File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 2/markSceme-HL-paper2html
File size: 1.51 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p class="p1">The graph of \(y = \ln (5x + 10)\) is obtained from the graph of \(y = \ln x\) by a translation of \(a\) units in the direction of the \(x\)-axis followed by a translation of \(b\) units in the direction of the \(y\)-axis.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\) and the value of \(b\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The region bounded by the graph of \(y = \ln (5x + 10)\), the \(x\)-axis and the lines \(x = {\text{e}}\) and \(x = 2{\text{e}}\), is rotated through \(2\pi \) radians about the \(x\)-axis. Find the volume generated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(y = \ln (x - a) + b = \ln (5x + 10)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(y = \ln (x - a) + \ln c = \ln (5x + 10)\)</p>
<p>\(y = \ln \left( {c(x - a)} \right) = \ln (5x + 10)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p>\(y = \ln (5x + 10) = \ln \left( {5(x + 2)} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(y = \ln (5) + \ln (x + 2)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>THEN</strong></p>
<p>\(a =&nbsp; - 2,{\text{ }}b = \ln 5\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept graphical approaches.</p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept \(a = 2,{\text{ }}b = 1.61\)</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(V = \pi {\int_e^{2e} {\left[ {\ln (5x + 10)} \right]} ^2}{\text{d}}x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\( = 99.2\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>Total [6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider \(p(x) = 3{x^3} + ax + 5a,\;\;\;a \in \mathbb{R}\).</p>
<p class="p1">The polynomial \(p(x)\) leaves a remainder of \( - 7\) when divided by \((x - a)\).</p>
<p class="p1">Show that only one value of \(a\) satisfies the above condition and state its value.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>using \(p(a) =&nbsp; - 7\) to obtain \(3{a^3} + {a^2} + 5a + 7 = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\((a + 1)(3{a^3} - 2a + 7) = 0\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1</em></strong> for a cubic graph with correct shape and <strong><em>A1</em></strong> for clearly showing that the above cubic crosses the horizontal axis at \(( - 1,{\text{ }}0)\) only.</p>
<p>&nbsp;</p>
<p>\(a =&nbsp; - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>showing that \(3{a^2} - 2a + 7 = 0\) has no real (two complex) solutions for \(a\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>showing that \(3{a^3} + {a^2} + 5a + 7 = 0\) has one real (and two complex) solutions for \(a\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>R1</em></strong> for solutions that make specific reference to an appropriate graph.</p>
<p>&nbsp;</p>
<p><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>A large number of candidates, either by graphical (mostly) or algebraic or via use of a GDC solver, were able to readily obtain \(a =&nbsp; - 1\). Most candidates who were awarded full marks however, made specific reference to an appropriate graph. Only a small percentage of candidates used the discriminant to justify that only one value of \(a\) satisfied the required condition. A number of candidates erroneously obtained \(3{a^3} + {a^2} + 5a - 7 = 0\) or equivalent rather than \(3{a^3} + {a^2} + 5a + 7 = 0\).</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {x{{\sec }^2}x{\text{d}}x} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the value of <em>m</em> if \(\int_0^m {x{{\sec }^2}x{\text{d}}x = 0.5} \), where <em>m</em> &gt; 0.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {x{{\sec }^2}x{\text{d}}x}&nbsp; = x\tan x - \int {1 \times \tan x{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x\tan x + \ln \left| {\cos x} \right|( + c){\text{ }}\left( { = x\tan x - \ln \left| {\sec x} \right|( + c)} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve an appropriate equation <em>eg</em> \(m\tan m + \ln (\cos m) = 0.5\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>m</em> = 0.822 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if </span><em style="font-family: 'times new roman', times; font-size: medium;">m</em><span style="font-family: 'times new roman', times; font-size: medium;"> = 0.822 is specified with other positive solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a), a large number of candidates were able to use integration by parts correctly but were unable to use integration by substitution to then find the indefinite integral of tan <em>x</em>. In part (b), a large number of candidates attempted to solve the equation without direct use of a GDC&rsquo;s numerical solve command. Some candidates stated more than one solution for <em>m </em>and some specified <em>m </em>correct to two significant figures only.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a), a large number of candidates were able to use integration by parts correctly but were unable to use integration by substitution to then find the indefinite integral of tan <em>x</em>. In part (b), a large number of candidates attempted to solve the equation without direct use of a GDC&rsquo;s numerical solve command. Some candidates stated more than one solution for <em>m </em>and some specified <em>m </em>correct to two significant figures only.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>It is given that \(f(x) = 3{x^4} + a{x^3} + b{x^2} - 7x - 4\) where \(a\) and \(b\) are positive integers.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \({x^2} - 1\) is a factor of \(f(x)\) find the value of \(a\) and the value of \(b\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize \(f(x)\) into a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\), labelling the maximum and minimum points and the \(x\) and \(y\) intercepts.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graph state the range of values of \(c\) for which \(f(x) = c\) has exactly two distinct real roots.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(g(x) = 3{x^4} + a{x^3} + b{x^2} - 7x - 4\)</p>
<p>\(g(1) = 0 \Rightarrow a + b = 8\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(g( - 1) = 0 \Rightarrow - a + b = - 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( \Rightarrow a = 7,{\text{ }}b = 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3{x^4} + 7{x^3} + {x^2} - 7x - 4 = ({x^2} - 1)(p{x^2} + qx + r)\)</p>
<p>attempt to equate coefficients&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(p = 3,{\text{ }}q = 7,{\text{ }}r = 4\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\(3{x^4} + 7{x^3} + {x^2} - 7x - 4 = ({x^2} - 1)(3{x^2} + 7x + 4)\)</p>
<p>\( = (x - 1){(x + 1)^2}(3x + 4)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept any equivalent valid method.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-10_om_09.04.14.png" alt="M17/5/MATHL/HP2/ENG/TZ2/11.c/M"></p>
<p><strong><em>A1 </em></strong>for correct shape (<em>ie </em>with correct number of max/min points)</p>
<p><strong><em>A1 </em></strong>for correct \(x\) and \(y\) intercepts</p>
<p><strong><em>A1 </em></strong>for correct maximum and minimum points</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(c &gt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( - 6.20 &lt; c &lt; - 0.0366\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>A1 </em></strong>for correct end points and <strong><em>A1 </em></strong>for correct inequalities.</p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; If the candidate has misdrawn the graph and omitted the first minimum point, the maximum mark that may be awarded is <strong><em>A1FTA0A0 </em></strong>for \(c &gt; - 6.20\) seen.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f(x) = 3\sin x + 4\cos x\) is defined for \(0 &lt; x &lt; 2\pi \) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the coordinates of the minimum point on the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The points \({\text{P}}(p,{\text{ }}3)\)&nbsp;and \({\text{Q}}(q,{\text{ }}3){\text{, }}q &gt; p\), lie on the graph of \(y = f(x)\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find <em>p </em>and <em>q </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point, on \(y = f(x)\)&nbsp;, where the gradient of the&nbsp;graph is 3.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of the point of intersection of the normals to the graph at the&nbsp;points P and Q.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((3.79, - 5)\) &nbsp; &nbsp;&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1&nbsp;</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]&nbsp;</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(p = 1.57{\text{ or }}\frac{\pi }{2},{\text{ }}q = 6.00\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 3\cos x - 4\sin x\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(3\cos x - 4\sin x = 3 \Rightarrow x = 4.43...\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((y = -4)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">Coordinates are&nbsp;\((4.43, -4)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({m_{{\text{normal}}}} = \frac{1}{{{m_{{\text{tangent}}}}}}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">gradient at P is \( - 4\) so gradient of normal at P is \(\frac{1}{4}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(A1)</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">gradient at Q is 4 so gradient of normal at Q is \( - \frac{1}{4}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(A1)</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">equation of normal at P is \(y - 3 = \frac{1}{4}(x - 1.570...){\text{ }}({\text{or }}y = 0.25x + 2.60...)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of normal at Q is \(y - 3 = \frac{1}{4}(x - 5.999...){\text{ }}({\text{or }}y = -0.25x + \underbrace {4.499...}_{})\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Award the previous two </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>M1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">even if the gradients are incorrect in \(y - b = m(x - a)\)&nbsp;where \((a,b)\) are coordinates of P and Q&nbsp;(or in \(y = mx + c\) with </span><em style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">c </em><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">determined using coordinates of P and Q.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">intersect at \((3.79,{\text{ }}3.55)\)&nbsp; &nbsp; &nbsp;<strong><em>A1A1</em></strong></span>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>N2 </em></strong>for 3.79 without other working.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]<br></em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates answered parts (a) and (b) of this question well and, although many were also successful in part (c), just a few candidates gave answers to the required level of accuracy. Part d) was rather challenging for many candidates. The most common errors among the candidates who attempted this question were the confusion between tangents and normals and incorrect final answers due to premature rounding.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the quadratic equation \({x^2} - (5 - k)x - (k + 2) = 0\) has two distinct real roots&nbsp;for all real values of <em>k </em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\Delta &nbsp;= {(5 - k)^2} + 4(k + 2)\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {k^2} - 6k + 33\) &nbsp; &nbsp; <em><strong>(A1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {(k - 3)^2} + 24\) which is positive for all <em>k&nbsp;</em> &nbsp; &nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept analytical, graphical or other correct methods. In all cases only award&nbsp;<strong><em>R1 </em></strong>if a reason is given in words or graphically. Award <strong><em>M1A1A0R1 </em></strong>if mistakes&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">are made in the simplification but <span style="text-decoration: underline;">the argument given is correct.</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Overall the question was pretty well answered but some candidates seemed to have mixed up the terms determinant with discriminant. In some cases a lack of quality mathematical reasoning and understanding of the discriminant was evident. Many worked with the quadratic formula rather than just the discriminant, conveying a lack of understanding of the strategy required. Errors in algebraic simplification (expanding terms involving negative signs) prevented many candidates from scoring well in this question. Many candidates were not able to give a clear reason why the quadratic has always two distinct real solutions; in some cases a vague explanation was given, often referring to a graph which was not sketched.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Express \({x^2} + 4x - 2\) <span class="s1">in the form \({(x + a)^2} + b\) </span>where \(a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">If \(f(x) = x + 2\) </span>and \((g \circ f)(x) = {x^2} + 4x - 2\) <span class="s1">write down \(g(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\({(x + 2)^2} - 6\)    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\((g \circ f)(x) = {(x + 2)^2} - 6\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\( \Rightarrow g(x) = {x^2} - 6\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by most candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done by most candidates. Those students who lost marks on this question tended to do so in part (b), seemingly through misinterpreting the question.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following graph represents a function \(y = f(x)\)<span class="s1">, where \( - 3 \le x \le 5\).</span></p>
<p class="p2">The function has a maximum at \((3,{\text{ }}1)\) and a minimum at \(( - 1,{\text{ }} - 1)\).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-29_om_14.45.13.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The functions \(u\) and \(v\) are defined as \(u(x) = x - 3,{\text{ }}v(x) = 2x\) where \(x \in \mathbb{R}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the range of the function \(u \circ f\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the range of the function \(u \circ v \circ f\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the largest possible domain of the function \(f \circ v \circ u\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain why \(f\) does not have an inverse.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The domain of \(f\) is restricted to define a function \(g\) so that it has an inverse \({g^{ - 1}}\).</p>
<p class="p1">State the largest possible domain of \(g\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Sketch a graph of \(y = {g^{ - 1}}(x)\), showing clearly the <span class="s1">\(y\)</span>-intercept and stating the coordinates of the endpoints.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function defined by \(h(x) = \frac{{2x - 5}}{{x + d}}\), \(x \ne&nbsp; - d\) and \(d \in \mathbb{R}\).</p>
<p>(i) &nbsp; &nbsp; Find an expression for the inverse function \({h^{ - 1}}(x)\).</p>
<p>(ii) &nbsp; &nbsp; Find the value of \(d\) such that \(h\) is a self-inverse function.</p>
<p>For this value of \(d\), there is a function \(k\) such that \(h \circ k(x) = \frac{{2x}}{{x + 1}},{\text{ }}x \ne&nbsp; - 1\).</p>
<p>(iii) &nbsp; &nbsp; Find \(k(x)\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>Note: &nbsp; &nbsp; </strong>For Q12(a) (i) &ndash; (iii) and (b) (ii), award <strong><em>A1 </em></strong>for correct endpoints and, if correct, award <strong><em>A1 </em></strong>for a closed interval.</p>
<p>Further, award <strong><em>A1A0 </em></strong>for one correct endpoint and a closed interval.</p>
<p>&nbsp;</p>
<p>(i) &nbsp; &nbsp; \( - 4 \le y \le&nbsp; - 2\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; \( - 5 \le y \le&nbsp; - 1\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>(iii) &nbsp; &nbsp; \( - 3 \le 2x - 6 \le 5\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for \(f(2x - 6)\).</p>
<p>&nbsp;</p>
<p>\(3 \le 2x \le 11\)</p>
<p>\(\frac{3}{2} \le x \le \frac{{11}}{2}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>any valid argument <em>eg</em> \(f\) is not one to one, \(f\) is many to one, fails horizontal line test, not injective <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>largest domain for the function \(g(x)\) to have an inverse is \([ - 1,{\text{ }}3]\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-01-29_om_15.23.38.png" alt></span></p>
<p class="p1"><span class="s1">\(y\)</span>-intercept indicated (coordinates not required) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">correct shape <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">coordinates of end points \((1,{\text{ }}3)\) and \(( - 1,{\text{ }} - 1)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Do not award any of the above marks for a graph that is not one to one.</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \(y = \frac{{2x - 5}}{{x + d}}\)</p>
<p>\((x + d)y = 2x - 5\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for attempting to rearrange \(x\) and \(y\) in a linear expression.</p>
<p>&nbsp;</p>
<p>\(x(y - 2) =&nbsp; - dy - 5\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(x = \frac{{ - dy - 5}}{{y - 2}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; \(x\) and \(y\) can be interchanged at any stage</p>
<p>&nbsp;</p>
<p>\({h^{ - 1}}(x) = \frac{{ - dx - 5}}{{x - 2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A1 </em></strong>only if \({h^{ - 1}}(x)\) is seen.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; self Inverse \( \Rightarrow h(x) = {h^{ - 1}}(x)\)</p>
<p>\(\frac{{2x - 5}}{{x + d}} \equiv \frac{{ - dx - 5}}{{x - 2}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(d =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(iii) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>\(\frac{{2k(x) - 5}}{{k(x) - 2}} = \frac{{2x}}{{x + 1}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(k(x) = \frac{{x + 5}}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\({h^{ - 1}}\left( {\frac{{2x}}{{x + 1}}} \right) = \frac{{2\left( {\frac{{2x}}{{x + 1}}} \right) - 5}}{{\frac{{2x}}{{x + 1}} - 2}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(k(x) = \frac{{x + 5}}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<p><strong><em>Total [21 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> has inverse \({f^{ - 1}}\) and derivative \(f'(x)\) for all \(x \in \mathbb{R}\). For all functions with these properties you are given the result that for \(a \in \mathbb{R}\) with \(b = f(a)\) and \(f'(a) \ne 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[({f^{ - 1}})'(b) = \frac{1}{{f'(a)}}.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Verify that this is true for \(f(x) = {x^3} + 1\) at <em>x</em> = 2.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(g(x) = x{{\text{e}}^{{x^2}}}\), show that \(g'(x) &gt; 0\) for all values of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result given at the start of the question, find the value of the gradient function of \(y = {g^{ - 1}}(x)\) at <em>x</em> = 2.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; With <em>f</em> and <em>g</em> as defined in parts (a) and (b), solve \(g \circ f(x) = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Let \(h(x) = {(g \circ f)^{ - 1}}(x)\). Find \(h'(2)\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(2) = 9\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = {(x - 1)^{\frac{1}{3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({f^{ - 1}})'(x) = \frac{1}{3}{(x - 1)^{ - \frac{2}{3}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({f^{ - 1}})'(9) = \frac{1}{{12}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = 3{x^2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{f'(2)}} = \frac{1}{{3 \times 4}} = \frac{1}{{12}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The last </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> are independent of previous marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'(x) = {{\text{e}}^{{x^2}}} + 2{x^2}{{\text{e}}^{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'(x) &gt; 0\) as each part is positive &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to find the <em>x</em>-coordinate on \(y = g(x)\) solve</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 = x{{\text{e}}^{{x^2}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0.89605022078 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient \( = ({g^{ - 1}})'(2) = \frac{1}{{g'(0.896 \ldots )}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{{{\text{e}}^{{{(0.896 \ldots )}^2}}}\left( {1 + 2 \times {{(0.896 \ldots )}^2}} \right)}} = 0.172\) to 3sf &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(using the \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) function on gdc \(g'(0.896 \ldots ) = 5.7716028 \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{g'(0.896 \ldots )}} = 0.173\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(({x^3} + 1){{\text{e}}^{{{({x^3} + 1)}^2}}} = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - 0.470191 \ldots \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((g \circ f)'(x) = 3{x^2}{{\text{e}}^{{{({x^3} + 1)}^2}}}\left( {2{{({x^3} + 1)}^2} + 1} \right)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((g \circ f)'( - 0.470191 \ldots ) = 3.85755 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(2) = \frac{1}{{3.85755 \ldots }} = 0.259{\text{ }}(232 \ldots )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The solution can be found without the student obtaining the explicit form of the composite function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h(x) = ({f^{ - 1}} \circ {g^{ - 1}})(x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(x) = ({f^{ - 1}})'\left( {{g^{ - 1}}(x)} \right) \times ({g^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}{\left( {{g^{ - 1}}(x) - 1} \right)^{ - \frac{2}{3}}} \times ({g^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h'(2) = \frac{1}{3}{\left( {{g^{ - 1}}(2) - 1} \right)^{ - \frac{2}{3}}} \times ({g^{ - 1}})'(2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{3}{(0.89605 \ldots&nbsp; - 1)^{ - \frac{2}{3}}} \times 0.171933 \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.259{\text{ }}(232 \ldots )\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many good attempts at parts (a) and (b), although in (b) many were unable to give a thorough justification.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many good attempts at parts (a) and (b), although in (b) many were unable to give a thorough justification.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Few good solutions to parts (c) and (d)(ii) were seen although many were able to answer (d)(i) correctly.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Few good solutions to parts (c) and (d)(ii) were seen although many were able to answer (d)(i) correctly.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = x{(x + 2)^6}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the inequality \(f(x) &gt; x\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\int {f(x){\text{d}}x} \).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch showing where the lines cross or zeros of \(y = x{(x + 2)^6} - x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x =&nbsp; - 1\) and \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">separating into two cases \(x &gt; 0\) and \(x &lt; 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">if \(x &gt; 0\) then \({(x + 2)^6} &gt; 1 \Rightarrow \) always true &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">if \(x &lt; 0\) then \({(x + 2)^6} &lt; 1 \Rightarrow&nbsp; - 3 &lt; x &lt;&nbsp; - 1\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = {x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 64x\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solutions to \({x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 63x = 0\) are &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,{\text{ }}x =&nbsp; - 1\) and \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 4</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = x\) when \(x{(x + 2)^6} = x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either \(x = 0\) or \({(x + 2)^6} = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">if \({(x + 2)^6} = 1\) then \(x + 2 =&nbsp; \pm 1\) so \(x =&nbsp; - 1\) or \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is \( - 3 &lt; x &lt;&nbsp; - 1\) or \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award either final <strong><em>A1 </em></strong>mark if strict inequalities are not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1 </strong>(by substitution)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(u = x + 2\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{d}}u = {\text{d}}x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {(u - 2){u^6}{\text{d}}u} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{u^8} - \frac{2}{7}{u^7}( + c)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{(x + 2)^8} - \frac{2}{7}{(x + 2)^7}( + c)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2 </strong>(by parts)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = x \Rightarrow \frac{{{\text{d}}u}}{{{\text{d}}x}} = 1,{\text{ }}\frac{{{\text{d}}v}}{{{\text{d}}x}} = {(x + 2)^6} \Rightarrow v = \frac{1}{7}{(x + 2)^7}\)&nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {x{{(x + 2)}^6}{\text{d}}x = \frac{1}{7}x{{(x + 2)}^7} - \frac{1}{7}\int {{{(x + 2)}^7}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{7}x{(x + 2)^7} - \frac{1}{{56}}{(x + 2)^8}( + c)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3 </strong>(by expansion)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {f(x){\text{d}}x = \int {\left( {{x^7} + 12{x^6} + 60{x^5} + 160{x^4} + 240{x^3} + 192{x^2} + 64x} \right){\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{8}{x^8} + \frac{{12}}{7}{x^7} + 10{x^6} + 32{x^5} + 60{x^4} + 64{x^3} + 32{x^2}( + c)\) &nbsp; &nbsp;&nbsp;<strong><em>M1A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1A1 </em></strong>if at least four terms are correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">One root of the equation \({x^2} + ax + b = 0\) is \(2 + 3{\text{i}}\) where \(a,{\text{ }}b \in \mathbb{R}\). Find the value of \(a\) and the value of \(b\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">substituting</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 5 + 12{\text{i}} + a(2 + 3{\text{i}}) + b = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">equating real or imaginary parts &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(12 + 3a = 0 \Rightarrow a =&nbsp; - 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 5 + 2a + b = 0 \Rightarrow b = 13\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">other root is \(2 - 3{\text{i}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">considering either the sum or product of roots or multiplying factors &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(4 =&nbsp; - a\) (sum of roots) so \(a =&nbsp; - 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(13 = b\) (product of roots) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The polynomial \({x^4} + p{x^3} + q{x^2} + rx + 6\) is exactly divisible by each of \(\left( {x - 1} \right)\), \(\left( {x - 2} \right)\) and \(\left( {x - 3} \right)\).</p>
<p>Find the values of \(p\), \(q\) and \(r\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>substitute each of \(x\) = 1,2 and 3 into the quartic and equate to zero      <em><strong>(M1)</strong></em></p>
<p>\(p + q + r =  - 7\)</p>
<p>\(4p + 2q + r =  - 11\) or equivalent       <em><strong> (A2)</strong></em></p>
<p>\(9p + 3q + r =  - 29\)</p>
<p><strong>Note:</strong> Award <em><strong>A2</strong> </em>for all three equations correct, <em><strong>A1</strong> </em>for two correct.</p>
<p>attempting to solve the system of equations      <em><strong>(M1)</strong></em></p>
<p>\(p\) = −7, \(q\) = 17, \(r\) = −17     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Only award <em><strong>M1</strong></em> when some numerical values are found when solving algebraically or using GDC.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempt to find fourth factor     <em><strong> (M1)</strong></em></p>
<p>\(\left( {x - 1} \right)\)     <em><strong>A1</strong></em></p>
<p>attempt to expand \({\left( {x - 1} \right)^2}\left( {x - 2} \right)\left( {x - 3} \right)\)     <em><strong>M1</strong></em></p>
<p>\({x^4} - 7{x^3} + 17{x^2} - 17x + 6\) (\(p\) = −7, \(q\) = 17, \(r\) = −17)     <em><strong>A2</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A2</strong> </em>for all three values correct, <em><strong>A1</strong> </em>for two correct.</p>
<p><strong>Note:</strong> Accept long / synthetic division.</p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A function \(f\) is defined by \(f(x) = {x^3} + {{\text{e}}^x} + 1,{\text{ }}x \in \mathbb{R}\). By considering \(f'(x)\) determine whether \(f\) is a one-to-one or a many-to-one function.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\(f'(x) = 3{x^2} + {{\text{e}}^x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept labelled diagram showing the graph \(y = f'(x)\) above the <span class="s2"><em>x</em></span>-axis;</p>
<p class="p3">do not accept unlabelled graphs nor graph of \(y = f(x)\).</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>EITHER</strong></p>
<p class="p1">this is always \( &gt; 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p3">so the function is (strictly) increasing <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p3">and thus \(1 - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s3"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">this is always \( &gt; 0\;\;\;{\text{(accept }} \ne 0{\text{)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">so there are no turning points <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p3"><span class="s3">and thus </span>\(1 - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong> is dependent on the first <strong><em>R1</em></strong>.</p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong><em>[4 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The differentiation was normally completed correctly, but then a large number did not realise what was required to determine the type of the original function. Most candidates scored 1/4 and wrote explanations that showed little or no understanding of the relation between first derivative and the given function. For example, it was common to see comments about horizontal and vertical line tests but applied to the incorrect function.In term of mathematical language, it was noted that candidates used many terms incorrectly showing no knowledge of the meaning of terms like &lsquo;parabola&rsquo;, &lsquo;even&rsquo; or &lsquo;odd&rsquo; ( or no idea about these concepts).</p>
</div>
<br><hr><br><div class="specification">
<p>When carpet is manufactured, small faults occur at random. The number of faults in Premium carpets can be modelled by a Poisson distribution with mean 0.5 faults per 20\(\,\)m<sup>2</sup>. Mr Jones chooses Premium carpets to replace the carpets in his office building. The office building has 10 rooms, each with the area of 80\(\,\)m<sup>2</sup>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the carpet laid in the first room has fewer than three faults.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that exactly seven rooms will have fewer than three faults in the carpet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\lambda = 4 \times 0.5\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\lambda = 2\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>\({\text{P}}(X \leqslant 2) = 0.677\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(Y \sim B(10,{\text{ }}0,677)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\({\text{P}}(Y = 7) = 0.263\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>M1 </em></strong>for clear recognition of binomial distribution.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = {(x - 5)^2} - 2\left| {x - 5} \right| - 9,{\text{ for }}0 \le x \le 10\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, or otherwise, solve the equation \({(x - 5)^2} - 2\left| {x - 5} \right| - 9 = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-06_om_14.19.20.png" alt></p>
<p class="p2">general shape including&nbsp;<span class="s1">\[(\) </span>minimums, cusp <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2">correct domain and symmetrical about the middle \((x = 5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(x = 9.16\;\;\;{\text{or}}\;\;\;x = 0.838\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>Total [5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The probability density function of a continuous random variable \(X\) is given by</p>
<p>\[f(x) = \left\{ {\begin{array}{*{20}{c}} {0,{\text{ }}x &lt; 0} \\ {\frac{{\sin x}}{4},{\text{ }}0 \le x \le \pi } \\ {a(x - \pi ),{\text{ }}\pi&nbsp; &lt; x \le 2\pi } \\ {0,{\text{ }}2\pi&nbsp; &lt; x} \end{array}.} \right.\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph \(y = f(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \({\text{P}}(X \le \pi )\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(a = \frac{1}{{{\pi ^2}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the median of \(X\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the mean of \(X\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the variance of \(X\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \({\text{P}}\left( {\frac{\pi }{2} \le X \le \frac{{3\pi }}{2}} \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(\frac{\pi }{2} \le X \le \frac{{3\pi }}{2}\) find the probability that \(\pi \le X \le 2\pi \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-06_om_08.40.33.png" alt></p>
<p class="p2">Award <strong><em>A1</em></strong> for sine curve from&nbsp;\(0\) to \(\pi \), award <strong><em>A1</em></strong> for straight line from \(\pi \) to \(2\pi \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int_0^\pi&nbsp; {\frac{{\sin x}}{4}{\text{d}}x = \frac{1}{2}} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>require \(\frac{1}{2} + \int_\pi ^{2\pi } {a(x - \pi ){\text{d}}x = 1} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow \frac{1}{2} + a\left[ {\frac{{{{(x - \pi )}^2}}}{2}} \right]_\pi ^{2\pi } = 1\;\;\;\left( {{\text{or }}\frac{1}{2} + a\left[ {\frac{{{x^2}}}{2} - \pi x} \right]_\pi ^{2\pi } = 1} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( \Rightarrow a\frac{{{\pi ^2}}}{2} = \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( \Rightarrow a = \frac{1}{{{\pi ^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Must obtain the exact value. Do not accept answers obtained with calculator.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>\(0.5 + {\text{ area of triangle }} = 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>area of triangle \( = \frac{1}{2}\pi&nbsp; \times a\pi&nbsp; = 0.5\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <em><strong>M1</strong></em> for correct use of area formula \( = 0.5\), <strong><em>A1</em></strong> for \(a\pi \).</p>
<p>&nbsp;</p>
<p>\(a = \frac{1}{{{\pi ^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">median is \(\pi \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\mu&nbsp; = \int_0^\pi&nbsp; {x \cdot \frac{{\sin x}}{4}{\text{d}}x + \int_\pi ^{2\pi } {x \cdot \frac{{x - \pi }}{{{\pi ^2}}}{\text{d}}x} } \)&nbsp; &nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\( = 3.40339 \ldots&nbsp; = 3.40\;\;\;\left( {{\text{or }}\frac{\pi }{4} + \frac{{5\pi }}{6} = \frac{{13}}{{12}}\pi } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For \(\mu&nbsp; = 3.40339 \ldots \)</p>
<p><strong>EITHER</strong></p>
<p>\({\sigma ^2} = \int_0^\pi&nbsp; {{x^2} \cdot \frac{{\sin x}}{4}{\text{d}}x + \int_\pi ^{2\pi } {{x^2} \cdot \frac{{x - \pi }}{{{\pi ^2}}}{\text{d}}x - {\mu ^2}} } \) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>\({\sigma ^2} = \int_0^\pi&nbsp; {{{(x - \mu )}^2} \cdot \frac{{\sin x}}{4}{\text{d}}x + \int_\pi ^{2\pi } {{{(x - \mu )}^2} \cdot \frac{{x - \pi }}{{{\pi ^2}}}{\text{d}}x} } \) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p><strong>THEN</strong></p>
<p>\( = 3.866277 \ldots&nbsp; = 3.87\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int_{\frac{\pi }{2}}^\pi&nbsp; {\frac{{\sin x}}{4}{\text{d}}x + \int_\pi ^{\frac{{3\pi }}{2}} {\frac{{x - \pi }}{{{\pi ^2}}}{\text{d}}x = 0.375\;\;\;\left( {{\text{or }}\frac{1}{4} + \frac{1}{8} = \frac{3}{8}} \right)} } \) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{P}}\left( {\pi&nbsp; \le X \le 2\pi \left| {\frac{\pi }{2} \le X \le \frac{{3\pi }}{2}} \right.} \right) = \frac{{{\text{P}}\left( {\pi&nbsp; \le X \le \frac{{3\pi }}{2}} \right)}}{{{\text{P}}\left( {\frac{\pi }{2} \le X \le \frac{{3\pi }}{2}} \right)}}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></p>
<p>\( = \frac{{\int_\pi ^{\frac{{3\pi }}{2}} {\frac{{(x - \pi )}}{{{\pi ^2}}}{\text{d}}x} }}{{0.375}} = \frac{{0.125}}{{0.375}}\;\;\;\left( {{\text{or }} = \frac{{\frac{1}{8}}}{{\frac{3}{8}}}{\text{ from diagram areas}}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p>\( = \frac{1}{3}\;\;\;(0.333)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [20 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates sketched the graph correctly. In a few cases candidates did not seem familiar with the shape of the graphs and ignored the fact that the graph represented a pdf. The correct sketch assisted greatly in the rest of the question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates answered this question correctly.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A few good proofs were seen but also many poor answers where the candidates assumed what you were trying to prove and verified numerically the result.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates stated the value correctly but many others showed no understanding of the concept.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates scored full marks in this question; many others could not apply the formula due to difficulties in dealing with the piecewise function. For example, a number of candidates divided the final answer by two.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many misconceptions were identified: use of incorrect formula (e.g. formula for discrete distributions), use of both expressions as integrand and division of the result by 2 at the end.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This part was fairly well done with many candidates achieving full marks.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates had difficulties with this part showing that the concept of conditional probability was poorly understood. The best candidates did it correctly from the sketch.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The vertical cross-section of a container is shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-10_om_11.45.14.png" alt></p>
<p class="p1">The curved sides of the cross-section are given by the equation \(y = 0.25{x^2} - 16\). The horizontal cross-sections are circular. The depth of the container is&nbsp;\(48\) cm.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the container is filled with water to a depth of \(h\,{\text{cm}}\), show that the volume, \(V\,{\text{c}}{{\text{m}}^3}\), of the water is given by \(V = 4\pi \left( {\frac{{{h^2}}}{2} + 16h} \right)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The container, initially full of water, begins leaking from a small hole at a rate given by \(\frac{{{\text{d}}V}}{{{\text{d}}t}} =<span class="Apple-converted-space">&nbsp; </span>- \frac{{250\sqrt h }}{{\pi(h + 16)}}\) where&nbsp;<em>\(t\) </em>is measured in seconds.</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(\frac{{{\text{d}}h}}{{{\text{d}}t}} =<span class="Apple-converted-space">&nbsp; </span>- \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State \(\frac{{{\text{d}}t}}{{{\text{d}}h}}\) and hence show that \(t = \frac{{ - 4{\pi ^2}}}{{250}}\int {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{2}}}} \right){\text{d}}h} \).</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find, correct to the nearest minute, the time taken for the container to become empty. (\(60\) seconds = 1 minute)</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Once empty, water is pumped back into the container at a rate of \(8.5\;{\text{c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\). At the same time, water continues leaking from the container at a rate of \(\frac{{250\sqrt h }}{{\pi (h + 16)}}{\text{c}}{{\text{m}}^3}{{\text{s}}^{ - 1}}\).</p>
<p class="p1">Using an appropriate sketch graph, determine the depth at which the water ultimately stabilizes in the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to use \(V = \pi \int_a^b {{x^2}{\text{d}}y} \) &nbsp; &nbsp;&nbsp;<span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">attempting to express \({x^2}\) in terms of&nbsp;<em>\(y\) ie</em> \({x^2} = 4(y + 16)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">for \(y = h,{\text{ }}V = 4\pi \int_0^h {y + 16{\text{d}}y} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(V = 4\pi \left( {\frac{{{h^2}}}{2} + 16h} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}h}}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}h}} = 4\pi (h + 16)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{4\pi (h + 16)}} \times \frac{{ - 250\sqrt h }}{{\pi (h + 16)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1 </em></strong>for substitution into \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{{\text{d}}h}}{{{\text{d}}V}} \times \frac{{{\text{d}}V}}{{{\text{d}}t}}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 4\pi (h + 16)\frac{{{\text{d}}h}}{{{\text{d}}t}}\;\;\;\)(implicit differentiation)<strong><em>(M1)</em></strong></p>
<p>\(\frac{{ - 250\sqrt h }}{{\pi (h + 16)}} = 4\pi (h + 16)\frac{{{\text{d}}h}}{{{\text{d}}t}}\;\;\;\)(or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{1}{{4\pi (h + 16)}} \times \frac{{ - 250\sqrt h }}{{\pi (h + 16)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\frac{{{\text{d}}h}}{{{\text{d}}t}} = \frac{{250\sqrt h }}{{4{\pi ^2}{{(h + 16)}^2}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(\frac{{{\text{d}}t}}{{{\text{d}}h}} =&nbsp; - \frac{{4{\pi ^2}{{(h + 16)}^2}}}{{250\sqrt h }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = \int { - \frac{{4{\pi ^2}{{(h + 16)}^2}}}{{250\sqrt h }}} {\text{d}}h\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t = \int { - \frac{{4{\pi ^2}({h^2} + 32h + 256)}}{{250\sqrt h }}} {\text{d}}h\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\int {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{{2}}}}} \right){\text{d}}h} \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(iii) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\int_{48}^0 {\left( {{h^{\frac{3}{2}}} + 32{h^{\frac{1}{2}}} + 256{h^{ - \frac{1}{2}}}} \right)} {\text{d}}h\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(t = 2688.756 \ldots {\text{ (s)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\(45\) minutes (correct to the nearest minute) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(t = \frac{{ - 4{\pi ^2}}}{{250}}\left( {\frac{2}{5}{h^{\frac{5}{2}}} + \frac{{64}}{3}{h^{\frac{3}{2}}} + 512{h^{\frac{1}{2}}}} \right) + c\)</p>
<p>when \(t = 0,{\text{ }}h = 48 \Rightarrow c = 2688.756 \ldots \left( {c = \frac{{4{\pi ^2}}}{{250}}\left( {\frac{2}{5} \times {{48}^{\frac{5}{2}}} + \frac{{64}}{3} \times {{48}^{\frac{3}{2}}} + 512 \times {{48}^{\frac{1}{2}}}} \right)} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>when \(h = 0,{\text{ }}t = 2688.756 \ldots \left( {t = \frac{{4{\pi ^2}}}{{250}}\left( {\frac{2}{5} \times {{48}^{\frac{5}{2}}} + \frac{{64}}{3} \times {{48}^{\frac{3}{2}}} + 512 \times {{48}^{\frac{1}{2}}}} \right)} \right){\text{ (s)}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>45 minutes (correct to the nearest minute) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[10 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1">the depth stabilizes when \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 0\;\;\;ie\;\;\;8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}} = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">attempting to solve \(8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}} = 0\;\;\;{\text{for }}h\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">the depth stabilizes when \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 0\;\;\;ie\;\;\;\frac{1}{{4\pi (h + 16)}}\left( {8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}}} \right) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">attempting to solve \(\frac{1}{{4\pi (h + 16)}}\left( {8.5 - \frac{{250\sqrt h }}{{\pi (h + 16)}}} \right) = 0\;\;\;{\text{for }}h\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1">\(h = 5.06{\text{ (cm)}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [16 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was done reasonably well by a large proportion of candidates. Many candidates however were unable to show the required result in part (a). A number of candidates seemingly did not realize how the container was formed while other candidates attempted to fudge the result.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was quite well done. In part (b) (i), most candidates were able to correctly calculate \(\frac{{{\text{d}}V}}{{{\text{d}}h}}\) and correctly apply a related rates expression to show the given result. Some candidates however made a sign error when stating \(\frac{{{\text{d}}V}}{{{\text{d}}t}}\). A large number of candidates successfully answered part (b) (ii). In part (b) (iii), successful candidates either set up and calculated an appropriate definite integral or antidifferentiated and found that \(t = C\) when \(h = 0\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), a pleasing number of candidates realized that the water depth stabilized when either \(\frac{{{\text{d}}V}}{{{\text{d}}t}} = 0\) or \(\frac{{{\text{d}}h}}{{{\text{d}}t}} = 0\), sketched an appropriate graph and found the correct value of \(h\). Some candidates misinterpreted the situation and attempted to find the coordinates of the local minimum of their graph.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The seventh, third and first terms of an arithmetic sequence form the first three terms of a geometric sequence.</p>
<p class="p1">The arithmetic sequence has first term&nbsp;<em>\(a\) </em>and non-zero common difference <em>\(d\)</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(d = \frac{a}{2}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The seventh term of the arithmetic sequence is \(3\). The sum of the first&nbsp;\(n\) terms in the arithmetic sequence exceeds the sum of the first&nbsp;<em>\(n\) </em>terms in the geometric sequence by at least \(200\).</p>
<p class="p1">Find the least value of&nbsp;<em>\(n\) </em>for which this occurs.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>using \(r = \frac{{{u_2}}}{{{u_1}}} = \frac{{{u_3}}}{{{u_2}}}\) to form \(\frac{{a + 2d}}{{a + 6d}} = \frac{a}{{a + 2d}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(a(a + 6d) = {(a + 2d)^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(2d(2d - a) = 0\;\;\;\)(or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since \(d \ne 0 \Rightarrow d = \frac{a}{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">substituting \(d = \frac{a}{2}\) into \(a + 6d = 3\) and solving for \(a\) and \(d\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\(a = \frac{3}{4}\) and \(d = \frac{3}{8}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><em>(</em><strong><em>A1)</em></strong></span></p>
<p class="p1">\(r = \frac{1}{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{n}{2}\left( {2 \times \frac{3}{4} + (n - 1)\frac{3}{8}} \right) - \frac{{3\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}} \ge 200\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">attempting to solve for \(n\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1">(<strong><em>M1)</em></strong></span></p>
<p class="p1">\(n \ge 31.68 \ldots \)</p>
<p class="p1">so the least value of \(n\) is 32 &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<p class="p1"><strong><em>Total [9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was reasonably well done. A number of candidates used \(r = \frac{{{u_1}}}{{{u_2}}} = \frac{{{u_2}}}{{{u_3}}}\) rather than \(r = \frac{{{u_2}}}{{{u_1}}} = \frac{{{u_3}}}{{{u_2}}}\). This invariably led to candidates obtaining \(r = 2\) in part (b).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b), most candidates were able to correctly find the first term and the common difference for the arithmetic sequence. However a number of candidates either obtained \(r = 2\) via means described in part (a) or confused the two sequences and used \({u_1} = \frac{3}{4}\) for the geometric sequence.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(z = r(\cos \alpha&nbsp; + {\text{i}}\sin \alpha )\), where \(\alpha \) is measured in degrees, be the solution of \({z^5} - 1 = 0\) which has the smallest positive argument.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Use the binomial theorem to expand \({(\cos \theta&nbsp; + {\text{i}}\sin \theta )^5}\).</p>
<p>(ii) &nbsp; &nbsp; Hence use De Moivre&rsquo;s theorem to prove</p>
<p>\[\sin 5\theta&nbsp; = 5{\cos ^4}\theta \sin \theta&nbsp; - 10{\cos ^2}\theta {\sin ^3}\theta&nbsp; + {\sin ^5}\theta .\]</p>
<p>(iii) &nbsp; &nbsp; State a similar expression for \(\cos 5\theta \) in terms of \(\cos \theta \) and \(\sin \theta \).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(r\) and the value of \(\alpha \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using (a) (ii) and your answer from (b) show that \(16{\sin ^4}\alpha&nbsp; - 20{\sin ^2}\alpha&nbsp; + 5 = 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Hence express \(\sin 72^\circ \) </span>in the form \(\frac{{\sqrt {a + b\sqrt c } }}{d}\) where \(a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({(\cos \theta&nbsp; + {\text{i}}\sin \theta )^5}\)</p>
<p>\( = {\cos ^5}\theta&nbsp; + 5{\text{i}}{\cos ^4}\theta \sin \theta&nbsp; + 10{{\text{i}}^2}{\cos ^3}\theta {\sin ^2}\theta&nbsp; + \)</p>
<p>\(10{{\text{i}}^3}{\cos ^2}\theta {\sin ^3}\theta&nbsp; + 5{{\text{i}}^4}\cos \theta {\sin ^4}\theta&nbsp; + {{\text{i}}^5}{\sin ^5}\theta \) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></p>
<p>\(( = {\cos ^5}\theta&nbsp; + 5{\text{i}}{\cos ^4}\theta \sin \theta&nbsp; - 10{\cos ^3}\theta {\sin ^2}\theta&nbsp; - \)</p>
<p>\(10{\text{i}}{\cos ^2}\theta {\sin ^3}\theta&nbsp; + 5\cos \theta {\sin ^4}\theta&nbsp; + {\text{i}}{\sin ^5}\theta )\)</p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award first <strong><em>A1</em></strong> for correct binomial coefficients.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; \({({\text{cis}}\theta )^5} = {\text{cis}}5\theta&nbsp; = \cos 5\theta&nbsp; + {\text{i}}\sin 5\theta \) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>\( = {\cos ^5}\theta&nbsp; + 5{\text{i}}{\cos ^4}\theta \sin \theta&nbsp; - 10{\cos ^3}\theta {\sin ^2}\theta&nbsp; - 10{\text{i}}{\cos ^2}\theta {\sin ^3}\theta&nbsp; + \)</p>
<p>\(5\cos \theta {\sin ^4}\theta&nbsp; + {\text{i}}{\sin ^5}\theta \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Previous line may be seen in (i)</p>
<p>&nbsp;</p>
<p>equating imaginary terms &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>\(\sin 5\theta&nbsp; = 5{\cos ^4}\theta \sin \theta&nbsp; - 10{\cos ^2}\theta {\sin ^3}\theta&nbsp; + {\sin ^5}\theta \) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></p>
<p>(iii) &nbsp; &nbsp; equating real terms</p>
<p>\(\cos 5\theta&nbsp; = {\cos ^5}\theta&nbsp; - 10{\cos ^3}\theta {\sin ^2}\theta&nbsp; + 5\cos \theta {\sin ^4}\theta \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({(r{\text{cis}}\alpha )^5} = 1 \Rightarrow {r^5}{\text{cis}}5\alpha&nbsp; = 1{\text{cis}}0\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>\({r^5} = 1 \Rightarrow r = 1\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>\(5\alpha&nbsp; = 0 \pm 360k,{\text{ }}k \in \mathbb{Z} \Rightarrow a = 72k\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></p>
<p>\(\alpha&nbsp; = 72^\circ \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1A0</em></strong> if final answer is given in radians.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>use of \(\sin (5 \times 72) = 0\) <strong>OR</strong> the imaginary part of&nbsp;\(1\) is \(0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(0 = 5{\cos ^4}\alpha \sin \alpha&nbsp; - 10{\cos ^2}\alpha {\sin ^3}\alpha&nbsp; + {\sin ^5}\alpha \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>\(\sin \alpha&nbsp; \ne 0 \Rightarrow 0 = 5{(1 - {\sin ^2}\alpha )^2} - 10(1 - {\sin ^2}\alpha ){\sin ^2}\alpha&nbsp; + {\sin ^4}\alpha \) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1</em></strong> for replacing \({\cos ^2}\alpha \).</p>
<p>&nbsp;</p>
<p>\(0 = 5(1 - 2{\sin ^2}\alpha&nbsp; + {\sin ^4}\alpha ) - 10{\sin ^2}\alpha&nbsp; + 10{\sin ^4}\alpha&nbsp; + {\sin ^4}\alpha \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1</em></strong> for any correct simplification.</p>
<p>&nbsp;</p>
<p>so \(16{\sin ^4}\alpha&nbsp; - 20{\sin ^2}\alpha&nbsp; + 5 = 0\) &nbsp; &nbsp;&nbsp;<strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\sin ^2}\alpha&nbsp; = \frac{{20 \pm \sqrt {400 - 320} }}{{32}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></p>
<p>\(\sin \alpha&nbsp; =&nbsp; \pm \sqrt {\frac{{20 \pm \sqrt {80} }}{{32}}} \)</p>
<p>\(\sin \alpha&nbsp; = \frac{{ \pm \sqrt {10 \pm 2\sqrt 5 } }}{4}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1</em></strong> regardless of signs. Accept equivalent forms with integral denominator, simplification may be seen later.</p>
<p>&nbsp;</p>
<p>as \(72 &gt; 60\), \(\sin 72 &gt; \frac{{\sqrt 3 }}{2} = 0.866 \ldots \) we have to take both positive signs (or equivalent argument) &nbsp; &nbsp;&nbsp;<strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Allow verification of correct signs with calculator if clearly stated</p>
<p>&nbsp;</p>
<p>\(\sin 72 = \frac{{\sqrt {10 + 2\sqrt 5 } }}{4}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<p><strong><em>Total [19 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (i) many candidates tried to multiply it out the binomials rather than using the binomial theorem. In parts (ii) and (iii) many candidates showed poor understanding of complex numbers and made no attempt to equate real and imaginary parts. In a some cases the correct answer to part (iii) was seen although it was unclear how it was obtained.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was poorly done. Very few candidates made a good attempt to apply De Moivre&rsquo;s theorem and most of them could not even equate the moduli to obtain \(r\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was poorly done. From the few candidates that attempted it, many candidates started by writing down what they were trying to prove and made no progress.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very few made a serious attempt to answer this question. Also very few realised that they could use the answers given in part (c) to attempt this part.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider \(f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right)\)</p>
</div>

<div class="specification">
<p>The function \(f\) is defined by \(f(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in D\)</p>
</div>

<div class="specification">
<p>The function \(g\) is defined by \(g(x) = - 1 + \ln \left( {\sqrt {{x^2} - 1} } \right),{\text{ }}x \in \left] {1,{\text{ }}\infty } \right[\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the largest possible domain \(D\) for \(f\) to be a function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why \(f\) is an even function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the inverse function \({f^{ - 1}}\) does not exist.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function \({g^{ - 1}}\) and state its domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to&nbsp;\(g'(x) = 0\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, show that there are no solutions to&nbsp;\(({g^{ - 1}})'(x) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} - 1 &gt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x &lt; - 1\) or \(x &gt; 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_15.40.09.png" alt="M17/5/MATHL/HP2/ENG/TZ1/12.b/M"></p>
<p>shape&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(x = 1\) and \(x = - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(x\)-intercepts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(f\) is symmetrical about the \(y\)-axis&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(f( - x) = f(x)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(f\) is not one-to-one function&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>horizontal line cuts twice&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept any equivalent correct statement.</p>
<p>&nbsp;</p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = - 1 + \ln \left( {\sqrt {{y^2} - 1} } \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\({{\text{e}}^{2x + 2}} = {y^2} - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\({g^{ - 1}}(x) = \sqrt {{{\text{e}}^{2x + 2}} + 1} ,{\text{ }}x \in \mathbb{R}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g'(x) = \frac{1}{{\sqrt {{x^2} - 1} }} \times \frac{{2x}}{{2\sqrt {{x^2} - 1} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(g'(x) = \frac{x}{{{x^2} - 1}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g'(x) = \frac{x}{{{x^2} - 1}} = 0 \Rightarrow x = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>which is not in the domain of \(g\) (hence no solutions to \(g'(x) = 0\))&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(({g^{ - 1}})'(x) = \frac{{{{\text{e}}^{2x + 2}}}}{{\sqrt {{{\text{e}}^{2x + 2}} + 1} }}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>as \({{\text{e}}^{2x + 2}} &gt; 0 \Rightarrow ({g^{ - 1}})'(x) &gt; 0\) so no solutions to \(({g^{ - 1}})'(x) = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept: equation \({{\text{e}}^{2x + 2}} = 0\) has no solutions.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(f(x) = {x^4} + 0.2{x^3} - 5.8{x^2} - x + 4,{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="specification">
<p class="p1"><span class="s1">The domain of \(f\) </span>is now restricted to \([0,{\text{ }}a]\)<span class="s1">.</span></p>
</div>

<div class="specification">
<p class="p1">Let \(g(x) = 2\sin (x - 1) - 3,{\text{ }} - \frac{\pi }{2} + 1 \leqslant x \leqslant \frac{\pi }{2} + 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the solutions of \(f(x) &gt; 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the curve \(y = f(x)\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the coordinates of both local minimum points.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the \(x\)-coordinates of the points of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the largest value of \(a\) for which \(f\) <span class="s1">has an inverse. Give your answer correct to 3 </span>significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For this value of <span class="s1"><em>a </em></span>sketch the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) on the same set of axes, showing clearly the coordinates of the end points of each curve.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve \({f^{ - 1}}(x) = 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({g^{ - 1}}(x)\), stating the domain.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve \(({f^{ - 1}} \circ g)(x) &lt; 1\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">valid method <em>eg</em>, sketch of curve or critical values found <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">\(x &lt;  - 2.24,{\text{ }}x &gt; 2.24,\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">\( - 1 &lt; x &lt; 0.8\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1A1A0 </em></strong>for correct intervals but with inclusive inequalities.</p>
<p class="p4"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\((1.67,{\text{ }} - 5.14),{\text{ }}( - 1.74,{\text{ }} - 3.71)\) <span class="Apple-converted-space">    </span><strong><em>A1A1</em></strong></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1A0 </em></strong></span>for any two correct terms.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(f'(x) = 4{x^3} + 0.6{x^2} - 11.6x - 1\)</p>
<p class="p1">\(f''(x) = 12{x^2} + 1.2x - 11.6 = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p5">\( - 1.03,{\text{ }}0.934\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span><em>M1 </em></strong>should be awarded if graphical method to find zeros of \(f''(x)\) or turning points of \(f'(x)\) is shown.</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">1.67 <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-01-26_om_12.42.21.png" alt="M16/5/MATHL/HP2/ENG/TZ1/11.c.ii/M">     <strong><em>M1A1A1</em></strong></p>
<p> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for reflection of their \(y = f(x)\) in the line \(y = x\) provided their \(f\) is one-one.</p>
<p class="p1"><strong><em>A1 </em></strong><span class="s1">for \((0,{\text{ }}4)\), \((4,{\text{ }}0)\) </span>(Accept axis intercept values) <strong><em>A1 </em></strong>for the other two sets of coordinates of other end points</p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(x = f(1)\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2">\( =  - 1.6\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = 2\sin (x - 1) - 3\)</p>
<p class="p1">\(x = 2\sin (y - 1) - 3\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">\(\left( {{g^{ - 1}}(x) = } \right){\text{ }}\arcsin \left( {\frac{{x + 3}}{2}} \right) + 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">\( - 5 \leqslant x \leqslant  - 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1 </em></strong><span class="s2">for −5 and −1</span>, and <strong><em>A1 </em></strong>for correct inequalities if numbers are reasonable.</p>
<p class="p1"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({f^{ - 1}}\left( {g(x)} \right) &lt; 1\)</p>
<p class="p1">\(g(x) &gt;  - 1.6\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(x &gt; {g^{ - 1}}( - 1.6) = 1.78\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Accept = in the above.</p>
<p class="p3">\(1.78 &lt; x \leqslant \frac{\pi }{2} + 1\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p3"><span class="s1"><strong>Note: <span class="Apple-converted-space">    </span><em>A1 </em></strong>for \(x &gt; 1.78\) </span>(allow ≥<span class="s1">) and <strong><em>A1 </em></strong></span>for \(x \leqslant \frac{\pi }{2} + 1\).</p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (b) were well answered, with considerably less success in part (c). Surprisingly few students were able to reflect the curve in \(y = x\) satisfactorily, and many were not making their sketch using the correct domain.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part d(i) was generally well done, but there were few correct answers for d(ii).</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part d(i) was generally well done, but there were few correct answers for d(ii).</p>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \left| x \right| - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; The graph of \(y = g(x)\) is drawn below.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-12_om_11.31.12.png" alt></span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; Find the value of \((f \circ g)(1)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; Find the value of \((f \circ g \circ g)(1)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; Sketch the graph of \(y = (f \circ g)(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; State the zeros of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i) &nbsp; &nbsp; Sketch the graph of \(y = (f \circ f)(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; State the zeros of \(f \circ f\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Given that we can denote \(\underbrace {f \circ f \circ f \circ&nbsp; \ldots&nbsp; \circ f}_{n{\text{ times}}}\) as \({f^n}\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; find the zeros of \({f^3}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; find the zeros of \({f^4}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; deduce the zeros of \({f^8}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; The zeros of \({f^{2n}}\) are \({a_1},{\text{ }}{a_2},{\text{ }}{a_3},{\text{ }} \ldots {\text{, }}{a_N}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; State the relation between <em>n </em>and <em>N</em>;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; Find, and simplify, an expression for \(\sum\limits_{r = 1}^N {\left| {{a_r}} \right|} \) in terms of <em>n</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(f(0) =&nbsp; - 1\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; \((f \circ g)(0) = f(4) = 3\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii)<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<img src="images/maths_12_a_i_markscheme.png" alt>&nbsp;&nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong>&nbsp;&nbsp; &nbsp; Award&nbsp;<strong><em>M1&nbsp;</em></strong>for evidence that the lower part of the graph has been reflected and&nbsp;<strong><em>A1&nbsp;</em></strong>correct shape with&nbsp;<em>y</em>-intercept below 4.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i)<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<img src="images/maths_12_b_i_markscheme.png" alt>&nbsp;&nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong>&nbsp;&nbsp; &nbsp; Award&nbsp;<strong><em>M1&nbsp;</em></strong>for any translation of \(y = \left| x \right|\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; \( \pm 1\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong>&nbsp;&nbsp; &nbsp; Do not award the&nbsp;<strong><em>A1&nbsp;</em></strong>if coordinates given, but do not penalise in the rest of the question</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; (i)<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<img src="images/maths_12_c_i_markscheme.png" alt>&nbsp;&nbsp; &nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong>&nbsp;&nbsp; &nbsp; Award&nbsp;<strong><em>M1&nbsp;</em></strong>for evidence that lower part of (b) has been reflected in the&nbsp;<em>x</em>-axis and translated.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; \(0,{\text{ }} \pm 2\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; (i) &nbsp; &nbsp; \( \pm 1,{\text{ }} \pm 3\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; \(0,{\text{ }} \pm 2,{\text{ }} \pm 4\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; \(0,{\text{ }} \pm 2,{\text{ }} \pm 4,{\text{ }} \pm 6,{\text{ }} \pm 8\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; \({\text{(1, 3), (2, 5), }} \ldots \) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(N = 2n + 1\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; Using the formula of the sum of an arithmetic series &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(4(1 + 2 + 3 +&nbsp; \ldots&nbsp; + n) = \frac{4}{2}n(n + 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( = 2n(n + 1)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \(2(2 + 4 + 6 +&nbsp; \ldots&nbsp; + 2n) = \frac{2}{2}n(2n + 2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( = 2n(n + 1)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [18 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>The function \(f\) is given by \(f(x) = \frac{{3{x^2} + 10}}{{{x^{\text{2}}} - 4}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 2,{\text{ }}x \ne&nbsp; - 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(f\) is an even function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph \(y = f(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the range of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f( - x) = \frac{{3{{( - x)}^2} + 10}}{{{{( - x)}^2} - 4}}\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2">\( = \frac{{3{x^2} + 10}}{{{x^2} - 4}} = f(x)\)</p>
<p class="p2">\(f(x) = f( - x)\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p1">hence this is an even function <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1R1 </em></strong>for the statement, all the powers are even hence \(f(x) = f( - x)\).</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Just stating all the powers are even is <strong><em>A0R0</em></strong>.</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Do not accept arguments based on the symmetry of the graph.</p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-01-26_om_09.33.59.png" alt="M16/5/MATHL/HP2/ENG/TZ1/05.b.i/M"></p>
<p class="p1">correct shape in 3 parts which are asymptotic and symmetrical <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2">correct vertical asymptotes clear at 2 and –2 <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">correct horizontal asymptote clear at 3 <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f(x) &gt; 3\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1">\(f(x) \leqslant  - 2.5\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to prove that a function was even, although many attempted to show special cases, rather than a general proof. Many lost marks through not showing the asymptotes on their sketch. Marks were commonly lost in incorrect use of inequalities for the range of the function.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to prove that a function was even, although many attempted to show special cases, rather than a general proof. Many lost marks through not showing the asymptotes on their sketch. Marks were commonly lost in incorrect use of inequalities for the range of the function.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to prove that a function was even, although many attempted to show special cases, rather than a general proof. Many lost marks through not showing the asymptotes on their sketch. Marks were commonly lost in incorrect use of inequalities for the range of the function.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>x</em> for which \(\left| {0.1{x^2} - 2x + 3} \right| &lt; {\log _{10}}x\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve \(\left| {0.1{x^2} - 2x + 3} \right| = {\log _{10}}x\) numerically or graphically. &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 1.52, 1.79 &nbsp; &nbsp; <strong><em>(A1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 17.6, 19.1 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((1.52 &lt; x &lt; 1.79) \cup (17.6 &lt; x &lt; 19.1)\) &nbsp; &nbsp; <strong><em>A1A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally not well done. A number of candidates attempted an &lsquo;ill-fated&rsquo; algebraic approach. Most candidates who used their GDC were able to correctly locate one inequality. The few successful candidates were able to employ a suitable window or suitable window(s) to correctly locate both inequalities.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the functions \(f(x) = {x^3} + 1\) and \(g(x) = \frac{1}{{{x^3} + 1}}\). The graphs of \(y = f(x)\) and \(y = g(x)\) meet at the point (0, 1) and one other point, P.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of P.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the size of the acute angle between the tangents to the two graphs at the point P.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3} + 1 = \frac{1}{{{x^3} + 1}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(( - 1.26, - 1)\,\,\,\,\,\left( { = \left( { - \sqrt[3]{2}, - 1} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'( - 1.259...) = 4.762&hellip;\) &nbsp; &nbsp; \((3 \times {2^{\frac{2}{3}}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g'( - 1.259...) =&nbsp; - 4.762&hellip;\) &nbsp; &nbsp; \(( - 3 \times {2^{\frac{2}{3}}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">required angle \( = 2\arctan \left( {\frac{1}{{4.762...}}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0px; font-style: normal; font-variant: normal; font-weight: normal; font-size: 30px; line-height: normal; font-family: Helvetica; text-align: left;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.414\)&nbsp;&nbsp; (accept 23.7 ) &nbsp; &nbsp;<strong><em> A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept alternative methods including finding the obtuse angle first.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a) almost all candidates obtained the correct answer, either in numerical form or in exact form. Although many candidates scored one mark in (b), for one gradient, few scored any more. Successful candidates almost always adopted a vector approach to finding the angle between the two tangents, rather than using trigonometry.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a) almost all candidates obtained the correct answer, either in numerical form or in exact form. Although many candidates scored one mark in (b), for one gradient, few scored any more. Successful candidates almost always adopted a vector approach to finding the angle between the two tangents, rather than using trigonometry.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Simplify the difference of binomial coefficients</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left( {\begin{array}{*{20}{c}}<br>&nbsp; n \\ <br>&nbsp; 3 <br>\end{array}} \right) - \left( {\begin{array}{*{20}{c}}<br>&nbsp; {2n} \\ <br>&nbsp; 2 <br>\end{array}} \right),{\text{ where }}n \geqslant 3.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence, solve the inequality</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left( {\begin{array}{*{20}{c}}<br>&nbsp; n \\ <br>&nbsp; 3 <br>\end{array}} \right) - \left( {\begin{array}{*{20}{c}}<br>&nbsp; {2n} \\ <br>&nbsp; 2 <br>\end{array}} \right) &gt; 32n,{\text{ where }}n \geqslant 3.\]</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; the expression is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{n!}}{{(n - 3)!3!}} - \frac{{(2n)!}}{{(2n - 2)!2!}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{n(n - 1)(n - 2)}}{6} - \frac{{2n(2n - 1)}}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{n({n^2} - 15n + 8)}}{6}{\text{ }}\left( { = \frac{{{n^3} - 15{n^2} + 8n}}{6}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; the inequality is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{n^3} - 15{n^2} + 8n}}{6} &gt; 32n\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to solve cubic inequality or equation &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^3} - 15{n^2} - 184n &gt; 0\,\,\,\,\,n(n - 23)(n + 8) &gt; 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n &gt; 23\,\,\,\,\,(n \geqslant 24)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part(a) - Although most understood the notation, few knew how to simplify the binomial coefficients.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part(b) - Many were able to solve the cubic, but some failed to report their answer as an integer inequality.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f(x) = 4{x^3} + 2ax - 7a\) , \(a \in \mathbb{R}\), leaves a remainder of \(&minus;10\) when divided by \(\left( {x - a} \right)\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the value of \(a\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that for this value of \(a\) there is a unique real solution to the equation \(f (x) = 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f(a) = 4{a^3} + 2{a^2} - 7a = - 10\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(4{a^3} + 2{a^2} - 7a + 10 = 0\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {a + 2} \right)\left( {4{a^2} - 6a + 5} \right) = 0\) or sketch or GDC &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(a = - 2\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">substituting \(a = - 2\) into \(f (x)\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(f(x) = 4{x^3} - 4x + 14 = 0\) &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">graph showing unique solution which is indicated (must include max and min)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">convincing argument that only one of the solutions is real &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(&minus;1.74, 0.868 &plusmn;1.12i)</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Candidates found this question surprisingly challenging. The most straightforward approach was use of the Remainder Theorem but a significant number of candidates seemed unaware of this technique. This lack of knowledge led many candidates to attempt an algebraically laborious use of long division. In (b) a number of candidates did not seem to appreciate the significance of the word unique and hence found it difficult to provide sufficient detail to make a meaningful argument. However, most candidates did recognize that they needed a technological approach when attempting (b).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Candidates found this question surprisingly challenging. The most straightforward approach was use of the Remainder Theorem but a significant number of candidates seemed unaware of this technique. This lack of knowledge led many candidates to attempt an algebraically laborious use of long division. In (b) a number of candidates did not seem to appreciate the significance of the word unique and hence found it difficult to provide sufficient detail to make a meaningful argument. However, most candidates did recognize that they needed a technological approach when attempting (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Write down the quadratic expression \(2{x^2} + x - 3\) as the product of two linear factors.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence, or otherwise, find the coefficient of \(x\) in the expansion of \({\left( {2{x^2} + x - 3} \right)^8}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(2{x^2} + x - 3 = \left( {2x + 3} \right)\left( {x - 1} \right)\) &nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Accept \(2\left( {x + \frac{3}{2}} \right)\left( {x - 1} \right)\)</span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Either of these may be seen in (b) and if so <em><strong>A1</strong></em> should be awarded.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[1 mark]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\left( {2{x^2} + x - 3} \right)^8} = {\left( {2x + 3} \right)^8}{\left( {x - 1} \right)^8}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = \left( {{3^8} + 8\left( {{3^7}} \right)\left( {2x} \right) + ...} \right)\left( {{{\left( { - 1} \right)}^8} + 8{{\left( { - 1} \right)}^7}\left( x \right) + ...} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">coefficient of \(x = {3^8} \times 8 \times {\left( { - 1} \right)^7} + {3^7} \times 8 \times 2 \times {\left( { - 1} \right)^8}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">= &minus;17 496 &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Under ft, final <em><strong>A1</strong></em> can only be achieved for an integer answer.</span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\left( {2{x^2} + x - 3} \right)^8} = {\left( {3 - \left( {x - 2{x^2}} \right)} \right)^8}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\( = {3^8} + 8\left( { - \left( {x - 2{x^2}} \right)\left( {{3^7}} \right) + ...} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">coefficient of \(x = 8 \times \left( { - 1} \right) \times {3^7}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">= &minus;17 496 &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Under ft, final <em><strong>A1</strong></em> can only be achieved for an integer answer.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates struggled to find an efficient approach to this problem by applying the Binomial Theorem. A disappointing number of candidates attempted the whole expansion which was clearly an unrealistic approach when it is noted that the expansion is to the 8<sup>th</sup> power. The fact that some candidates wrote down Pascal&rsquo;s Triangle suggested that they had not studied the Binomial Theorem in enough depth or in a sufficient variety of contexts.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates struggled to find an efficient approach to this problem by applying the Binomial Theorem. A disappointing number of candidates attempted the whole expansion which was clearly an unrealistic approach when it is noted that the expansion is to the 8<sup>th</sup> power. The fact that some candidates wrote down Pascal&rsquo;s Triangle suggested that they had not studied the Binomial Theorem in enough depth or in a sufficient variety of contexts.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider \(f(x) = \ln x - {{\text{e}}^{\cos x}},{\text{ }}0 &lt; x \leqslant 10\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\), stating the coordinates of any maximum and minimum points and points of intersection with the <em>x</em>-axis.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the inequality \(\ln x \leqslant {{\text{e}}^{\cos x}},{\text{ }}0 &lt; x \leqslant 10\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_3a_markscheme.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A correct graph shape for \(0 &lt; x \leqslant 10\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">maxima (3.78, 0.882) and (9.70, 1.89) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">minimum (6.22, &ndash;0.885) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em>-axis intercepts (1.97, 0), (5.24, 0) and (7.11, 0) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>if two <em>x</em>-axis intercepts are correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; x \leqslant 1.97\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(5.24 \leqslant x \leqslant 7.11\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was reasonably well done although more care was required when showing correct endpoint behaviour. A number of sketch graphs suggested the existence of either a vertical axis intercept or displayed an open circle on the vertical axis. A large number of candidates did not state the coordinates of the various key features correct to three significant figures. A large number of candidates did not locate the maximum near \(x = 10\). Most candidates were able to locate the <em>x</em>-axis intercepts and the minimum. A few candidates unfortunately sketched a graph from a GDC set in degrees.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), a number of candidates identified the correct critical values but used incorrect inequality signs. Some candidates attempted to solve the inequality algebraically.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined as \(f(x) =&nbsp; - 3 + \frac{1}{{x - 2}},{\text{ }}x \ne 2\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\), clearly indicating any asymptotes and axes intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Write down the equations of any asymptotes and the coordinates of any axes intercepts.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the inverse function \({f^{ - 1}}\), stating its domain.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><br><span style="font-family: 'times new roman', times;"><img src="images/Schermafbeelding_2014-09-15_om_12.42.13.png" alt><span style="font-size: medium;">&nbsp;&nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for correct shape, <strong><em>A1 </em></strong>for \(x = 2\) clearly stated and <strong><em>A1 </em></strong>for \(y =&nbsp; - 3\) clearly stated.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font: 21.0px 'Times New Roman';"><em>x</em> </span>intercept (2.33, 0) <span style="font: 21.0px 'Times New Roman';">and <em>y</em> </span>intercept (0, &ndash;3.5) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept &ndash;3.5 and 2.33 (7/3) marked on the correct axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x =&nbsp; - 3 + \frac{1}{{y - 2}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica; min-height: 26.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for interchanging <em>x </em>and <em>y </em>(can be done at a later stage).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x + 3 = \frac{1}{{y - 2}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y - 2 = \frac{1}{{x + 3}}\) &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for attempting to make <em>y </em>the subject.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = 2 + \frac{1}{{x + 3}}\left( { = \frac{{2x + 7}}{{x + 3}}} \right),{\text{ }}x \ne&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>only if \({f^{ - 1}}(x)\) is seen. Award <strong><em>A1 </em></strong>for the domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A Chocolate Shop advertises free gifts to customers that collect three vouchers. The vouchers are placed at random into 10% of all chocolate bars sold at this shop. Kati buys some of these bars and she opens them one at a time to see if they contain a voucher. Let \({\text{P}}(X = n)\) be the probability that Kati obtains her third voucher on the \(n{\text{th}}\)&nbsp;<span class="s1">bar opened.</span></p>
<p class="p1">(It is assumed that the probability that a chocolate bar contains a voucher stays at 10% throughout the question.)</p>
</div>

<div class="specification">
<p class="p1">It is given that \({\text{P}}(X = n) = \frac{{{n^2} + an + b}}{{2000}} \times {0.9^{n - 3}}\) for \(n \geqslant 3,{\text{ }}n \in \mathbb{N}\).</p>
</div>

<div class="specification">
<p class="p1">Kati&rsquo;s mother goes to the shop and buys \(x\)&nbsp;chocolate bars. She takes the bars home for Kati to open.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{P}}(X = 3) = 0.001\) and \({\text{P}}(X = 4) = 0.0027\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the values of the constants \(a\) <span class="s1">and \(b\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce that \(\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{0.9(n - 1)}}{{n - 3}}\) for \(n &gt; 3\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Hence show that \(X\) has two modes \({m_1}\) and \({m_2}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>State the values of \({m_1}\) and \({m_2}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Determine the minimum value of \(x\) </span>such that the probability Kati receives at least one free gift is greater than <span class="s2">0.5.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = 3) = {(0.1)^3}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = 0.001\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = 4) = {\text{P}}(VV\bar VV) + {\text{P}}(V\bar VVV) + {\text{P}}(\bar VVVV)\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 3 \times {(0.1)^3} \times 0.9\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = 0.0027\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">attempting to form equations in \(a\) and \(b\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{9 + 3a + b}}{{2000}} = \frac{1}{{1000}}{\text{ }}(3a + b =  - 7)\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{16 + 4a + b}}{{2000}} \times \frac{9}{{10}} = \frac{{27}}{{10\,000}}{\text{ }}(4a + b =  - 10)\)    </span><strong><em>A1</em></strong></p>
<p class="p1">attempting to solve simultaneously <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(a =  - 3,{\text{ }}b = 2\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}\)    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}\)    </span><strong><em>(M1)A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(a =  - 3,b = 2\)    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Condone the absence of \({0.9^{n - 3}}\) in the determination of the values of \(a\) and \(b\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = n) = \frac{{{n^2} - 3n + 2}}{{2000}} \times {0.9^{n - 3}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = n) = \left( {\begin{array}{*{20}{c}} {n - 1} \\ 2 \end{array}} \right) \times {0.1^3} \times {0.9^{n - 3}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{(n - 1)(n - 2)}}{{2000}} \times {0.9^{n - 3}}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({\text{P}}(X = n - 1) = \frac{{(n - 2)(n - 3)}}{{2000}} \times {0.9^{n - 4}}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{(n - 1)(n - 2)}}{{(n - 2)(n - 3)}} \times 0.9\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{0.9(n - 1)}}{{n - 3}}\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}} = \frac{{\frac{{{n^2} - 3n + 2}}{{2000}} \times {{0.9}^{n - 3}}}}{{\frac{{{{(n - 1)}^2} - 3(n - 1) + 2}}{{2000}} \times {{0.9}^{n - 4}}}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{0.9({n^2} - 3n + 2)}}{{({n^2} - 5n + 6)}}\)    </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for a correct numerator and <strong><em>A1 </em></strong>for a correct denominator.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{0.9(n - 1)(n - 2)}}{{(n - 2)(n - 3)}}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{0.9(n - 1)}}{{n - 3}}\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>attempting to solve \(\frac{{0.9(n - 1)}}{{n - 3}} = 1\) for \(n\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(n = 21\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{0.9(n - 1)}}{{n - 3}} &lt; 1 \Rightarrow n &gt; 21\)    </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{0.9(n - 1)}}{{n - 3}} &gt; 1 \Rightarrow n &lt; 21\)    </span><strong><em>R1</em></strong></p>
<p class="p1">\(X\) has two modes <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>R1R1 </em></strong>for a clearly labelled graphical representation of the two inequalities (using \(\frac{{{\text{P}}(X = n)}}{{{\text{P}}(X = n - 1)}}\)).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the modes are <span class="s1">20 </span>and <span class="s1">21 <span class="Apple-converted-space">    </span></span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1"><span class="Apple-converted-space">\(Y \sim {\text{B}}(x,{\text{ }}0.1)\)    </span><strong><em>(A1)</em></strong></p>
<p class="p1">attempting to solve \({\text{P}}(Y \geqslant 3) &gt; 0.5\) (or equivalent <em>eg</em> \(1 - {\text{P}}(Y \leqslant 2) &gt; 0.5\)) for \(x\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for attempting to solve an equality (obtaining \(x = 26.4\)).</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\(x = 27\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\sum\limits_{n = 0}^x {{\text{P}}(X = n) &gt; 0.5} \)    </span><strong><em>(A1)</em></strong></p>
<p class="p1">attempting to solve for \(x\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(x = 27\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A function \(f\) is defined by \(f(x) = (x + 1)(x-1)(x-5),{\text{ }}x \in \mathbb{R}\).</p>
<p class="p1">Find the values of \(x\) for which \(f(x) &lt; \left| {f(x)} \right|\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A function \(g\) is defined by \(g(x) = {x^2} + x - 6,{\text{ }}x \in \mathbb{R}\).</p>
<p class="p1">Find the values of \(x\) for which \(g(x) &lt; \frac{1}{{g(x)}}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-06_om_07.51.39.png" alt></p>
<p>as roots of \(f(x) = 0\) are \( - 1,{\text{ }}1,{\text{ }}5\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>solution is \(\left] { - \infty ,{\text{ }} - 1} \right[ \cup \left] {1,{\text{ }}5} \right[\;\;\;(x &lt;&nbsp; - 1\;\;\;{\text{or}}\;\;\;1 &lt; x &lt; 5)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1A0</em></strong> for closed intervals.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">\(\left( {{\text{graphs of }}g(x){\text{ and }}\frac{1}{{g(x)}}} \right)\)</p>
<p class="p2"><img src="images/Schermafbeelding_2016-01-06_om_08.02.41.png" alt></p>
<p>roots of \(g(x) = 0\) are \( - 3\) and 2 &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Notes:</strong> &nbsp; &nbsp; Award <strong><em>M1</em></strong> if quadratic graph is drawn or two roots obtained.</p>
<p>Roots may be indicated anywhere eg asymptotes on graph or in inequalities below.</p>
<p>&nbsp;</p>
<p>the intersections of the graphs \(g(x)\) and of \(1/g(x)\)</p>
<p>are \( - 3.19,{\text{ }} - 2.79,{\text{ }}1.79,{\text{ 2.19}}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1</em></strong> for at least one of the values above seen anywhere.</p>
<p>&nbsp;</p>
<p>solution is \(\left] { - 3.19,{\text{ }} - 3} \right[ \cup \left] { - 2.79,{\text{ }}1.79} \right[ \cup \left] {2,{\text{ }}2.19} \right[\)</p>
<p>\(( - 3.19 &lt; x &lt;&nbsp; - 3\;\;\;{\text{or}}\;\;\; - 2.79 &lt; x &lt; 1.79\;\;\;{\text{or}}\;\;\;2 &lt; x &lt; 2.19)\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1A1A0</em></strong> for closed intervals.</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>\(\left( {{\text{graph of }}g(x) - \frac{1}{{g(x)}}} \right)\)</p>
<p class="p2"><img src="images/Schermafbeelding_2016-01-06_om_08.20.21.png" alt></p>
<p>asymptotes at \(x =&nbsp; - 3\) and \(x = 2\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; May be indicated on the graph.</p>
<p>&nbsp;</p>
<p>roots of graph are \( - 3.19,{\text{ }} - 2.79,{\text{ }}1.79,{\text{ }}2.19\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <em><strong>A1</strong></em> for at least one of the values above seen anywhere.</p>
<p>&nbsp;</p>
<p>solution is (when graph is negative)</p>
<p>\(\left] { - 3.19,{\text{ }} - 3} \right[ \cup \left] { - 2.79,{\text{ }}1.79} \right[ \cup \left] {2,{\text{ }}2.19} \right[\)</p>
<p>\(( - 3.19 &lt; x &lt;&nbsp; - 3\;\;\;{\text{or}}\;\;\; - 2.79 &lt; x &lt; 1.79\;\;\;{\text{or}}\;\;\;2 &lt; x &lt; 2.19)\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1A1A0</em></strong> for closed intervals.</p>
<p><em><strong>[7 marks]</strong></em></p>
<p><em><strong>Total [10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In general part (a) was performed correctly, with the vast majority of candidates stating the correct open intervals as required.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b) many candidates scored a few marks by just finding intersection points and equations of asymptotes; many other candidates showed difficulties in manipulating inequalities and ignored the fact that the quantities could be negative. Candidates that used the graph well managed to achieve full marks. Unfortunately many sketches were very crudely drawn hence they were of limited value for assessment purposes.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{{\sqrt x }}{{\sin x}},{\text{ }}0 &lt; x &lt; \pi \).</p>
</div>

<div class="specification">
<p>Consider the region bounded by the curve \(y = f(x)\), the \(x\)-axis and the lines \(x = \frac{\pi }{6},{\text{ }}x = \frac{\pi }{3}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the \(x\)-coordinate of the minimum point on the curve \(y = f(x)\) satisfies the equation \(\tan x = 2x\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the values of \(x\) for which \(f(x)\) is a decreasing function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) showing clearly the minimum point and any asymptotic behaviour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the point on the graph of \(f\) where the normal to the graph is parallel to the line \(y =&nbsp; - x\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This region is now rotated through \(2\pi \) radians about the \(x\)-axis. Find the volume of revolution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to use quotient rule or product rule &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(f&rsquo;(x) = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}{\text{ }}\left( { = \frac{1}{{2\sqrt x \sin x}} - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \(\frac{1}{{2\sqrt x \sin x}}\) or equivalent and <strong><em>A1 </em></strong>for \( - \frac{{\sqrt x \cos x}}{{{{\sin }^2}x}}\) or equivalent.</p>
<p>&nbsp;</p>
<p>setting \(f&rsquo;(x) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{\sin x}}{{2\sqrt x }} - \sqrt x \cos x = 0\)</p>
<p>\(\frac{{\sin x}}{{2\sqrt x }} = \sqrt x \cos x\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\tan x = 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = 1.17\)</p>
<p>\(0 &lt; x \leqslant 1.17\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for \(0 &lt; x\) and <strong><em>A1 </em></strong>for \(x \leqslant 1.17\). Accept \(x &lt; 1.17\).</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-08_om_16.19.25.png" alt="N17/5/MATHL/HP2/ENG/TZ0/10.b/M"></p>
<p>concave up curve over correct domain with one minimum point above the \(x\)-axis. &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches \(x = 0\) asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>approaches \(x = \pi \) asymptotically &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p>Note: &nbsp; &nbsp; For the final <strong><em>A1 </em></strong>an asymptote must be seen, and \(\pi \) must be seen on the \(x\)-axis or in an equation.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f&rsquo;(x){\text{ }}\left( { = \frac{{\sin x\left( {\frac{1}{2}{x^{ - \frac{1}{2}}}} \right) - \sqrt x \cos x}}{{{{\sin }^2}x}}} \right) = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>attempt to solve for \(x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(x = 1.96\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = f(1.96 \ldots )\)</p>
<p>\( = 1.51\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(V = \pi \int_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{{x{\text{d}}x}}{{{{\sin }^2}x}}} \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; <strong><em>M1 </em></strong>is for an integral of the correct squared function (with or without limits and/or \(\pi \)).</p>
<p>&nbsp;</p>
<p>\( = 2.68{\text{ }}( = 0.852\pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Particle <em>A </em>moves such that its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\), at time <em>t </em>seconds, is given by \(v(t) = \frac{t}{{12 + {t^4}}},{\text{ }}t \geqslant 0\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Particle <em>B </em>moves such that its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\) is related to its displacement \(s{\text{ m}}\), by the equation \(v(s) = \arcsin \left( {\sqrt s } \right)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = v(t)\). Indicate clearly the local maximum and write down its coordinates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Use the substitution \(u = {t^2}\) to find \(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times;"><span style="font-size: medium; line-height: normal; background-color: #f7f7f7;">Find the exact distance travelled by particle </span>\(A\) <span style="font-size: medium; line-height: normal; background-color: #f7f7f7;">between \(t = 0\) and \(t = 6\) seconds.</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Give your answer in the form \(k\arctan (b),{\text{ }}k,{\text{ }}b \in \mathbb{R}\).</span></p>
<p>&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acceleration of particle B when \(s = 0.1{\text{ m}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)<br><img src="images/maths_14a_markscheme_1.png" alt> &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong> for</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;correct shape and correct domain</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\((1.41,{\text{ }}0.0884){\text{ }}\left( {\sqrt 2 ,{\text{ }}\frac{{\sqrt 2 }}{{16}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(u = {t^2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}t}} = 2t\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = {u^{\frac{1}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}t}}{{{\text{d}}u}} = \frac{1}{2}{u^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{t}{{12 + {t^4}}}{\text{d}}t = \frac{1}{2}\int {\frac{{{\text{d}}u}}{{12 + {u^2}}}} } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{2\sqrt {12} }}\arctan \left( {\frac{u}{{\sqrt {12} }}} \right)( + c)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)( + c)\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^6 {\frac{t}{{12 + {t^4}}}{\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{1}{{4\sqrt 3 }}\arctan \left( {\frac{{{t^2}}}{{2\sqrt 3 }}} \right)} \right]_0^6\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{36}}{{2\sqrt 3 }}} \right)} \right){\text{ }}\left( { = \frac{1}{{4\sqrt 3 }}\left( {\arctan \left( {\frac{{18}}{{\sqrt 3 }}} \right)} \right)} \right){\text{ (m)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept \(\frac{{\sqrt 3 }}{{12}}\arctan \left( {6\sqrt 3 } \right)\) or equivalent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica; min-height: 26.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}s}} = \frac{1}{{2\sqrt {s(1 - s)} }}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = v\frac{{{\text{d}}v}}{{{\text{d}}s}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \arcsin \left( {\sqrt s } \right) \times \frac{1}{{2\sqrt {s(1 - s)} }}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \arcsin \left( {\sqrt {0.1} } \right) \times \frac{1}{{2\sqrt {0.1 \times 0.9} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 0.536{\text{ (m}}{{\text{s}}^{ - 2}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the values of \(k\) such that the equation \({x^3} + {x^2} - x + 2 = k\) has three distinct real solutions.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">from GDC, sketch a relevant graph &nbsp; &nbsp;<em><strong> A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">maximum: \(y = 3\) or (&ndash;1, 3)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">minimum: \(y = 1.81\) or (0.333, 1.81) &nbsp; \(\left( {{\text{or }}y = \frac{{49}}{{27}}{\text{ or }}\left( {\frac{1}{3},\frac{{49}}{{27}}} \right)} \right)\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">hence, \(1.81 &lt; k &lt; 3\) &nbsp; &nbsp; <em><strong>A1A1&nbsp;&nbsp;&nbsp;&nbsp; N3</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for \(1.81 \leqslant k \leqslant 3\) .</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Responses to this question were surprisingly poor. Few candidates recognised that the easier way to answer the question was to use a graph on the GDC. Many candidates embarked on fruitless algebraic manipulation which led nowhere.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">When \({x^2} + 4x - b\) is divided by \(x - a\) <span class="s1">the remainder is 2</span>.</p>
<p class="p1">Given that \(a,{\text{ }}b \in \mathbb{R}\), find the smallest possible value for \(b\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">\({a^2} + 4a - b = 2\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><strong>EITHER</strong></p>
<p class="p1">\({a^2} + 4a - (b + 2) = 0\)</p>
<p class="p2">as \(a\) is real \( \Rightarrow 16 + 4(b + 2) \geqslant 0\) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p2"><strong>OR</strong></p>
<p class="p1">\(b = {a^2} + 4a - 2\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\( = {(a + 2)^2} - 6\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"><strong>THEN</strong></p>
<p class="p3">\(b \geqslant  - 6\)</p>
<p class="p2">hence smallest possible value for \(b\) <span class="s2">is \( - 6\) <span class="Apple-converted-space">    </span></span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">For quite a difficult question, there were many good solutions for this, including many different methods. It was disturbing to see how many students did not seem to be aware of the remainder theorem, instead choosing to divide the polynomial.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the set of values of \(k\) that satisfy the inequality \({k^2} - k - 12 &lt; 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The triangle ABC is shown in the following diagram. Given that \(\cos B &lt; \frac{1}{4}\), find the range of possible values for AB.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-09_om_18.13.24.png" alt="M17/5/MATHL/HP2/ENG/TZ2/04.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({k^2} - k - 12 &lt; 0\)</p>
<p>\((k - 4)(k + 3) &lt; 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\( - 3 &lt; k &lt; 4\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\cos B = \frac{{{2^2} + {c^2} - {4^2}}}{{4c}}{\text{ }}({\text{or }}16 = {2^2} + {c^2} - 4c\cos B)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow \frac{{{c^2} - 12}}{{4c}} &lt; \frac{1}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( \Rightarrow {c^2} - c - 12 &lt; 0\)</p>
<p>from result in (a)</p>
<p>\(0 &lt; {\text{AB}} &lt; 4\) or \( - 3 &lt; {\text{AB}} &lt; 4\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>but AB must be at least 2</p>
<p>\( \Rightarrow 2 &lt; {\text{AB}} &lt; 4\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Allow \( \leqslant {\text{AB}}\) for either of the final two <strong><em>A </em></strong>marks.</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>The equation \({x^2} - 5x - 7 = 0\) has roots \(\alpha \) and \(\beta \). The equation \({x^2} + px + q = 0\) has roots \(\alpha  + 1\) and \(\beta  + 1\). Find the value of \(p\) and the value of \(q\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>\(\alpha  + \beta  = 5,\,\,\alpha \beta  =  - 7\)     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1A0</strong></em> if only one equation obtained.</p>
<p>\(\left( {\alpha  + 1} \right) + \left( {\beta  + 1} \right) = 5 + 2 = 7\)   <em>  <strong>A1</strong></em></p>
<p>\(\left( {\alpha  + 1} \right)\left( {\beta  + 1} \right) = \alpha \beta  + \left( {\alpha  + \beta } \right) + 1\)     <em><strong>(M1)</strong></em></p>
<p>\( =  - 7 + 5 + 1 =  - 1\)</p>
<p>\(p =  - 7,\,\,q =  - 1\)     <em><strong>  A1A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(\alpha  = \frac{{5 + \sqrt {53} }}{2} = 6.1 \ldots {\text{;}}\,\,\beta  = \frac{{5 - \sqrt {53} }}{2} =  - 1.1 \ldots \)     <em><strong>(M1)(A1)</strong></em></p>
<p>\(\alpha  + 1 = \frac{{7 + \sqrt {53} }}{2} = 7.1 \ldots {\text{;}}\,\,\beta  + 1 = \frac{{7 - \sqrt {53} }}{2} =  - 0.1 \ldots \)    <em> <strong>A1</strong></em></p>
<p>\(\left( {x - 7.14 \ldots } \right)\left( {x + 0.14 \ldots } \right) = {x^2} - 7x - 1\)     <em><strong>(M1)</strong></em></p>
<p>\(p =  - 7,\,\,q =  - 1\)     <em><strong>  A1A1</strong></em></p>
<p><strong>Note:</strong> Exact answers only.</p>
<p><em><strong>[6 marks]</strong></em></p>
<p> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f\) defined by \(f(x) = 3x\arccos (x)\) where \( - 1 \leqslant x \leqslant 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Sketch the graph of \(f\) </span>indicating clearly any intercepts with the axes and the coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the range of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(\left| {3x\arccos (x)} \right| &gt; 1\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-03-01_om_06.12.12.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.a/M"></p>
<p class="p2">correct shape passing through the origin and correct domain <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p2"><strong>Note: </strong>Endpoint coordinates are not required. The domain can be indicated by \( - 1\) and 1 marked on the axis.</p>
<p class="p2"><span class="Apple-converted-space">\((0.652,{\text{ }}1.68)\)    </span><strong><em>A1</em></strong></p>
<p class="p2">two correct intercepts (coordinates not required) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p2"><strong>Note: </strong>A graph passing through the origin is sufficient for \((0,{\text{ }}0)\).</p>
<p class="p3"> </p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\([-9.42,{\text{ }}1.68]{\text{ }}({\text{or }} - 3\pi ,{\text{ }}1.68])\)    </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>A1A0 </em></strong>for open or semi-open intervals with correct endpoints. Award <strong><em>A1A0 </em></strong>for closed intervals with one correct endpoint.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to solve either \(\left| {3x\arccos (x)} \right| &gt; 1\) (or equivalent) or \(\left| {3x\arccos (x)} \right| = 1\) (or equivalent) (<em>eg</em>. graphically) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-01_om_06.22.47.png" alt="N16/5/MATHL/HP2/ENG/TZ0/05.c/M"></p>
<p class="p1"><span class="Apple-converted-space">\(x =  - 0.189,{\text{ }}0.254,{\text{ }}0.937\)    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( - 1 \leqslant x &lt;  - 0.189{\text{ or }}0.254 &lt; x &lt; 0.937\)    </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>A0 </em></strong>for \(x &lt;  - 0.189\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A polynomial \(p(x)\) with real coefficients is of degree five. The equation \(p(x) = 0\) has a complex root 2 + i. The graph of \(y = p(x)\) has the <em>x</em>-axis as a tangent at (2, 0) and intersects the coordinate axes at (&minus;1, 0) and (0, 4).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(p(x)\) in factorised form with real coefficients.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">other root is 2 &ndash; <em>i</em> &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a quadratic factor is therefore \((x - 2 + i)(x - 2 - i)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {x^2} - 4x + 5\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> + 1 is a factor &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(x - 2)^2}\) is a factor &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(p(x) = a(x + 1){(x - 2)^2}({x^2} - 4x + 5)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(p(0) = 4 \Rightarrow a = \frac{1}{5}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(p(x) = \frac{1}{5}(x + 1){(x - 2)^2}({x^2} - 4x + 5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Whilst most candidates knew that another root was \(2 - {\text{i}}\) , much fewer were able to find the quadratic factor. Surprisingly few candidates knew that \(\left( {x - 2} \right)\) must be a repeated factor and less surprisingly many did not recognise that the whole expression needed to be multiplied by \(\frac{1}{5}\).</span></p>
</div>
<br><hr><br><div class="question">
<p>In the quadratic equation \(7{x^2} - 8x + p = 0,{\text{ }}(p \in \mathbb{Q})\), one root is three times the other root.<br>Find the value of \(p\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>METHOD 1</strong></p>
<p>let roots be \(\alpha \) and \(3\alpha \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>sum of roots \((4\alpha ) = \frac{8}{7}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow \alpha&nbsp; = \frac{2}{7}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>product of roots \((3{\alpha ^2}) = \frac{p}{7}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(p = 21{\alpha ^2} = 21 \times \frac{4}{{49}}\)</p>
<p><strong>OR</strong></p>
<p>\(7{\left( {\frac{2}{7}} \right)^2} - 8\left( {\frac{2}{7}} \right) + p = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{4}{7} - \frac{{16}}{7} + p = 0\)</p>
<p><strong>THEN</strong></p>
<p>\( \Rightarrow p = \frac{{12}}{7}{\text{ }}( = 1.71)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>\(x = \frac{{8 \pm \sqrt {64 - 28p} }}{{14}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\frac{{8 + \sqrt {64 - 28p} }}{{14}} = 3\left( {\frac{{8 - \sqrt {64 - 28p} }}{{14}}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(8 + \sqrt {64 - 28p}&nbsp; = 24 - 3\sqrt {64 - 28p}&nbsp; \Rightarrow \sqrt {64 - 28p}&nbsp; = 4\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(p = \frac{{12}}{7}{\text{ }}( = 1.71)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that the graph of \(y = {x^3} - 6{x^2} + kx - 4\)&nbsp;has exactly one point at which the&nbsp;gradient is zero, find the value of <em>k </em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 3{x^2} - 12x + k\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">For use of discriminant \({b^2} - 4ac = 0\) or completing the square \(3{(x - 2)^2} + k - 12\)&nbsp; &nbsp; &nbsp;(<strong><em>M1)</em></strong></span></p>
<p>&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;">\(144 - 12k = 0\) &nbsp; &nbsp;&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Accept trial and error, sketches of parabolas with vertex (2,0) or use of&nbsp;second derivative.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 12\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]&nbsp;</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally candidates answer this question well using a diversity of methods. Surprisingly, a small number of candidates were successful in answering this question using the discriminant of the quadratic and in many cases reverted to trial and error to obtain the correct answer.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The vectors <strong><em>a</em></strong> and <strong><em>b</em></strong> are such that&nbsp; <strong><em>a</em></strong> \( = (3\cos \theta&nbsp; + 6)\)<strong><em>i</em></strong> \( + 7\) <strong><em>j</em></strong> and <strong><em>b</em></strong> \( = (\cos \theta&nbsp; - 2)\)<strong><em>i</em></strong> \( + (1 + \sin \theta )\)<strong><em>j</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <strong><em>a</em></strong> and <strong><em>b</em></strong> are perpendicular,</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">show that \(3{\sin ^2}\theta&nbsp; - 7\sin \theta&nbsp; + 2 = 0\);</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">find the smallest possible positive value of \(\theta \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to form \((3\cos \theta&nbsp; + 6)(\cos \theta&nbsp; - 2) + 7(1 + \sin \theta ) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{\cos ^2}\theta&nbsp; - 12 + 7\sin \theta&nbsp; + 7 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(3\left( {1 - {{\sin }^2}\theta } \right) + 7\sin \theta&nbsp; - 5 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{\sin ^2}\theta&nbsp; - 7\sin \theta&nbsp; + 2 = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve algebraically (including substitution) or graphically for \(\sin \theta \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin \theta&nbsp; = \frac{1}{3}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = 0.340{\text{ }}( = 19.5^\circ )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done. Most candidates were able to use the scalar product and \({\cos ^2}\theta&nbsp; = 1 - {\sin ^2}\theta \) to show the required result.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was reasonably well done. A few candidates confused &lsquo;smallest possible positive value&rsquo; with a minimum function value. Some candidates gave \(\theta&nbsp; = 0.34\) as their final answer.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is of the form \(f(x) = \frac{{x + a}}{{bx + c}}\), \(x \ne - \frac{c}{b}\). Given that the graph of <em>f</em> has asymptotes <em>x</em> = &minus;4 and <em>y</em> = &minus;2 , and that the point \(\left( {\frac{2}{3},{\text{ }}1} \right)\) lies on the graph, find the values of <em>a</em> , <em>b</em> and <em>c</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">vertical asymptote \(x = - 4 \Rightarrow - 4b + c = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">horizontal asymptote \(y = - 2 \Rightarrow \frac{1}{b} = - 2\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(b = - \frac{1}{2}{\text{ and }}c = - 2\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 = \frac{{\frac{2}{3} + a}}{{ - \frac{1}{2} \times \frac{2}{3} - 2}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The graph of \(y = \ln (x)\) is transformed into the graph of \(y = \ln \left( {2x + 1} \right)\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Describe two transformations that are required to do this.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Solve \(\ln \left( {2x + 1} \right) &gt; 3\cos (x)\), \(x \in [0,10]\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">translation of \( - \frac{1}{2}\)</span><span style="font-family: times new roman,times; font-size: medium;"> parallel to the \(x\)-axis</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">stretch of a scale factor of \(\frac{1}{2}\) </span><span style="font-family: times new roman,times; font-size: medium;">parallel to the \(x\)-axis&nbsp;&nbsp;&nbsp;&nbsp;<em><strong> A1A1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">stretch of a scale factor of \(\frac{1}{2}\) </span><span style="font-family: times new roman,times; font-size: medium;">parallel to the \(x\)-axis</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">translation of \( - 1\) parallel to the \(x\)-axis &nbsp; &nbsp; <em><strong>A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Accept clear alternative terminologies for either transformation.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(1.16 &lt; x &lt; 5.71 \cup 6.75 &lt; x \leqslant 10\) &nbsp;&nbsp;&nbsp; <em><strong>A1A1A1A1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">]\(1.16\), \(5.71\)[&nbsp;</span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"> \(\cup\)&nbsp;</span> ]\(6.75\), \(10\)]&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1A1A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for 1 intersection value, <em><strong>A1</strong></em> for the other 2, <em><strong>A1A1</strong></em> for the intervals.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well done by many candidates. It would appear, however, that few candidates were aware of the standard terminology &ndash; <em>Stretch</em> and <em>Translation</em> - used to describe the relevant graph transformations. Most made good use of a GDC to find the critical points and to help in deciding on the correct intervals. A significant minority failed to note \(x = 10\)</span><span style="font-family: times new roman,times; font-size: medium;"> as an endpoint.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well done by many candidates. It would appear, however, that few candidates were aware of the standard terminology &ndash; <em>Stretch</em> and <em>Translation</em> - used to describe the relevant graph transformations. Most made good use of a GDC to find the critical points and to help in deciding on the correct intervals. A significant minority failed to note \(x = 10\)</span><span style="font-family: times new roman,times; font-size: medium;"> as an endpoint.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The arithmetic sequence \(\{ {u_n}:n \in {\mathbb{Z}^ + }\} \) has first term \({u_1} = 1.6\) and common difference <em>d</em> = 1.5. The geometric sequence \(\{ {v_n}:n \in {\mathbb{Z}^ + }\} \) has first term \({v_1} = 3\) and common ratio <em>r</em> = 1.2.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \({u_n} - {v_n}\) in terms of <em>n</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the set of values of <em>n</em> for which \({u_n} &gt; {v_n}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine the greatest value of \({u_n} - {v_n}\). Give your answer correct to four significant figures.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} - {v_n} = 1.6 + (n - 1) \times 1.5 - 3 \times {1.2^{n - 1}}{\text{ }}( = 1.5n + 0.1 - 3 \times {1.2^{n - 1}})\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve \({u_n} &gt; {v_n}\) numerically or graphically. &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n = 2.621 \ldots ,9.695 \ldots \) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So \(3 \leqslant n \leqslant 9\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The greatest value of \({u_n} - {v_n}\) is 1.642. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not accept 1.64.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a), most candidates were able to express \({u_n}\) and \({v_n}\) correctly and hence obtain a correct expression for \({u_n} - {v_n}\). Some candidates made careless algebraic errors when unnecessarily simplifying \({u_n}\) while other candidates incorrectly stated \({v_n}\) as \(3{(1.2)^n}\).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In parts (b) and (c), most candidates treated <em>n</em> as a continuous variable rather than as a discrete variable. Candidates should be aware that a GDC&rsquo;s table feature can be extremely useful when attempting such question types.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In parts (b) and (c), most candidates treated <em>n</em> as a continuous variable rather than as a discrete variable. Candidates should be aware that a GDC&rsquo;s table feature can be extremely useful when attempting such question types. In part (c), a number of candidates attempted to find the maximum value of <em>n </em>rather than attempting to find the maximum value of \({u_n} - {v_n}\).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A particle moves in a straight line, its velocity \(v{\text{ m}}{{\text{s}}^{ - 1}}\) at time \(t\) seconds is given by \(v = 9t - 3{t^2},{\text{ }}0 \le t \le 5\).</p>
<p class="p1">At time \(t = 0\), the displacement \(s\) of the particle from an origin&nbsp;\(O\) is 3 m.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the displacement of the particle when \(t = 4\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch a displacement/time graph for the particle, \(0 \le t \le 5\), showing clearly where the curve meets the axes and the coordinates of the points where the displacement takes greatest and least values.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">For \(t &gt; 5\)</span>, the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) <span class="s1">such that \(s\) is continuous for all \(t \ge 0\).</span></p>
<p class="p2">Given further that \(s = 16.5\) when \(t = 7.5\), find the values of \(a\) and \(b\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">For \(t &gt; 5\)</span>, the displacement of the particle is given by \(s = a + b\cos \frac{{2\pi t}}{5}\) <span class="s1">such that \(s\) is continuous for all \(t \ge 0\).</span></p>
<p class="p1">Find the times \({t_1}\) and \({t_2}(0 &lt; {t_1} &lt; {t_2} &lt; 8)\) when the particle returns to its starting point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2">\(s = \int {(9t - 3{t^2}){\text{d}}t = \frac{9}{2}{t^2} - {t^3}( + c)} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2">\(t = 0,{\text{ }}s = 3 \Rightarrow c = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\(t = 4 \Rightarrow s = 11\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2">\(s = 3 + \int_0^4 {(9t - 3{t^2}){\text{d}}t} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p2">\(s = 11\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<p class="p2"><span class="s1">&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-07_om_07.29.21.png" alt></p>
<p class="p2">correct shape over correct domain <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">maximum at \((3,{\text{ }}16.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">\(t\) intercept at \(4.64\), \(s\) intercept at&nbsp;\(3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">minimum at \((5,{\text{ }} - 9.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 9.5 = a + b\cos 2\pi \)</p>
<p>\(16.5 = a + b\cos 3\pi \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> &nbsp; &nbsp; Only award <strong><em>M1</em></strong> if two simultaneous equations are formed over the correct domain.</p>
<p>&nbsp;\(a = \frac{7}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(b =&nbsp; - 13\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at \({t_1}\):</p>
<p class="p1">\(3 + \frac{9}{2}{t^2} - {t^3} = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({t^2}\left( {\frac{9}{2} - t} \right) = 0\)</p>
<p class="p1">\({t_1} = \frac{9}{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">solving \(\frac{7}{2} - 13\cos \frac{{2\pi t}}{5} = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({\text{GDC}} \Rightarrow {t_2} = 6.22\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note:</strong> <span class="Apple-converted-space">&nbsp; &nbsp; </span>Accept graphical approaches.</p>
<p class="p3"><em><strong>[4 marks]</strong></em></p>
<p class="p3"><em><strong>Total [15 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that the equation \(3{x^2} + 2kx + k - 1 = 0\) has two distinct real roots for all values of \(k \in \mathbb{R}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> for which the two roots of the equation are closest together.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\Delta&nbsp; = {b^2} - 4ac = 4{k^2} - 4 \times 3 \times (k - 1) = 4{k^2} - 12k + 12\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if expression seen within quadratic formula.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica; min-height: 22.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(144 - 4 \times 4 \times 12 &lt; 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\Delta \) always positive, therefore the equation always has two distinct real roots &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(and cannot be always negative as \(a &gt; 0\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch of \(y = 4{k^2} - 12k + 12\) or \(y = {k^2} - 3k + 3\) not crossing the <em>x</em>-axis &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\Delta \) always positive, therefore the equation always has two distinct real roots &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">write \(\Delta \) as \(4{(k - 1.5)^2} + 3\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\Delta \) always positive, therefore the equation always has two distinct real roots &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">closest together when \(\Delta \) is least &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum value occurs when <em>k</em> = 1.5 &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to find the discriminant (sometimes only as part of the quadratic formula) but fewer were able to explain satisfactorily why there were two distinct roots.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to find the discriminant (sometimes only as part of the quadratic formula) but fewer were able to explain satisfactorily why there were two distinct roots. Only the better candidates were able to give good answers to part (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Farmer Bill owns a rectangular field, 10 m by 4 m. Bill attaches a rope to a wooden post at one corner of his field, and attaches the other end to his goat Gruff.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the rope is 5 m long, calculate the percentage of Bill&rsquo;s field that Gruff is able to graze. Give your answer correct to the nearest integer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bill replaces Gruff&rsquo;s rope with another, this time of length \(a,{\text{ }}4 &lt; a &lt; 10\), so that Gruff can now graze exactly one half of Bill&rsquo;s field.</p>
<p>Show that \(a\) satisfies the equation</p>
<p>\[{a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}&nbsp; = 40.\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-06_om_16.06.57.png" alt></p>
<p class="p2"><strong>EITHER</strong></p>
<p class="p1">area of triangle \( = \frac{1}{2} \times 3 \times 4\;\;\;( = 6)\) &nbsp; &nbsp;&nbsp;<span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">area of sector \( = \frac{1}{2}\arcsin \left( {\frac{4}{5}} \right) \times {5^2}\;\;\;( = 11.5911 \ldots )\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong>OR</strong></p>
<p class="p1">\(\int_0^4 {\sqrt {25 - {x^2}} {\text{d}}x} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><strong>THEN</strong></p>
<p class="p1">total area \( = 17.5911 \ldots {\text{ }}{{\text{m}}^2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">percentage \( = \frac{{17.5911 \ldots }}{{40}} \times 100 = 44\% \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2"><img src="images/Schermafbeelding_2016-01-06_om_16.38.28.png" alt></p>
<p>area of triangle \( = \frac{1}{2} \times 4 \times \sqrt {{a^2} - 16} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\theta&nbsp; = \arcsin \left( {\frac{4}{a}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>area of sector \( = \frac{1}{2}{r^2}\theta&nbsp; = \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>therefore total area \( = 2\sqrt {{a^2} - 16}&nbsp; + \frac{1}{2}{a^2}\arcsin \left( {\frac{4}{a}} \right) = 20\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>rearrange to give: \({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}&nbsp; = 40\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\int_0^4 {\sqrt {{a^2} - {x^2}} {\text{d}}x = 20} \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>use substitution \(x = a\sin \theta ,{\text{ }}\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = a\cos \theta \)</p>
<p>\(\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {{a^2}{{\cos }^2}\theta {\text{d}}\theta&nbsp; = 20} \)</p>
<p>\(\frac{{{a^2}}}{2}\int_0^{\arcsin \left( {\frac{4}{a}} \right)} {(\cos 2\theta&nbsp; + 1){\text{d}}\theta&nbsp; = 20} \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({a^2}\left[ {\left( {\frac{{\sin 2\theta }}{2} + \theta } \right)} \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({a^2}\left[ {(\sin \theta \cos \theta&nbsp; + \theta } \right]_0^{\arcsin \left( {\frac{4}{a}} \right)} = 40\)</p>
<p>\({a^2}\arcsin \left( {\frac{4}{a}} \right) + {a^2}\left( {\frac{4}{a}} \right)\sqrt {\left( {1 - {{\left( {\frac{4}{a}} \right)}^2}} \right)}&nbsp; = 40\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({a^2}\arcsin \left( {\frac{4}{a}} \right) + 4\sqrt {{a^2} - 16}&nbsp; = 40\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">solving using \({\text{GDC}} \Rightarrow a = 5.53{\text{ cm}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A2</strong></em></p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<p class="p1"><em><strong>Total [10 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by</p>
<p class="p1">\[f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2},{\text{ }}x \in \mathbb{R}\]</p>
<p class="p1">\[g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2},{\text{ }}x \in \mathbb{R}\]</p>
</div>

<div class="specification">
<p class="p1">Let \(h(x) = nf(x) + g(x)\) where \(n \in \mathbb{R},{\text{ }}n &gt; 1\).</p>
</div>

<div class="specification">
<p class="p1">Let \(t(x) = \frac{{g(x)}}{{f(x)}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Show that \(\frac{1}{{4f(x) - 2g(x)}} = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Use the substitution \(u = {{\text{e}}^x}\) to find \(\int_0^{\ln 3} {\frac{1}{{4f(x) - 2g(x)}}} {\text{d}}x\). Give your answer in the form \(\frac{{\pi \sqrt a }}{b}\) where \(a,{\text{ }}b \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>By forming a quadratic equation in \({{\text{e}}^x}\)<span class="s1">, solve the equation \(h(x) = k\), where \(k \in {\mathbb{R}^ + }\).</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Hence or otherwise show that the equation \(h(x) = k\) has two real solutions provided that \(k &gt; \sqrt {{n^2} - 1} \) and \(k \in {\mathbb{R}^ + }\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Show that \(t'(x) = \frac{{{{[f(x)]}^2} - {{[g(x)]}^2}}}{{{{[f(x)]}^2}}}\) <span class="s1">for \(x \in \mathbb{R}\).</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Hence show that \(t'(x) &gt; 0\) for \(x \in \mathbb{R}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)     \(\frac{1}{{4\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right) - 2\left( {\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}} \right)}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{1}{{2({{\text{e}}^x} + {{\text{e}}^{ - x}}) - ({{\text{e}}^x} - {{\text{e}}^{ - x}})}}\)    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{1}{{{{\text{e}}^x} + 3{{\text{e}}^{ - x}}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    \(u = {{\text{e}}^x} \Rightarrow {\text{d}}u = {{\text{e}}^x}{\text{d}}x\)</span> <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}{\text{d}}x = \int {\frac{1}{{{u^2} + 3}}{\text{d}}u} } \)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">(when \(x = 0,{\text{ }}u = 1\) and when \(x = \ln 3,{\text{ }}u = 3\))</p>
<p class="p1"><span class="Apple-converted-space">\(\int_1^3 {\frac{1}{{{u^2} + 3}}{\text{d}}u\left[ {\frac{1}{{\sqrt 3 }}\arctan \left( {\frac{u}{{\sqrt 3 }}} \right)} \right]_1^3} \)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\(\left( { = \left[ {\frac{1}{{\sqrt 3 }}\arctan \left( {\frac{{{{\text{e}}^x}}}{{\sqrt 3 }}} \right)} \right]_0^{\ln 3}} \right)\)</p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{\pi \sqrt 3 }}{9} - \frac{{\pi \sqrt 3 }}{{18}}\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( = \frac{{\pi \sqrt 3 }}{{18}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \((n + 1){{\text{e}}^{2x}} - 2k{{\text{e}}^x} + (n - 1) = 0\)</span> <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\({{\text{e}}^x} = \frac{{2k \pm \sqrt {4{k^2} - 4({n^2} - 1)} }}{{2(n + 1)}}\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(x = \ln \left( {\frac{{k \pm \sqrt {{k^2} - {n^2} + 1} }}{{n + 1}}} \right)\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>for two real solutions, we require \(k &gt; \sqrt {{k^2} - {n^2} + 1} \) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p2">and we also require \({k^2} - {n^2} + 1 &gt; 0\) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({k^2} &gt; {n^2} - 1\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\( \Rightarrow k &gt; \sqrt {{n^2} - 1} {\text{ }}({\text{ }}k \in {\mathbb{R}^ + })\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2">\(t(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}\)</p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2} - {{({{\text{e}}^x} - {{\text{e}}^{ - x}})}^2}}}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2} - {{\left( {\frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}{{{{\left( {\frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}} \right)}^2}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2"><span class="Apple-converted-space">\(t'(x) = \frac{{f(x)g'(x) = g(x)f'(x)}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\(g'(x) = f(x)\) and \(f'(x) = g(x)\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong>METHOD 3</strong></p>
<p class="p4">\(t(x) = ({{\text{e}}^x} - {{\text{e}}^{ - x}}){({{\text{e}}^x} + {{\text{e}}^{ - x}})^{ - 1}}\)</p>
<p class="p4"><span class="Apple-converted-space">\(t'(x) = 1 - \frac{{{{({{\text{e}}^x} - {{\text{e}}^{ - x}})}^2}}}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\( = 1 - \frac{{{{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p3"><strong>METHOD 4</strong></p>
<p class="p4"><span class="Apple-converted-space">\(t'(x) = \frac{{g'(x)}}{{f(x)}} - \frac{{g(x)f'(x)}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p3">\(g'(x) = f(x)\) and \(f'(x) = g(x)\) gives \(t'(x) = 1 - \frac{{{{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\( = \frac{{{{\left[ {f(x)} \right]}^2} - {{\left[ {g(x)} \right]}^2}}}{{{{\left[ {f(x)} \right]}^2}}}\)    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p3">(ii) <span class="Apple-converted-space">    </span><strong>METHOD 1</strong></p>
<p class="p3">\({\left[ {f(x)} \right]^2} &gt; {\left[ {g(x)} \right]^2}\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\({\left[ {f(x)} \right]^2} &gt; 0\)    </span><strong><em>R1</em></strong></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\) <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p4"><span class="s2"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Award as above for use of either \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}\) and \(g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\) or \({{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \({{\text{e}}^x} - {{\text{e}}^{ - x}}\).</p>
<p class="p3"><strong>METHOD 2</strong></p>
<p class="p3">\({\left[ {f(x)} \right]^2} - {\left[ {g(x)} \right]^2} = 1\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\({\left[ {f(x)} \right]^2} &gt; 0\)    </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\)     <strong><em>AG</em></strong></p>
<p class="p4"><span class="s2"><strong>Note: <span class="Apple-converted-space">    </span></strong></span>Award as above for use of either \(f(x) = \frac{{{{\text{e}}^x} + {{\text{e}}^{ - x}}}}{2}\) and \(g(x) = \frac{{{{\text{e}}^x} - {{\text{e}}^{ - x}}}}{2}\) or \({{\text{e}}^x} + {{\text{e}}^{ - x}}\) and \({{\text{e}}^x} - {{\text{e}}^{ - x}}\).</p>
<p class="p3"><strong>METHOD 3</strong></p>
<p class="p4">\(t'(x) = \frac{4}{{{{({{\text{e}}^x} + {{\text{e}}^{ - x}})}^2}}}\)</p>
<p class="p4"><span class="Apple-converted-space">\({\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)^2} &gt; 0\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\(\frac{4}{{{{\left( {{{\text{e}}^x} + {{\text{e}}^{ - x}}} \right)}^2}}} &gt; 0\)    </span><span class="s2"><strong><em>R1</em></strong></span></p>
<p class="p3">hence \(t'(x) &gt; 0,{\text{ }}x \in \mathbb{R}\) <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p3"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">Part (a)(i) was reasonably well done with most candidates able to show that \(\frac{1}{{4f(x) - 2g(x)}} = \frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}\). In part (a)(ii), a number of candidates correctly used the required substitution to obtain \(\int {\frac{{{{\text{e}}^x}}}{{{{\text{e}}^{2x}} + 3}}{\text{d}}x = \int {\frac{1}{{{u^2} + 3}}{\text{d}}u} } \) but then thought that the antiderivative involved natural log rather than arctan.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">In part (b)(i), a reasonable number of candidates were able to form a quadratic in \({{\text{e}}^x}\) (involving parameters \(n\) and \(k\)) and then make some progress towards solving for \({{\text{e}}^x}\) in terms of \(n\) and \(k\). Having got that far, a small number of candidates recognised to then take the natural logarithm of both sides and hence solve \(h(x) = k\) for \(\chi \). In part (b)(ii), a small number of candidates were able to show from their solutions to part (b)(i) or through the use of the discriminant that the equation \(h(x) = k\) has two real solutions provided that \(k &gt; \sqrt {{k^2} - {n^2} + 1} \) and \(k &gt; \sqrt {{n^2} - 1} \).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (a) and (c) were accessible to the large majority of candidates. Candidates found part (b) considerably more challenging.</p>
<p class="p1">It was pleasing to see the number of candidates who attempted part (c). In part (c)(i), a large number of candidates were able to correctly apply either the quotient rule or the product rule to find \(t'(x)\). A smaller number of candidates were then able to show equivalence between the form of \(t'(x)\) they had obtained and the form of \(t'(x)\) required in the question. A pleasing number of candidates were able to exploit the property that \(f'(x) = g(x)\) and \(g'(x) = f(x)\). As with part (c)(i), part (c)(ii) could be successfully tackled in a number of ways. The best candidates offered concise logical reasoning to show that \(t'(x) &gt; 0\) for \(x \in \mathbb{R}\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let the function \(f\) be defined by \(f(x) = \frac{{2 - {{\text{e}}^x}}}{{2{{\text{e}}^x} - 1}},{\text{ }}x \in D\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine \(D\), the largest possible domain of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the graph of \(f\) has three asymptotes and state their equations.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(f'(x) =  - \frac{{3{{\text{e}}^x}}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your answers from parts (b) and (c) to justify that \(f\) <span class="s1">has an inverse and state its domain.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Consider the region \(R\) </span>enclosed by the graph of \(y = f(x)\) and the axes.</p>
<p class="p1">Find the volume of the solid obtained when \(R\) is rotated through \(2\pi \) about the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to solve either \(2{{\text{e}}^x} - 1 = 0\) or \(2{{\text{e}}^x} - 1 \ne 0\) for \(x\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(D = \mathbb{R}\backslash \left\{ { - \ln 2} \right\}\) (or equivalent <em>eg</em> \(x \ne  - \ln 2\)) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept \(D = \mathbb{R}\backslash \left\{ { - 0.693} \right\}\) or equivalent <em>eg</em> \(x \ne  - 0.693\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">considering \(\mathop {\lim }\limits_{x \to  - \ln 2} f(x)\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(x =  - \ln 2{\text{ }}(x =  - 0.693)\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1">considering one of \(\mathop {\lim }\limits_{x \to  - \infty } f(x)\)<span class="s1"> </span>or \(\mathop {\lim }\limits_{x \to  + \infty } f(x)\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2 \Rightarrow y =  - 2\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(\mathop {\lim }\limits_{x \to  + \infty } f(x) =  - \frac{1}{2} \Rightarrow y =  - \frac{1}{2}\)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<div> </div>
<p class="p1"><strong>Note: </strong>Award <strong><em>A0A0 </em></strong>for \(y =  - 2\)<span class="s1"> </span>and \(y =  - \frac{1}{2}\)<span class="s1"> </span>stated without any justification.</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(f'(x) = \frac{{ - {{\text{e}}^x}(2{{\text{e}}^x} - 1) - 2{{\text{e}}^x}(2 - {{\text{e}}^x})}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\)    </span><strong><em>M1A1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( =  - \frac{{3{{\text{e}}^x}}}{{{{(2{{\text{e}}^x} - 1)}^2}}}\)    </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f'(x) &lt; 0{\text{ (for all }}x \in D) \Rightarrow f\) is (strictly) decreasing <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>R1 </em></strong>for a statement such as \(f'(x) \ne 0\) and so the graph of \(f\) has no turning points.</p>
<p class="p2"> </p>
<p class="p1">one branch is above the upper horizontal asymptote and the other branch is below the lower horizontal asymptote <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1">\(f\) has an inverse <span class="Apple-converted-space">    </span><strong><em>AG</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( - \infty  &lt; x &lt;  - 2 \cup  - \frac{1}{2} &lt; x &lt; \infty \)    </span><strong><em>A2</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>A2 </em></strong>if the domain of the inverse is seen in either part (d) or in part (e).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(x = \frac{{2 - {{\text{e}}^y}}}{{2{{\text{e}}^y} - 1}}\)    </span><strong><em>M1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>M1 </em></strong>for interchanging \(x\) and \(y\) (can be done at a later stage).</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\(2x{{\text{e}}^y} - x = 2 - {{\text{e}}^y}\)    </span><strong><em>M1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({{\text{e}}^y}(2x + 1) = x + 2\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({f^{ - 1}}(x) = \ln \left( {\frac{{x + 2}}{{2x + 1}}} \right){\text{ }}\left( {{f^{ - 1}}(x) = \ln (x + 2) - \ln (2x + 1)} \right)\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">use of \(V = \pi \int_a^b {{x^2}{\text{d}}y} \) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \pi \int_0^1 {{{\left( {\ln \left( {\frac{{y + 2}}{{2y + 1}}} \right)} \right)}^2}{\text{d}}y} \)    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for the correct integrand and <strong><em>(A1) </em></strong>for the limits.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 0.331\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graphs of \(y = {x^2}{{\text{e}}^{ - x}}\) and \(y = 1 - 2\sin x\) for \(2 \leqslant x \leqslant 7\) intersect at points A and B.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The <em>x</em>-coordinates of A and B are \({x_{\text{A}}}\) and \({x_{\text{B}}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \({x_{\text{A}}}\) and the value of \({x_{\text{B}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area enclosed between the two graphs for \({x_{\mathbf{A}}} \leqslant x \leqslant {x_{\text{B}}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_{\text{A}}} = 2.87\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_{{\text{B}}}} = 6.78\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{2.87172{\text{K}}}^{6.77681K} {1 - 2\sin x - {x^2}{{\text{e}}^{ - x}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 6.76\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>(M1) </em></strong>for definite integral and <strong><em>(A1</em></strong>) for a correct definite integral.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the solution of the equation</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\ln {2^{4x - 1}} = \ln {8^{x + 5}} + {\log _2}{16^{1 - 2x}},\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">expressing your answer in terms of \(\ln 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Using this value of <em>x</em>, find the value of <em>a</em> for which \({\log _a}x = 2\), giving your answer to three decimal places.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; rewrite the equation as \((4x - 1)\ln 2 = (x + 5)\ln 8 + (1 - 2x){\log _2}16\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((4x - 1)\ln 2 = (3x + 15)\ln 2 + 4 - 8x\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{4 + 16\ln 2}}{{8 + \ln 2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(x = {a^2}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 1.318\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Treat 1.32 as an <strong><em>AP</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A0</em></strong> for &plusmn;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A more difficult question. Many candidates failed to read the question carefully so did not express <em>x</em> in terms of \(\ln 2\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that (<em>x</em> &minus; 2) is a factor of \(f(x) = {x^3} + a{x^2} + bx - 4\) and that division \(f(x)\) by (<em>x</em> &minus; 1) leaves a remainder of &minus;6 , find the value of <em>a</em> and the value of <em>b</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(2) = 8 + 4a + 2b - 4 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4a + 2b = - 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1) = 1 + a + b - 4 = - 6\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow a + b = - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solving, \(a = 1,{\text{ }}b = - 4\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = \frac{1}{{1 + {{\text{e}}^{ - x}}}}\),</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find \({f^{ - 1}}(x)\), stating its domain;</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the value of <em>x</em> such that \(f(x) = {f^{ - 1}}(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{1}{{1 + {{\text{e}}^{ - x}}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(1 + {{\text{e}}^{ - x}}) = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 + {{\text{e}}^{ - x}} = \frac{1}{y} \Rightarrow {{\text{e}}^{ - x}} = \frac{1}{y} - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = - \ln \left( {\frac{1}{y} - 1} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = - \ln \left( {\frac{1}{x} - 1} \right)\,\,\,\,\,\left( { = \ln \left( {\frac{x}{{1 - x}}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">domain: 0 &lt; <em>x</em> &lt; 1 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for endpoints and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for strict inequalities.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">0.659 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Finding the inverse function was done successfully by a very large number of candidates. The domain, however, was not always correct. Some candidates failed to use the GDC correctly to find (b), while other candidates had unsuccessful attempts at an analytic solution.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Finding the inverse function was done successfully by a very large number of candidates. The domain, however, was not always correct. Some candidates failed to use the GDC correctly to find (b), while other candidates had unsuccessful attempts at an analytic solution.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The sum of the first 16 terms of an arithmetic sequence is 212 and the fifth term is 8.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the first term and the common difference.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the smallest value of <em>n </em>such that the sum of the first <em>n </em>terms is greater&nbsp;than 600.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({S_n} = \frac{n}{2}[2a + (n - 1)d]\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(212 = \frac{{16}}{2}(2a + 15d)\,\,\,\,\,( = 16a + 120d)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^{th}}{\text{ term is }}a + (n - 1)d\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(8 = a + 4d\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">solving simultaneously: &nbsp; &nbsp; <strong><em>(M1)&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(d = 1.5,{\text{ }}a = 2\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{n}{2}[4 + 1.5(n - 1)] &gt; 600\) &nbsp; &nbsp;<strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 3{n^2} + 5n - 2400 &gt; 0\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow n &gt; 27.4...,{\text{ }}(n &lt; - 29.1...)\)</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 11px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize improper use of inequalities.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow n = 28\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be a good start to the paper for most candidates. The vast majority made a meaningful attempt at this question with many gaining the correct answers. Candidates who lost marks usually did so because of mistakes in the working. In part (b) the most efficient way of gaining the answer was to use the calculator once the initial inequality was set up. A small number of candidates spent valuable time unnecessarily manipulating the algebra before moving to the calculator.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be a good start to the paper for most candidates. The vast majority made a meaningful attempt at this question with many gaining the correct answers. Candidates who lost marks usually did so because of mistakes in the working. In part (b) the most efficient way of gaining the answer was to use the calculator once the initial inequality was set up. A small number of candidates spent valuable time unnecessarily manipulating the algebra before moving to the calculator.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\) is defined as \(f(x) = \sqrt {\frac{{1 - x}}{{1 + x}}} ,{\text{ }} - 1 &lt; x \leqslant 1\).</p>
<p class="p1">Find the inverse function, \({f^{ - 1}}\) stating its domain and range.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><span class="Apple-converted-space">\(x = \sqrt {\frac{{1 - y}}{{1 + y}}} \)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for interchanging \(x\) and \(y\) (can be done at a later stage).</p>
<p class="p3">\({x^2} = \frac{{1 - y}}{{1 + y}}\)</p>
<p class="p3"><span class="Apple-converted-space">\({x^2} + {x^2}y = 1 - y\)    </span><strong><em>M1</em></strong></p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for attempting to make \(y\) the subject.</p>
<p class="p3"><span class="Apple-converted-space">\(y(1 + {x^2}) = 1 - {x^2}\)    </span><strong><em>(A1)</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\({f^{ - 1}}(x) = \frac{{1 - {x^2}}}{{1 + {x^2}}},{\text{ }}x \geqslant 0\)    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1 </em></strong>only if \({f^{ - 1}}(x)\) is seen. Award <strong><em>A1 </em></strong>for the domain.</p>
<p class="p3">the range of \({f^{ - 1}}\) <span class="s2">is \( - 1 &lt; {f^{ - 1}}(x) \leqslant 1\) <span class="Apple-converted-space">    </span></span><strong><em>A1</em></strong></p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Accept correct alternative notation <em>eg</em><span class="s2">. \( - 1 &lt; y \leqslant 1\)</span>.</p>
<p class="p3"><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Most candidates were able to find an expression for the inverse function. A large number of candidates however were unable to determine the domain and range of the inverse.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Compactness is a measure of how compact an enclosed region is.</p>
<p class="p1">The compactness,&nbsp;<em>\(C\) </em>, of an enclosed region can be defined by \(C = \frac{{4A}}{{\pi {d^2}}}\), where&nbsp;<em>\(A\) </em>is the area of the region and&nbsp;<em>\(d\) </em>is the maximum distance between any two points in the region.</p>
<p class="p1">For a circular region, \(C = 1\).</p>
<p class="p1">Consider a regular polygon of&nbsp;<em>\(n\) </em>sides constructed such that its vertices lie on the circumference of a circle of diameter&nbsp;<em>\(x\) </em>units.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n &gt; 2\) and even, show that \(C = \frac{n}{{2\pi }}\sin \frac{{2\pi }}{n}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n &gt; 1\) and odd, it can be shown that \(C = \frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}}\).</p>
<p class="p1">Find the regular polygon with the least number of sides for which the compactness is more than \(0.99\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If \(n &gt; 1\) and odd, it can be shown that \(C = \frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}}\).</p>
<p class="p1">Comment briefly on whether <em>C </em>is a good measure of compactness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">each triangle has area \(\frac{1}{8}{x^2}\sin \frac{{2\pi }}{n}\;\;\;({\text{use of }}\frac{1}{2}ab\sin C)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">there are&nbsp;<em>\(n\) </em>triangles so \(A = \frac{1}{8}n{x^2}\sin \frac{{2\pi }}{n}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(C = \frac{{4\left( {\frac{1}{8}n{x^2}\sin \frac{{2\pi }}{n}} \right)}}{{\pi {n^2}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \(C = \frac{n}{{2\pi }}\sin \frac{{2\pi }}{n}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempting to find the least value of&nbsp;<em>\(n\) </em>such that \(\frac{n}{{2\pi }}\sin \frac{{2\pi }}{n} &gt; 0.99\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\(n = 26\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">attempting to find the least value of&nbsp;<em>\(n\) </em>such that \(\frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}} &gt; 0.99\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\(n = 21\) (and so a regular polygon with 21 sides)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <span class="s1"><strong><em>(M0)A0(M1)A1</em></strong></span> if \(\frac{n}{{2\pi }}\sin \frac{{2\pi }}{n} &gt; 0.99\) is not considered and \(\frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}} &gt; 0.99\) is correctly considered.</p>
<p class="p1">Award <strong><em>(M1)A1(M0)A0 </em></strong>for \(n = 26\).</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p1">for even and odd values of <em>n</em>, the value of <em>C </em>seems to increase towards the limiting value of the circle \((C = 1)\) <em>ie </em>as <em>n </em>increases, the polygonal regions get closer and closer to the enclosing circular region <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">the differences between the odd and even values of <em>n </em>illustrate that this measure of compactness is not a good one. <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates found this a difficult question with a large number of candidates either not attempting it or making little to no progress. In part (a), a number of candidates attempted to show the desired result using specific regular polygons. Some candidates attempted to fudge the result.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b), the overwhelming majority of candidates that obtained either \(n = 21\) or \(n = 26\) or both used either a GDC numerical solve feature or a graphical approach rather than a tabular approach which is more appropriate for a discrete variable such as the number of sides of a regular polygon. Some candidates wasted valuable time by showing that \(C = \frac{{n\sin \frac{{2\pi }}{n}}}{{\pi \left( {1 + \cos \frac{\pi }{n}} \right)}}\) (a given result).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), the occasional candidate correctly commented that \(C \) was a good measure of compactness either because the value of \(C \) seemed to approach the limiting value of the circle as \(n \) increased or commented that \(C \) was not a good measure because of the disparity in \(C \)-values between even and odd values of \(n \).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a semi-circle of diameter 20 cm, centre O and two points A and B such that \({\rm{A\hat OB}} = \theta \), where \(\theta \) is in radians.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-17_om_06.17.13.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the shaded area can be expressed as \(50\theta&nbsp; - 50\sin \theta \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\theta \) for which the shaded area is equal to half that of the unshaded area, giving your answer correct to four significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \frac{1}{2} \times {10^2} \times \theta&nbsp; - \frac{1}{2} \times {10^2} \times \sin \theta \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for use of area of segment = area of sector &ndash; area of triangle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 50\theta&nbsp; - 50\sin \theta \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">unshaded area \( = \frac{{\pi&nbsp; \times {{10}^2}}}{2} - 50(\theta&nbsp; - \sin \theta )\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or equivalent <em>eg</em> \(50\pi&nbsp; - 50\theta&nbsp; + 50\sin \theta )\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(50\theta&nbsp; - 50\sin \theta&nbsp; = \frac{1}{2}(50\pi&nbsp; - 50\theta&nbsp; + 50\sin \theta )\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3\theta&nbsp; - 3\sin \theta&nbsp; - \pi&nbsp; = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \theta&nbsp; = 1.969{\text{ (rad)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(50\theta&nbsp; - 50\sin \theta&nbsp; = \frac{1}{3}\left( {\frac{{\pi&nbsp; \times {{10}^2}}}{2}} \right)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3\theta&nbsp; - 3\sin \theta&nbsp; - \pi&nbsp; = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \theta&nbsp; = 1.969{\text{ (rad)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was very well done. Most candidates knew how to calculate the area of a segment. A few candidates used \(r = 20\).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) challenged a large proportion of candidates. A common error was to equate the unshaded area and the shaded area. Some candidates expressed their final answer correct to three significant figures rather than to the four significant figures specified.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \ln x\)&nbsp;. The graph of <em>f </em>is transformed into the graph of the function <em>g&nbsp;</em>by a translation of \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 3 \\ <br>&nbsp; { - 2} <br>\end{array}} \right)\), followed by a reflection in the <em>x</em>-axis. Find an expression&nbsp;for \(g(x)\), giving your answer as a single logarithm.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(h(x) = f(x - 3) - 2 = \ln (x - 3) - 2\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = &nbsp;-h(x) = 2 - \ln (x - 3)\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p>&nbsp;<strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Note<em>: </em></strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">M1 </strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">only if it is clear the effect of the reflection in the </span><em style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">x</em><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">-axis:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the expression is correct <strong><em>OR<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">there is a change of signs of the previous expression <strong><em>OR<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">there&rsquo;s a graph or an explanation making it explicit</span></p>
<p>&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln {{\text{e}}^2} - \ln (x - 3)\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \left( {\frac{{{{\text{e}}^2}}}{{x - 3}}} \right)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well attempted but many candidates could have scored better had they written down all the steps to obtain the final expression. In some cases, as the final expression was incorrect and the middle steps were missing, candidates scored just 1 mark. That could be a consequence of a small mistake, but the lack of working prevented them from scoring at least all method marks. Some candidates performed the transformations well but were not able to use logarithms properties to transform the answer and give it as a single logarithm.</span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Find the acute angle between the planes with equations \(x + y + z = 3\) and \(2x - z = 2\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><strong><em>n</em></strong>\(_1 = \left( {\begin{array}{*{20}{c}} 1 \\ 1 \\ 1 \end{array}} \right)\) and <strong><em>n</em></strong>\(_2 = \left( {\begin{array}{*{20}{c}} 2 \\ 0 \\ { - 1} \end{array}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p1"><strong>EITHER </strong></p>
<p class="p1"><span class="Apple-converted-space">\(\theta  = \arccos \left( {\frac{{{n_1} \bullet {n_2}}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\left( {\cos \theta  = \frac{{{n_1} \bullet {n_2}}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \arccos \left( {\frac{{2 + 0 - 1}}{{\sqrt 3 \sqrt 5 }}} \right)\left( {\cos \theta  = \frac{{2 + 0 - 1}}{{\sqrt 3 \sqrt 5 }}} \right)\)    </span><strong><em>(A1)</em></strong></p>
<p class="p1">\( = \arccos \left( {\frac{1}{{\sqrt {15} }}} \right)\left( {\cos \theta  = \frac{1}{{\sqrt {15} }}} \right)\)</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\theta  = \arcsin \left( {\frac{{\left| {{n_1} \times {n_2}} \right|}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\left( {\sin \theta  = \frac{{\left| {{n_1} \times {n_2}} \right|}}{{\left| {{n_1}} \right|\left| {{n_2}} \right|}}} \right)\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\( = \arcsin \left( {\frac{{\sqrt {14} }}{{\sqrt 3 \sqrt 5 }}} \right)\left( {\sin \theta  = \frac{{\sqrt {14} }}{{\sqrt 3 \sqrt 5 }}} \right)\)    </span><strong><em>(A1)</em></strong></p>
<p class="p1">\( = \arcsin \left( {\frac{{\sqrt {14} }}{{\sqrt {15} }}} \right)\left( {\sin \theta  = \frac{{\sqrt {14} }}{{\sqrt {15} }}} \right)\)</p>
<p class="p2"> </p>
<p class="p1"><strong>THEN</strong></p>
<p class="p1"><span class="Apple-converted-space">\( = 75.0^\circ {\text{ (or 1.31)}}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{{{{\text{e}}^{2x}} + 1}}{{{{\text{e}}^x} - 2}}\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The line \({L_2}\) is parallel to \({L_1}\) and tangent to the curve \(y = f(x)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equations of the horizontal and vertical asymptotes of the curve \(y = f(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the curve has exactly one point where its tangent is horizontal.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the coordinates of this point.</span></p>
<p>&nbsp;</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of \({L_1}\), the normal to the curve at the point where it crosses the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the line \({L_2}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \to&nbsp; - \infty&nbsp; \Rightarrow y \to&nbsp; - \frac{1}{2}\) so \(y =&nbsp; - \frac{1}{2}\) is an asymptote &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^x} - 2 = 0 \Rightarrow x = \ln 2\) so \(x = \ln 2{\text{ }}( = 0.693)\) is an asymptote &nbsp; &nbsp;&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = \frac{{2\left( {{{\text{e}}^x} - 2} \right){{\text{e}}^{2x}} - \left( {{{\text{e}}^{2x}} + 1} \right){{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( = \frac{{{{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x}}}{{{{\left( {{{\text{e}}^x} - 2} \right)}^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f'(x) = 0\) when \({{\text{e}}^{3x}} - 4{{\text{e}}^{2x}} - {{\text{e}}^x} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \({{\text{e}}^x}\left( {{{\text{e}}^{2x}} - 4{{\text{e}}^x} - 1} \right) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \({{\text{e}}^x} = 0,{\text{ }}{{\text{e}}^x} =&nbsp; - 0.236,{\text{ }}{{\text{e}}^x} = 4.24{\text{ }}({\text{or }}{{\text{e}}^x} = 2 \pm \sqrt 5 )\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for zero, <strong><em>A1 </em></strong>for other two solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Accept any answers which show a zero, a negative and a positive.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; as \({{\text{e}}^x} &gt; 0\) exactly one solution &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not award marks for purely graphical solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; (1.44, 8.47) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(0) =&nbsp; - 4\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so gradient of normal is \(\frac{1}{4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so equation of \({L_1}\) is \(y = \frac{1}{4}x - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x = 1.46\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1.46) = 8.47\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equation of \({L_2}\) is \(y - 8.47 = \frac{1}{4}(x - 1.46)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(or \(y = \frac{1}{4}x + 8.11\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the curve \(y = \frac{{\cos x}}{{\sqrt {{x^2} + 1} }},{\text{ }} - 4 \leqslant x \leqslant 4\)&nbsp;showing clearly the coordinates of the&nbsp;<em>x-</em>intercepts, any maximum points and any minimum points.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the gradient of the curve at <em>x </em>= 1 .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the equation of the normal to the curve at <em>x </em>= 1 .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct shape. Do not penalise if too large a domain is used,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct <em>x</em>-intercepts,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct coordinates of two minimum points,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1 </em></strong>for correct coordinates of maximum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Accept answers which correctly indicate the position of the intercepts,&nbsp;maximum point and minimum points.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient at <em>x</em> = 1 is &ndash;0.786 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of normal is \(\frac{{ - 1}}{{ - 0.786}}( = 1.272...)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>x</em> = 1, <em>y</em> = 0.3820... &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Equation of normal is <em>y</em> &ndash; 0.382 = 1.27(<em>x</em> &ndash; 1) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(( \Rightarrow y = 1.27x - 0.890)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to make a meaningful start to this question, but many made errors along the way and hence only a relatively small number of candidates gained full marks for the question. Common errors included trying to use degrees, rather than radians, trying to use algebraic methods to find the gradient in part (b) and trying to find the equation of the tangent rather than the equation of the normal in part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the graphs of a linear function <em>f</em> and a quadratic function <em>g</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">On the same axes sketch the graph of \(\frac{f}{g}\). Indicate clearly where the <em>x</em>-intercept and the asymptotes occur.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct concavities &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for concavity of each branch of the curve.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct <em>x</em>-intercept of \(\frac{f}{g}\) (which is EXACTLY the <em>x</em>-intercept of <em>f</em>) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct vertical asymptotes of \(\frac{f}{g}\) (which ONLY occur when <em>x</em> equals the <em>x</em>-intercepts of <em>g</em>) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates answered well this question. Full marks were often achieved. Many other candidates did not attempt it at all.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Express the sum of the first <em>n</em> positive odd integers using sigma notation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the sum stated above is \({n^2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Deduce the value of the difference between the sum of the first 47 positive odd integers and the sum of the first 14 positive odd integers.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A number of distinct points are marked on the circumference of a circle, forming a polygon. Diagonals are drawn by joining all pairs of non-adjacent points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show on a diagram all diagonals if there are 5 points.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the number of diagonals is \(\frac{{n(n - 3)}}{2}\) if there are n points, where \(n &gt; 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Given that there are more than one million diagonals, determine the least number of points for which this is possible.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable \(X \sim B(n,{\text{ }}p)\) has mean 4 and variance 3.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Determine <em>n</em> and <em>p</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the probability that in a single experiment the outcome is 1 or 3.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(\sum\limits_{k = 1}^n {(2k - 1)} \) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\sum\limits_{n = 1}^n {(2n - 1)} \) or equivalent.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;">EITHER</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 \times \frac{{n(n + 1)}}{2} - n\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{n}{2}\left( {2 + (n - 1)2} \right){\text{ (using }}{S_n} = \frac{n}{2}\left( {2{u_1} + (n - 1)d} \right))\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{n}{2}(1 + 2n - 1){\text{ (using }}{S_n} = \frac{n}{2}({u_1} + {u_n}))\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {n^2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \({47^2} - {14^2} = 2013\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a pentagon and five diagonals &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">five diagonals (circle optional) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Each point joins to <em>n</em> &ndash; 3 other points. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a correct argument for \({n(n - 3)}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a correct argument for \(\frac{{n(n - 3)}}{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; attempting to solve \(\frac{1}{2}n(n - 3) &gt; 1\,000\,000\) for <em>n</em>. &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n &gt; 1415.7\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n = 1416\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <em>np</em> = 4 and <em>npq</em> = 3 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to solve for <em>n</em> and <em>p</em> &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n = 16\) and \(p = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(X \sim B(16,0.25)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(X = 1) = 0.0534538...( = \left( {\begin{array}{*{20}{c}}<br>&nbsp; {16} \\ <br>&nbsp; 1 <br>\end{array}} \right)(0.25){(0.75)^{15}})\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(X = 3) = 0.207876...( = \left( {\begin{array}{*{20}{c}}<br>&nbsp; {16} \\ <br>&nbsp; 3 <br>\end{array}} \right){(0.25)^3}{(0.75)^{13}})\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}}(X = 1) + {\text{P}}(X = 3)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 0.261 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[8 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (a) (i), a large number of candidates were unable to correctly use sigma notation to express the sum of the first <em>n </em>positive odd integers. Common errors included summing \(2n - 1\) from 1 to <em>n </em>and specifying sums with incorrect limits. Parts (a) (ii) and (iii) were generally well done.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (b) (i) and (iii) were generally well done. In part (b) (iii), many candidates unnecessarily simplified their quadratic when direct GDC use could have been employed. A few candidates gave \(n &gt; 1416\) as their final answer. While some candidates displayed sound reasoning in part (b) (ii), many candidates unfortunately adopted a &lsquo;proof by example&rsquo; approach.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (c) was generally well done. In part (c) (ii), some candidates multiplied the two probabilities rather than adding the two probabilities.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A straight street of width 20 metres is bounded on its parallel sides by two vertical walls, one of height 13 metres, the other of height 8 metres. The intensity of light at point P at ground level on the street is proportional to the angle \(\theta \) where \(\theta&nbsp; = {\rm{A\hat PB}}\), as shown in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(\theta \) in terms of <em>x</em>, where <em>x</em> is the distance of P from the base of the wall of height 8 m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Calculate the value of \(\theta \) when <em>x</em> = 0.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Calculate the value of \(\theta \) when <em>x</em> = 20.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(\theta \), for \(0 \leqslant x \leqslant 20\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{{5(744 - 64x - {x^2})}}{{({x^2} + 64)({x^2} - 40x + 569)}}\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the result in part (d), or otherwise, determine the value of <em>x</em> corresponding to the maximum light intensity at P. Give your answer to four significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The point P moves across the street with speed \(0.5{\text{ m}}{{\text{s}}^{ - 1}}\). Determine the rate of change of \(\theta \) with respect to time when P is at the midpoint of the street.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \pi&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(\theta&nbsp; = 180^\circ&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\) (or equivalent).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">OR</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \left( {\frac{x}{8}} \right) + \arctan \left( {\frac{{20 - x}}{{13}}} \right)\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(\theta&nbsp; = 0.994{\text{ }}\left( { = \arctan \frac{{20}}{{13}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(\theta&nbsp; = 1.19{\text{ }}\left( { = \arctan \frac{5}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct shape. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">correct domain indicated. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to differentiate one \(\arctan \left( {f(x)} \right)\) term &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \pi&nbsp; - \arctan \left( {\frac{8}{x}} \right) - \arctan \left( {\frac{{13}}{{20 - x}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{8}{{{x^2}}} \times \frac{1}{{1 + {{\left( {\frac{8}{x}} \right)}^2}}} - \frac{{13}}{{{{(20 - x)}^2}}} \times \frac{1}{{1 + {{\left( {\frac{{13}}{{20 - x}}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \left( {\frac{x}{8}} \right) + \arctan \left( {\frac{{20 - x}}{{13}}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = \frac{{\frac{1}{8}}}{{1 + {{\left( {\frac{x}{8}} \right)}^2}}} + \frac{{ - \frac{1}{{13}}}}{{1 + {{\left( {\frac{{20 - x}}{{13}}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{8}{{{x^2} + 64}} - \frac{{13}}{{569 - 40x + {x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{8(569 - 40x + {x^2}) - 13({x^{2}} + 64)}}{{({x^2} + 64)({x^2} - 40x + 569)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{5(744 - 64x - {x^2})}}{{({x^2} + 64)({x^2} - 40x + 569)}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Maximum light intensity at P occurs when \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0\). &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either attempting to solve \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0\) for <em>x</em> or using the graph of either \(\theta \) or \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 10.05 (m) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}x}}{{{\text{d}}t}} = 0.5\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At <em>x</em> = 10, \(\frac{{{\text{d}}\theta }}{{{\text{d}}x}} = 0.000453{\text{ }}\left( { = \frac{5}{{11029}}} \right)\). &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = \frac{{{\text{d}}\theta }}{{{\text{d}}x}} \times \frac{{{\text{d}}x}}{{{\text{d}}t}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = 0.000227{\text{ }}\left( { = \frac{5}{{22058}}} \right){\text{ (rad }}{{\text{s}}^{ - 1}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(A1)</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\frac{{{\text{d}}x}}{{{\text{d}}t}} =&nbsp; - 0.5\) and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}} = - 0.000227{\text{ }}\left( { = - \frac{5}{{22058}}} \right){\text{ }}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Implicit differentiation can be used to find \(\frac{{{\text{d}}\theta }}{{{\text{d}}t}}\). Award as above.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was reasonably well done. While many candidates exhibited sound trigonometric knowledge to correctly express <em>&theta; </em>in terms of <em>x</em>, many other candidates were not able to use elementary trigonometry to formulate the required expression for <em>&theta;</em>.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b), a large number of candidates did not realize that <em>&theta; </em>could only be acute and gave obtuse angle values for <em>&theta;</em>. Many candidates also demonstrated a lack of insight when substituting endpoint <em>x</em>-values into <em>&theta;</em>.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (c), many candidates sketched either inaccurate or implausible graphs.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (d), a large number of candidates started their differentiation incorrectly by failing to use the chain rule correctly.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">For a question part situated at the end of the paper, part (e) was reasonably well done. A large number of candidates demonstrated a sound knowledge of finding where the maximum value of <em>&theta; </em>occurred and rejected solutions that were not physically feasible.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (f), many candidates were able to link the required rates, however only a few candidates were able to successfully apply the chain rule in a related rates context.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle, A, is moving along a straight line. The velocity, \({v_A}{\text{ m}}{{\text{s}}^{ - 1}}\), of A <em>t</em> seconds after its motion begins is given by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{v_A} = {t^3} - 5{t^2} + 6t.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \({v_A} = {t^3} - 5{t^2} + 6t\) for \(t \geqslant 0\), with \({v_A}\) on the vertical axis and <em>t</em> on the horizontal. Show on your sketch the local maximum and minimum points, and the intercepts with the <em>t</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the times for which the velocity of the particle is increasing.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the times for which the magnitude of the velocity of the particle is increasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At <em>t</em> = 0 the particle is at point O on the line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the particle&rsquo;s displacement, \({x_A}{\text{m}}\), from O at time <em>t</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A second particle, B, moving along the same line, has position \({x_B}{\text{ m}}\), velocity \({v_B}{\text{ m}}{{\text{s}}^{ - 1}}\) and acceleration, \({a_B}{\text{ m}}{{\text{s}}^{ - 2}}\), where \({a_B} = - 2{v_B}\) for \(t \geqslant 0\). At \(t = 0,{\text{ }}{x_B} = 20\) and \({v_B} = - 20\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \({v_B}\) in terms of <em>t</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>t</em> when the two particles meet.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for general shape, <strong><em>A1</em></strong> for correct maximum and minimum, <strong><em>A1</em></strong> for intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Follow through applies to (b) and (c).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant t &lt; 0.785,{\text{ }}\left( {{\text{or }}0 \leqslant t &lt; \frac{{5 - \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(allow \(t &lt; 0.785\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(t &gt; 2.55{\text{ }}\left( {{\text{or }}t &gt; \frac{{5 + \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant t &lt; 0.785,{\text{ }}\left( {{\text{or }}0 \leqslant t &lt; \frac{{5 - \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(allow \(t &lt; 0.785\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 &lt; t &lt; 2.55,{\text{ }}\left( {{\text{or }}2 &lt; t &lt; \frac{{5 + \sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t &gt; 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">position of A: \({x_A} = \int {{t^3} - 5{t^2} + 6t{\text{ d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_A} = \frac{1}{4}{t^4} - \frac{5}{3}{t^3} + 3{t^2}\,\,\,\,\,( + c)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(t = 0,{\text{ }}{x_A} = 0\), so \(c = 0\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}{v_B}}}{{{\text{d}}t}} = - 2{v_B} \Rightarrow \int {\frac{1}{{{v_B}}}{\text{d}}{v_B} = \int { - 2{\text{d}}t} } \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln \left| {{v_B}} \right| = - 2t + c\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v_B} = A{e^{ - 2t}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v_B} = - 20\) when <em>t</em> = 0 so \({v_B} = - 20{e^{ - 2t}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_B} = 10{e^{ - 2t}}( + c)\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_B} = 20{\text{ when }}t = 0{\text{ so }}{x_B} = 10{e^{ - 2t}} + 10\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">meet when \(\frac{1}{4}{t^4} - \frac{5}{3}{t^3} + 3{t^2} = 10{e^{ - 2t}} + 10\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = 4.41(290 \ldots )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was generally well done, although correct accuracy was often a problem.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (b) and (c) were also generally quite well done.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (b) and (c) were also generally quite well done.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A variety of approaches were seen in part (d) and many candidates were able to obtain at least 2 out of 3. A number missed to consider the \(+c\) , thereby losing the last mark.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Surprisingly few candidates were able to solve part (e) correctly. Very few could recognise the easy variable separable differential equation. As a consequence part (f) was frequently left.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Surprisingly few candidates were able to solve part (e) correctly. Very few could recognise the easy variable separable differential equation. As a consequence part (f) was frequently left.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the expression&nbsp;\(f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{cot}}\left( {\frac{\pi }{4} - x} \right)\).</p>
</div>

<div class="specification">
<p>The expression&nbsp;\(f\left( x \right)\) can be written as&nbsp;\(g\left(&nbsp;t \right)\) where&nbsp;\(t = {\text{tan}}\,x\).</p>
</div>

<div class="specification">
<p>Let&nbsp;\(\alpha \),&nbsp;<em>&beta;</em> be the roots of&nbsp;\(g\left( t \right) = k\), where 0 &lt; \(k\) &lt; 1.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( x \right)\) for \( - \frac{{5\pi }}{8} \leqslant x \leqslant \frac{\pi }{8}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to your graph, explain why \(f\) is a function on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why \(f\) has no inverse on the given domain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why \(f\) is not a function for \( - \frac{{3\pi }}{4} \leqslant x \leqslant \frac{\pi }{4}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(g\left( t \right) = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = g\left( t \right)\) for <em>t</em> ≤ 0. Give the coordinates of any intercepts and the equations of any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\alpha \) and <em>β</em> in terms of \(k\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\alpha \) + <em>β</em> &lt; −2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="">     <em><strong>A1A1</strong></em></p>
<p><em><strong>A1</strong> </em>for correct concavity, many to one graph, symmetrical about the midpoint of the domain and with two axes intercepts.</p>
<p><strong>Note:</strong> Axes intercepts and scales not required.</p>
<p><strong>A1</strong> for correct domain</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for each value of \(x\) there is a unique value of \(f\left( x \right)\)      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept “passes the vertical line test” or equivalent.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no inverse because the function fails the horizontal line test or equivalent      <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> No <strong>FT</strong> if the graph is in degrees (one-to-one).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the expression is not valid at either of \(x = \frac{\pi }{4}\,\,\left( {{\text{or}} - \frac{{3\pi }}{4}} \right)\)       <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(f\left( x \right) = \frac{{{\text{tan}}\left( {x + \frac{\pi }{4}} \right)}}{{{\text{tan}}\left( {\frac{\pi }{4} - x} \right)}}\)     <em><strong>M1</strong></em></p>
<p>\( = \frac{{\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}}}{{\frac{{{\text{tan}}\,\frac{\pi }{4} - {\text{tan}}\,x}}{{1 + {\text{tan}}\,\frac{\pi }{4}{\text{tan}}\,x}}}}\)      <em><strong>M1A1</strong></em></p>
<p>\( = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}\)      <em><strong>AG</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(f\left( x \right) = {\text{tan}}\left( {x + \frac{\pi }{4}} \right){\text{tan}}\left( {\frac{\pi }{2} - \frac{\pi }{4} + x} \right)\)    <em><strong>  (M1)</strong></em></p>
<p>\( = {\text{ta}}{{\text{n}}^2}\left( {x + \frac{\pi }{4}} \right)\)     <em><strong>A1</strong></em></p>
<p>\(g\left( t \right) = {\left( {\frac{{{\text{tan}}\,x + {\text{tan}}\,\frac{\pi }{4}}}{{1 - {\text{tan}}\,x\,{\text{tan}}\,\frac{\pi }{4}}}} \right)^2}\)     <em><strong>A1</strong></em></p>
<p>\( = {\left( {\frac{{1 + t}}{{1 - t}}} \right)^2}\)      <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><img src=""></p>
<p>for <em>t</em> ≤ 0, correct concavity with two axes intercepts and with asymptote \(y\) = 1      <em><strong>A1</strong></em></p>
<p><em>t</em> intercept at (−1, 0)      <em><strong>A1</strong></em></p>
<p>\(y\) intercept at (0, 1)       <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\alpha \), <em>β</em> satisfy \(\frac{{{{\left( {1 + t} \right)}^2}}}{{{{\left( {1 - t} \right)}^2}}} = k\)     <em><strong>M1</strong></em></p>
<p>\(1 + {t^2} + 2t = k\left( {1 + {t^2} - 2t} \right)\)     <em><strong>A1</strong></em></p>
<p>\(\left( {k - 1} \right){t^2} - 2\left( {k + 1} \right)t + \left( {k - 1} \right) = 0\)     <em><strong>A1</strong></em></p>
<p>attempt at using quadratic formula      <em><strong>M1</strong></em></p>
<p>\(\alpha \), <em>β </em>\( = \frac{{k + 1 \pm 2\sqrt k }}{{k - 1}}\) or equivalent     <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\(\alpha \), <em>β</em> satisfy \(\frac{{1 + t}}{{1 - t}} = \left(  \pm  \right)\sqrt k \)      <em><strong>M1</strong></em></p>
<p>\(t + \sqrt k t = \sqrt k  - 1\)      <em><strong>M1</strong></em></p>
<p>\(t = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}}\) (or equivalent)      <em><strong>A1</strong></em></p>
<p>\(t - \sqrt k t =  - \left( {\sqrt k  + 1} \right)\)     <em><strong>M1</strong></em></p>
<p>\(t = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}}\) (or equivalent)       <em><strong>A1</strong></em></p>
<p>so for <em>eg</em>, \(\alpha  = \frac{{\sqrt k  - 1}}{{\sqrt k  + 1}}\), <em>β</em> \( = \frac{{\sqrt k  + 1}}{{\sqrt k  - 1}}\)</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\alpha \) + <em>β </em>\( = 2\frac{{\left( {k + 1} \right)}}{{\left( {k - 1} \right)}}\,\left( { =  - 2\frac{{\left( {1 + k} \right)}}{{\left( {1 - k} \right)}}} \right)\)     <em><strong>A1</strong></em></p>
<p>since \(1 + k &gt; 1 - k\)     <em><strong>R1</strong></em></p>
<p>\(\alpha \) + <em>β</em> &lt; −2     <em><strong>AG</strong></em></p>
<p><strong>Note:</strong> Accept a valid graphical reasoning.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the graph of \(y = x + \sin (x - 3),{\text{ }} - \pi&nbsp; \leqslant x \leqslant \pi \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph, clearly labelling the <em>x</em> and <em>y</em> intercepts with their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the area of the region bounded by the graph and the <em>x</em> and <em>y</em> axes.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for shape,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;">-intercept is 0.820, accept \(\sin ( - 3){\text{ or }} - \sin (3)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for </span><em style="font-family: 'times new roman', times; font-size: medium;">y</em><span style="font-family: 'times new roman', times; font-size: medium;">-intercept is &minus;0.141.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 37.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^{0.8202} {\left| {x + \sin (x - 3)} \right|{\text{d}}x \approx 0.0816{\text{ sq units}}} \) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates attempted this question successfully. In (a), however, a large number of candidates did not use the zoom feature of the GDC to draw an accurate sketch of the given function. In (b), some candidates used the domain as the limits of the integral. Other candidates did not take the absolute value of the integral.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates attempted this question successfully. In (a), however, a large number of candidates did not use the zoom feature of the GDC to draw an accurate sketch of the given function. In (b), some candidates used the domain as the limits of the integral. Other candidates did not take the absolute value of the integral.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the curve \(y = \left| {\ln x} \right| - \left| {\cos x} \right| - 0.1\) , \(0 &lt; x &lt; 4\) showing clearly the coordinates of the points of intersection with the <em>x</em>-axis and the coordinates of any local maxima and minima.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find the values of <em>x</em> for which \(\left| {\ln x} \right| &gt; \left| {\cos x} \right| + 0.1\), \(0 &lt; x &lt; 4\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp;&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0px 0px 0px 30px; font: 20px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x-</em>intercepts 0.354, 1.36, 2.59, 2.95 &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 20px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for three correct, <strong><em>A0</em></strong> otherwise.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0px 0px 0px 30px; font: 20px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">maximum = (1.57, 0.352) = \(\left( {\frac{\pi }{2},0.352} \right)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0px 0px 0px 30px; font: 20px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum = (1, &ndash; 0.640) and (2.77, &ndash; 0.0129) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(0 &lt; x &lt; 0.354,{\text{ }}1.36 &lt; x &lt; 2.59,{\text{ }}2.95 &lt; x &lt; 4\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> if two correct regions given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were extremely disappointing with many candidates doing the sketch in degree mode instead of radian mode. The two adjacent intercepts at 2.59 and 2.95 were often missed due to an unsatisfactory window. Some sketches were so small that a magnifying glass was required to read some of the numbers; candidates would be well advised to draw sketches large enough to be easily read.</span></p>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \(f(x) = \frac{{1 - x}}{{1 + x}}\) </span><span style="font-family: times new roman,times; font-size: medium;">and \(g(x) = \sqrt {x + 1} \), \(x &gt; - 1\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Find the set of values of \(x\) for which \(f'(x) \leqslant f(x) \leqslant g(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><br><img src="" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(f'(x) = \frac{{ - 2}}{{{{\left( {1 + x} \right)}^2}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Alternatively, award <em><strong>M1A1</strong></em> for correct sketch of the derivative.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">find at least one point of intersection of graphs&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(y = f(x)\)</span> and \(y = f'(x)\) for \(x = \sqrt 3 \) or \(1.73\) &nbsp; &nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(y = f(x)\)</span> and \(y = g(x)\) for \(x = 0\) &nbsp; &nbsp; <em><strong>(A1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">forming inequality \(0 \leqslant x \leqslant \sqrt 3 \) (or \(0 \leqslant x \leqslant 1.73\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1&nbsp;&nbsp;&nbsp;&nbsp; N4</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct limits and <em><strong>A1</strong></em> for correct inequalities.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Most students were able to find the derived function correctly, although attempts to solve the </span><span style="font-family: times new roman,times; font-size: medium;">inequality algebraically were often unsuccessful. This was a question where students </span><span style="font-family: times new roman,times; font-size: medium;">prepared in good use of GDC were able to easily obtain good marks.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{{4 - {x^2}}}{{4 - \sqrt x }}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; State the largest possible domain for <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Solve the inequality \(f(x) \geqslant 1\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(x \geqslant 0\) and \(x \ne 16\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp;&nbsp; <em>graph not to scale</em></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">finding crossing points &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>e.g.</em> \(4 - {x^2} = 4 - \sqrt x \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = 0 or <em>x</em> = 1 &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant x \leqslant 1\) or \(x &gt; 16\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1A1A1A0</em></strong> for solving the inequality only for the case \(x &lt; 16\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most students were able to obtain partial marks, but there were very few completely correct answers.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(g\) , where \(g(x) = \frac{{3x}}{{5 + {x^2}}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
</div>

<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; Given that the domain of \(g\) is \(x \geqslant a\) , find the least value of \(a\) such that \(g\) has </span><span style="font-family: times new roman,times; font-size: medium;">an inverse function.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; On the same set of axes, sketch</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; the graph of \(g\) for this value of \(a\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; the corresponding inverse, \({g^{ - 1}}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; Find an expression for \({g^{ - 1}}(x)\) .<br></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">(a)&nbsp;&nbsp;&nbsp;&nbsp; \(a = 2.24\) &nbsp; &nbsp; \(\sqrt 5 \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; (i)</span></p>
<p><img src="" alt><span style="font-family: times new roman,times; font-size: medium;"> &nbsp; &nbsp; <em><strong>A2</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for end point</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; &nbsp;<em><strong>A1</strong></em> for its asymptote.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; sketch of \({g^{ - 1}}\) (see above) &nbsp; &nbsp; <em><strong>A2</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for end point</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;&nbsp; A1</strong></em> for its asymptote.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c)&nbsp;&nbsp;&nbsp;&nbsp; \(y = \frac{{3x}}{{5 + {x^2}}} \Rightarrow y{x^2} - 3x + 5y = 0\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow x = \frac{{3 \pm \sqrt {9 - 20{y^2}} }}{{2y}}\)</span> &nbsp;&nbsp;&nbsp; <em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({g^{ - 1}}(x) = \frac{{3 \pm \sqrt {9 - 20{x^2}} }}{{2x}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[8 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few completely correct answers were given to this question. Many students found a to </span><span style="font-family: times new roman,times; font-size: medium;">be \(0\) and many failed to provide adequate sketches. There were very few correct answers to </span><span style="font-family: times new roman,times; font-size: medium;">part (c) although many students were able to obtain partial marks.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A particle moves in a straight line with velocity <em>v </em>metres per second. At any time&nbsp;<em>t </em>seconds, \(0 \leqslant t &lt; \frac{{3\pi }}{4}\), the velocity is given by the differential equation \(\frac{{{\text{d}}v}}{{{\text{d}}t}} + {v^2} + 1 = 0\)&nbsp;&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It is also given that <em>v </em>= 1 when <em>t </em>= 0 .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for <em>v </em>in terms of <em>t </em>.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>v </em>against <em>t </em>, clearly showing the coordinates of any intercepts,&nbsp;and the equations of any asymptotes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Write down the time <em>T </em>at which the velocity is zero.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the distance travelled in the interval [0, <em>T</em>] .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for <em>s </em>, the displacement, in terms of <em>t </em>, given that <em>s </em>= 0&nbsp;when <em>t </em>= 0 .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, show that \(s = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}v}}{{{\text{d}}t}} = - {v^2} - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to separate the variables &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{1 + {v^2}}}{\text{d}}v = \int { - 1{\text{d}}t} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan v = - t + k\) &nbsp; &nbsp;<strong> <em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize the lack of constant at this stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when <em>t</em> = 0, <em>v</em> = 1 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = \arctan 1 = \left( {\frac{\pi }{4}} \right) = (45^\circ )\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow v = \tan \left( {\frac{\pi }{4} - t} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp; &nbsp;&nbsp; A1A1A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for general shape,</span></p>
<p style="margin: 0px 0px 0px 30px; font: 11px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp; A1 </em></strong>for asymptote,</span></p>
<p style="margin: 0px 0px 0px 30px; font: 11px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; <strong><em>A1 </em></strong>for correct <em>t </em>and <em>v </em>intercept.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalise if a larger domain is used.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(T = \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; area under curve \( = \int_0^{\frac{\pi }{4}} {\tan \left( {\frac{\pi }{4} - t} \right){\text{d}}t} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0.347\left( { = \frac{1}{2}\ln 2} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = \tan \left( {\frac{\pi }{4} - t} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \int {\tan \left( {\frac{\pi }{4} - t} \right){\text{d}}t} \) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{{\sin \left( {\frac{\pi }{4} - t} \right)}}{{\cos \left( {\frac{\pi }{4} - t} \right)}}} {\text{ d}}t\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> &nbsp; &nbsp;</span><strong style="font-family: 'times new roman', times; font-size: medium;"> <em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \cos \left( {\frac{\pi }{4} - t} \right) + k\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(t = 0,{\text{ }}s = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em><strong><em><br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \cos \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\left( { = \ln \left[ {\sqrt 2 \cos \left( {\frac{\pi }{4} - t} \right)} \right]} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{\pi }{4} - t = \arctan v\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = \frac{\pi }{4} - \arctan v\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos \left( {\frac{\pi }{4} - \frac{\pi }{4} + \arctan v} \right)} \right]\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos (\arctan v)} \right]\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \left[ {\sqrt 2 \cos \left( {\arccos \frac{1}{{\sqrt {1 + {v^2}} }}} \right)} \right]\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{{\sqrt 2 }}{{\sqrt {1 + {v^2}} }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = \ln \cos \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sec \left( {\frac{\pi }{4} - t} \right) - \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sqrt {1 + {{\tan }^2}\left( {\frac{\pi }{4} - t} \right)} &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - \ln \sqrt {1 + {v^2}} &nbsp;- \ln \cos \frac{\pi }{4}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{1}{{\sqrt {1 + {v^2}} }} + \ln \sqrt 2 \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v\frac{{dv}}{{ds}} = - {v^2} - 1\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{v}{{{v^2} + 1}}dv = - \int {1ds} } \) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}\ln ({v^2} + 1) = - s + k\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(s = 0\,,{\text{ }}t = 0 \Rightarrow v = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = \frac{1}{2}\ln 2\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow s = \frac{1}{2}\ln \frac{2}{{1 + {v^2}}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This proved to be the most challenging question in section B with only a very small number of candidates producing fully correct answers. Many candidates did not realise that part (a) was a differential equation that needed to be solved using a method of separating the variables. Without this, further progress with the question was difficult. For those who did succeed in part (a), parts (b) and (c) were relatively well done. For the minority of candidates who attempted parts (d) and (e) only the best recognised the correct methods.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = {({x^3} + 6{x^2} + 3x - 10)^{\frac{1}{2}}},{\text{ for }}x \in D,\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where \(D \subseteq \mathbb{R}\) is the greatest possible domain of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the roots of \(f(x) = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence specify the set <em>D</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the coordinates of the local maximum on the graph \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Solve the equation \(f(x) = 3\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Sketch the graph of \(\left| y \right| = f(x),{\text{ for }}x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; Find the area of the region completely enclosed by the graph of \(\left| y \right| = f(x)\)</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; solving to obtain one root: 1, &ndash; 2 or &ndash; 5 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain other roots &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(D = x \in [ - 5,{\text{ }} - 2] \cup [1,{\text{ }}\infty {\text{)}}\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> <strong><em>M1</em></strong> is for 1 finite and 1 infinite interval.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; coordinates of local maximum \( - 3.73 - 2 - \sqrt 3 ,{\text{ }}3.22\sqrt {6\sqrt 3 } \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; use GDC to obtain one root: 1.41, &ndash; 3.18 or &ndash; 4.23 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain other roots &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for shape, <strong><em>A1</em></strong> for max and for min clearly in correct places, <strong><em>A1</em></strong> for all intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1A0A0</em></strong> if only the complete top half is shown.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(f) &nbsp; &nbsp; required area is twice that of \(y = f(x)\) between &ndash; 5 and &ndash; 2 &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">answer 14.9 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1A0A0</em></strong> for \(\int_{ - 5}^{ - 2} {f(x){\text{d}}x = 7.47 \ldots } \) or <strong><em>N1</em></strong> for 7.47.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was a multi-part question that was well answered by many candidates. The main difficulty was sketching the graph and this meant that the last part was not well answered.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the curve \(f(x) = \left| {1 + 3\sin (2x)} \right|{\text{, for }}0 \leqslant x \leqslant \pi \) . Write down on the graph the values of the <em>x</em> and <em>y</em> intercepts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: 23px Helvetica; text-align: justify; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; By adding <strong>one</strong> suitable line to your sketch, find the number of solutions to the equation \(\pi f(x) = 4(\pi&nbsp; - x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp;&nbsp; &nbsp; <strong><em>A1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica; min-height: 35.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for y-intercept</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1A1</em></strong> for <em>x</em>-intercepts</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for shape</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica; min-height: 35.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; correct line &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">5 solutions &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well executed by the majority of candidates. Most candidates had the correct graph with the correct x and y intercepts. For part (b), some candidates had the straight line intersect the <em>x</em>-axis at 3 rather than at \(\pi \) , and hence did not observe that there were 5 points of intersection.&nbsp;</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(f(x) = x + \frac{{8x}}{{{x^2} - 9}}\). Clearly mark the coordinates of the two maximum points and the two minimum points. Clearly mark and state the equations of the vertical asymptotes and the oblique asymptote.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; <strong><em>M1A1A1A1A1A1A1</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 29px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for both vertical asymptotes correct,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>M1</em></strong> for recognizing that there are two turning points near the origin,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for both turning points near the origin correct, (only this <strong><em>A</em></strong> mark is dependent on the <strong><em>M</em></strong> mark)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for the other pair of turning points correct,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct positioning of the oblique asymptote,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct equation of the oblique asymptote,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for correct asymptotic behaviour in all sections.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well done, except for the behaviour near the origin. The questions alerted candidates to the existence of four turning points and an oblique asymptote, but not all reported back on this information.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = f(x){\text{ for }} - 2 \leqslant x \leqslant 8\) is shown.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">On the set of axes provided, sketch the graph of \(y = \frac{1}{{f(x)}}\), clearly showing any asymptotes and indicating the coordinates of any local maxima or minima.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="font: normal normal normal 23px/normal Helvetica; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>A1A1A1A1A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica; min-height: 28.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes:</strong> Award <strong><em>A1</em></strong> for vertical asymptotes at <em>x</em> = &minus;1, <em>x</em> = 2 and <em>x</em> = 5 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for \(x \to - 2,{\text{ }}\frac{1}{{f(x)}} \to {0^ + }\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for \(x \to 8,{\text{ }}\frac{1}{{f(x)}} \to - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for local maximum at \(\left( {0, - \frac{1}{2}} \right)\) (branch containing local max. must be present)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for local minimum at (3, 1) (branch containing local min. must be present)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In each branch, correct asymptotic behaviour must be displayed to obtain the <strong><em>A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Disregard any stated horizontal asymptotes such as <em>y</em> = 0 or <em>y</em> = &minus;1 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A large number of candidates had difficulty graphing the reciprocal function. Most candidates were able to locate the vertical asymptotes but experienced difficulties graphing the four constituent branches. A common error was to specify incorrect coordinates of the local maximum <em>i.e.</em> (0,&ndash;1) or (0,&ndash;2) instead of \(\left( {0, - \frac{1}{2}} \right)\). A few candidates attempted to sketch the inverse while others had difficulty using the scaled grid.</span></p>
</div>
<br><hr><br>