File "markSceme-HL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 5/markSceme-HL-paper3html
File size: 396.85 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The weight of tea in <em>Supermug</em> tea bags has a normal distribution with mean 4.2 g and standard deviation 0.15 g. The weight of tea in <em>Megamug</em> tea bags has a normal distribution with mean 5.6 g and standard deviation 0.17 g.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the probability that a randomly chosen <em>Supermug</em> tea bag contains more than 3.9 g of tea.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the probability that, of two randomly chosen <em>Megamug</em> tea bags, one contains more than 5.4 g of tea and one contains less than 5.4 g of tea.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the probability that five randomly chosen <em>Supermug</em> tea bags contain a total of less than 20.5 g of tea.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the probability that the total weight of tea in seven randomly chosen <em>Supermug</em> tea bags is more than the total weight in five randomly chosen <em>Megamug</em> tea bags.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>S</em> be the weight of tea in a random <em>Supermug</em> tea bag</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(S \sim {\text{N(4.2, 0.1}}{{\text{5}}^2})\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(S &gt; 3.9) = 0.977\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>M</em> be the weight of tea in a random <em>Megamug</em> tea bag</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(M \sim {\text{N(5.6, 0.1}}{{\text{7}}^2})\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(M &gt; 5.4) = 0.880 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(M &lt; 5.4) = 1 - 0.880 \ldots = 0.119 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">required probability \( = 2 \times 0.880 \ldots \times 0.119 \ldots = 0.211\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}({S_1} + {S_2} + {S_3} + {S_4} + {S_5} &lt; 20.5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \({S_1} + {S_2} + {S_3} + {S_4} + {S_5} = A\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}(A) = 5{\text{E}}(S)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 21 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(A) = 5{\text{Var}}(S)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0.1125 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A \sim {\text{N(21, 0.1125}})\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(A &lt; 20.5) = 0.0680\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}({S_1} + {S_2} + {S_3} + {S_4} + {S_5} + {S_6} + {S_7} - ({M_1} + {M_2} + {M_3} + {M_4} + {M_5}) &gt; 0)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \({S_1} + {S_2} + {S_3} + {S_4} + {S_5} + {S_6} + {S_7} - ({M_1} + {M_2} + {M_3} + {M_4} + {M_5}) = B\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}(B) = 7{\text{E}}(S) - 5{\text{E}}(M)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 1.4 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Above </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> is independent of first </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(B) = 7{\text{Var}}(S) + 5{\text{Var}}(M)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0.302 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(B &gt; 0) = 0.995\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For most candidates this was a reasonable start to the paper with many candidates gaining close to full marks. The most common error was in (b) where, surprisingly, many candidates did not realise the need to multiply the product of the two probabilities by 2 to gain the final answer. Weaker candidates often found problems in understanding how to correctly find the variance in both (c) and (d).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For most candidates this was a reasonable start to the paper with many candidates gaining close to full marks. The most common error was in (b) where, surprisingly, many candidates did not realise the need to multiply the product of the two probabilities by 2 to gain the final answer. Weaker candidates often found problems in understanding how to correctly find the variance in both (c) and (d).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For most candidates this was a reasonable start to the paper with many candidates gaining close to full marks. The most common error was in (b) where, surprisingly, many candidates did not realise the need to multiply the product of the two probabilities by 2 to gain the final answer. Weaker candidates often found problems in understanding how to correctly find the variance in both (c) and (d).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For most candidates this was a reasonable start to the paper with many candidates gaining close to full marks. The most common error was in (b) where, surprisingly, many candidates did not realise the need to multiply the product of the two probabilities by 2 to gain the final answer. Weaker candidates often found problems in understanding how to correctly find the variance in both (c) and (d).</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two species of plant,&nbsp;\(A\) and \(B\), are identical in appearance though it is known that the mean length of leaves from a plant of species&nbsp;\(A\) is&nbsp;\(5.2\) cm, whereas the mean length of leaves from a plant of species&nbsp;\(B\) is&nbsp;\(4.6\) cm. Both lengths can be modelled by normal distributions with standard deviation&nbsp;\(1.2\) cm.</p>
<p>In order to test whether a particular plant is from species&nbsp;\(A\) or species \(B\),&nbsp;\(16\) leaves are collected at random from the plant. The length, \(x\), of each leaf is measured and the mean length evaluated. A one-tailed test of the sample mean, \(\bar X\), is then performed at the&nbsp;\(5\% \) level, with the hypotheses: \({H_0}:\mu&nbsp; = 5.2\) and \({H_1}:\mu&nbsp; &lt; 5.2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the critical region for this test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is now known that in the area in which the plant was found&nbsp;\(90\% \) of all the plants are of species&nbsp;\(A\) and&nbsp;\(10\% \) are of species \(B\).</p>
<p class="p1">Find the probability that \(\bar X\) will fall within the critical region of the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If, having done the test, the sample mean is found to lie within the critical region, find the probability that the leaves came from a plant of species \(A\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\bar X \sim N\left( {5.2,{\text{ }}\frac{{{{1.2}^2}}}{{16}}} \right)\) &nbsp; &nbsp; (<strong><em>M1)</em></strong></p>
<p>critical value is \(5.2 - 1.64485 \ldots&nbsp; \times \frac{{1.2}}{4} = 4.70654 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>critical region is \(] - \infty ,{\text{ }}4.71]\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow follow through for the final <strong><em>A1 </em></strong>from their critical value.</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Follow through previous values in (b), (c) and (d).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.9 \times 0.05 + 0.1 \times (1 - 0.361 \ldots ) = 0.108875997 \ldots&nbsp; = 0.109\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for a weighted average of probabilities with weights \(0.1,0.9\).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use conditional probability formula &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{0.9 \times 0.05}}{{0.108875997 \ldots }}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = 0.41334 \ldots&nbsp; = 0.413\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<p><strong><em>Total [10 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Solutions to this question were generally disappointing.</p>
<p class="p1">In (a), the standard error of the mean was often taken to be \(\sigma (1.2)\) instead of \(\frac{\sigma }{{\sqrt n }}(0.3)\) and the solution sometimes ended with the critical value without the critical region being given.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (c), the question was often misunderstood with candidates finding the weighted mean of the two means, ie \(0.9 \times 5.2 + 0.1 \times 4.6 = 5.14\) instead of the weighted mean of two probabilities.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Without having the solution to (c), part (d) was inaccessible to most of the candidates so that very few correct solutions were seen.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable \(X \sim {\text{Po}}(m)\). Given that P(<em>X </em>= <em>k </em>&minus;1) = P(<em>X </em>= <em>k </em>+1), where <em>k </em>is&nbsp;a positive integer,</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({m^2} = k(k + 1)\);</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">hence show that the mode of <em>X </em>is <em>k </em>.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{m^{k - 1}}{e^{ - m}}}}{{(k - 1)!}} = \frac{{{m^{k + 1}}{e^{ - m}}}}{{(k + 1)!}}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 1 = \frac{{{m^2}}}{{(k + 1)k}}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for any correct intermediate step.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {m^2} = (k + 1)k\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{P}}(X = k)}}{{{\text{P}}(X = k - 1)}} = \frac{{{e^{ - m}} \times \frac{{{m^k}}}{{k!}}}}{{{e^{ - m}} \times \frac{{{m^{k - 1}}}}{{(k - 1)!}}}}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{m}{k}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\sqrt {k(k + 1)} }}{k}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \sqrt {\frac{{k + 1}}{k}} &nbsp;&gt; 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so \({\text{P}}(X = k) &gt; {\text{P}}(X = k - 1)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">similarly \({\text{P}}(X = k) &gt; {\text{P}}(X = k + 1)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">hence <em>k </em>is the mode &nbsp; &nbsp; <strong><em>AG<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to complete part (a). The remainder of the question involved some understanding of the shape of the distribution and some facility with algebraic manipulation.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to complete part (a). The remainder of the question involved some understanding of the shape of the distribution and some facility with algebraic manipulation.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A traffic radar records the speed, \(v\) kilometres per hour (\({\text{km}}\,{{\text{h}}^{-{\text{1}}}}\)), of cars on a section of a road.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following table shows a summary of the results for a random sample of 1000 cars whose speeds were recorded on a given day.</span></p>
<p style="font: normal normal normal 20.5px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-18_om_07.17.39.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Using the data in the table,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; show that an estimate of the mean speed of the sample is 113.21&nbsp;\({\text{km}}\,{{\text{h}}^{-{\text{1}}}}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; find an estimate of the variance of the speed of the cars on this section of the road.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the 95% confidence interval, \(I\), for the mean speed.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Let \(J\) be the 90% confidence interval for the mean speed.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Without calculating \(J\), explain why \(J \subset I\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(\bar v = \frac{1}{{1000}}(55 \times 5 + 65 \times 13 +&nbsp; \ldots&nbsp; + 145 \times 31)\) &nbsp; &nbsp; <strong><em>A1M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:&nbsp;<em>A1</em> </strong>for mid-points, <strong><em>M1 </em></strong>for use of the formula.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{113\,210}}{{1000}} = 113.21\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({s^2} = \frac{{{{(55 - 113.21)}^2} \times 5 + {{(65 - 113.21)}^2} \times 13 +&nbsp; \ldots&nbsp; + {{(145 - 113.21)}^2} \times 31}}{{999}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{362\,295.9}}{{999}} = 362.6585 \ldots&nbsp; = 363\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:&nbsp;</strong>Award <strong><em>A1 </em></strong>if answer rounds to 362 or 363.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:&nbsp;</strong>Condone division by 1000.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\bar v \pm \frac{{{t_{0.025}} \times s}}{{\sqrt n }}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence the confidence interval \(I = [112.028,{\text{ }}114.392]\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept answers which round to 112 and 114.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Condone the use of \({z_{0.025}}\) for \({t_{0.025}}\) and \(\sigma \) for \(s\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">less confidence implies narrower interval &nbsp; &nbsp; <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept equivalent statements or arguments having a meaningful diagram and/or relevant percentiles.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">hence the confidence interval \(I\) at the 95% level contains the confidence interval \(J\) at the 90% level &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a)(i), the candidates were required to show that the estimate of the mean is 113.21 so that those who stated simply &lsquo;Using my GDC, mean = 113.21&rsquo; were given no credit. Candidates were expected to indicate that the interval midpoints were used and to show the appropriate formula. In (a)(ii), division by either 999 or 1000 was accepted, partly because of the large sample size and partly because the question did not ask for an unbiased estimate of variance.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to (c) were often badly written, often quite difficult to understand exactly what was being stated.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable <em>X</em> has the distribution \({\text{B}}(n{\text{ , }}p)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; Show that \(\frac{{{\text{P}}(X = x)}}{{{\text{P}}(X = x - 1)}} = \frac{{(n - x + 1)p}}{{x(1 - p)}}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Deduce that if \({\text{P}}(X = x) &gt; {\text{P}}(X = x - 1)\) then \(x &lt; (n + 1)p\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Hence, determine the value of <em>x</em> which maximizes \({\text{P}}(X = x)\) when \((n + 1)p\) is not an integer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that <em>n</em> = 19 , find the set of values of <em>p</em> for which <em>X</em> has a unique mode of 13.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(\frac{{{\text{P}}(X = x)}}{{{\text{P}}(X = x - 1)}} = \frac{{\left( {\frac{{n!}}{{(n - x)!x!}} \times {p^x} \times {{(1 - p)}^{n - x}}} \right)}}{{\left( {\frac{{n!}}{{(n - x + 1)!(x - 1)!}} \times {p^{x - 1}} \times {{(1 - p)}^{n - x + 1}}} \right)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{(n - x + 1)p}}{{x(1 - p)}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; if \({\text{P}}(X = x) &gt; {\text{P}}(X = x - 1)\) then</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((n - x + 1)p &gt; x(1 - p)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(np - xp + p &gt; x - px\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x &lt; (n + 1)p\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; to maximise the probability we also need</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(X = x) &gt; {\text{P}}(X = x + 1)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{\left( {n - (x + 1) + 1} \right)p}}{{(x + 1)(1 - p)}} &lt; 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(np - xp &lt; x - xp + 1 - p\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(p(n + 1) &lt; x + 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(p(n + 1) &gt; x &gt; p(n + 1) - 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>x</em> is the integer part of&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">\((n + 1)p\)&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">i.e.</em><span style="font-family: 'times new roman', times; font-size: medium;"> the largest integer less than \((n + 1)p\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; the mode is the value which maximises the probability &nbsp; &nbsp; <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(20p &gt; 13 &gt; 20p - 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow p &gt; \frac{{13}}{{20}} = 0.65\), and \(p &lt; \frac{7}{{10}} = 0.70\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(it follows that \(0.65 &lt; p &lt; 0.7\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [13 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates made a reasonable attempt at (a)(i) and (ii) but few were able to show that the mode is the integer part of \((n + 1)p\). Part (b) also proved difficult for most candidates with few correct solutions seen.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Each week the management of a football club recorded the number of injuries suffered&nbsp;by their playing staff in that week. The results for a 52-week period were as follows:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the mean and variance of the number of injuries per week.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why these values provide supporting evidence for using a Poisson&nbsp;distribution model.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">mean = 2.06 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">variance = 1.94 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">a Poisson distribution has the property that its mean and variance are the same &nbsp; &nbsp; <strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates picked up good marks for this question, but lost marks because of inattention to detail. The mean of the data was usually given correctly, but sometimes the variance was wrong. It may seem a small point, but the correct hypotheses should not mention the value of the estimated mean. Some candidates did not notice that some columns needed to be combined.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates picked up good marks for this question, but lost marks because of inattention to detail. The mean of the data was usually given correctly, but sometimes the variance was wrong. It may seem a small point, but the correct hypotheses should not mention the value of the estimated mean. Some candidates did not notice that some columns needed to be combined.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>If \(X\) is a random variable that follows a Poisson distribution with mean \(\lambda&nbsp; &gt; 0\) then the probability generating function of \(X\) is \(G(t) = {e^{\lambda (t - 1)}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Prove that \({\text{E}}(X) = \lambda \).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Prove that \({\text{Var}}(X) = \lambda \).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(Y\) is a random variable, independent of \(X\), that also follows a Poisson distribution with mean \(\lambda \).</p>
<p class="p1">If \(S = 2X - Y\) find</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{E}}(S)\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{Var}}(S)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(T = \frac{Y}{2} + \frac{Y}{2}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(T\) is an unbiased estimator for \(\lambda \).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(T\) is a more efficient unbiased estimator of \(\lambda \) than \(S\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Could either \(S\) or \(T\) model a Poisson distribution? Justify your answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By consideration of the probability generating function, \({G_{X + Y}}(t)\), of \(X + Y\), prove that \(X + Y\) follows a Poisson distribution with mean \(2\lambda \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({G_{X + Y}}(1)\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({G_{X + Y}}( - 1)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find the probability that \(X + Y\) is an even number.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \(G'(t) = \lambda {e^{\lambda (t - 1)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({\text{E}}(X) = G'(1)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \lambda \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(G''(t) = {\lambda ^2}{e^{\lambda (t - 1)}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow G''(1) = {\lambda ^2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\({\text{Var}}(X) = G''(1) + G'(1) - {\left( {G'(1)} \right)^2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( = {\lambda ^2} + \lambda&nbsp; - {\lambda ^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \lambda \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({\text{E}}(S) = 2\lambda&nbsp; - \lambda&nbsp; = \lambda \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; \({\text{Var}}(S) = 4\lambda&nbsp; + \lambda&nbsp; = 5\lambda \) &nbsp; &nbsp; <strong><em>(A1)A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>First <strong><em>A1 </em></strong>can be awarded for either \(4\lambda \) or \(\lambda \).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({\text{E}}(T) = \frac{\lambda }{2} + \frac{\lambda }{2} = \lambda \;\;\;\)(so&nbsp;<em>\(T\) </em>is an unbiased estimator) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; \({\text{Var}}(T) = \frac{1}{4}\lambda&nbsp; + \frac{1}{4}\lambda&nbsp; = \frac{1}{2}\lambda \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>this is less than \({\text{Var}}(S)\)<em>, </em>therefore \(T\) is the more efficient estimator &nbsp; &nbsp; <strong><em>R1AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Follow through their variances from (b)(ii) and (c)(ii).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">no, mean does not equal the variance <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({G_{X + Y}}(t) = {e^{\lambda (t - 1)}} \times {e^{\lambda (t - 1)}} = {e^{2\lambda (t - 1)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1">which is the probability generating function for a Poisson with a mean of \(2\lambda \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({G_{X + Y}}(1) = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({G_{X + Y}}( - 1) = {e^{ - 4\lambda }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({G_{X + Y}}(1) = p(0) + p(1) + p(2) + p(3) \ldots \)</p>
<p class="p1">\({G_{X + Y}}( - 1) = p(0) - p(1) + p(2) - p(3) \ldots \)</p>
<p class="p1">so \({\text{2P(even)}} = {G_{X + Y}}(1) + {G_{X + Y}}( - 1)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1">\({\text{P(even)}} = \frac{1}{2}(1 + {e^{ - 4\lambda }})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [21 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Solutions to the different parts of this question proved to be extremely variable in quality with some parts well answered by the majority of the candidates and other parts accessible to only a few candidates. Part (a) was well answered in general although the presentation was sometimes poor with some candidates doing the differentiation of \(G(t)\) and the substitution of \(t = 1\) simultaneously.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was well answered in general, the most common error being to state that \({\text{Var}}(2X - Y) = {\text{Var}}(2X) - {\text{Var}}(Y)\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (c) and (d) were well answered by the majority of candidates.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (c) and (d) were well answered by the majority of candidates.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Solutions to (e), however, were extremely disappointing with few candidates giving correct solutions. A common incorrect solution was the following:</p>
<p class="p1">\(\;\;\;{G_{X + Y}}(t) = {G_X}(t){G_Y}(t)\)</p>
<p class="p1">Differentiating,</p>
<p class="p1">\(\;\;\;{G'_{X + Y}}(t) = {G'_X}(t){G_Y}(t) + {G_X}(t){G'_Y}(t)\)</p>
<p class="p1">\(\;\;\;{\text{E}}(X + Y) = {G'_{X + Y}}(1) = {\text{E}}(X) \times 1 + {\text{E}}(Y) \times 1 = 2\lambda \)</p>
<p class="p1">This is correct mathematics but it does not show that \(X + Y\) is Poisson and it was given no credit. Even the majority of candidates who showed that \({G_{X + Y}}(t) = {{\text{e}}^{2\lambda (t - 1)}}\) failed to state that this result proved that \(X + Y\) is Poisson and they usually differentiated this function to show that \({\text{E}}(X + Y) = 2\lambda \).</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (f), most candidates stated that \({G_{X + Y}}(1) = 1\) even if they were unable to determine \({G_{X + Y}}(t)\) but many candidates were unable to evaluate \({G_{X + Y}}( - 1)\). Very few correct solutions were seen to (g) even if the candidates correctly evaluated \({G_{X + Y}}(1)\) and \({G_{X + Y}}( - 1)\).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Engine oil is sold in cans of two capacities, large and small. The amount, in millilitres, in each can, is normally distributed according to Large \( \sim {\text{N}}(5000,{\text{ }}40)\) and Small \( \sim {\text{N}}(1000,{\text{ }}25)\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A large can is selected at random. Find the probability that the can contains at least&nbsp;\(4995\) millilitres of oil.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A large can and a small can are selected at random. Find the probability that the large can contains at least&nbsp;\(30\) milliliters more than five times the amount contained in the small can.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A large can and five small cans are selected at random. Find the probability that the large can contains at least&nbsp;\(30\) milliliters less than the total amount contained in the small cans.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{P}}(L \ge 4995) = 0.785\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept any answer that rounds correctly to \(0.79\).</p>
<p class="p3">Award <strong><em>M1A0</em></strong> for \(0.78\).</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Award <strong><em>M1A0</em></strong> for any answer that rounds to&nbsp;\(0.55\) obtained by taking \({\text{SD}} = 40\).</p>
<p class="p3"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">we are given that \(L \sim {\text{N}}(5000,{\text{ }}40)\) and \(S \sim {\text{N}}(1000,{\text{ }}25)\)</p>
<p class="p1">consider \(X = L - 5S\) <span class="s1">(</span>ignore \( \pm 30\)) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">\({\text{E}}(X) = 0\) (\( \pm 30\) consistent with line above<span class="s1">) <span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>A1</em></strong></p>
<p class="p1">\({\text{Var}}(X) = {\text{Var}}(L) + 25{\text{Var}}(S) = 40 + 625 = 665\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)A1</em></strong></p>
<p class="p1">require \({\text{P}}(X \ge 30)\;\;\;({\text{or P}}(X \ge 0){\text{ if }} - 30{\text{ above}})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">obtain&nbsp;\(0.122\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept any answer that rounds correctly to&nbsp;\(2\) significant figures.</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider \(Y = L - ({S_1} + {S_2} + {S_3} + {S_4} + {S_5})\) (ignore \( \pm 30\)) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\({\text{E}}(Y) = 0\) (\( \pm 30\) consistent with line above) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({\text{Var}}(Y) = 40 + 5 \times 25 = 165\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>require \({\text{P}}(Y \le&nbsp; - 30){\text{ (or P}}(Y \le 0){\text{ if }} + 30{\text{ above)}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>obtain&nbsp;\(0.00976\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept any answer that rounds correctly to&nbsp;\(2\) significant figures.</p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Condone the notation \(Y = L - 5S\) if the variance is correct.</p>
<p style="text-align: left;"><em><strong>[5 marks]</strong></em></p>
<p style="text-align: left;"><em><strong>Total [13 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates solved (a) correctly. In (b) and (c), however, many candidates made the usual error of confusing \(\sum\limits_{i = 1}^n {{X_i}} \) and \(nX\)<em>. </em>Indeed some candidates even use the second expression to mean the first. This error leads to an incorrect variance and of course an incorrect answer. Some candidates had difficulty in converting the verbal statements into the correct probability statements, particularly in (c).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates solved (a) correctly. In (b) and (c), however, many candidates made the usual error of confusing \(\sum\limits_{i = 1}^n {{X_i}} \) and \(nX\)<em>. </em>Indeed some candidates even use the second expression to mean the first. This error leads to an incorrect variance and of course an incorrect answer. Some candidates had difficulty in converting the verbal statements into the correct probability statements, particularly in (c).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates solved (a) correctly. In (b) and (c), however, many candidates made the usual error of confusing \(\sum\limits_{i = 1}^n {{X_i}} \) and \(nX\)<em>. </em>Indeed some candidates even use the second expression to mean the first. This error leads to an incorrect variance and of course an incorrect answer. Some candidates had difficulty in converting the verbal statements into the correct probability statements, particularly in (c).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When Andrew throws a dart at a target, the probability that he hits it is \(\frac{1}{3}\) ; when Bill throws a dart at the target, the probability that he hits the it is \(\frac{1}{4}\) . Successive throws are independent. One evening, they throw darts at the target alternately, starting with Andrew, and stopping as soon as one of their darts hits the target. Let <em>X</em> denote the total number of darts thrown.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the value of \({\text{P}}(X = 1)\) and show that \({\text{P}}(X = 2) = \frac{1}{6}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the probability generating function for <em>X</em> is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[G(t) = \frac{{2t + {t^2}}}{{6 - 3{t^2}}}.\]</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence determine \({\text{E}}(X)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(X = 1) = \frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(X = 2) = \frac{2}{3} \times \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(= \frac{1}{6}\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(G(t) = \frac{1}{3}t + \frac{2}{3} \times \frac{1}{4}{t^2} + \frac{2}{3} \times \frac{3}{4} \times \frac{1}{3}{t^3} + \frac{2}{3} \times \frac{3}{4} \times \frac{2}{3} \times \frac{1}{4}{t^4} +&nbsp; \ldots \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}t\left( {1 + \frac{1}{2}{t^2} +&nbsp; \ldots } \right) + \frac{1}{6}{t^2}\left( {1 + \frac{1}{2}{t^2} +&nbsp; \ldots } \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\frac{t}{3}}}{{1 - \frac{{{t^2}}}{2}}} + \frac{{\frac{{{t^2}}}{6}}}{{1 - \frac{{{t^2}}}{2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2t + {t^2}}}{{6 - 3{t^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(G'(t) = \frac{{(2 + 2t)(6 - 3{t^2}) + 6t(2t + {t^2})}}{{{{(6 - 3{t^2})}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}(X) = G'(1) = \frac{{10}}{3}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The weights of the oranges produced by a farm may be assumed to be normally distributed with mean 205 grams and standard deviation 10 grams.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the probability that a randomly chosen orange weighs more than 200 grams.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Five of these oranges are selected at random to be put into a bag. Find the probability that the combined weight of the five oranges is less than 1 kilogram.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The farm also produces lemons whose weights may be assumed to be normally distributed with mean 75 grams and standard deviation 3 grams. Find the probability that the weight of a randomly chosen orange is more than three times the weight of a randomly chosen lemon.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z = \frac{{200 - 205}}{{10}} = - 0.5\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">probability = 0.691 (accept 0.692) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for 0.309 or 0.308</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>X</em> be the total weight of the 5 oranges</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then \({\text{E}}(X) = 5 \times 205 = 1025\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(X) = 5 \times 100 = 500\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(X &lt; 1000) = 0.132\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>Y</em> = <em>B</em> &ndash; 3<em>C</em> where <em>B</em> is the weight of a random orange and <em>C</em> the weight of a random lemon &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}(Y) = 205 - 3 \times 75 = - 20\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(Y) = 100 + 9 \times 9 = 181\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(Y &gt; 0) = 0.0686\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for 0.0681 obtained from tables</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">As might be expected, (a) was well answered by many candidates, although those who gave 0.6915 straight from tables were given an arithmetic penalty. Parts (b) and (c), however, were not so well answered with errors in calculating the variances being the most common source of incorrect solutions. In particular, some candidates are still uncertain about the difference between <em>nX</em> and \(\sum\limits_{i = 1}^n {{X_i}} \) .</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">As might be expected, (a) was well answered by many candidates, although those who gave 0.6915 straight from tables were given an arithmetic penalty. Parts (b) and (c), however, were not so well answered with errors in calculating the variances being the most common source of incorrect solutions. In particular, some candidates are still uncertain about the difference between <em>nX</em> and \(\sum\limits_{i = 1}^n {{X_i}} \) .</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">As might be expected, (a) was well answered by many candidates, although those who gave 0.6915 straight from tables were given an arithmetic penalty. Parts (b) and (c), however, were not so well answered with errors in calculating the variances being the most common source of incorrect solutions. In particular, some candidates are still uncertain about the difference between <em>nX</em> and \(\sum\limits_{i = 1}^n {{X_i}} \) .</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the probability generating function for \(X \sim {\text{B}}(1,{\text{ }}p)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the probability generating function for \({\text{B}}(n,{\text{ }}p)\) is a polynomial of degree \(n\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two independent random variables \({X_1}\) and \({X_2}\) are such that \({X_1} \sim {\text{B}}(1,{\text{ }}{p_1})\) <span class="s1">and \({X_2} \sim {\text{B}}(1,{\text{ }}{p_2})\)</span>. Prove that if \({X_1} + {X_2}\) has a binomial distribution then \({p_1} = {p_2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{P}}(X = 0) = 1 - p( = q);{\text{ P}}(X = 1) = p\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p1">\({{\text{G}}_x}(t) = \sum\limits_r {{\text{P}}(X = r){t^r}\;\;\;} \)(or writing out term by term) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( = q + pt\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">\(PGF\) for \(B(n,{\text{ }}p)\) is \({(q + pt)^n}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">which is a polynomial of degree \(n\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">in \(n\) independent trials, it is not possible to obtain more than \(n\) succes<span class="s1">ses (or equivalent, <em>eg</em>, \({\text{P}}(X &gt; n) = 0\)) <span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>R1</em></strong></p>
<p class="p1">so \({a_r} = 0\) for \(r &gt; n\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let \(Y = {X_1} + {X_2}\)</p>
<p class="p1">\({G_Y}(t) = ({q_1} + {p_1}t)({q_2} + {p_2}t)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\({G_Y}(t)\) has degree two, so if \(Y\) is binomial then</p>
<p class="p1">\(Y \sim {\text{B}}(2,{\text{ }}p)\) for some \(p\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">\({(q + pt)^2} = ({q_1} + {p_1}t)({q_2} + {p_2}t)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>The&nbsp;\(LHS\) could be seen as \({q^2} + 2pqt + {p^2}{t^2}\).</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">by considering the roots of both sides, \(\frac{{{q_1}}}{{{p_1}}} = \frac{{{q_2}}}{{{p_2}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\(\frac{{1 - {p_1}}}{{{p_1}}} = \frac{{1 - {p_2}}}{{{p_2}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \({p_1} = {p_2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">equating coefficients,</p>
<p class="p1">\({p_1}{p_2} = {p^2},{\text{ }}{q_1}{q_2} = {q^2}{\text{ or }}(1 - {p_1})(1 - {p_2}) = {(1 - p)^2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">expanding,</p>
<p class="p1">\({p_1} + {p_2} = 2p\) so \({p_1},{\text{ }}{p_2}\) are the roots of \({x^2} - 2px + {p^2} = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \({p_1} = {p_2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<p class="p1"><strong><em>Total [11 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Solutions to (a) were often disappointing with some candidates simply writing down the answer. A common error was to forget the possibility of \(X\) being zero so that \(G(t) = pt\) was often seen.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Explanations in (b) were often poor, again indicating a lack of ability to give a verbal explanation.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very few complete solutions to (c) were seen with few candidates even reaching the result that \(({q_1} + {p_1}t)({q_2} + {p_2}t)\) must equal \({(q + pt)^2}\) for some \(p\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable <em>X</em> is assumed to have probability density function <em>f</em>, where</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {\frac{x}{{18,}}}&amp;{0 \leqslant x \leqslant 6} \\ <br>&nbsp; {0,}&amp;{{\text{otherwise}}{\text{.}}} <br>\end{array}} \right.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that if the assumption is correct, then</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{\text{P}}(a \leqslant X \leqslant b) = \frac{{{b^2} - {a^2}}}{{36}},{\text{ for }}0 \leqslant a \leqslant b \leqslant 6.\]</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(a \leqslant X \leqslant b) = \int_a^b {\frac{x}{{18}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{{{x^2}}}{{36}}} \right]_a^b\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{b^2} - {a^2}}}{{36}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the best answered question on the paper, helped probably by the fact that rounding errors in finding the expected frequencies were not an issue. In (a), some candidates thought, incorrectly, that all they had to do was to show that \(\int_0^6 {f(x){\text{d}}x = 1} \).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The discrete random variable <em>X</em> has the following probability distribution, where \(0 &lt; \theta&nbsp; &lt; \frac{1}{3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine \({\text{E}}(X)\) and show that \({\text{Var}}(X) = 6\theta - 16{\theta ^2}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In order to estimate \(\theta \), a random sample of <em>n</em> observations is obtained from the distribution of <em>X</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Given that \({\bar X}\) denotes the mean of this sample, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{{\hat \theta }_1} = \frac{{3 - \bar X}}{4}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">is an unbiased estimator for \(\theta \) and write down an expression for the variance of \({{\hat \theta }_1}\) in terms of <em>n</em> and \(\theta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Let <em>Y</em> denote the number of observations that are equal to 1 in the sample. Show that <em>Y</em> has the binomial distribution \({\text{B}}(n,{\text{ }}\theta )\) and deduce that \({{\hat \theta }_2} = \frac{Y}{n}\) is another unbiased estimator for \(\theta \). Obtain an expression for the variance of \({{\hat \theta }_2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Show that \({\text{Var}}({{\hat \theta }_1}) &lt; {\text{Var}}({{\hat \theta }_2})\) and state, with a reason, which is the more&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">efficient estimator, \({{\hat \theta }_1}\) or \({{\hat \theta }_2}\).</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}(X) = 1 \times \theta + 2 \times 2\theta + 3(1 - 3\theta ) = 3 - 4\theta \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(X) = 1 \times \theta + 4 \times 2\theta + 9(1 - 3\theta ) - {(3 - 4\theta )^2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 6\theta - 16{\theta ^2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{E}}({\hat \theta _1}) = \frac{{3 - {\text{E}}(\bar X)}}{4} = \frac{{3 - (3 - 4\theta )}}{4} = \theta \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \({\hat \theta _1}\) is an unbiased estimator of \(\theta \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}({{\hat \theta }_1}) = \frac{{6\theta&nbsp; - 16{\theta ^2}}}{{16n}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; each of the <em>n</em> observed values has a probability \(\theta \) of having the value 1 &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(Y \sim {\text{B}}(n,{\text{ }}\theta )\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{E}}({{\hat \theta }_2}) = \frac{{{\text{E}}(Y)}}{n} = \frac{{n\theta }}{n} = \theta \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}({{\hat \theta }_2}) = \frac{{n\theta (1 - \theta )}}{{{n^2}}} = \frac{{\theta (1 - \theta )}}{n}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \({\text{Var}}({{\hat \theta }_1}) - {\text{Var}}({{\hat \theta }_2}) = \frac{{6\theta&nbsp; - 16{\theta ^2} - 16\theta&nbsp; + 16{\theta ^2}}}{{16n}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{ - 10\theta }}{{16n}} &lt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\hat \theta }_1}\) is the more efficient estimator since it has the smaller variance &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[10 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Bill also has a box with 10 biscuits in it. 4 biscuits are chocolate and 6 are plain. Bill takes a biscuit from his box at random, looks at it and replaces it in the box. He repeats this process until he has looked at 5 biscuits in total. Let <em>B </em>be the number of chocolate biscuits that Bill takes and looks at.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the distribution of <em>B </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find P(<em>B </em>= 3) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find P(<em>B </em>= 5) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>B </em>has the binomial distribution \(\left( {B\left( {5,\frac{4}{{10}}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(B = 3) = \left( {\left( {\begin{array}{*{20}{c}}<br>&nbsp; 5 \\ <br>&nbsp; 3 <br>\end{array}} \right){{\left( {\frac{4}{{10}}} \right)}^3}{{\left( {\frac{6}{{10}}} \right)}^2} = } \right)\frac{{144}}{{625}}( = 0.2304)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note</strong><span style="font-family: 'times new roman', times; font-size: medium;">: Accept 0.230.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(B = 5) = \left( {{{\left( {\frac{4}{{10}}} \right)}^5} = } \right)\frac{{32}}{{3125}}( = 0.01024)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note</strong><span style="font-family: 'times new roman', times; font-size: medium;">: Accept 0.0102.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was generally well answered. Some students did not read the question carefully enough and see the comparisons made between the Hypergeometric distribution and the Binomial distribution, with 5 trials (some candidates went to 10 trials) in each case. Part (h) caused the most problems and it was very rare to see a script that gained the reasoning mark for saying that <em>A </em>and <em>B </em>were independent events. This question was a good indicator of the standard of the rest of the paper.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was generally well answered. Some students did not read the question carefully enough and see the comparisons made between the Hypergeometric distribution and the Binomial distribution, with 5 trials (some candidates went to 10 trials) in each case. Part (h) caused the most problems and it was very rare to see a script that gained the reasoning mark for saying that <em>A </em>and <em>B </em>were independent events. This question was a good indicator of the standard of the rest of the paper.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was generally well answered. Some students did not read the question carefully enough and see the comparisons made between the Hypergeometric distribution and the Binomial distribution, with 5 trials (some candidates went to 10 trials) in each case. Part (h) caused the most problems and it was very rare to see a script that gained the reasoning mark for saying that <em>A </em>and <em>B </em>were independent events. This question was a good indicator of the standard of the rest of the paper.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable <em>X </em>has probability distribution Po(8).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find \({\text{P}}(X = 6)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find \({\text{P}}(X = 6|5 \leqslant X \leqslant 8)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\bar X\) denotes the sample mean of \(n &gt; 1\) independent observations from \(X\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down \({\text{E}}(\bar X)\) and \({\text{Var}}(\bar X)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence, give a reason why \(\bar X\) is not a Poisson distribution.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A random sample of \(40\) observations is taken from the distribution for \(X\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find \({\text{P}}(7.1 &lt; \bar X &lt; 8.5)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Given that \({\text{P}}\left( {\left| {\bar X - 8} \right| \leqslant k} \right) = 0.95\), find the value of \(k\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{P}}(X = 6) = 0.122\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({\text{P}}(X = 6|5 \leqslant X \leqslant 8) = \frac{{{\text{P}}(X = 6)}}{{{\text{P}}(5 \leqslant X \leqslant 8)}} = \frac{{0.122 \ldots }}{{0.592 \ldots&nbsp; - 0.0996 \ldots }}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.248\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{E}}(\bar X) = 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}(\bar X) = \frac{8}{n}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({\text{E}}(\bar X) \ne {\text{Var}}(\bar X)\) &nbsp; \({\text{(for }}n &gt; 1)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; </strong>Only award the <strong><em>R1 </em></strong>if the two expressions in (b)(i) are different.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\bar X \sim {\text{N(8, 0.2)}}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; <em>M1 </em></strong>for normality, <strong><em>A1 </em></strong>for parameters.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(7.1 &lt; \bar X &lt; 8.5) = 0.846\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The expression is equivalent to</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(283 \leqslant \sum {X \leqslant 339)} \) where \(\sum X \) is \({\text{Po(320)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.840\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; </strong>Accept 284, 340 instead of 283, 339</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Accept any answer that rounds correctly to 0.84 or 0.85.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 1.96\frac{\sigma }{{\sqrt n }}\) or \(1.96{\text{ std}}(\bar X)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 0.877\) or \(1.96\sqrt {0.2} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The expression is equivalent to</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(320 - 40k \leqslant \sum {X \leqslant 320 + 40k) = 0.95} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 0.875\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; </strong>Accept any answer that rounds to 0.87 or 0.88.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>M1A0 </em></strong>if modulus sign ignored and answer obtained rounds to 0.74 or 0.75</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Times; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The continuous random variable <em>X </em>has probability density function <em>f </em>given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2x,}&amp;{0 \leqslant x \leqslant 0.5,} \\ <br>&nbsp; {\frac{4}{3} - \frac{2}{3}x,}&amp;{0.5 \leqslant x \leqslant 2} \\ <br>&nbsp; {0,}&amp;{{\text{otherwise}}{\text{.}}} <br>\end{array}} \right.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the function <em>f </em>and show that the lower quartile is 0.5.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Determine E(<em>X </em>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Determine \({\text{E}}({X^2})\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Two independent observations are made from <em>X </em>and the values are added.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The resulting random variable is denoted <em>Y </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Determine \({\text{E}}(Y - 2X)\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Determine \({\text{Var}}\,(Y - 2X)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find the cumulative distribution function for <em>X </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence, or otherwise, find the median of the distribution.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">piecewise linear graph</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">correct shape &nbsp; &nbsp; <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">with vertices (0, 0), (0.5, 1) and (2, 0) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">LQ: <em>x</em> = 0.5 , because the area of the triangle is 0.25 &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{E}}(X) = \int_0^{0.5} {x \times 2x{\text{d}}x + \int_{0.5}^2 {x \times \left( {\frac{4}{3} - \frac{2}{3}x} \right){\text{d}}x = \frac{5}{6}{\text{ }}( = 0.833...)} } \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({\text{E}}({X^2}) = \int_0^{0.5} {{x^2} \times 2x{\text{d}}x + \int_{0.5}^2 {{x^2} \times \left( {\frac{4}{3} - \frac{2}{3}x} \right){\text{d}}x = \frac{7}{8}{\text{ }}( = 0.875)} } \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{E}}(Y - 2X) = 2{\text{E}}(X) - 2{\text{E}}(X) = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({\text{Var}}\,(X) = \left( {{\text{E}}({X^2}) - {\text{E}}{{(X)}^2}} \right) = \frac{{13}}{{72}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(Y = {X_1} + {X_2} \Rightarrow {\text{Var}}\,(Y) = 2{\text{Var }}(X)\) &nbsp; &nbsp;<strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{Var}}\,(Y - 2X) = 2{\text{Var}}\,(X) + 4{\text{Var}}\,(X) = \frac{{13}}{{12}}\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; attempt to use \(cf(x) = \int {f(u){\text{d}}u} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(cf(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {{x^2},}&amp;{0 \leqslant x \leqslant 0.5,} \\ <br>&nbsp; {\frac{{4x}}{3} - \frac{1}{3}{x^2} - \frac{1}{3},}&amp;{0.5 \leqslant x \leqslant 2,} <br>\end{array}} \right.\) &nbsp; &nbsp; \(\begin{array}{*{20}{c}}<br>&nbsp; {{\boldsymbol{A1}}} \\ <br>&nbsp; {{\boldsymbol{A2}}} <br>\end{array}\)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempt to solve \(cf(x) = 0.5\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{4x}}{3} - \frac{1}{3}{x^2} - \frac{1}{3} = 0.5\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain 0.775 &nbsp; &nbsp; <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept attempts in the form of an integral with upper limit the&nbsp;unknown median.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept exact answer \(2 - \sqrt {1.5} \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">There was a curious issue about the lower quartile in part (a): The LQ coincides with a quarter of the range of the distribution \(\frac{2}{4} = 0.5\). Sadly this is wrong reasoning &ndash; the correct reasoning involves a consideration of areas.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">There was a curious issue about the lower quartile in part (a): The LQ coincides with a quarter of the range of the distribution \(\frac{2}{4} = 0.5\). Sadly this is wrong reasoning &ndash; the correct reasoning involves a consideration of areas.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) many candidates used hand calculation rather than their GDC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable Y was not well understood, and that followed into incorrect calculations involving Y &ndash; 2X.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">There was a curious issue about the lower quartile in part (a): The LQ coincides with a quarter of the range of the distribution \(\frac{2}{4} = 0.5\). Sadly this is wrong reasoning &ndash; the correct reasoning involves a consideration of areas.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) many candidates used hand calculation rather than their GDC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable Y was not well understood, and that followed into incorrect calculations involving Y &ndash; 2X.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">There was a curious issue about the lower quartile in part (a): The LQ coincides with a quarter of the range of the distribution \(\frac{2}{4} = 0.5\). Sadly this is wrong reasoning &ndash; the correct reasoning involves a consideration of areas.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) many candidates used hand calculation rather than their GDC.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable Y was not well understood, and that followed into incorrect calculations involving Y &ndash; 2X.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A random variable \(X\) has probability density function</p>
<p class="p1">\(f(x) = \left\{ {\begin{array}{*{20}{c}} 0&amp;{x &lt; 0} \\ {\frac{1}{2}}&amp;{0 \le x &lt; 1} \\ {\frac{1}{4}}&amp;{1 \le x &lt; 3} \\ 0&amp;{x \ge 3} \end{array}} \right.\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the cumulative distribution function for \(X\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the interquartile range for \(X\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space"><img src="" alt>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Ignore open / closed endpoints and vertical lines.</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>A1 </em></strong>for a correct graph with scales on both axes and a clear indication of the relevant values.</p>
<p class="p1"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(F(x) = \left\{ {\begin{array}{*{20}{c}} 0&amp;{x &lt; 0} \\ {\frac{x}{2}}&amp;{0 \le x &lt; 1} \\ {\frac{x}{4} + \frac{1}{4}}&amp;{1 \le x &lt; 3} \\ 1&amp;{x \ge 3} \end{array}} \right.\)</p>
<p class="p1">considering the areas in their sketch or using integration <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(F(x) = 0,{\text{ }}x &lt; 0,{\text{ }}F(x) = 1,{\text{ }}x \ge 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(F(x) = \frac{x}{2},{\text{ }}0 \le x &lt; 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(F(x) = \frac{x}{4} + \frac{1}{4},{\text{ }}1 \le x &lt; 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p1">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Accept \( &lt; \) for \( \le \) in all places and also \( &gt; \) for \( \ge \) first <strong><em>A1</em></strong>.</p>
<p class="p1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({Q_3} = 2,{\text{ }}{Q_1} = 0.5\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p1">\({\text{IQR is }}2 - 0.5 = 1.5\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [9 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was correctly answered by most candidates. Some graphs were difficult to mark because candidates drew their lines on top of the ruled lines in the answer book. Candidates should be advised not to do this. Candidates should also be aware that the command term &lsquo;sketch&rsquo; requires relevant values to be indicated.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (b), most candidates realised that the cumulative distribution function had to be found by integration but the limits were sometimes incorrect.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (c), candidates who found the upper and lower quartiles correctly sometimes gave the interquartile range as \([0.5,{\text{ }}2]\). It is important for candidates to realise that that the word range has a different meaning in statistics compared with other branches of mathematics.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>