the above answers were at least consistent. The quality of curve sketching was rather weak overall, with candidates not marking points appropriately and not making features such as asymptotes clear. It is not possible to tell to what extent this was an effect of candidates not having a calculator, but it should be noted that asking students to sketch curves without a calculator will continue to appear on non-calculator papers. In part (e) the basic idea of proof by induction had clearly been taught with a significant majority of students understanding this. However, many candidates did not understand that they had to differentiate again to find the result for (<em>k</em> + 1) .</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \({f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether \({f_n}\) is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p style="text-align: center;">\({f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}\) where \(m \in \mathbb{Z}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of \({f_n}(x)\) with respect to \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for \(n &gt; 1\), the equation of the tangent to the curve \(y = {f_n}(x)\) at \(x = \frac{\pi }{4}\) is \(4x - 2y - \pi&nbsp; = 0\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>even function &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since \(\cos kx = \cos ( - kx)\) <strong>and</strong> \({f_n}(x)\) is a product of even functions &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>even function &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since \((\cos 2x)(\cos 4x) \ldots&nbsp; = \left( {\cos ( - 2x)} \right)\left( {\cos ( - 4x)} \right) \ldots \) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award <strong><em>A0R1</em></strong>.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the case \(n = 1\)</p>
<p>\(\frac{{\sin 4x}}{{2\sin 2x}} = \frac{{2\sin 2x\cos 2x}}{{2\sin 2x}} = \cos 2x\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>hence true for \(n = 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>assume true for \(n = k\), <em>ie</em>, \((\cos 2x)(\cos 4x) \ldots (\cos {2^k}x) = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award <strong><em>M1 </em></strong>for &ldquo;let \(n = k\)&rdquo; or &ldquo;assume \(n = k\)&rdquo; or equivalent.</p>
<p>&nbsp;</p>
<p>consider \(n = k + 1\):</p>
<p>\({f_{k + 1}}(x) = {f_k}(x)(\cos {2^{k + 1}}x)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\cos {2^{k + 1}}x\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{2\sin {2^{k + 1}}x\cos {2^{k + 1}}x}}{{{2^{k + 1}}\sin 2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{\sin {2^{k + 2}}x}}{{{2^{k + 1}}\sin 2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>so \(n = 1\) true and \(n = k\) true \( \Rightarrow n = k + 1\) true. Hence true for all \(n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; To obtain the final <strong><em>R1</em></strong>, all the previous <strong><em>M </em></strong>marks must have been awarded.</p>
<p>&nbsp;</p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use \(f&rsquo; = \frac{{vu' - uv'}}{{{v^2}}}\) (or correct product rule) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({f&rsquo;_n}(x) = \frac{{({2^n}\sin 2x)({2^{n + 1}}\cos {2^{n + 1}}x) - (\sin {2^{n + 1}}x)({2^{n + 1}}\cos 2x)}}{{{{({2^n}\sin 2x)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for correct numerator and <strong><em>A1 </em></strong>for correct denominator.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = \frac{{\left( {{2^n}\sin \frac{\pi }{2}} \right)\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right) - \left( {\sin {2^{n + 1}}\frac{\pi }{4}} \right)\left( {{2^{n + 1}}\cos \frac{\pi }{2}} \right)}}{{{{\left( {{2^n}\sin \frac{\pi }{2}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = \frac{{({2^n})\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right)}}{{{{({2^n})}^2}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = 2\cos {2^{n + 1}}\frac{\pi }{4}{\text{ }}( = 2\cos {2^{n - 1}}\pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({f_n}\left( {\frac{\pi }{4}} \right) = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; This <strong><em>A </em></strong>mark is independent from the previous marks.</p>
<p>&nbsp;</p>
<p>\(y = 2\left( {x - \frac{\pi }{4}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(4x - 2y - \pi&nbsp; = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x &lt; \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g \circ f(x)\), stating its domain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(y = g \circ f(x)\)<span class="s1">, find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(g \circ f(x) = \frac{{\tan x + 1}}{{\tan x - 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\(x \ne \frac{\pi }{4},{\text{ }}0 \le x &lt; \frac{\pi }{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\tan x + 1}}{{\tan x - 1}} = \frac{{\frac{{\sin x}}{{\cos x}} + 1}}{{\frac{{\sin x}}{{\cos x}} - 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\( = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}}{{{{(\sin x - \cos x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(2\sin x\cos x - {{\cos }^2}x - {{\sin }^2}x) - (2\sin x\cos x + {{\cos }^2}x + {{\sin }^2}x)}}{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}\)</p>
<p>\( = \frac{{ - 2}}{{1 - \sin 2x}}\)</p>
<p>Substitute \(\frac{\pi }{6}\) into any formula for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{ - 2}}{{1 - \sin \frac{\pi }{3}}}\)</p>
<p>\( = \frac{{ - 2}}{{1 - \frac{{\sqrt 3 }}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\)</p>
<p>\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\left( {\frac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{{ - 8 - 4\sqrt 3 }}{1} =&nbsp; - 8 - 4\sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\tan x - 1){{\sec }^2}x - (\tan x + 1){{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\( = \frac{{ - 2{{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{ - 2{{\sec }^2}\frac{\pi }{6}}}{{{{\left( {\tan \frac{\pi }{6} - 1} \right)}^2}}} = \frac{{ - 2\left( {\frac{4}{3}} \right)}}{{{{\left( {\frac{1}{{\sqrt 3 }} - 1} \right)}^2}}} = \frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for substitution \(\frac{\pi }{6}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}} = \frac{{ - 8}}{{\left( {4 - 2\sqrt 3 } \right)}}\frac{{\left( {4 + 2\sqrt 3 } \right)}}{{\left( {4 + 2\sqrt 3 } \right)}} =&nbsp; - 8 - 4\sqrt 3 \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area \(\left| {\int_0^{\frac{\pi }{6}} {\frac{{\sin x + \cos x}}{{\sin x - \cos x}}{\text{d}}x} } \right|\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left| {\left[ {\ln \left| {\sin x - \cos x} \right|} \right]_0^{\frac{\pi }{6}}} \right|\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absence of limits and absence of modulus signs at this stage.</p>
<p>&nbsp;</p>
<p>\( = \left| {\ln \left| {\sin \frac{\pi }{6} - \cos \frac{\pi }{6}} \right| - \ln \left| {\sin 0 - \cos 0} \right|} \right|\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left| {\ln \left| {\frac{1}{2} - \frac{{\sqrt 3 }}{2}} \right| - 0} \right|\)</p>
<p>\( = \left| {\ln \left( {\frac{{\sqrt 3&nbsp; - 1}}{2}} \right)} \right|\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( =&nbsp; - \ln \left( {\frac{{\sqrt 3&nbsp; - 1}}{2}} \right) = \ln \left( {\frac{2}{{\sqrt 3&nbsp; - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \ln \left( {\frac{2}{{\sqrt 3&nbsp; - 1}} \times \frac{{\sqrt 3&nbsp; + 1}}{{\sqrt 3&nbsp; + 1}}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \ln \left( {\sqrt 3&nbsp; + 1} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<p><strong><em>Total [16 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Find \(\int {\arcsin x\,{\text{d}}x} \)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt at integration by parts with \(u = \arcsin x\) and \(v' = 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\(\int {\arcsin x\,{\text{d}}x}&nbsp; = x\arcsin x - \int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} {\text{ }}\)&nbsp;&nbsp; &nbsp;<strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>A1 </em></strong>for \(x\arcsin x\) and <strong><em>A1 </em></strong>for \( - \int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \).</p>
<p>&nbsp;</p>
<p>solving \(\int {\frac{x}{{\sqrt {1 - {x^2}} }}{\text{d}}x} \) by substitution with \(u = 1 - {x^2}\) or inspection&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\int {\arcsin x{\text{d}}x} = x\arcsin x + \sqrt {1 - {x^2}} + c\)&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\int_0^{\frac{\pi }{6}} {x\sin 2x{\text{d}}x = \frac{{\sqrt 3 }}{8} - \frac{\pi }{{24}}} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using integration by parts &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = x{\text{, }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = \sin 2x{\text{ and }}v = - \frac{1}{2}\cos 2x\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left[ {x\left( { - \frac{1}{2}\cos 2x} \right)} \right]_0^{\frac{\pi }{6}} - \int_0^{\frac{\pi }{6}} {\left( { - \frac{1}{2}\cos 2x} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {x\left( { - \frac{1}{2}\cos 2x} \right)} \right]_0^{\frac{\pi }{6}} + \left[ {\frac{1}{4}\sin 2x} \right]_0^{\frac{\pi }{6}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> above if the limits are not included.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left[ {x\left( { - \frac{1}{2}\cos 2x} \right)} \right]_0^{\frac{\pi }{6}} = - \frac{\pi }{{24}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left[ {\frac{1}{4}\sin 2x} \right]_0^{\frac{\pi }{6}} = \frac{{\sqrt 3 }}{8}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{6}} {x\sin 2x{\text{d}}x = \frac{{\sqrt 3 }}{8} - \frac{\pi }{{24}}} \) &nbsp; &nbsp; <strong><em>AG</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> on the last two </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> marks if the expressions are the negative of the correct ones.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was reasonably well done, with few candidates making the inappropriate choice of <em>u</em> and \(\frac{{{\text{d}}v}}{{{\text{d}}x}}\). The main source of a loss of marks was in finding <em>v</em> by integration. A few candidates used the double angle formula for sine, with poor results.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function \(f\) is defined by \(f(x) = \frac{{3x - 2}}{{2x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne \frac{1}{2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f(x)\) can be written in the form \(f(x) = A + \frac{B}{{2x - 1}}\), find the values of the constants \(A\) and \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f:x \to y = \frac{{3x - 2}}{{2x - 1}}\;\;\;{f^{ - 1}}:y \to x\)</p>
<p>\(y = \frac{{3x - 2}}{{2x - 1}} \Rightarrow 3x - 2 = 2xy - y\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow 3x - 2xy =&nbsp; - y + 2\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(x(3 - 2y) = 2 - y\)</p>
<p>\(x = \frac{{2 - y}}{{3 - 2y}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\left( {{f^{ - 1}}(y) = \frac{{2 - y}}{{3 - 2y}}} \right)\)</p>
<p>\({f^{ - 1}}(x) = \frac{{2 - x}}{{3 - 2x}}\;\;\;\left( {x \ne \frac{3}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>\(x\) and \(y\) might be interchanged earlier.</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>First <strong><em>M1 </em></strong>is for interchange of variables second <strong><em>M1 </em></strong>for manipulation</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Final answer must be a function of \(x\)</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{3x - 2}}{{2x - 1}} = A + \frac{B}{{2x - 1}} \Rightarrow 3x - 2 = A(2x - 1) + B\)</p>
<p>equating coefficients \(3 = 2A\) and \( - 2 =&nbsp; - A + B\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(A = \frac{3}{2}\) and \(B =&nbsp; - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Could also be done by division or substitution of values.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\int {f(x){\text{d}}x = \frac{3}{2}x - \frac{1}{4}\ln \left| {2x - 1} \right| + c} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>accept equivalent e.g. <span class="s2">\(\ln \left| {4x - 2} \right|\)</span></p>
<p class="p3"><em><strong><span class="s2">[1 mark]</span></strong></em></p>
<p class="p3"><em><strong><span class="s2">Total [7 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done. Only a few candidates confused inverse with derivative or reciprocal.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Not enough had the method of polynomial division.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Reasonable if they had an answer to (b) (follow through was given) usual mistakes with not allowing for the derivative of the bracket.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\) is defined as \(f(x) = a{x^2} + bx + c\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{R}\).</p>
<p class="p1">Hayley conjectures that \(\frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{f'({x_2}) + f'({x_1})}}{2},{\text{ }}x1 \ne x2\).</p>
<p class="p1">Show that Hayley’s conjecture is correct.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(\frac{{f({x_2}) - f({x_1})}}{{{x_2} - {x_1}}} = \frac{{ax_2^2 + b{x_2} + c - (ax_1^2 + b{x_1} + c)}}{{{x_2} - {x_1}}}\)     <strong><em>(M1)</em></strong></p>
<p class="p1">\( = \frac{{a(x_2^2 - x_1^2) + b({x_2} - {x_1})}}{{{x_2} - {x_1}}}\)     <strong><em>A1</em></strong></p>
<p class="p1">\( = \frac{{a({x_2} - {x_1})({x_2} + {x_1}) + b({x_2} - {x_1})}}{{{x_2} - {x_1}}}\)     <strong><em>(A1)</em></strong></p>
<p class="p1">\( = a({x_2} + {x_1}) + b\,\,\,\,\,({x_1} \ne {x_2})\)     <strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{f'({x_2}) + f'({x_1})}}{2} = \frac{{(2a{x_2} + b) + (2a{x_1} + b)}}{2}\)     <strong><em>M1</em></strong></p>
<p class="p1">\( = \frac{{2a({x_2} + {x_1}) + 2b}}{2}\)</p>
<p class="p1">\( = a({x_2} + {x_1}) + b\)     <strong><em>A1</em></strong></p>
<p class="p1">so Hayley’s conjecture is correct     <strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This was generally answered very well. A small minority attempted to &lsquo;prove&rsquo; the result by substituting specific values into the identity and thus gained little or no credit. Some started by assuming the result to be correct, then manipulated both sides until they derived an obvious identity. Reluctantly, they gained credit for this, though such an approach should be discouraged.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Find the \(x\)-coordinates of all the points on the curve \(y = 2{x^4} + 6{x^3} + \frac{7}{2}{x^2} - 5x + \frac{3}{2}\) <span class="s1">at which</span></p>
<p class="p2">the tangent to the curve is parallel to the tangent at \(( - 1,{\text{ }}6)\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 8{x^3} + 18{x^2} + 7x - 5\)    </span><strong><em>A1</em></strong></p>
<p class="p1">when \(x =  - 1,{\text{ }}\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - 2\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(8{x^3} + 18{x^2} + 7x - 5 =  - 2\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">\(8{x^3} + 18{x^2} + 7x - 3 = 0\)</p>
<p class="p1"><span class="s2">\((x + 1)\) </span>is a factor <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\(8{x^3} + 18{x^2} + 7x - 3 = (x + 1)(8{x^2} + 10x - 3)\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span><em>M1 </em></strong>is for attempting to find the quadratic factor.</p>
<p class="p3">\((x + 1)(4x - 1)(2x + 3) = 0\)</p>
<p class="p3"><span class="Apple-converted-space">\((x =  - 1),{\text{ }}x = 0.25,{\text{ }}x =  - 1.5\)    </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span><em>M1 </em></strong>is for an attempt to solve their quadratic factor.</p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The first half of the question was accessible to all the candidates. Some though saw the word &lsquo;tangent&rsquo; and lost time calculating the equation of this. It was a pity that so many failed to spot that \(x + 1\) was a factor of the cubic and so did not make much progress with the final part of this question.</p>
</div>
<br><hr><br><div class="question">
<p>Consider the curve \(y = \frac{1}{{1 - x}} + \frac{4}{{x - 4}}\).</p>
<p>Find the <em>x</em>-coordinates of the points on the curve where the gradient is zero.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>valid attempt to find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)     <em><strong>M1</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{{{{\left( {1 - x} \right)}^2}}} - \frac{4}{{{{\left( {x - 4} \right)}^2}}}\)      <em><strong>A1A1</strong></em></p>
<p>attempt to solve \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)     <em><strong>M1</strong></em></p>
<p>\(x = 2,\,\,x =  - 2\)     <em><strong>A1A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(x = a\sec \theta \) to show that \(\int_{a\sqrt 2 }^{2a} {\frac{{{\text{d}}x}}{{{x^3}\sqrt {{x^2} - {a^2}} }} = \frac{1}{{24{a^3}}}\left( {3\sqrt 3&nbsp; + \pi&nbsp; - 6} \right)} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = a\sec \theta \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\sec \theta \tan \theta \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">new limits:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = a\sqrt 2&nbsp; \Rightarrow \theta&nbsp; = \frac{\pi }{4}\) and \(x = 2a \Rightarrow \theta&nbsp; = \frac{\pi }{3}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{a\sec \theta \tan \theta }}{{{a^3}{{\sec }^3}\theta \sqrt {{a^2}{{\sec }^2}\theta&nbsp; - {a^2}} }}{\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}\theta }}{{{a^3}}}{\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using \({\cos ^2}\theta&nbsp; = \frac{1}{2}(\cos 2\theta&nbsp; + 1)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{2{a^3}}}\left[ {\frac{1}{2}\sin 2\theta&nbsp; + \theta } \right]_{\frac{\pi }{4}}^{\frac{\pi }{3}}\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{4{a^3}}}\left( {\frac{{\sqrt 3 }}{2} + \frac{{2\pi }}{3} - 1 - \frac{\pi }{2}} \right)\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{24{a^3}}}\left( {3\sqrt 3&nbsp; + \pi&nbsp; - 6} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate \(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} \) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {{{\tan }^3}x{\text{d}}x} \) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(u = \tan x;{\text{ d}}u = {\sec ^2}x{\text{d}}x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">consideration of change of limits &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} = \int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{1}{{{u^{\frac{1}{3}}}}}{\text{d}}u} \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalize lack of limits.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{3{u^{\frac{2}{3}}}}}{2}} \right]_1^{\sqrt 3 }\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{3 \times {{\sqrt 3 }^{\frac{2}{3}}}}}{2} - \frac{3}{2} = \left( {\frac{{3\sqrt[3]{3} - 3}}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\sec }^2}x}}{{\sqrt[3]{{\tan x}}}}{\text{d}}x} = \left[ {\frac{{3{{(\tan x)}^{\frac{2}{3}}}}}{2}} \right]_{\frac{\pi }{4}}^{\frac{\pi }{3}}\) &nbsp; &nbsp; <strong><em>M2A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{3 \times {{\sqrt 3 }^{\frac{2}{3}}}}}{2} - \frac{3}{2} = \left( {\frac{{3\sqrt[3]{3} - 3}}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {{{\tan }^3}x{\text{d}}x}&nbsp; = \int {\tan x({{\sec }^2}x - 1){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int {(\tan x \times {{\sec }^2}x - \tan x){\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}{\tan ^2}x - \ln \left| {\sec x} \right| + C\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalize the absence of absolute value or <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Quite a variety of methods were successfully employed to solve part (a).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates did not attempt part (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {t\ln (t + 1){\text{d}}t} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt at integration by substitution &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using \(u = t + 1{\text{, d}}u = {\text{d}}t\), the integral becomes</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^2 {(u - 1)\ln u{\text{d}}u} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then using integration by parts &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^2 {(u - 1)\ln u{\text{d}}u}&nbsp; = \left[ {\left( {\frac{{{u^2}}}{2} - u} \right)\ln u} \right]_1^2 - \int_1^2 {\left( {\frac{{{u^2}}}{2} - u} \right) \times \frac{1}{u}{\text{d}}u} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - \left[ {\frac{{{u^2}}}{4} - u} \right]_1^2\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\,\,\,\,\,\)(accept 0.25) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to integrate by parts &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct choice of variables to integrate and differentiate &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^1 {t\ln (t + 1){\text{d}}t}&nbsp; = \left[ {\frac{{{t^2}}}{2}\ln (t + 1)} \right]_0^1 - \int_0^1 {\frac{{{t^2}}}{2} \times \frac{1}{{t + 1}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{t^2}}}{2}\ln (t + 1)} \right]_0^1 - \frac{1}{2}\int_0^1 {t - 1 + \frac{1}{{t + 1}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{t^2}}}{2}\ln (t + 1)} \right]_0^1 - \frac{1}{2}\left[ {\frac{{{t^2}}}{2} - t + \ln (t + 1)} \right]_0^1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\,\,\,\,\,\)(accept 0.25) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Again very few candidates gained full marks on this question. The most common approach was to begin by integrating by parts, which was done correctly, but very few candidates then knew how to integrate \(\frac{{{t^2}}}{{t + 1}}\). Those who began with a substitution often made more progress. Again a number of candidates were let down by their inability to simplify appropriately.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(y = {\text{arccos}}\left( {\frac{x}{2}} \right)\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int_0^1 {{\text{arccos}}\left( {\frac{x}{2}} \right){\text{d}}x} \).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(y = {\text{arccos}}\left( {\frac{x}{2}} \right) \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \frac{1}{{2\sqrt {1 - {{\left( {\frac{x}{2}} \right)}^2}} }}\left( { =  - \frac{1}{{\sqrt {4 - {x^2}} }}} \right)\)   <em><strong> M1A1</strong></em></p>
<p><strong>Note:</strong> <strong><em>M1</em></strong> is for use of the chain rule.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt at integration by parts     <em><strong>M1</strong></em></p>
<p>\(u = {\text{arccos}}\left( {\frac{x}{2}} \right) \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} =  - \frac{1}{{\sqrt {4 - {x^2}} }}\)</p>
<p>\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = 1 \Rightarrow v = x\)     <em><strong>(A1)</strong></em></p>
<p>\(\int_0^1 {{\text{arccos}}\left( {\frac{x}{2}} \right){\text{d}}x}  = \left[ {x\,\,{\text{arccos}}\left( {\frac{x}{2}} \right)} \right]_0^1 + \int_0^1 {\frac{1}{{\sqrt {4 - {x^2}} }}} dx\)      <em><strong>A1</strong></em></p>
<p>using integration by substitution or inspection      <em><strong>(M1)</strong></em></p>
<p>\(\left[ {x\,\,{\text{arccos}}\left( {\frac{x}{2}} \right)} \right]_0^1 + \left[ { - {{\left( {4 - {x^2}} \right)}^{\frac{1}{2}}}} \right]_0^1\)      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for \({ - {{\left( {4 - {x^2}} \right)}^{\frac{1}{2}}}}\) or equivalent.</p>
<p><strong>Note:</strong> Condone lack of limits to this point.</p>
<p>attempt to substitute limits into their integral     <em><strong>M1</strong></em></p>
<p>\( = \frac{\pi }{3} - \sqrt 3  + 2\)     <em><strong>A1</strong></em></p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize \({x^2} + 3x + 2\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = - 1\) and \(x = 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} + 3x + 2 = (x + 2)(x + 1)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_13.58.40.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.b/M"></p>
<p><strong><em>A1</em></strong> for the shape</p>
<p><strong><em>A1</em></strong> for the equation \(y = 0\)</p>
<p><strong><em>A1</em></strong> for asymptotes \(x = - 2\) and \(x = - 1\)</p>
<p><strong><em>A1</em></strong> for coordinates \(\left( { - \frac{3}{2},{\text{ }} - 4} \right)\)</p>
<p><strong><em>A1</em></strong> \(y\)-intercept \(\left( {0,{\text{ }}\frac{1}{2}} \right)\)</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{{(x + 2) - (x + 1)}}{{(x + 1)(x + 2)}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{1}{{{x^2} + 3x + 2}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} \)</p>
<p>\( = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = \ln 2 - \ln 3 - \ln 1 + \ln 2\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( = \ln \left( {\frac{4}{3}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\therefore p = \frac{4}{3}\)</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_14.20.03.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.e/M"></p>
<p>symmetry about the \(y\)-axis&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>correct shape&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Allow <strong><em>FT </em></strong>from part (b).</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2\int_0^1 {f(x){\text{d}}x} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\( = 2\ln \left( {\frac{4}{3}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Do not award <strong><em>FT </em></strong>from part (e).</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p>A particle moves in a straight line such that at time \(t\) seconds \((t \geqslant 0)\), its velocity \(v\), in \({\text{m}}{{\text{s}}^{ - 1}}\), is given by \(v = 10t{{\text{e}}^{ - 2t}}\). Find the exact distance travelled by the particle in the first half-second.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\(s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} \)</p>
<p>attempt at integration by parts &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left[ { - 5t{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}} - \int\limits_0^{\frac{1}{2}} { - 5{{\text{e}}^{ - 2t}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \left[ { - 5t{{\text{e}}^{ - 2t}} - \frac{5}{2}{{\text{e}}^{ - 2t}}} \right]_0^{\frac{1}{2}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absence of limits (or incorrect limits) and missing factor of 10 up to this point.</p>
<p>&nbsp;</p>
<p>\(s = \int\limits_0^{\frac{1}{2}} {10t{{\text{e}}^{ - 2t}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( =&nbsp; - 5{{\text{e}}^{ - 1}} + \frac{5}{2}{\text{ }}\left( { = \frac{{ - 5}}{{\text{e}}} + \frac{5}{2}} \right){\text{ }}\left( { = \frac{{5{\text{e}} - 10}}{{2{\text{e}}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that \(\frac{3}{{x + 1}} + \frac{2}{{x + 3}} = \frac{{5x + 11}}{{{x^2} + 4x + 3}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence find the value of <em>k</em> such that \(\int_0^2 {\frac{{5x + 11}}{{{x^2} + 4x + 3}}{\text{d}}x = \ln k} \) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(\frac{3}{{x + 1}} + \frac{2}{{x + 3}} = \frac{{3(x + 3) + 2(x + 1)}}{{(x + 1)(x + 3)}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{3x + 9 + 2x + 2}}{{{x^2} + 4x + 3}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5x + 11}}{{{x^2} + 4x + 3}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(\int_0^2 {\frac{{5x + 11}}{{{x^2} + 4x + 3}}{\text{d}}x} = \int_0^2 {\left( {\frac{3}{{x + 1}} + \frac{2}{{x + 3}}} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {3\ln (x + 1) + 2\ln (x + 3)} \right]_0^2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3\ln 3 + 2\ln 5 - 3\ln 1 - 2\ln 3\,\,\,\,\,( = 3\ln 3 + 2\ln 5 - 2\ln 3)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 3 + 2\ln 5\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln 75\,\,\,\,\,(k = 75)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many students did not &lsquo;Show&rsquo; enough in a) in order to be convincing. The need for the steps of the simplification to be shown was not clear. Too many did not link a) to b) and seemed to not be aware of the Command Term &lsquo;hence&rsquo; and its implication for marking ( no marks will be awarded to alternative methods). The simplifications of the log expressions were done poorly by many and the fact that \({3^3} = 9\) was noted by too many. There were very few elegant solutions to this question.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the substitution \(u = {x^{\frac{1}{2}}}\) to find \(\int {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(\frac{1}{2}\int\limits_1^9 {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \), expressing your answer in the form arctan \(q\), where \(q \in \mathbb{Q}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{2}{x^{ - \frac{1}{2}}}\) (accept \({\text{d}}u = \frac{1}{2}{x^{ - \frac{1}{2}}}{\text{d}}x\) or equivalent)       <em><strong>A1</strong></em></p>
<p>substitution, leading to an integrand in terms of \(u\)     <em><strong>M1</strong></em></p>
<p>\(\int {\frac{{2u{\text{d}}u}}{{{u^3} + u}}} \) or equivalent      <em><strong>A1</strong></em></p>
<p>= 2 arctan \(\left( {\sqrt x } \right)\left( { + c} \right)\)     <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p>\(\frac{1}{2}\int\limits_1^9 {\frac{{{\text{d}}x}}{{{x^{\frac{3}{2}}} + {x^{\frac{1}{2}}}}}} \) = arctan 3 − arctan 1     <em><strong>A1</strong></em></p>
<p>tan(arctan 3 − arctan 1) = \(\frac{{3 - 1}}{{1 + 3 \times 1}}\)      <em><strong>(M1)</strong></em></p>
<p>tan(arctan 3 − arctan 1) = \(\frac{1}{2}\)</p>
<p>arctan 3 − arctan 1 = arctan \(\frac{1}{2}\)     <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find all values of <em>x</em> for \(0.1 \leqslant x \leqslant 1\) such that \(\sin (\pi {x^{ - 1}}) = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int_{\frac{1}{{n + 1}}}^{\frac{1}{n}} {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}}){\text{d}}x} \), showing that it takes different integer values when <em>n</em> is even and when <em>n</em> is odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Evaluate \(\int_{0.1}^1 {\left| {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}})} \right|{\text{d}}x} \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin (\pi {x^{ - 1}}) = 0{\text{ }}\frac{\pi }{x} = \pi ,{\text{ }}2\pi ( \ldots )\) &nbsp; &nbsp; <strong><em>(A1)</em></strong>&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{7},\frac{1}{8},\frac{1}{9},\frac{1}{{10}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left[ {\cos (\pi {x^{ - 1}})} \right]_{\frac{1}{{n + 1}}}^{\frac{1}{n}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \cos (\pi n) - \cos \left( {\pi (n + 1)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 2 when <em>n</em> is even and = &ndash;2 when <em>n</em> is odd &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{0.1}^1 {\left| {\pi {x^{ - 2}}\sin (\pi {x^{ - 1}})} \right|{\text{d}}x}&nbsp; = 2 + 2 +&nbsp; \ldots&nbsp; + 2 = 18\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were a pleasing number of candidates who answered part (a) correctly. Fewer were successful with part (b). It was expected by this stage of the paper that candidates would be able to just write down the value of the integral rather than use substitution to evaluate it.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were a pleasing number of candidates who answered part (a) correctly. Fewer were successful with part (b). It was expected by this stage of the paper that candidates would be able to just write down the value of the integral rather than use substitution to evaluate it.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were disappointingly few correct answers to part (c) with candidates not realising that it was necessary to combine the previous two parts in order to write down the answer.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>The folium of Descartes is a curve defined by the equation \({x^3} + {y^3} - 3xy = 0\), shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_18.23.15.png" alt="N17/5/MATHL/HP1/ENG/TZ0/07"></p>
<p>Determine the exact coordinates of the point P on the curve where the tangent line is parallel to the \(y\)-axis.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\({x^3} + {y^3} - 3xy = 0\)</p>
<p>\(3{x^2} + 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} - 3x\frac{{{\text{d}}y}}{{{\text{d}}x}} - 3y = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Differentiation wrt \(y\) is also acceptable.</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3y - 3{x^2}}}{{3{y^2} - 3x}}{\text{ }}\left( { = \frac{{y - {x^2}}}{{{y^2} - x}}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>All following marks may be awarded if the denominator is correct, but the numerator incorrect.</p>
<p>&nbsp;</p>
<p>\({y^2} - x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(x = {y^2}\)</p>
<p>\({y^6} + {y^3} - 3{y^3} = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\({y^6} - 2{y^3} = 0\)</p>
<p>\({y^3}({y^3} - 2) = 0\)</p>
<p>\((y \ne 0)\therefore y = \sqrt[3]{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = {\left( {\sqrt[3]{2}} \right)^2}{\text{ }}\left( { = \sqrt[3]{4}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\({x^3} + xy - 3xy = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(x({x^2} - 2y) = 0\)</p>
<p>\(x \ne 0 \Rightarrow y = \frac{{{x^2}}}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({y^2} = \frac{{{x^4}}}{4}\)</p>
<p>\(x = \frac{{{x^4}}}{4}\)</p>
<p>\(x({x^3} - 4) = 0\)</p>
<p>\((x \ne 0)\therefore x = \sqrt[3]{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = \frac{{{{\left( {\sqrt[3]{4}} \right)}^2}}}{2} = \sqrt[3]{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A body is moving in a straight line. When it is \(s\)&nbsp;metres from a fixed point O on the line its velocity, \(v\),&nbsp;is given by \(v =&nbsp; - \frac{1}{{{s^2}}},{\text{ }}s &gt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the acceleration of the body when it is 50 cm from O.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = 2{s^{ - 3}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for \(2{s^{ - 3}}\) and <strong><em>A1 </em></strong>for the whole expression.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(a =&nbsp; - \frac{1}{{{s^2}}} \times \frac{2}{{{s^3}}}\left( { =&nbsp; - \frac{2}{{{s^5}}}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">when \(s = \frac{1}{2},{\text{ }}a =&nbsp; - \frac{2}{{{{(0.5)}^5}}}{\text{ }}( =&nbsp; - 64){\text{ (m}}{{\text{s}}^{ - 2}})\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; <strong><em>M1</em></strong> is for the substitution of 0.5 into their equation for acceleration.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>M1A0 </em></strong>if \(s = 50\) is substituted into the correct equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve \(y = x{{\text{e}}^x}\) and the line \(y = kx,{\text{ }}k \in \mathbb{R}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Let <em>k</em> = 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that the curve and the line intersect once.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the angle between the tangent to the curve and the line at the point of intersection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Let <em>k</em> =1. Show that the line is a tangent to the curve.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Find the values of <em>k</em> for which the curve \(y = x{{\text{e}}^x}\) and the line \(y = kx\) meet in two distinct points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Write down the coordinates of the points of intersection.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Write down an integral representing the area of the region <em>A</em> enclosed by the curve and the line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) &nbsp; &nbsp; <strong>Hence</strong>, given that \(0 &lt; k &lt; 1\), show that \(A &lt; 1\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(x{{\text{e}}^x} = 0 \Rightarrow x = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, they intersect only once at (0, 0)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(y' = {{\text{e}}^x} + x{{\text{e}}^x} = (1 + x){{\text{e}}^x}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'(0) = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta = \arctan 1 = \frac{\pi }{4}{\text{ }}(\theta = 45^\circ )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; when \(k = 1,{\text{ }}y = x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x{{\text{e}}^x} = x \Rightarrow x({{\text{e}}^x} - 1) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y'(0) = 1\) which equals the gradient of the line \(y = x\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, the line is tangent to the curve at origin &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award full credit to candidates who note that the equation \(x({{\text{e}}^x} - 1) = 0\) has a double root <em>x</em> = 0 so <em>y</em> = <em>x</em> is a tangent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(x{{\text{e}}^x} = kx \Rightarrow x({{\text{e}}^x} - k) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 0{\text{ or }}x = \ln k\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k &gt; 0{\text{ and }}k \ne 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; (0, 0) and \((\ln k,{\text{ }}k\ln k)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \(A = \left| {\int_0^{\ln k} {kx - x{{\text{e}}^x}{\text{d}}x} } \right|\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not penalize the omission of absolute value.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) &nbsp; &nbsp; attempt at integration by parts to find \(\int {x{{\text{e}}^x}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {x{{\text{e}}^x}{\text{d}}x}&nbsp; = x{{\text{e}}^x} - \int {{{\text{e}}^x}{\text{d}}x = {{\text{e}}^x}(x - 1)} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(0 &lt; k &lt; 1 \Rightarrow \ln k &lt; 0\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_{\ln k}^0 {kx - x{{\text{e}}^x}{\text{d}}x = \left[ {\frac{k}{2}{x^2} - (x - 1){{\text{e}}^x}} \right]_{\ln k}^0} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - \left( {\frac{k}{2}{{(\ln k)}^2} - (\ln k - 1)k} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - \frac{k}{2}\left( {{{(\ln k)}^2} - 2\ln k + 2} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - \frac{k}{2}\left( {{{(\ln k - 1)}^2} + 1} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\frac{k}{2}\left( {{{(\ln k - 1)}^2} + 1} \right) &gt; 0\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A &lt; 1\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[15 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [23 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates solved (a) and (b) correctly but in (c), many failed to realise that the equation \(x{{\text{e}}^x} = kx\) has two roots under certain conditions and that the point of the question was to identify those conditions. Most candidates made a reasonable attempt to write down the appropriate integral in (c)(iii) with the modulus signs and limits often omitted but no correct solution has yet been seen to (c)(iv).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following graph shows the relation \(x = 3\cos 2y + 4,{\text{ }}0 \leqslant y \leqslant \pi \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-27_om_09.08.34.png" alt="M16/5/MATHL/HP1/ENG/TZ2/11"></p>
<p class="p1"><span class="s1">The curve is rotated 360&deg; </span>about the \(y\)-axis to form a volume of revolution.</p>
</div>

<div class="specification">
<p class="p1">A container with this shape is made with a solid base of diameter 14 cm . The container is filled with water at a rate of \({\text{2 c}}{{\text{m}}^{\text{3}}}\,{\text{mi}}{{\text{n}}^{ - 1}}\)<span class="s1">. At time \(t\) minutes, the water depth is \(h{\text{ cm, }}0 \leqslant h \leqslant \pi \) and the volume of water in the container is \(V{\text{ c}}{{\text{m}}^{\text{3}}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value of the volume generated.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Given that \(\frac{{{\text{d}}V}}{{{\text{d}}h}} = \pi {(3\cos 2h + 4)^2}\), find an expression for \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the value of \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) <span class="s1">when \(h = \frac{\pi }{4}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Find the values of \(h\) <span class="s1">for which \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}} = 0\).</span></p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>By making specific reference to the shape of the container, interpret \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) <span class="s2">at the values of \(h\) found in part (c)(ii).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of \(\pi \int_a^b {{x^2}{\text{d}}y} \) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Condone any or missing limits.</p>
<p class="p1"><span class="Apple-converted-space">\(V = \pi \int_0^\pi  {{{(3\cos 2y + 4)}^2}{\text{d}}y} \)    </span><strong><em>(A1)</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\( = \pi \int_0^\pi  {(9{{\cos }^2}2y + 24\cos 2y + 16){\text{d}}y} \)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(9{\cos ^2}2y = \frac{9}{2}(1 + \cos 4y)\)    </span><strong><em>(M1)</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\( = \pi \left[ {\frac{{9y}}{2} + \frac{9}{8}\sin 4y + 12\sin 2y + 16y} \right]_0^\pi \)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p5"><span class="Apple-converted-space">\( = \pi \left( {\frac{{9\pi }}{2} + 16\pi } \right)\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p5"><span class="Apple-converted-space">\( = \frac{{41{\pi ^2}}}{2}{\text{ (c}}{{\text{m}}^3})\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>If the coefficient “\(\pi \)” is absent, or <em>eg</em><span class="s2">, “\(2\pi \)</span>” is used, only <strong><em>M </em></strong>marks are available.</p>
<p class="p1"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>attempting to use \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}V}}{{{\text{d}}t}} \times \frac{{{\text{d}}h}}{{{\text{d}}V}}\) with \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 2\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{2}{{\pi {{(3\cos 2h + 4)}^2}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>substituting \(h = \frac{\pi }{4}\) into \(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{8\pi }}{\text{ (cm}}\,{\text{mi}}{{\text{n}}^{ - 1}})\)    </span><strong><em>A1</em></strong></p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">    </span></strong>Do not allow FT marks for (b)(ii).</p>
<p class="p2"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}} = \frac{{\text{d}}}{{{\text{d}}t}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right) = \frac{{{\text{d}}h}}{{{\text{d}}t}} \times \frac{{\text{d}}}{{{\text{d}}h}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\)</span> <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{2}{{\pi {{(3\cos 2h + 4)}^2}}} \times \frac{{24\sin 2h}}{{\pi {{(3\cos 2h + 4)}^3}}}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1"><strong>Note</strong>: <span class="Apple-converted-space">    </span>Award <strong><em>M1 </em></strong>for attempting to find \(\frac{{\text{d}}}{{{\text{d}}h}}\left( {\frac{{{\text{d}}h}}{{{\text{d}}t}}} \right)\).</p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{48\sin 2h}}{{{\pi ^2}{{(3\cos 2h + 4)}^5}}}\)    </span><strong><em>A1</em></strong></p>
<p class="p2">(ii) <span class="Apple-converted-space">    \(\sin 2h = 0 \Rightarrow h = 0,{\text{ }}\frac{\pi }{2},{\text{ }}\pi \)</span> <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>Note</strong>: <span class="Apple-converted-space">    </span>Award <strong><em>A1 </em></strong><span class="s2">for \(\sin 2h = 0 \Rightarrow h = 0,{\text{ }}\frac{\pi }{2},{\text{ }}\pi \) </span>from an incorrect \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span><strong>METHOD 1</strong></p>
<p class="p1"><span class="s2">\(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) </span>is a minimum at \(h = 0,{\text{ }}\pi \) and the container is widest at these values <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="s2">\(\frac{{{\text{d}}h}}{{{\text{d}}t}}\) is a maximum at \(h = \frac{\pi }{2}\) </span>and the container is narrowest at this value <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was often answered well, though for some reason a minority tended to use the incorrect \(\pi \int {{{(3\cos 2y)}^2}{\text{d}}y} \) and gained few marks thereafter. Incorrect limits were sometimes seen, which led to only method marks being available. A pleasing number were able to deal with the integration of \({\cos ^2}2y\) through the use of the correct identity.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was well answered and did not pose too many problems.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Correct answers to part (c) were rarely seen. Only the very best candidates appreciated the correct use of the chain rule when trying to determine an expression for \(\frac{{{{\text{d}}^2}h}}{{{\text{d}}{t^2}}}\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C</em> has equation \(y = \frac{1}{8}(9 + 8{x^2} - {x^4})\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the points on <em>C</em> at which \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The tangent to <em>C</em> at the point P(1, 2) cuts the <em>x</em>-axis at the point T. Determine the coordinates of T.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The normal to <em>C</em> at the point P cuts the <em>y</em>-axis at the point N. Find the area of triangle PTN.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x - \frac{1}{2}{x^3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x\left( {2 - \frac{1}{2}{x^2}} \right) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,{\text{ }} \pm 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) at \(\left( {0,\frac{9}{8}} \right),{\text{ }}\left( { - 2,\frac{{25}}{8}} \right),{\text{ }}\left( {2,\frac{{25}}{8}} \right)\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A2</em></strong> for all three <em>x</em>-values correct with errors/omissions in <em>y</em>-values.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at <em>x</em> =1, gradient of tangent \( = \frac{3}{2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> In the following, allow <strong><em>FT</em></strong> on incorrect gradient.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of tangent is \(y - 2 = \frac{3}{2}(x - 1)\,\,\,\,\,\left( {y = \frac{3}{2}x + \frac{1}{2}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">meets <em>x</em>-axis when y = 0 , \( - 2 = \frac{3}{2}(x - 1)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - \frac{1}{3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates of T are \(\left( { - \frac{1}{3},0} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of normal \( = - \frac{2}{3}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of normal is \(y - 2 = - \frac{2}{3}(x - 1)\,\,\,\,\,\left( {y = - \frac{2}{3}x + \frac{8}{3}} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at <em>x</em> = 0 , \(y = \frac{8}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> In the following, allow FT on incorrect coordinates of T and N.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">lengths of \({\text{PN}} = \sqrt {\frac{{13}}{9}} \) , \({\text{PT}} = \sqrt {\frac{{52}}{9}} \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">area of triangle \({\text{PTN}} = \frac{1}{2} \times \sqrt {\frac{{13}}{9}}&nbsp; \times \sqrt {\frac{{52}}{9}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{13}}{9}\) (or equivalent <em>e.g.</em> \(\frac{{\sqrt {676} }}{{18}}\)) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The whole of this question seemed to prove accessible to a high proportion of candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; was well answered by most, although a number of candidates gave only the <em>x</em>-values of the points or omitted the value at 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; was successfully solved by the majority of candidates, who also found the correct equation of the normal in (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The last section proved more difficult for many candidates, the most common error being to use the wrong perpendicular sides. There were a number of different approaches here all of which were potentially correct but errors abounded.&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The whole of this question seemed to prove accessible to a high proportion of candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; was well answered by most, although a number of candidates gave only the <em>x</em>-values of the points or omitted the value at 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; was successfully solved by the majority of candidates, who also found the correct equation of the normal in (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The last section proved more difficult for many candidates, the most common error being to use the wrong perpendicular sides. There were a number of different approaches here all of which were potentially correct but errors abounded.&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The whole of this question seemed to prove accessible to a high proportion of candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; was well answered by most, although a number of candidates gave only the <em>x</em>-values of the points or omitted the value at 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; was successfully solved by the majority of candidates, who also found the correct equation of the normal in (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The last section proved more difficult for many candidates, the most common error being to use the wrong perpendicular sides. There were a number of different approaches here all of which were potentially correct but errors abounded.&nbsp;</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2x - 1,}&amp;{x \leqslant 2} \\ <br>&nbsp; {a{x^2} + bx - 5,}&amp;{2 &lt; x &lt; 3} <br>\end{array}} \right.\]<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where a , \(b \in \mathbb{R}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>f</em> and its derivative, \(f'\) , are continuous for all values in the domain of <em>f</em> , find the values of <em>a</em> and <em>b</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>f</em> is a one-to-one function.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain expressions for the inverse function \({f^{ - 1}}\) and state their domains.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f</em> continuous \( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4a + 2b = 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2,}&amp;{x &lt; 2} \\ <br>&nbsp; {2ax + b,}&amp;{2 &lt; x &lt; 3} <br>\end{array}} \right.\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'{\text{ continuous}} \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f'(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f'(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4a + b = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solve simultaneously &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to obtain <em>a</em> = &ndash;1 and <em>b</em> = 6 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(x \leqslant 2,{\text{ }}f'(x) = 2 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(2 &lt; x &lt; 3,{\text{ }}f'(x) = - 2x + 6 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(f'(x) &gt; 0\) for all values in the domain of <em>f</em> , <em>f</em> is increasing &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore one-to-one &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 2y - 1 \Rightarrow y = \frac{{x + 1}}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - {y^2} + 6y - 5 \Rightarrow {y^2} - 6y + x + 5 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 3 \pm \sqrt {4 - x} \)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {\frac{{x + 1}}{2},}&amp;{x \leqslant 3} \\ <br>&nbsp; {3 - \sqrt {4 - x} ,}&amp;{3 &lt; x &lt; 4} <br>\end{array}} \right.\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for the first line and <strong><em>A1A1</em></strong> for the second line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">A curve is given by the equation \(y = \sin (\pi \cos x)\).</p>
<p class="p2">Find the coordinates of all the points on the curve for which \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0,{\text{ }}0 \leqslant x \leqslant \pi \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} =  - \cos (\pi \cos x) \times \pi \sin x\)    </span><strong><em>M1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award follow through marks below if their answer is a multiple of the correct answer.</p>
<p class="p2"> </p>
<p class="p1">considering either \(\sin x = 0\) or \(\cos (\pi \cos x) = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\(x = 0,{\text{ }}\pi \)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\pi \cos x = \frac{\pi }{2},{\text{ }} - \frac{\pi }{2}{\text{ }}\left( { \Rightarrow \cos x = \frac{1}{2}, - \frac{1}{2}} \right)\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2"> </p>
<p class="p5"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Condone absence of \( - \frac{\pi }{2}\).</p>
<p class="p5">\( \Rightarrow x = \frac{\pi }{3},{\text{ }}\frac{{2\pi }}{3}\)</p>
<p class="p5"><span class="Apple-converted-space">\((0,{\text{ }}0),{\text{ }}\left( {\frac{\pi }{3},{\text{ 1}}} \right),{\text{ (}}\pi {\text{, 0)}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\left( {\frac{{2\pi }}{3},{\text{ }} - 1} \right)\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This was not a straight-forward differentiation and it was pleasing to see how many candidates managed to do it correctly. Having done this they found two of the solutions, often three of the solutions, successfully. The final solution was found by only a few candidates. Again candidates lost marks unnecessarily by not close reading the question and realising that they needed both coordinates of the points, not just the \(x\)-coordinates.</p>
</div>
<br><hr><br><div class="specification">
<p>It is given that&nbsp;\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{2}{\text{lo}}{{\text{g}}_r}\,x\) where \(r,\,x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(y\) in terms of \(x\). Give your answer in the form \(y = p{x^q}\), where <em>p</em> , <em>q</em> are constants.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The region <em>R</em>, is bounded by the graph of the function found in part (b), the <em>x</em>-axis, and the lines \(x = 1\) and \(x = \alpha \) where \(\alpha  &gt; 1\). The area of <em>R</em> is \(\sqrt 2 \).</p>
<p>Find the value of \(\alpha \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{lo}}{{\text{g}}_r}\,{r^2}}}\left( { = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{{{\text{2}}\,{\text{lo}}{{\text{g}}_r}\,r}}} \right)\)    <em><strong> M1A1</strong></em></p>
<p>\( = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}\)     <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\({\text{lo}}{{\text{g}}_{{r^2}}}x = \frac{1}{{{\text{lo}}{{\text{g}}_x}\,{r^2}}}\)     <em><strong>M1</strong></em></p>
<p>\( = \frac{1}{{2\,{\text{lo}}{{\text{g}}_x}\,r}}\)     <em><strong>A1</strong></em></p>
<p>\( = \frac{{{\text{lo}}{{\text{g}}_r}\,x}}{2}\)     <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\)</p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,2{x^2} = 0\)     <em><strong>M1</strong></em></p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2} = 0\)     <em><strong>M1</strong></em></p>
<p>\({\text{lo}}{{\text{g}}_2}\,y =  - \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2{x^2}\)</p>
<p>\({\text{lo}}{{\text{g}}_2}\,y = {\text{lo}}{{\text{g}}_2}\left( {\frac{1}{{\sqrt {2x} }}} \right)\)     <em><strong>M1A1</strong></em></p>
<p>\(y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}\)     <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: For the final <em><strong>A</strong></em> mark, \(y\) must be expressed in the form \(p{x^q}\).</p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_4}\,x + {\text{lo}}{{\text{g}}_4}\,2x = 0\)</p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,x + \frac{1}{2}{\text{lo}}{{\text{g}}_2}\,2x = 0\)     <strong><em>M1</em></strong></p>
<p>\({\text{lo}}{{\text{g}}_2}\,y + {\text{lo}}{{\text{g}}_2}\,{x^{\frac{1}{2}}} + {\text{lo}}{{\text{g}}_2}\,{\left( {2x} \right)^{\frac{1}{2}}} = 0\)     <em><strong>M1</strong></em></p>
<p>\({\text{lo}}{{\text{g}}_2}\,\left( {\sqrt 2 xy} \right) = 0\)     <em><strong>M1</strong></em></p>
<p>\(\sqrt 2 xy = 1\)     <strong><em>A1</em></strong></p>
<p>\(y = \frac{1}{{\sqrt 2 }}{x^{ - 1}}\)     <em><strong>A1</strong></em></p>
<p><strong>Note</strong>: For the final <em><strong>A</strong></em> mark, \(y\) must be expressed in the form \(p{x^q}\).</p>
<p><em><strong>[5 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the area of <em>R</em> is \(\int\limits_1^\alpha  {\frac{1}{{\sqrt 2 }}} {x^{ - 1}}{\text{d}}x\)     <em><strong>M1</strong></em></p>
<p>\( = \left[ {\frac{1}{{\sqrt 2 }}{\text{ln}}\,x} \right]_1^\alpha \)     <em><strong>A1</strong></em></p>
<p>\( = \frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha \)     <em><strong>A1</strong></em></p>
<p>\(\frac{1}{{\sqrt 2 }}{\text{ln}}\,\alpha  = \sqrt 2 \)     <em><strong>M1</strong></em></p>
<p>\(\alpha  = {{\text{e}}^2}\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Only follow through from part (b) if \(y\) is in the form \(y = p{x^q}\)</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(y = \frac{1}{{1 - x}}\), use mathematical induction to prove that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = \frac{{n!}}{{{{(1 - x)}^{n + 1}}}},{\text{ }}n \in {\mathbb{Z}^ + }\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">proposition is true for <em>n</em> = 1 since \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{{{{(1 - x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{1!}}{{{{(1 - x)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Must see the 1! for the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">assume true for </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = </span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><span style="font-family: 'times new roman', times; font-size: medium;">, \(k \in {\mathbb{Z}^ + }\), </span><em style="font-family: 'times new roman', times; font-size: medium;">i.e.</em><span style="font-family: 'times new roman', times; font-size: medium;"> \(\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = \frac{{k!}}{{{{(1 - x)}^{k + 1}}}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{{\text{d}}\left( {\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}}} \right)}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (k + 1)k!{(1 - x)^{ - (k + 1) - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{(k + 1)!}}{{{{(1 - x)}^{k + 2}}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, \({{\text{P}}_{k + 1}}\) is true whenever \({{\text{P}}_{k}}\) is true, and \({{\text{P}}_1}\) is true, and therefore the proposition is true for all positive integers &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> is only available if at least 4 of the previous marks have been awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[7 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were awarded good marks for this question. A disappointing minority thought that the \((k + 1)\)th derivative was the \((k)\)th derivative multiplied by the first derivative. Providing an acceptable final statement remains a perennial issue.&nbsp;</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">A curve is defined by the equation \(8y\ln x - 2{x^2} + 4{y^2} = 7\). Find the equation of the tangent to the curve at the point where <em>x</em> = 1 and \(y &gt; 0\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(8y \times \frac{1}{x} + 8\frac{{{\text{d}}y}}{{{\text{d}}x}}\ln x - 4x + 8y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for attempt at implicit differentiation. <em><strong>A1</strong></em> for differentiating \(8y\ln x\), </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for differentiating the rest.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x = 1,{\text{ }}8y \times 0 - 2 \times 1 + 4{y^2} = 7\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = \frac{9}{4} \Rightarrow y = \frac{3}{2}{\text{ (as }}y &gt; 0)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at \(\left( {1,\frac{3}{2}} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{2}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y - \frac{3}{2} = - \frac{2}{3}(x - 1)\) or \(y = - \frac{2}{3}x + \frac{{13}}{6}\) &nbsp; &nbsp; <strong>A1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><em><span style="font-family: 'times new roman',times; font-size: medium;"><strong>[7 marks]</strong></span></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">The implicit differentiation was generally well done. Some candidates did not realise that they needed </span><span style="font-family: times new roman,times; font-size: medium;">to substitute into the original equation to find \(y\). Others wasted a lot of time rearranging the derivative </span><span style="font-family: times new roman,times; font-size: medium;">to make \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span><span style="font-family: times new roman,times; font-size: medium;">the subject, rather than simply putting in the particular values for \(x\) and \(y\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve with equation \({x^2} + xy + {y^2} = 3\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find in terms of <em>k</em>, the gradient of the curve at the point (&minus;1, <em>k</em>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that the tangent to the curve is parallel to the <em>x</em>-axis at this point, find the value of <em>k</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Attempting implicit differentiation &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2x + y + x\frac{{{\text{d}}y}}{{{\text{d}}x}} + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Substituting \(x = - 1,{\text{ }}y = k\,\,\,\,\,\)<em>e.g.</em> \( - 2 + k - \frac{{{\text{d}}y}}{{{\text{d}}x}} + 2k\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to make \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) the subject &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to make \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) the subject <em>e.g.</em> \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{ - (2x + y)}}{{x + 2y}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Substituting \(x = - 1,{\text{ }}y = k{\text{ into }}\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2 - k}}{{2k - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Solving \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0{\text{ for }}k{\text{ gives }}k = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered, almost all candidates realising that implicit differentiation was involved. A few failed to differentiate the right hand side of the relationship. A surprising number of candidates made an error in part (b), even when they had scored full marks on the first part.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve defined by the equation \({x^2} + \sin y - xy = 0\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the gradient of the tangent to the curve at the point \((\pi ,{\text{ }}\pi )\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, show that \(\tan \theta &nbsp;= \frac{1}{{1 + 2\pi }}\), where \(\theta \)&nbsp;is the acute angle between the tangent&nbsp;to the curve at \((\pi ,{\text{ }}\pi )\) and the line <em>y </em>= <em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to differentiate implicitly &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2x + \cos y\frac{{{\text{d}}y}}{{{\text{d}}x}} - y - x\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>A1 </em></strong>for differentiating \({x^2}\) and sin <em>y </em>; <strong><em>A1 </em></strong>for differentiating <em>xy</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substitute <em>x </em>and <em>y </em>by \(\pi \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\pi &nbsp;- \frac{{{\text{d}}y}}{{{\text{d}}x}} - \pi &nbsp;- \pi \frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{\pi }{{1 + \pi }}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>M1 </em></strong>for attempt to make d<em>y</em>/d<em>x </em>the subject. This could be seen earlier.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta &nbsp;= \frac{\pi }{4} - \arctan \frac{\pi }{{1 + \pi }}\)&nbsp;(or seen the other way) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \theta &nbsp;= \tan \left( {\frac{\pi }{4} - \arctan \frac{\pi }{{1 + \pi }}} \right) = \frac{{1 - \frac{\pi }{{1 + \pi }}}}{{1 + \frac{\pi }{{1 + \pi }}}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \theta &nbsp;= \frac{1}{{1 + 2\pi }}\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) proved an easy 6 marks for most candidates, while the majority failed to make any headway with part b), with some attempting to find the equation of their line in the form <em>y</em> = <em>mx</em> + <em>c</em> . Only the best candidates were able to see their way through to the given answer.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) proved an easy 6 marks for most candidates, while the majority failed to make any headway with part b), with some attempting to find the equation of their line in the form <em>y</em> = <em>mx</em> + <em>c</em> . Only the best candidates were able to see their way through to the given answer.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\) defined by \(f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.</p>
</div>

<div class="specification">
<p>The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| &gt; a\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = f(x)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \frac{1}{{f(x)}}\);</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \left| {\frac{1}{{f(x)}}} \right|\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int {f(x)\cos x{\text{d}}x} \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding \(g'(x)\) explain why \(g\) is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.15.01.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct \(x\) and \(y\) intercepts and minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.17.28.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct vertical asymptotes</p>
<p><strong><em>A1 </em></strong>for correct implied horizontal asymptote</p>
<p><strong><em>A1 </em></strong>for correct maximum point</p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.20.22.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M"></p>
<p><strong><em>A1 </em></strong>for reflecting negative branch from (ii) in the \(x\)-axis</p>
<p><strong><em>A1 </em></strong>for correctly labelled minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt at integration by parts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x - \int {2x\sin x{\text{d}}x} } \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>\( = ({x^2} - {a^2})\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = ({x^2} - {a^2})\sin x + 2x\cos - 2\sin x + c\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = \int {{x^2}\cos x{\text{d}}x - \int {{a^2}\cos x{\text{d}}x} } } \)</p>
<p>attempt at integration by parts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\int {{x^2}\cos x{\text{d}}x = {x^2}\sin x - \int {2x\sin x{\text{d}}x} } \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>\( = {x^2}\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = {x^2}\sin x + 2x\cos x - 2\sin x\)</p>
<p>\( - \int {{a^2}\cos x{\text{d}}x = - {a^2}\sin x} \)</p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x + 2x\cos x - 2\sin x + c} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g(x) = x{({x^2} - {a^2})^{\frac{1}{2}}}\)</p>
<p>\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + \frac{1}{2}x{({x^2} - {a^2})^{ - \frac{1}{2}}}(2x)\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Method mark is for differentiating the product. Award <strong><em>A1 </em></strong>for each correct term.</p>
<p>&nbsp;</p>
<p>\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + {x^2}{({x^2} - {a^2})^{ - \frac{1}{2}}}\)</p>
<p>both parts of the expression are positive hence \(g'(x)\) is positive&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>and therefore \(g\) is an increasing function (for \(\left| x \right| &gt; a\))&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In triangle \({\text{ABC, BC}} = \sqrt 3 {\text{ cm}}\), \({\rm{A\hat BC}} = \theta \) and \({\rm{B\hat CA}} = \frac{\pi }{3}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that length \({\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta&nbsp; + \sin \theta }}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that&nbsp;\(AB\) has a minimum value, determine the value of \(\theta \) <span class="s1">for which this occurs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>any attempt to use sine rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{{\text{AB}}}}{{\sin \frac{\pi }{3}}} = \frac{{\sqrt 3 }}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{\sqrt 3 }}{{\sin \frac{{2\pi }}{3}\cos \theta&nbsp; - \cos \frac{{2\pi }}{3}\sin \theta }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone use of degrees.</p>
<p>&nbsp;</p>
<p>\( = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta&nbsp; + \frac{1}{2}\sin \theta }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{AB}}}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{\sqrt 3 }}{{\frac{{\sqrt 3 }}{2}\cos \theta&nbsp; + \frac{1}{2}\sin \theta }}\)</p>
<p>\(\therefore {\text{AB}} = \frac{3}{{\sqrt 3 \cos \theta&nbsp; + \sin \theta }}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(({\text{AB}})' = \frac{{ - 3\left( { - \sqrt 3 \sin \theta&nbsp; + \cos \theta } \right)}}{{{{\left( {\sqrt 3 \cos \theta&nbsp; + \sin \theta } \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>setting \(({\text{AB}})' = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\tan \theta&nbsp; = \frac{1}{{\sqrt 3 }}\)</p>
<p>\(\theta&nbsp; = \frac{\pi }{6}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\({\text{AB}} = \frac{{\sqrt 3 \sin \frac{\pi }{3}}}{{\sin \left( {\frac{{2\pi }}{3} - \theta } \right)}}\)</p>
<p>\(AB\)&nbsp;minimum when \(\sin \left( {\frac{{2\pi }}{3} - \theta } \right)\) is maximum &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\sin \left( {\frac{{2\pi }}{3} - \theta } \right) = 1\) &nbsp; &nbsp; <strong>(<em>A1)</em></strong></p>
<p>\(\frac{{2\pi }}{3} - \theta&nbsp; = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\theta&nbsp; = \frac{\pi }{6}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>shortest distance from&nbsp;\(B\) to&nbsp;\(AC\) is perpendicular to&nbsp;\(AC\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>\(\theta&nbsp; = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6}\) &nbsp; &nbsp; <strong><em>M1A2</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions <em>f</em> and <em>g</em> defined by \(f(x) = {2^{\frac{1}{x}}}\) and \(g(x) = 4 - {2^{\frac{1}{x}}}\) , \(x \ne 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the coordinates of <em>P</em>, the point of intersection of the graphs of <em>f</em> and <em>g</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the equation of the tangent to the graph of <em>f</em> at the point P.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \({2^{\frac{1}{x}}} = 4 - {2^{\frac{1}{x}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to solve the equation &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x = </em>1 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so P is (1, 2) , as \(f(1) = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(f'(x) = - \frac{1}{{{x^2}}}{2^{\frac{1}{x}}}\ln 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to substitute <em>x</em>-value found in part (a) into their \(f'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(1) = - 2\ln 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y - 2 = - 2\ln 2(x - 1)\,\,\,\,\,{\text{(or equivalent)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates answered part (a) correctly although some candidates showed difficulty solving the equation using valid methods. Part (b) was less successful with many candidates failing to apply chain rule to obtain the derivative of the exponential function.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve <em>C </em>has equation&nbsp;\(2{x^2} + {y^2} = 18\). Determine the coordinates of the four points&nbsp;on <em>C </em>at which the normal passes through the point (1, 0) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-size: medium; font-family: 'times new roman', times;">\(4x + 2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0 \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = -\frac{{2x}}{y}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times;">&nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Allow follow through on incorrect \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)&nbsp;from this point.</span></p>
<p><span style="font-family: 'times new roman', times;">&nbsp;</span></p>
<p><span style="font-size: medium; font-family: 'times new roman', times;">gradient of normal at (<em>a</em>, <em>b</em>) is&nbsp;\(\frac{b}{{2a}}\)</span></p>
<p><span style="font-family: 'times new roman', times;">&nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">No further A marks are available if a general point is not used</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-size: medium; font-family: 'times new roman', times;">equation of normal&nbsp;at (<em style="font-style: italic;">a</em>,&nbsp;<em style="font-style: italic;">b</em>) is&nbsp;\(y - b = \frac{b}{{2a}}(x - a)\left( { \Rightarrow y = \frac{b}{{2a}}x + \frac{b}{2}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-size: medium; font-family: 'times new roman', times;">substituting (1, 0) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong>&nbsp; &nbsp;&nbsp;</span></p>
<p><span style="font-size: medium; font-family: 'times new roman', times;">\(b = 0\) or \(a = -1\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p><span style="font-size: medium; font-family: 'times new roman', times;">four points are \((3,{\text{ }}0),{\text{ }}( - 3,{\text{ 0}}),{\text{ }}( - 1,{\text{ }}4),{\text{ }}( - 1,{\text{ }} - 4)\) &nbsp; &nbsp;<strong><em>A1A1</em></strong>&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times;">&nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A0 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for any two points correct.</span></p>
<p><em><strong><span style="font-family: 'times new roman', times; font-size: medium;">[9 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Many students were able to obtain the first marks in this question by implicit differentiation but few were able to complete the question successfully. There were a number of students obtaining the correct final answers, but could not be given the marks due to incorrect working. Most common was students giving the equation of the normal as \(y - 0 = \frac{y}{{2x}}(x - 1)\), instead of taking a general point e.g. (<em>a</em>, <em>b</em>)</span></p>
<p>&nbsp;</p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area between the curves \(y = 2 + x - {x^2}{\text{ and }}y = 2 - 3x + {x^2}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 + x - {x^2} = 2 - 3x + {x^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 2{x^2} - 4x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 2x(x - 2) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 0,{\text{ }}x = 2\) &nbsp; &nbsp; <em><strong>A1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px 'Hiragino Kaku Gothic ProN';"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept graphical solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>M1</em></strong> for correct graph and <strong><em>A1A1</em></strong> for correctly labelled roots.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore {\text{A}} = \int_0^2 {\left( {(2 + x - {x^2}) - (2 - 3x + {x^2})} \right){\text{d}}x} \) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_0^2 {(4x - 2{x^2}){\text{d}}x\,\,\,\,\,{\text{or equivalent}}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {2{x^2} - \frac{{2{x^3}}}{3}} \right]_0^2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{8}{3}\left( { = 2\frac{2}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the question that gained the most correct responses. A few candidates struggled to find the limits of the integration or found a negative area.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Show that \(\int_1^2 {{x^3}\ln x{\text{d}}x = 4\ln 2 - \frac{{15}}{{16}}} \).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">any attempt at integration by parts <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\(u = \ln x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">\(\frac{{{\text{d}}v}}{{{\text{d}}x}} = {x^3} \Rightarrow v = \frac{{{x^4}}}{4}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \int_1^2 {\frac{{{x^3}}}{4}{\text{d}}x} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Condone absence of limits at this stage.</p>
<p class="p4">&nbsp;</p>
<p class="p1">\( = \left[ {\frac{{{x^4}}}{4}\ln x} \right]_1^2 - \left[ {\frac{{{x^4}}}{{16}}} \right]_1^2\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Condone absence of limits at this stage.</p>
<p class="p4">&nbsp;</p>
<p class="p1">\( = 4\ln 2 - \left( {1 - \frac{1}{{16}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\( = 4\ln 2 - \frac{{15}}{{16}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the exact value of \(\int_1^2 {\left( {{{(x - 2)}^2} + \frac{1}{x} + \sin \pi x} \right){\text{dx}}} \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left[ {\frac{1}{3}{{(x - 2)}^3} + \ln x - \frac{1}{\pi }\cos \pi x} \right]_{(1)}^{(2)}\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(\frac{1}{3}{x^3} - 2{x^2} + 4x\) in place of \(\frac{1}{3}{(x - 2)^3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {0 + \ln 2 - \frac{1}{\pi }\cos 2\pi } \right) - \left( { - \frac{1}{3} + \ln 1 - \frac{1}{\pi }\cos \pi } \right)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3} + \ln 2 - \frac{2}{\pi }\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for any two terms correct, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the third correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well done, although quite a number of candidates were either unable to integrate the sine term or incorrectly evaluated the resulting cosine at the limits.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Andr&eacute; wants to get from point A located in the sea to point Y located on a straight stretch of beach. P is the point on the beach nearest to A such that AP = 2 km and PY = 2 km. He does this by swimming in a straight line to a point Q located on the beach and then running to Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When Andr&eacute; swims he covers 1 km in \(5\sqrt 5 \) minutes. When he runs he covers 1 km in 5 minutes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; If PQ = <em>x</em> km, \(0 \leqslant x \leqslant 2\) , find an expression for the time <em>T</em> minutes taken by Andr&eacute; to reach point Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that \(\frac{{{\text{d}}T}}{{{\text{d}}x}} = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }} - 5\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Solve \(\frac{{{\text{d}}T}}{{{\text{d}}x}} = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Use the value of <em>x</em> found in <strong>part (c) (i)</strong> to determine the time, <em>T</em> minutes, taken for Andr&eacute; to reach point Y.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Show that \(\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{\frac{3}{2}}}}}\) and <strong>hence</strong> show that the time found in <strong>part (c) (ii)</strong> is a minimum.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \({\text{AQ}} = \sqrt {{x^2} + 4} {\text{ (km)}}\) &nbsp; &nbsp; <span style="text-decoration: underline;"><strong><em>(A1)</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{QY}} = (2 - x){\text{ (km)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(T = 5\sqrt 5 {\text{AQ}} + 5{\text{QY}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{ = 5}}\sqrt 5 \sqrt {({x^2} + 4)} + 5(2 - x){\text{ (mins)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Attempting to use the chain rule on \({\text{5}}\sqrt 5 \sqrt {({x^2} + 4)} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {{\text{5}}\sqrt 5 \sqrt {({x^2} + 4)} } \right) = 5\sqrt 5 \times \frac{1}{2}{({x^2} + 4)^{ - \frac{1}{2}}} \times 2x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {5(2 - x)} \right) = - 5\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}T}}{{{\text{d}}x}} = \frac{{5\sqrt 5 x}}{{\sqrt {{x^2} + 4} }} - 5\) &nbsp; &nbsp; <strong><em>AG</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(\sqrt 5 x = \sqrt {{x^2} + 4} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Squaring both sides and rearranging to obtain \(5{x^2} = {x^2} + 4\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 1 &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not award the final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for stating a negative solution in final answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(T = 5\sqrt 5 \sqrt {1 + 4}&nbsp; + 5(2 - 1)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 30 (mins) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> on incorrect </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> value.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 1</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to use the quotient rule &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = x{\text{ , }}v = \sqrt {{x^2} + 4} {\text{, }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1{\text{ and }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = x{({x^2} + 4)^{ - 1/2}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = 5\sqrt 5 \left[ {\frac{{\sqrt {{x^2} + 4} - \frac{1}{2}{{({x^2} + 4)}^{ - 1/2}} \times 2{x^2}}}{{({x^2} + 4)}}} \right]\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempt to simplify &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}[{x^2} + 4 - {x^2}]\,\,\,\,\,\)or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(x = 1{\text{ , }}\frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}} &gt; 0\) and hence <em>T</em> = 30 is a minimum &nbsp; &nbsp; <strong><em>R1</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> on incorrect </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> value, \(0 \leqslant x \leqslant 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to use the product rule &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = x{\text{ , }}v = \sqrt {{x^2} + 4} {\text{, }}\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1{\text{ and }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = x{({x^2} + 4)^{ - 1/2}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}T}}{{{\text{d}}{x^2}}} = 5\sqrt 5 {({x^2} + 4)^{ - 1/2}} - \frac{{5\sqrt 5 x}}{2}{({x^2} + 4)^{ - 3/2}} \times 2x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( { = \frac{{5\sqrt 5 }}{{{{({x^2} + 4)}^{1/2}}}} - \frac{{5\sqrt 5 {x^2}}}{{{{({x^2} + 4)}^{3/2}}}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempt to simplify &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5\sqrt 5 ({x^2} + 4) - 5\sqrt 5 {x^2}}}{{{{({x^2} + 4)}^{3/2}}}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { = \frac{{5\sqrt 5 ({x^2} + 4 - {x^2})}}{{{{({x^2} + 4)}^{3/2}}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(x = 1{\text{ , }}\frac{{20\sqrt 5 }}{{{{({x^2} + 4)}^{3/2}}}} &gt; 0\) and hence <em>T</em> = 30 is a minimum &nbsp; &nbsp; <strong><em>R1</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> on incorrect </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> value, \(0 \leqslant x \leqslant 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [18 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates scored well on this question. The question tested their competence at algebraic manipulation and differentiation. A few candidates failed to extract from the context the correct relationship between velocity, distance and time.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Given that \(\alpha&nbsp; &gt; 1\), use the substitution \(u = \frac{1}{x}\) to show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_1^\alpha&nbsp; {\frac{1}{{1 + {x^2}}}{\text{d}}x = \int_{\frac{1}{\alpha }}^1 {\frac{1}{{1 + {u^2}}}{\text{d}}x} } .\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong>Hence</strong> show that \(\arctan \alpha&nbsp; + \arctan \frac{1}{\alpha } = \frac{\pi }{2}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(u = \frac{1}{x} \Rightarrow {\text{d}}u = - \frac{1}{{{x^2}}}{\text{d}}x\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {\text{d}}x = - \frac{{{\text{d}}u}}{{{u^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^\alpha {\frac{1}{{1 + {x^2}}}{\text{d}}x = - \int_1^{\frac{1}{\alpha }} {\frac{1}{{1 + {{\left( {\frac{1}{u}} \right)}^2}}}\frac{{{\text{d}}u}}{{{u^2}}}} } \) &nbsp; &nbsp; <strong><em>A1M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct integrand and <strong><em>M1A1</em></strong> for correct limits.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \int_{\frac{1}{\alpha }}^1 {\frac{1}{{1 + {u^2}}}{\text{d}}u\,\,\,\,\,} \)(upon interchanging the two limits) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(\arctan x_1^\alpha&nbsp; = \arctan u_{\frac{1}{\alpha }}^1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan \alpha - \frac{\pi }{4} = \frac{\pi }{4} - \arctan \frac{1}{\alpha }\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan \alpha + \arctan \frac{1}{\alpha } = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was successfully answered by few candidates. Both parts of the question prescribed the approach which was required &ndash; &ldquo;use the substitution&rdquo; and &ldquo;hence&rdquo;. Many candidates ignored these. The majority of the candidates failed to use substitution properly to change the integration variables and in many cases the limits were fudged. The logic of part (b) was missing in many cases.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The quadratic function \(f(x) = p + qx - {x^2}\) has a maximum value of 5 when <em>x </em>= 3.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>p</em> and the value of <em>q</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of <em>f</em>(<em>x</em>) is translated 3 units in the positive direction parallel to the <em>x</em>-axis. Determine the equation of the new graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = q - 2x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(3) = q - 6 = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>q</em> = 6 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f</em>(3) = <em>p</em> + 18 &minus; 9 = 5 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>p</em> = &minus;4 &nbsp; &nbsp; <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = - {(x - 3)^2} + 5\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - {x^2} + 6x - 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>q</em> = 6, <em>p</em> = &minus;4 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = - 4 + 6(x - 3) - {(x - 3)^2}{\text{ }}( = - 31 + 12x - {x^2})\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept any alternative form which is correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>M1A0</em></strong> for a substitution of (<em>x</em> + 3) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In general candidates handled this question well although a number equated the derivative to the function value rather than zero. Most recognised the shift in the second part although a number shifted only the squared value and not both <em>x</em> values.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In general candidates handled this question well although a number equated the derivative to the function value rather than zero. Most recognised the shift in the second part although a number shifted only the squared value and not both <em>x</em> values.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle P moves in a straight line with displacement relative to origin given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[s = 2\sin (\pi t) + \sin (2\pi t),{\text{ }}t \geqslant 0,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where <em>t</em> is the time in seconds and the displacement is measured in centimetres.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down the period of the function <em>s</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find expressions for the velocity, <em>v</em>, and the acceleration, <em>a</em>, of P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Determine all the solutions of the equation <em>v</em> = 0 for \(0 \leqslant t \leqslant 4\).</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = A\sin (ax) + B\sin (bx),{\text{ }}A,{\text{ }}a,{\text{ }}B,{\text{ }}b,{\text{ }}x \in \mathbb{R}.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use mathematical induction to prove that the\({(2n)^{{\text{th}}}}\) derivative of <em>f</em> is given by \(({f^{(2n)}}(x) = {( - 1)^n}\left( {A{a^{2n}}\sin (ax) + B{b^{2n}}\sin (bx)} \right)\), for all \(n \in {\mathbb{Z}^ + }\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; the period is 2 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(v = \frac{{{\text{d}}s}}{{{\text{d}}t}} = 2\pi \cos (\pi t) + 2\pi \cos (2\pi t)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \frac{{{\text{d}}v}}{{{\text{d}}t}} = - 2{\pi ^2}\sin (\pi t) - 4{\pi ^2}\sin (2\pi t)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \(v = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\pi \left( {\cos (\pi t) + \cos (2\pi t)} \right) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos (\pi t) + 2{\cos ^2}(\pi t) - 1 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {2\cos (\pi t) - 1} \right)\left( {\cos (\pi t) + 1} \right) = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos (\pi t) = \frac{1}{2}{\text{ or }}\cos (\pi t) = - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{1}{3},{\text{ }}t = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{5}{3},{\text{ }}t = \frac{7}{3},{\text{ }}t = \frac{{11}}{3},{\text{ }}t = 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\cos \left( {\frac{{\pi t}}{2}} \right)\cos \left( {\frac{{3\pi t}}{2}} \right) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\cos \left( {\frac{{\pi t}}{2}} \right) = 0{\text{ or }}\cos \left( {\frac{{3\pi t}}{2}} \right) = 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{1}{3},{\text{ 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{5}{3},{\text{ }}\frac{7}{3},{\text{ }}3,{\text{ }}\frac{{11}}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(n):{f^{(2n)}}(x) = {( - 1)^n}\left( {A{a^{2n}}\sin (ax) + B{b^{2n}}\sin (bx)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(1):f''(x) = {\left( {Aa\cos (ax) + Bb\cos (bx)} \right)^\prime }\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - A{a^2}\sin (ax) - B{b^2}\sin (bx)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - 1\left( {A{a^2}\sin (ax) + B{b^2}\sin (bx)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore P(1)\) true</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">assume that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(k):{f^{(2k)}}(x) = {( - 1)^k}\left( {A{a^{2k}}\sin (ax) + B{b^{2k}}\sin (bx)} \right)\) is true &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \(P(k + 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{(2k + 1)}}(x) = {( - 1)^k}\left( {A{a^{2k + 1}}\cos (ax) + B{b^{2k + 1}}\cos (bx)} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{(2k + 2)}}(x) = {( - 1)^k}\left( { - A{a^{2k + 2}}\sin (ax) - B{b^{2k + 2}}\sin (bx)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {( - 1)^{k + 1}}\left( {A{a^{2k + 2}}\sin (ax) + B{b^{2k + 2}}\sin (bx)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(k)\) true implies \(P(k + 1)\) true, \(P(1)\) true so \(P(n)\) true \(\forall n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award the final <strong><em>R1</em></strong> only if the previous three <strong><em>M</em></strong> marks have been awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), only a few candidates gave the correct period but the expressions for velocity and acceleration were correctly obtained by most candidates. In (a)(iii), many candidates manipulated the equation <em>v</em> = 0 correctly to give the two possible values for \(\cos (\pi t)\) but then failed to find all the possible values of <em>t</em>.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (b) were disappointing in general with few candidates giving a correct solution.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph below shows the two curves \(y = \frac{1}{x}\) and \(y = \frac{k}{x}\), where \(k &gt; 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of region <em>A </em>in terms of <em>k </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of region <em>B </em>in terms of <em>k </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the ratio of the area of region <em>A </em>to the area of region <em>B </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{1}{6}}^1 {\frac{k}{x} - \frac{1}{x}{\text{d}}x = (k - 1} )[\ln x]_{\frac{1}{6}}^1\) &nbsp; &nbsp;&nbsp;<strong><em>M1 &nbsp; &nbsp; A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for \(\int {\frac{k}{x} - \frac{1}{x}{\text{d}}x{\text{ or }}\int {\frac{1}{x} - \frac{k}{x}{\text{d}}x} } \) and <strong><em>A1 </em></strong>for \((k - 1)\ln x\)&nbsp;seen in part (a) or later in part (b).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (1 - k)\ln \frac{1}{6}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^{\sqrt 6 } {\frac{k}{x} - \frac{1}{x}{\text{d}}x = (k - 1} )[\ln x]_1^{\sqrt 6 }\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct change of limits.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (k - 1)\ln \sqrt 6 \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((1 - k)\ln \frac{1}{6} = (k - 1)\ln 6\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((k - 1)\ln \sqrt 6 &nbsp;= \frac{1}{2}(k - 1)\ln 6\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em><strong>Note: </strong></em></strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">This simplification could have occurred earlier, and marks should still be awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">ratio is 2 (or 2:1) &nbsp; &nbsp; <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]&nbsp;</em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well answered by most candidates. Basic algebra sometimes let students down in the simplification of the ratio in part (c). It was not uncommon to see \(\frac{{\log A}}{{\log B}}\)&nbsp;simplified to \(\frac{A}{B}\).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well answered by most candidates. Basic algebra sometimes let students down in the simplification of the ratio in part (c). It was not uncommon to see \(\frac{{\log A}}{{\log B}}\)&nbsp;simplified to \(\frac{A}{B}\).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well answered by most candidates. Basic algebra sometimes let students down in the simplification of the ratio in part (c). It was not uncommon to see \(\frac{{\log A}}{{\log B}}\)&nbsp;simplified to \(\frac{A}{B}\).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of \(y = f\left( x \right)\) has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of \(y = f\left( x \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B\(\left( {{2^a},\,b \times {2^{ - 3a}}} \right)\) where <em>a</em>, <em>b</em>\( \in \mathbb{Q}\). Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( x \right)\) showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate     <em><strong> (M1)</strong></em></p>
<p>\(f'\left( x \right) =  - 3{x^{ - 4}} - 3x\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using quotient or product rule award <em><strong>A1</strong> </em>if correct derivative seen even in unsimplified form, for example \(f'\left( x \right) = \frac{{ - 15{x^4} \times 2{x^3} - 6{x^2}\left( {2 - 3{x^5}} \right)}}{{{{\left( {2{x^3}} \right)}^2}}}\).</p>
<p>\( - \frac{3}{{{x^4}}} - 3x = 0\)     <em><strong>M1</strong></em></p>
<p>\( \Rightarrow {x^5} =  - 1 \Rightarrow x =  - 1\)     <em><strong>A1</strong></em></p>
<p>\({\text{A}}\left( { - 1,\, - \frac{5}{2}} \right)\)     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f''\left( x \right) = 0\)     <em><strong>M1</strong></em></p>
<p>\(f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct derivative seen even if not simplified.</p>
<p>\( \Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)\)     <em><strong>A1</strong></em></p>
<p>hence (at most) one point of inflexion      <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> This mark is independent of the two <em><strong>A1</strong> </em>marks above. If they have shown or stated their equation has only one solution this mark can be awarded.</p>
<p>\(f''\left( x \right)\) changes sign at \(x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)\)      <em><strong>R1</strong></em></p>
<p>so exactly one point of inflexion</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)\)      <em><strong>A1</strong></em></p>
<p>\(f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} =  - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b =  - 5} \right)\)     <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for the substitution of their value for \(x\) into \(f\left( x \right)\).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for shape for <em>x</em> &lt; 0<br><em><strong>A1 </strong></em>for shape for <em>x</em> &gt; 0<br><em><strong>A1 </strong></em>for maximum at A<br><em><strong>A1 </strong></em>for POI at B.</p>
<p><strong>Note:</strong> Only award last two <em><strong>A1</strong></em>s if A and B are placed in the correct quadrants, allowing for follow through.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A normal to the graph of \(y = \arctan (x - 1)\) , for \(x &gt; 0\), has equation \(y = - 2x + c\) , where \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>c</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\text{d}}}{{{\text{d}}x}}\left( {\arctan (x - 1)} \right) = \frac{1}{{1 + {{(x - 1)}^2}}}\)&nbsp;&nbsp; (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({m_N} = - 2{\text{ and so }}{m_T} = \frac{1}{2}\) &nbsp; &nbsp; <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve \(\frac{1}{{1 + {{(x - 1)}^2}}} = \frac{1}{2}\) (or equivalent) for <em>x</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 2{\text{ (as }}x &gt; 0)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Substituting \(x = 2\) and \(y = \frac{\pi }{4}\) to find <em>c</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = 4 + \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There was a disappointing response to this question from a fair number of candidates. The differentiation was generally correctly performed, but it was then often equated to \( - 2x + c\) rather than the correct numerical value. A few candidates either didn&rsquo;t simplify arctan(1) to \(\frac{\pi }{4}\), or stated it to be 45 or \(\frac{\pi }{2}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{{2x - 1}}{{x + 2}}\), with domain \(D = \{ x: - 1 \leqslant x \leqslant 8\} \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(f(x)\) in the form \(A + \frac{B}{{x + 2}}\), where \(A\) and \(B \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \(f'(x) &gt; 0\) on <em>D</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\), showing the points of intersection with both axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; On the same diagram, sketch the graph of \(y = f'(x)\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; On a different diagram, sketch the graph of \(y = f(|x|)\) where \(x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find all solutions of the equation \(f(|x|) = - \frac{1}{4}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by division or otherwise</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = 2 - \frac{5}{{x + 2}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{5}{{{{(x + 2)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&gt; 0 as \({(x + 2)^2} &gt; 0\) (on <em>D</em>) &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not penalise candidates who use the original form of the function to compute its derivative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(S = \left[ { - 3,\frac{3}{2}} \right]\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the correct endpoints and an open interval.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">rearrange \(y = f(x)\) to make <em>x</em> the subject &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain one-line equation, <em>e.g.</em> \(2x - 1 = xy + 2y\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{2y + 1}}{{2 - y}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">interchange <em>x</em> and <em>y</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain one-line equation, <em>e.g.</em> \(2y - 1 = xy + 2x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{2x + 1}}{{2 - x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \frac{{2x + 1}}{{2 - x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept \(\frac{5}{{2 - x}} - 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii), (iii) <br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct shape of \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1</em></strong> for <em>x</em> intercept \(\frac{1}{2}\) seen. Award <strong><em>A1</em></strong> for <em>y</em> intercept \( - \frac{1}{2}\) seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1</em></strong> for the graph of \(y = {f^{ - 1}}(x)\) being the reflection of \(y = f(x)\) in the line \(y = x\). Candidates are not required to indicate the full domain, but \(y = f(x)\) should not be shown approaching \(x = - 2\). Candidates, in answering (iii), can <strong>FT</strong> on their sketch in (ii).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> <strong><em>A1</em></strong> for correct sketch \(x &gt; 0\), <strong><em>A1</em></strong> for symmetry, <strong><em>A1</em></strong> for correct domain (from &ndash;1 to +8).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Candidates can <strong>FT</strong> on their sketch in (d)(ii).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempt to solve \(f(x) = - \frac{1}{4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(x = \frac{2}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of symmetry or valid algebraic approach &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(x = - \frac{2}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well done.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In their answers to Part (b), most candidates found the derivative, but many assumed it was obviously positive.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (d)(i) Generally well done, but some candidates failed to label their final expression as \({f^{ - 1}}(x)\). Part (d)(ii) Marks were lost by candidates who failed to mark the intercepts with values.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Marks were also lost in this part and in part (e)(i) for graphs that went beyond the explicitly stated domain.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At 12:00 a boat is 20 km due south of a freighter. The boat is travelling due east at \(20{\text{ km}}\,{{\text{h}}^{ - 1}}\), and the freighter is travelling due south at \(40{\text{ km}}\,{{\text{h}}^{ - 1}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the time at which the two ships are closest to one another, and justify your answer.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If the visibility at sea is 9 km, determine whether or not the captains of the two ships can ever see each other&rsquo;s ship.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({s^2} = {(20t)^2} + {(20 - 40t)^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({s^2} = 2000{t^2} - 1600t + 400\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to minimize <em>s</em> it is enough to minimize \({s^2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(t) = 4000t - 1600\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">setting \(f'(t)\) equal to 0 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4000t - 1600 = 0 \Rightarrow t = \frac{2}{5}\) or 24 minutes &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(t) = 4000 &gt; 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \) at \(t = \frac{2}{5},{\text{ }}f(t)\) is minimized</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, the ships are closest at 12:24 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> accept solution based on <em>s</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f\left( {\frac{2}{5}} \right) = \sqrt {80} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\sqrt {80} &lt; 9\), the captains can see one another &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was, disappointingly, a poorly answered question. Some tried to talk their way through the question without introducing the time variable. Even those who did use the distance as a function of time often did not check for a minimum.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was, disappointingly, a poorly answered question. Some tried to talk their way through the question without introducing the time variable. Even those who did use the distance as a function of time often did not check for a minimum.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{1}{{4{x^2} - 4x + 5}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(4{x^2} - 4x + 5\) in the form \(a{(x - h)^2} + k\) where <em>a</em>, <em>h</em>, \(k \in \mathbb{Q}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} - 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4{(x - 0.5)^2} + 4\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for two correct parameters, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A2</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for all three correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; {0.5} \\ <br>&nbsp; 0 <br>\end{array}} \right)\) (allow &ldquo;0.5 to the right&rdquo;) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">stretch parallel to <em>y</em>-axis, scale factor 4 (allow vertical stretch or similar) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 0 \\ <br>&nbsp; 4 <br>\end{array}} \right)\) (allow &ldquo;4 up&rdquo;) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> All transformations must state magnitude and direction.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> First two transformations can be in either order.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It could be a stretch followed by a single translation of </span><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\begin{array}{*{20}{c}}<br>&nbsp; {0.5} \\ <br>&nbsp; 4 <br>\end{array}} \right)\)</span>. If the vertical translation is before the stretch it is \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 0 \\ <br>&nbsp; 1 <br>\end{array}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">general shape (including asymptote and single maximum in first quadrant), &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">intercept \(\left( {0,\frac{1}{5}} \right)\) or maximum \(\left( {\frac{1}{2},\frac{1}{4}} \right)\) shown &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; f(x) \leqslant \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \( \leqslant \frac{1}{4}\), </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(0 &lt; \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(u = x - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1\,\,\,\,\,{\text{(or d}}u = {\text{d}}x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \int {\frac{1}{{4{{\left( {x - \frac{1}{2}} \right)}^2} + 4}}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{4{u^2} + 4}}{\text{d}}u = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> If following through an incorrect answer to part (a), do not award final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> mark.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{1}{4}\int_{0.5}^3 {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:&nbsp;</strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct change of limits. Award also if they do not change limits but go back to </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> values when substituting the limit (even if there is an error in the integral).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{4}\left[ {\arctan (u)} \right]_{0.5}^3\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{4}\left( {\arctan (3) - \arctan \left( {\frac{1}{2}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let the integral = <em>I</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan 4I = \tan \left( {\arctan (3) - \arctan \left( {\frac{1}{2}} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{3 - 0.5}}{{1 + 3 \times 0.5}} = \frac{{2.5}}{{2.5}} = 1\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4I = \frac{\pi }{4} \Rightarrow I = \frac{\pi }{{16}}\) &nbsp; &nbsp; <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) Exam technique would have helped those candidates who could not get part (a) correct as any solution of the form given in the question could have led to full marks in part (b). Several candidates obtained expressions which were not of this form in (a) and so were unable to receive any marks in (b) Many missed the fact that if a vertical translation is performed before the vertical stretch it has a different magnitude to if it is done afterwards. Though on this occasion the markscheme was fairly flexible in the words it allowed to be used by candidates to describe the transformations it would be less risky to use the correct expressions.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c) Generally the sketches were poor. The general rule for all sketch questions should be that any asymptotes or intercepts should be clearly labelled. Sketches do not need to be done on graph paper, but a ruler should be used, particularly when asymptotes are involved.<br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) and (f) were well done up to the final part of (f), in which candidates did not realise they needed to use the compound angle formula.<br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) and (f) were well done up to the final part of (f), in which candidates did not realise they needed to use the compound angle formula.<br></span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A curve has equation \({x^3}{y^2} + {x^3} - {y^3} + 9y = 0\). Find the coordinates of the three points on the curve where \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2}{y^2} + 2{x^3}y\frac{{{\text{d}}y}}{{{\text{d}}x}} + 3{x^2} - 3{y^2}\frac{{{\text{d}}y}}{{{\text{d}}x}} + 9\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\) &nbsp; &nbsp; <strong><em>M1M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; First <strong><em>M1 </em></strong>for attempt at implicit differentiation, second <strong><em>M1 </em></strong>for use of product rule.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{3{x^2}{y^2} + 3{x^2}}}{{3{y^2} - 2{x^3}y - 9}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 3{x^2} + 3{x^2}{y^2} = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 3{x^2}\left( {1 + {y^2}} \right) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award <strong><em>A1 </em></strong>if extra solutions given <em>eg</em> \(y =&nbsp; \pm 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(x = 0\) into original equation &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^3} - 9y = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(y + 3)(y - 3) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 0,{\text{ }}y =&nbsp; \pm 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates \((0, 0), (0, 3), (0, - 3)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates were able to apply implicit differentiation and the product rule correctly to obtain \(3{x^2}\left( {1 + {y^2}} \right) = 0\). The better then recognised that \(x = 0\) was the only possible solution. Such candidates usually went on to obtain full marks. A number decided that \(y =&nbsp; \pm 1\) though then made no further progress. The solution set \(x = 0\) and \(y =&nbsp; \pm i\) was also occasionally seen. A small minority found the correct <em>x</em> and <em>y</em> values for the three co-ordinates but then surprisingly expressed them as \({\text{(0, 0), (3, 0)}}\) and \((- 3, 0)\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A packaging company makes boxes for chocolates. An example of a box is shown below. This box is closed and the top and bottom of the box are identical regular hexagons of side <em>x</em> cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 19px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that the area of each hexagon is \(\frac{{3\sqrt 3 {x^2}}}{2}{\text{c}}{{\text{m}}^2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that the volume of the box is \({\text{90 c}}{{\text{m}}^2}\) , show that when \(x = \sqrt[3]{{20}}\) the total surface area of the box is a minimum, justifying that this value gives a minimum.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Area of hexagon \( = 6 \times \frac{1}{2} \times x \times x \times \sin 60^\circ \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{3\sqrt 3 {x^2}}}{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Let the height of the box be <em>h</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Volume \( = \frac{{3\sqrt 3 h{x^2}}}{2} = 90\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence \(h = \frac{{60}}{{\sqrt 3 {x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surface area, \(A = 3\sqrt 3 {x^2} + 6hx\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3\sqrt 3 {x^2} + \frac{{360}}{{\sqrt 3 }}{x^{ - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 6\sqrt 3 x - \frac{{360}}{{\sqrt 3 }}{x^{ - 2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\frac{{{\text{d}}A}}{{{\text{d}}x}} = 0} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6\sqrt 3 {x^3} = \frac{{360}}{{\sqrt 3 }}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3} = 20\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \sqrt[3]{{20}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\text{d}}^2}A}}{{{\text{d}}{x^2}}} = 6\sqrt 3&nbsp; + \frac{{720{x^{ - 3}}}}{{\sqrt 3 }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">which is positive when \(x = \sqrt[3]{{20}}\), and hence gives a minimum value. &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were a number of wholly correct answers seen and the best candidates tackled the question well. However, many candidates did not seem to understand what was expected in such a problem. It was disappointing that a significant number of candidates were unable to find the area of the hexagon.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined on the domain \(\left[ {0,\,\frac{{3\pi }}{2}} \right]\) by \(f(x) = {e^{ - x}}\cos x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the two zeros of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the graph, the <em>x</em>-axis and the <em>y</em>-axis is denoted by <em>A </em>and&nbsp;the region bounded by the graph and the <em>x</em>-axis is denoted by <em>B </em>. Show that the&nbsp;ratio of the area of <em>A </em>to the area of <em>B </em>is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{e^\pi }\left( {{e^{\frac{\pi }{2}}} + 1} \right)}}{{{e^\pi } + 1}}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({e^{ - x}}\cos x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = \frac{\pi }{2},{\text{ }}\frac{{3\pi }}{2}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp; &nbsp;&nbsp; A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><strong>&nbsp;</strong></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><strong>Note: </strong></strong>Accept any form of concavity for \(x \in \left[ {0,\frac{\pi }{2}} \right]\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize unmarked zeros if given in part (a).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><strong>&nbsp;</strong></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Zeros written on diagram can be used to allow the mark in part (a) to be awarded retrospectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt at integration by parts &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x = &nbsp;- {{\text{e}}^{ - x}}\cos x{\text{d}}x - \int {{{\text{e}}^{ - x}}\sin x{\text{d}}x} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = &nbsp;- {{\text{e}}^{ - x}}\cos x{\text{d}}x - \left[ { - {{\text{e}}^{ - x}}\sin x + \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x} } \right]\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = \frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x) + C\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize absence of <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x = {{\text{e}}^{ - x}}\sin x + \int {{{\text{e}}^{ - x}}\sin x{\text{d}}x} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = {{\text{e}}^{ - x}}\sin x - {{\text{e}}^{ - x}}\cos x - \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x} \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = \frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x) + C\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize absence of <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{2}} {{{\text{e}}^{ - x}}\cos x{\text{d}}x = \left[ {\frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x)} \right]} _0^{\frac{\pi }{2}} = \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2} + \frac{1}{2}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {{{\text{e}}^{ - x}}\cos x{\text{d}}x = \left[ {\frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x)} \right]_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} = &nbsp;- \frac{{{{\text{e}}^{ - \frac{{3\pi }}{2}}}}}{2} - \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2}} \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">ratio of <em>A</em>:<em>B </em>is \(\frac{{\frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2} + \frac{1}{2}}}{{\frac{{{{\text{e}}^{ - \frac{{3\pi }}{2}}}}}{2} + \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{{\text{e}}^{\frac{{3\pi }}{2}}}\left( {{{\text{e}}^{ - \frac{\pi }{2}}} + 1} \right)}}{{{{\text{e}}^{\frac{{3\pi }}{2}}}\left( {{{\text{e}}^{ - \frac{{3\pi }}{2}}} + {{\text{e}}^{ - \frac{\pi }{2}}}} \right)}}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{{\text{e}}^\pi }\left( {{{\text{e}}^{\frac{\pi }{2}}} + 1} \right)}}{{{{\text{e}}^\pi } + 1}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">of&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;correctly but the graph of </span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;"> was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros of <em>f</em> correctly but the graph of <em>f</em> was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros of <em>f</em> correctly but the graph&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">of&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain \(x \geqslant 0\) by \(f(x) = {{\text{e}}^x} - {x^{\text{e}}}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Given that the equation \(f'(x) = 0\) has two roots, state their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f</em> , showing clearly the coordinates of the maximum and minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({{\text{e}}^\pi } &gt; {\pi ^{\text{e}}}\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = {{\text{e}}^x} - {\text{e}}{x^{{\text{e}} - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; by inspection the two roots are 1, e &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for maximum, <strong><em>A1</em></strong> for minimum and <strong><em>A1</em></strong> for general shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the graph: \({{\text{e}}^x} &gt; {x^{\text{e}}}\) for all \(x &gt; 0\) except <em>x</em> = e &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">putting \(x = \pi \) , conclude that \({{\text{e}}^\pi } &gt; {\pi ^{\text{e}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined as \(f(x) = {{\text{e}}^{3x + 1}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find \({f^{ - 1}}(x)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the domain of \({f^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(g\) is defined as \(g(x) = \ln x,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">The graph of \(y = g(x)\) and the graph of \(y = {f^{ - 1}}(x)\) intersect at the point \(P\).</p>
<p class="p1">Find the coordinates of \(P\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g(x)\) intersects the \(x\)-axis at the point \(Q\).</p>
<p class="p1">Show that the equation of the tangent \(T\) to the graph of \(y = g(x)\) at the point&nbsp;\(Q\) is \(y = x - 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">Find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>By replacing \(x\) with \(\frac{1}{x}\) in part (e)(i), show that \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(x = {{\text{e}}^{3y + 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The <strong><em>M1 </em></strong>is for switching variables and can be awarded at any stage.</p>
<p class="p1">Further marks do not rely on this mark being awarded.</p>
<p class="p2">&nbsp;</p>
<p class="p1">taking the natural logarithm of both sides and attempting to transpose <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\(\left( {{f^{ - 1}}(x)} \right) = \frac{1}{3}(\ln x - 1)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(x \in {\mathbb{R}^ + }\) or equivalent, for example \(x &gt; 0\).&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\ln x = \frac{1}{3}(\ln x - 1) \Rightarrow \ln x - \frac{1}{3}\ln x =&nbsp; - \frac{1}{3}\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\ln x =&nbsp; - \frac{1}{2}\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = {{\text{e}}^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>coordinates of&nbsp;\(P\) are \(\left( {{{\text{e}}^{ - \frac{1}{2}}},{\text{ }} - \frac{1}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">coordinates of&nbsp;\(Q\) are (\(1,{\rm{ }}0\)) seen anywhere <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">at \({\text{Q, }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(y = x - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let the required area be \(A\)</p>
<p class="p1">\(A = \int_1^e {x - 1{\text{d}}x - \int_1^e {\ln x{\text{d}}x} } \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The <strong><em>M1 </em></strong>is for a difference of integrals. Condone absence of limits here.</p>
<p class="p2">&nbsp;</p>
<p class="p1">attempting to use integration by parts to find \(\int {\ln x{\text{d}}x} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\( = \left[ {\frac{{{x^2}}}{2} - x} \right]_1^{\text{e}} - [x\ln x - x]_1^{\text{e}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>A1 </em></strong>for \(\frac{{{x^2}}}{2} - x\) and <strong><em>A1 </em></strong>for \(x\ln x - x\).</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The second <strong><em>M1 </em></strong>and second <strong><em>A1 </em></strong>are independent of the first <strong><em>M1 </em></strong>and the first <strong><em>A1</em></strong>.</p>
<p class="p2">&nbsp;</p>
<p class="p1">\( = \frac{{{{\text{e}}^2}}}{2} - {\text{e}} - \frac{1}{2}\left( { = \frac{{{{\text{e}}^2} - 2{\text{e}} - 1}}{2}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>consider for example \(h(x) = x - 1 - \ln x\)</p>
<p>\(h(1) = 0\;\;\;{\text{and}}\;\;\;h'(x) = 1 - \frac{1}{x}\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p>as \(h'(x) \ge 0\;\;\;{\text{for}}\;\;\;x \ge 1,\;\;\;{\text{then}}\;\;\;h(x) \ge 0\;\;\;{\text{for}}\;\;\;x \ge 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>as \(h'(x) \le 0\;\;\;{\text{for}}\;\;\;0 &lt; x \le 1,\;\;\;{\text{then}}\;\;\;h(x) \ge 0\;\;\;{\text{for}}\;\;\;0 &lt; x \le 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>so \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p>\(g''(x) =&nbsp; - \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(g''(x) &lt; 0\;\;\;\)(concave down) for\(\;\;\;x \in {\mathbb{R}^ + }\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p class="p1">the graph of \(y = g(x)\) is below its tangent \((y = x - 1\;\;\;{\text{at}}\;\;\;x = 1)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p class="p1">so \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The reasoning may be supported by drawn graphical arguments.</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>METHOD 3</strong></p>
<p class="p1"><img src="" alt></p>
<p class="p1">clear correct graphs of \(y = x - 1\;\;\;{\text{and}}\;\;\;\ln x\;\;\;{\text{for}}\;\;\;x &gt; 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p1">statement to the effect that the graph of \(\ln x\) is below the graph of its tangent at \(x = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1AG</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>replacing \(x\) by \(\frac{1}{x}\) to obtain \(\ln \left( {\frac{1}{x}} \right) \le \frac{1}{x} - 1\left( { = \frac{{1 - x}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( - \ln x \le \frac{1}{x} - 1\left( { = \frac{{1 - x}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(\ln x \ge 1 - \frac{1}{x}\left( { = \frac{{x - 1}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<p class="p1"><strong><em>Total [23 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A productive question for many candidates, but some didn&rsquo;t realise that a difference of areas/integrals was required.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp; Many candidates adopted a graphical approach, but sometimes with unconvincing reasoning.</p>
<p class="p1">(ii) &nbsp; &nbsp; Poorly answered. Many candidates applied the suggested substitution only to one side of the inequality, and then had to fudge the answer.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined as \(f(x) = k\sqrt x \), with \(k &gt; 0\) and \(x \geqslant 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that <em>f</em> is a one-to-one function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the inverse function, \({f^{ - 1}}(x)\) and state its domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; If the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) intersect at the point (4, 4) find the value of <em>k</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Consider the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) using the value of <em>k</em> found in part (d).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find the area enclosed by the two graphs.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; The line <em>x</em> = <em>c</em> cuts the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ - 1}}(x)\) at point Q find the value of <em>c</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct concavity, passing through (0, 0) and increasing.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Scales need not be there.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; a statement involving the application of the Horizontal Line Test or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \(y = k\sqrt x \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for either \(x = k\sqrt y \) or \(x = \frac{{{y^2}}}{{{k^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \frac{{{x^2}}}{{{k^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{dom}}\left( {{f^{ - 1}}(x)} \right) = \left[ {0,\infty } \right[\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; \(\frac{{{x^2}}}{{{k^2}}} = k\sqrt x \,\,\,\,\,\)or equivalent method &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = \sqrt x \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(A = \int_a^b {({y_1} - {y_2}){\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^4 {\left( {2{x^{\frac{1}{2}}} - \frac{1}{4}{x^2}} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{4}{3}{x^{\frac{3}{2}}} - \frac{1}{{12}}{x^3}} \right]_0^4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{16}}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempt to find either \(f'(x)\) or \(({f^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{\sqrt x }},{\text{ }}\left( {({f^{ - 1}})'(x) = \frac{x}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{\sqrt c }} = \frac{c}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = {2^{\frac{2}{3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [16 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many students could not sketch the function. There was confusion between the vertical and horizontal line test for one-to-one functions. A significant number of students gave long and inaccurate explanations for a one-to-one function. Finding the inverse was done very well by most students although the notation used was generally poor. The domain of the inverse was ignored by many or done incorrectly even if the sketch was correct. Many did not make the connections between the parts of the question. An example of this was the number of students who spent time finding the point of intersection in part e) even though it was given in d).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Let \(a &gt; 0\) . Draw the graph of \(y = \left| {x - \frac{a}{2}} \right|\) for \( - a \leqslant x \leqslant a\) on the grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0px; font: 29px Helvetica; text-align: justify;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find <em>k</em> such that \(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x = k\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x} } \) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-size: medium; font-family: times new roman,times;">(a)</span></p>
<p style="font: 29px Helvetica; margin: 0px; text-align: justify;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for the correct <em>x</em>-intercept,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for completely correct graph.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the area under the graph of \(y = \left| {x - \frac{a}{2}} \right|\) for \( - a \leqslant x \leqslant a\) , can be divided into ten congruent triangles; &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the area of eight of these triangles is given by \(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x} \) and the areas of the other two by \(\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, \(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x}&nbsp; = 4\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x}&nbsp; \Rightarrow k = 4\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use area of trapezium to calculate &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x}&nbsp; = a \times \frac{1}{2}\left( {\frac{{3a}}{2} + \frac{a}{2}} \right) = {a^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and area of two triangles to obtain &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x}&nbsp; = 2 \times \frac{1}{2}{\left( {\frac{a}{2}} \right)^2} = \frac{{{a^2}}}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, <em>k</em> = 4 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use integration to find the area under the curve</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{ - a}^0 {\left| {x - \frac{a}{2}} \right|{\text{d}}x}&nbsp; = \int_{ - a}^0 { - x + \frac{a}{2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - \frac{{{x^2}}}{2} + \frac{a}{2}x} \right]_{ - a}^0 = \frac{{{a^2}}}{2} + \frac{{{a^2}}}{2} = {a^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^a {\left| {x - \frac{a}{2}} \right|{\text{d}}x} = \int_0^{\frac{a}{2}} { - x + \frac{a}{2}{\text{d}}x + \int_{\frac{a}{2}}^a {x - \frac{a}{2}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - \frac{{{x^2}}}{2} + \frac{a}{2}x} \right]_0^{\frac{a}{2}} + \left[ {\frac{{{x^2}}}{2} - \frac{a}{2}x} \right]_{\frac{a}{2}}^a = \frac{{{a^2}}}{8} + \frac{{{a^2}}}{4} + \frac{{{a^2}}}{2} - \frac{{{a^2}}}{2} - \frac{{{a^2}}}{8} + \frac{{{a^2}}}{4} = \frac{{{a^2}}}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, <em>k</em> = 4 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates attempted this question but very often produced sketches lacking labels on axes and intercepts or ignored the domain of the function. For part (b) many candidates attempted to use integration to find the areas but seldom considered the absolute value. A small number of candidates used geometrical methods to determine the areas, showing good understanding of the problem.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = 1 + \sin x,{\text{ }}0 \leqslant x \leqslant \frac{{3\pi }}{2}\),</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch the graph of \(f\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 31px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the volume of the solid formed when the graph of <em>f</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times;"><span style="font-size: medium;">&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times;"><span style="font-size: medium;"><strong><em>[1 mark]</em></strong></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 + \sin x)^2} = 1 + 2\sin x + {\sin ^2}x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + 2\sin x + \frac{1}{2}(1 - \cos 2x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_0^{\frac{{3\pi }}{2}} {{{(1 + \sin x)}^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \int_0^{\frac{{3\pi }}{2}} {\left( {\frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x} \right){\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {\frac{3}{2}x - 2\cos x - \frac{{\sin 2x}}{4}} \right]_0^{\frac{{3\pi }}{2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{9{\pi ^2}}}{4} + 2\pi \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Solve the equation \(f'(x) = 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Hence show the graph of \(f\) has a local maximum.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of the function \(f\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that there is a point of inflexion on the graph and determine its coordinates.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, <em>x</em>-intercept and </span><span style="font-family: times new roman,times; font-size: medium;">the local maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , where \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Sketch the graph of \(y = g(x)\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of \(g\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Find the values of \(x\) such that \(h(x) &gt; g(x)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = \frac{{x\frac{1}{x} - \ln x}}{{{x^2}}}\) &nbsp; &nbsp;</span><strong><em><span style="font-family: times new roman,times; font-size: medium;"> M1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{1 - \ln x}}{{{x^2}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so \(f'(x) = 0\) when \(\ln x = 1\), <em>i.e.</em> \(x = {\text{e}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; \(f'(x) &gt; 0\) when \(x &lt; {\text{e}}\) and \(f'(x) &lt; 0\) when \(x &gt; {\text{e}}\) &nbsp; &nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>R1</strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">hence local maximum &nbsp; &nbsp; <em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Accept argument using correct second derivative.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; \(y \leqslant \frac{1}{{\text{e}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong></em></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;"><strong>[5 marks]</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f''(x) = \frac{{{x^2}\frac{{ - 1}}{x} - \left( {1 - \ln x} \right)2x}}{{{x^4}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{ - x - 2x + 2x\ln x}}{{{x^4}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{ - 3 + 2\ln x}}{{{x^3}}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> May be seen in part (a).</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>(M1)</strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({ - 3 + 2\ln x = 0}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = {{\text{e}}^{\frac{3}{2}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">since \(f''(x) &lt; 0\) when \(x &lt; {{\text{e}}^{\frac{3}{2}}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(f''(x) &gt; 0\) when </span><span style="font-family: times new roman,times; font-size: medium;">\(x &gt; {{\text{e}}^{\frac{3}{2}}}\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> R1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">then point of inflexion \(\left( {{{\text{e}}^{\frac{3}{2}}},\frac{3}{{2{{\text{e}}^{\frac{3}{2}}}}}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times;"><img src="" alt></span><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for the maximum and intercept, <em><strong>A1</strong></em> for a vertical asymptote </span><span style="font-family: times new roman,times; font-size: medium;">and <em><strong>A1</strong></em> for shape (including turning concave up).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">(i)</span><br><img src="" alt><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct branch.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) all real values &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">(iii)</span><br><img src="" alt><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; (M1)(A1)</span></strong></em></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for sketching the graph of <em>h</em>, ignoring any graph of <em>g</em>.</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">\( - {{\text{e}}^2} &lt; x &lt;&nbsp; - 1\) (accept \(x &lt; - 1\) )&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A tangent to the graph of \(y = \ln x\) passes through the origin.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the graphs of \(y = \ln x\) and the tangent on the same set of axes, and hence find the equation of the tangent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Use your sketch to explain why \(\ln x \leqslant \frac{x}{{\text{e}}}\) for \(x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that \({x^{\text{e}}} \leqslant {{\text{e}}^x}\) for \(x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Determine which is larger, \({\pi ^{\text{e}}}\) or \({{\text{e}}^\pi }\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp;&nbsp; &nbsp; <strong><em>A3</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for each graph</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for the point of tangency.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">point on curve and line is \((a,{\text{ }}\ln a)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \ln (x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{x} \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{a}\,\,\,\,\,{\text{(when }}x = a)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of line, <em>m</em>, through (0, 0) and \((a,{\text{ }}\ln a)\) is \(\frac{{\ln a}}{a}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{\ln a}}{a} = \frac{1}{a} \Rightarrow \ln a = 1 \Rightarrow a = {\text{e}} \Rightarrow m = \frac{1}{{\text{e}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y - \ln a = \frac{1}{a}(x - a)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">passes through 0 if</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln a - 1 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = e \Rightarrow m = \frac{1}{{\text{e}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore y = \frac{1}{{\text{e}}}x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; the graph of \(\ln x\) never goes above the graph of \(y = \frac{1}{{\text{e}}}x\) , hence \(\ln x \leqslant \frac{x}{{\text{e}}}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \(\ln x \leqslant \frac{x}{{\text{e}}} \Rightarrow {\text{e}}\ln x \leqslant x \Rightarrow \ln {x^{\text{e}}} \leqslant x\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">exponentiate both sides of \(\ln {x^{\text{e}}} \leqslant x \Rightarrow {x^{\text{e}}} \leqslant {{\text{e}}^x}\) &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; equality holds when \(x = {\text{e}}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">letting \(x = \pi \Rightarrow {\pi ^{\text{e}}} &lt; {{\text{e}}^\pi }\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the least accessible question in the entire paper, with very few candidates achieving high marks. Sketches were generally done poorly, and candidates failed to label the point of intersection. A &lsquo;dummy&rsquo; variable was seldom used in part (a), hence in most cases it was not possible to get more than 3 marks. There was a lot of good guesswork as to the coordinates of the point of intersection, but no reasoning showed. Many candidates started with the conclusion in part (c). In part (d) most candidates did not distinguish between the inequality and strict inequality.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a sketch of the gradient function \(f'(x)\) of the curve \(f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">On the graph below, sketch the curve \(y = f(x)\) given that \(f(0) = 0\) . Clearly indicate on the graph any maximum, minimum or inflexion points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0px; font: 29px Helvetica; text-align: justify;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A5</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for origin</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for shape</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for maximum</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for each point of inflexion.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A reasonable number of candidates answered this correctly, although some omitted the \({2^{{\text{nd}}}}\) point of inflection.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider \(f(x) = \frac{{{x^2} - 5x + 4}}{{{x^2} + 5x + 4}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the equations of all asymptotes of the graph of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the coordinates of the points where the graph of <em>f</em> meets the <em>x</em> and <em>y</em> axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the coordinates of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; the maximum point and justify your answer;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the minimum point and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Sketch the graph of <em>f</em>, clearly showing all the features found above.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; <strong>Hence</strong>, write down the number of points of inflexion of the graph of <em>f</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \({x^2} + 5x + 4 = 0 \Rightarrow x = - 1{\text{ or }}x = - 4\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so vertical asymptotes are <em>x</em> = &ndash; 1 and <em>x</em> = &ndash; 4 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(x \to \infty \) then \(y \to 1\) so horizontal asymptote is <em>y</em> = 1 &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({x^2} - 5x + 4 = 0 \Rightarrow x = 1{\text{ or }}x = 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0 \Rightarrow y = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so intercepts are (1, 0), (4, 0) and (0,1)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(f'(x) = \frac{{({x^2} + 5x + 4)(2x - 5) - ({x^2} - 5x + 4)(2x + 5)}}{{{{({x^2} + 5x + 4)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{10{x^2} - 40}}{{{{({x^2} + 5x + 4)}^2}}}\,\,\,\,\,\left( { = \frac{{10(x - 2)(x + 2)}}{{{{({x^2} + 5x + 4)}^2}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 0 \Rightarrow x = \pm 2\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the points under consideration are (&ndash;2, &ndash;9) and \(\left( {2, - \frac{1}{9}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">looking at the sign either side of the points (or attempt to find \(f''(x)\)) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>e.g.</em> if \(x = - {2^ - }\) then \((x - 2)(x + 2) &gt; 0\) and if \(x = - {2^ + }\) then \((x - 2)(x + 2) &lt; 0\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore (&ndash;2, &ndash;9) is a maximum &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <em>e.g.</em> if \(x = {2^ - }\) then \((x - 2)(x + 2) &lt; 0\) and if \(x = {2^ + }\) then \((x - 2)(x + 2) &gt; 0\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(\left( {2, - \frac{1}{9}} \right)\) is a minimum &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Candidates may find the minimum first.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"><img src="" alt>&nbsp;&nbsp; &nbsp; <strong><em>A3</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for each branch consistent with and including the features found in previous parts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; one &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [20 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the most successfully answered question in part B, in particular parts (a), (b) and (c). In part (a) the horizontal asymptote was often missing (or <em>x</em> = 4, <em>x</em> = 1 given). Part (b) was well done. Use of the quotient rule was well done in part (c) and many simplified correctly. There was knowledge of max/min and how to justify their answer, usually with a sign diagram but also with the second derivative. A common misconception was that, as \( - 9 &lt; - \frac{1}{9}\), the minimum is at (&ndash;2, &ndash;9). In part (d) many candidates were unable to sketch the graph consistent with the main features that they had determined before. Very few candidates answered part (e) correctly.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>f</em> be a function defined by \(f(x) = x - \arctan x\) , \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(f(1)\) and \(f\left( { - \sqrt 3 } \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that \(f( - x) = - f(x)\) , for \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that \(x - \frac{\pi }{2} &lt; f(x) + \frac{\pi }{2}\) , for \(x \in \mathbb{R}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Find expressions for \(f'(x)\) and \(f''(x)\) . Hence describe the behaviour of the graph of <em>f</em> at the origin and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Sketch a graph of <em>f</em> , showing clearly the asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; Justify that the inverse of <em>f</em> is defined for all \(x \in \mathbb{R}\) and sketch its graph.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f(1) = 1 - \arctan 1 = 1 - \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - \sqrt 3 ) = - \sqrt 3 - \arctan ( - \sqrt 3 ) = - \sqrt 3 + \frac{\pi }{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(f( - x) = - x - \arctan ( - x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - x + \arctan x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - (x - \arctan x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - f(x)\) &nbsp; &nbsp; <strong><em>AG &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; as \( - \frac{\pi }{2} &lt; \arctan x &lt; \frac{\pi }{2}\), for any \(x \in \mathbb{R}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow - \frac{\pi }{2} &lt;&nbsp; - \arctan x &lt; \frac{\pi }{2}\), for any \(x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then by adding <em>x</em> (or equivalent) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we have \(x - \frac{\pi }{2} &lt; x - \arctan x &lt; x + \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; \(f'(x) = 1 - \frac{1}{{1 + {x^2}}}{\text{ or }}\frac{{{x^2}}}{{1 + {x^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = \frac{{2x(1 + {x^2}) - 2{x^3}}}{{{{(1 + {x^2})}^2}}}{\text{or }}\frac{{2x}}{{{{(1 + {x^2})}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0) = f''(0) = 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(f'(x) \geqslant 0\) for all values of \(x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(\((0,{\text{ 0)}}\)is not an extreme of the graph of <em>f</em> (or equivalent )) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(f''(x) &gt; 0\)for positive values of <em>x</em> and \(f''(x) &lt; 0\) for negative values of <em>x</em> &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(0, 0) is a point of inflexion of the graph of <em>f</em> (with zero gradient) &nbsp; &nbsp;&nbsp;<strong><em>A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e)</span></p>
<p style="font: 24px Helvetica; margin: 0px; text-align: justify;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for both asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct shape (concavities) \(x &lt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct shape (concavities) \(x &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; (see sketch above)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as <em>f</em> is increasing (and therefore one-to-one) and its range is \(\mathbb{R}\) ,&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}\) is defined for all \(x \in \mathbb{R}\) &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use the result that the graph of \(y = {f^{ - 1}}(x)\) is the reflection</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">in the line <em>y</em> = <em>x</em> of the graph of \(y = f(x)\) to draw the graph of \({f^{ - 1}}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [20 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts of this question were answered quite well by many candidates. A few candidates had difficulties with domain of arctan in part (a) and in justifying their reasoning in parts (b) and (c). In part (d) although most candidates were successful in finding the expressions of the derivatives and their values at <em>x</em> = 0, many were unable to use the results to find the nature of the curve at the origin. Very few candidates were successful in answering parts (e) and (f).</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Sketch the graphs of \(y = \sin x\) and \(y = \sin 2x\) , on the same set of axes, for \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the x-coordinates of the points of intersection of the graphs in the domain \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the area enclosed by the graphs.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution \(x = 4{\sin ^2}\theta \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The increasing function <em>f</em> satisfies \(f(0) = 0\) and \(f(a) = b\) , where \(a &gt; 0\) and \(b &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; By reference to a sketch, show that \(\int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} } \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>Hence</strong> find the value of \(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x} \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none;">&nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct \(\sin x\) , <strong><em>A1</em></strong> for correct \(\sin 2x\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A0</em></strong> for two correct shapes with \(\frac{\pi }{2}\) and/or 1 missing.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Condone graph outside the domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(\sin 2x = \sin x\) , \(0 \leqslant x \leqslant \frac{\pi }{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\sin x\cos x - \sin x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin x(2\cos x - 1) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,\frac{\pi }{3}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong> &nbsp; &nbsp; <strong><em>N1N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; area \( = \int_0^{\frac{\pi }{3}} {(\sin 2x - \sin x){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for an integral that contains limits, not necessarily correct, with \(\sin x\) and \(\sin 2x\) subtracted in either order.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - \frac{1}{2}\cos 2x + \cos x} \right]_0^{\frac{\pi }{3}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( { - \frac{1}{2}\cos \frac{{2\pi }}{3} + \cos \frac{\pi }{3}} \right) - \left( { - \frac{1}{2}\cos 0 + \cos 0} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{3}{4} - \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} } {\text{d}}x = \int_0^{\frac{\pi }{6}} {\sqrt {\frac{{4{{\sin }^2}\theta }}{{4 - 4{{\sin }^2}\theta }}}&nbsp; \times 8\sin \theta \cos \theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for substitution and reasonable attempt at finding expression for d<em>x</em> in terms of \({\text{d}}\theta \) , first <strong><em>A1</em></strong> for correct limits, second <strong><em>A1</em></strong> for correct substitution for d<em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{6}} {8{{\sin }^2}\theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{6}} {4 - 4\cos 2\theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = [4\theta - 2\sin 2\theta ]_0^{\frac{\pi }{6}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {\frac{{2\pi }}{3} - 2\sin \frac{\pi }{3}} \right) - 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2\pi }}{3} - \sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp;&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>M1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the diagram above</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the shaded area \( = \int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(y){\text{d}}y} } \) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({ = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} }\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f(x) = \arcsin \frac{x}{4} \Rightarrow {f^{ - 1}}(x) = 4\sin x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x = \frac{\pi }{3} - \int_0^{\frac{\pi }{6}} {4\sin x{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for the limit \(\frac{\pi }{6}\) seen anywhere, <strong><em>A1</em></strong> for all else correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{3} - [ - 4\cos x]_0^{\frac{\pi }{6}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{3} - 4 + 2\sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award no marks for methods using integration by parts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = f(x)\) is shown below, where A is a local maximum point and D is a&nbsp;local minimum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of \(y = \frac{1}{{f(x)}}\)&nbsp;, clearly showing the&nbsp;coordinates of the images of the points A, B and D, labelling them \({{\text{A}'}}\), \({{\text{B}'}}\), and&nbsp;\({{\text{D}'}}\) respectively, and the equations of any vertical asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of the derivative \(y = f'(x)\)&nbsp;, clearly showing&nbsp;the coordinates of the images of the points&nbsp; A and D, labelling them </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{A}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{D}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> respectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1 </em></strong>for two correct asymptotes, and \(x = 1\) and \(x = 3\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1 </em></strong>for correct coordinates, \({\text{A}'}\left( { - 1,\frac{1}{4}} \right),{\text{ B}'}\left( {0,\frac{1}{3}} \right){\text{ and D}'}\left( {2, -\frac{1}{3}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><img src="" alt><span style="font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1A1</strong></em></span></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note: </strong>Award <em><strong>A1</strong></em> for correct general shape including the horizontal asymptote.</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Award <em><strong>A1</strong></em> for recognition of 1 maximum point and 1 minimum point.</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Award <em><strong>A1</strong></em> for correct coordinates, \({\text{A}}''( - 1,0)\) and \({\text{D}}''(2,0)\) .</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (a), the shape of the graph was often incorrect and many candidates failed to give the equations of the asymptotes and the coordinates of the image points. In (b), many candidates produced incorrect graphs although the coordinates of the image points were often given correctly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (a), the shape of the graph was often incorrect and many candidates failed to give the equations of the asymptotes and the coordinates of the image points. In (b), many candidates produced incorrect graphs although the coordinates of the image points were often given correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;"> <!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>14</o:Words>
  <o:Characters>83</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>96</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment-->The graphs of \(y = \left| {x + 1} \right|\) and \(y = \left| {x - 3} \right|\) are shown below.</span></p>
<p><img src="" alt></p>
<p><!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>11</o:Words>
  <o:Characters>62</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>72</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment--><span style="font-size: 12.0pt; font-family: 'TimesNewRomanPSMT','serif'; mso-fareast-font-family: 'MS 明朝'; mso-fareast-theme-font: minor-fareast; mso-bidi-font-family: TimesNewRomanPSMT; mso-ansi-language: EN-US; mso-fareast-language: NL; mso-bidi-language: AR-SA;">Let <em>f </em>(<em>x</em>) = \(\left| {\,x + 1\,} \right| - \left| {\,x - 3\,} \right|\).</span><!--EndFragment--></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph of <em>y </em>= <em>f </em>(<em>x</em>) on the blank grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence state the value of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <span lang="NL">\(f'( - 3)\);</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp;&nbsp;<span lang="NL">\(f'(2.7)\);</span><!--EndFragment--></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp;&nbsp;\(\int_{ - 3}^{ - 2} {f(x)dx} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times;"><img src="" alt>&nbsp;&nbsp;&nbsp; <strong><em>M1A1A1A1</em></strong></span></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times;"><strong><em>&nbsp;</em></strong></span></span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;"><strong><strong>Note:</strong></strong> Award<strong> <em><strong><em>M1 </em></strong></em></strong>for any of the three sections completely correct, <strong><em>A1 </em></strong>for each correct segment of the graph.</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;"><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; 0 &nbsp; &nbsp;&nbsp;<strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; 2 &nbsp; &nbsp;&nbsp;<strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; finding area of rectangle &nbsp; &nbsp;&nbsp;<strong><em>(M1)<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 4\) &nbsp; &nbsp;<strong><em> A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1A0 </em></strong>for the answer 4.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[4 marks]</strong></em>&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to produce a good graph, and many were able to interpret that to get correct answers to part (b). The most common error was to give 4 as the answer to (b) (iii). Some candidates did not recognise that the &ldquo;hence&rdquo; in the question meant that they had to use their graph to obtain their answers to part (b).&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to produce a good graph, and many were able to interpret that to get correct answers to part (b). The most common error was to give 4 as the answer to (b) (iii). Some candidates did not recognise that the &ldquo;hence&rdquo; in the question meant that they had to use their graph to obtain their answers to part (b).&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>