File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 2/markSceme-HL-paper1html
File size: 2.32 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f:x \to \sqrt {\frac{\pi }{4} - \arccos x} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the largest possible domain of <em>f</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Determine an expression for the inverse function, \({f^{ - 1}}\), and write down its domain.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(\frac{\pi }{4} - \arccos x \geqslant 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arccos x \leqslant \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \geqslant \frac{{\sqrt 2 }}{2}\,\,\,\,\,\left( {{\text{accept }}x \geqslant \frac{1}{{\sqrt 2 }}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \( - 1 \leqslant x \leqslant 1\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{{\sqrt 2 }}{2} \leqslant x \leqslant 1\,\,\,\,\,\left( {{\text{accept }}\frac{1}{{\sqrt 2 }} \leqslant x \leqslant 1} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Penalize the use of \( &lt; \) instead of \( \leqslant \) only once.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(y = \sqrt {\frac{\pi }{4} - \arccos x}&nbsp; \Rightarrow x = \cos \left( {\frac{\pi }{4} - {y^2}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}:x \to \cos \left( {\frac{\pi }{4} - {x^2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 \leqslant x \leqslant \sqrt {\frac{\pi }{4}} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Very few correct solutions were seen to (a). Many candidates realised that \(\arccos x \leqslant \frac{\pi }{4}\) but then concluded incorrectly, not realising that cos is a decreasing function, that \(x \leqslant \cos \left( {\frac{\pi }{4}} \right)\). In (b) candidates often gave an incorrect domain.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A function \(f\) is defined by \(f(x) = \frac{{3x - 2}}{{2x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne \frac{1}{2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f(x)\) can be written in the form \(f(x) = A + \frac{B}{{2x - 1}}\), find the values of the constants \(A\) and \(B\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, write down \(\int {\frac{{3x - 2}}{{2x - 1}}} {\text{d}}x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f:x \to y = \frac{{3x - 2}}{{2x - 1}}\;\;\;{f^{ - 1}}:y \to x\)</p>
<p>\(y = \frac{{3x - 2}}{{2x - 1}} \Rightarrow 3x - 2 = 2xy - y\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( \Rightarrow 3x - 2xy =&nbsp; - y + 2\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(x(3 - 2y) = 2 - y\)</p>
<p>\(x = \frac{{2 - y}}{{3 - 2y}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\left( {{f^{ - 1}}(y) = \frac{{2 - y}}{{3 - 2y}}} \right)\)</p>
<p>\({f^{ - 1}}(x) = \frac{{2 - x}}{{3 - 2x}}\;\;\;\left( {x \ne \frac{3}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>\(x\) and \(y\) might be interchanged earlier.</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>First <strong><em>M1 </em></strong>is for interchange of variables second <strong><em>M1 </em></strong>for manipulation</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Final answer must be a function of \(x\)</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{3x - 2}}{{2x - 1}} = A + \frac{B}{{2x - 1}} \Rightarrow 3x - 2 = A(2x - 1) + B\)</p>
<p>equating coefficients \(3 = 2A\) and \( - 2 =&nbsp; - A + B\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(A = \frac{3}{2}\) and \(B =&nbsp; - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Could also be done by division or substitution of values.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\int {f(x){\text{d}}x = \frac{3}{2}x - \frac{1}{4}\ln \left| {2x - 1} \right| + c} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>accept equivalent e.g. <span class="s2">\(\ln \left| {4x - 2} \right|\)</span></p>
<p class="p3"><em><strong><span class="s2">[1 mark]</span></strong></em></p>
<p class="p3"><em><strong><span class="s2">Total [7 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done. Only a few candidates confused inverse with derivative or reciprocal.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Not enough had the method of polynomial division.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Reasonable if they had an answer to (b) (follow through was given) usual mistakes with not allowing for the derivative of the bracket.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write \(\ln ({x^2} - 1) - 2\ln (x + 1) + \ln ({x^2} + x)\) as a single logarithm, in its simplest form.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln ({x^2} - 1) - \ln {(x + 1)^2} + \ln x(x + 1)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{{x({x^2} - 1)(x + 1)}}{{{{(x + 1)}^2}}}\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln \frac{{x(x + 1)(x - 1)(x + 1)}}{{{{(x + 1)}^2}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \ln x(x - 1)\,\,\,\,\,\left( { = \ln ({x^2} - x)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were fewer correct solutions to this question than might be expected. A significant number of students managed to combine the terms to form one logarithm, but rather than factorising, then expanded the brackets, which left them unable to gain an answer in its simplest form.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the equation \(y{x^2} + (y - 1)x + (y - 1) = 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>y</em> for which this equation has real roots.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence determine the range of the function \(f:x \to \frac{{x + 1}}{{{x^2} + x + 1}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why <em>f</em> has no inverse.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for the equation to have real roots</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(y - 1)^2} - 4y(y - 1) \geqslant 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 3{y^2} - 2y - 1 \leqslant 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(by sign diagram, or algebraic method) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - \frac{1}{3} \leqslant y \leqslant 1\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award first </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \( - \frac{1}{3}\) and 1, and second </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for inequalities. These are independent marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f:x \to \frac{{x + 1}}{{{x^2} + x + 1}} \Rightarrow x + 1 = y{x^2} + yx + y\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 0 = y{x^2} + (y - 1)x + (y - 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence, from (a) range is \( - \frac{1}{3} \leqslant y \leqslant 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a value for <em>y</em> would lead to 2 values for <em>x</em> from (a) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if (b) has not been tackled.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) The best answered part of the question. The critical points were usually found, but the inequalities were often incorrect. Few candidates were convincing regarding the connection between (a) and (b). This had consequences for (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) The best answered part of the question. The critical points were usually found, but the inequalities were often incorrect. Few candidates were convincing regarding the connection between (a) and (b). This had consequences for (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) The best answered part of the question. The critical points were usually found, but the inequalities were often incorrect. Few candidates were convincing regarding the connection between (a) and (b). This had consequences for (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = {x^3} + a{x^2} + bx + c\) , where <em>a </em>, <em>b </em>, \(c \in \mathbb{Z}\) . The diagram shows the graph of <em>y</em> = <em>f</em>(<em>x</em>) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the information shown in the diagram, find the values of <em>a </em>, <em>b </em>and <em>c </em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>g</em>(<em>x</em>) = 3<em>f</em>(<em>x </em>&minus; 2) ,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; state the coordinates of the points where the graph of <em>g </em>intercepts&nbsp;the <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the <em>y</em>-intercept of the graph of <em>g&nbsp;</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f</em>(<em>x</em>) = (<em>x&nbsp;</em>+ 1)(<em>x&nbsp;</em>&minus; 1)(<em>x&nbsp;</em>&minus; 2) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {x^3} - 2{x^2} - x + 2\) &nbsp; &nbsp; <em><strong>A1A1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>a </em>= &minus;2 , <em>b </em>= &minus;1 and <em>c </em>= 2</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the graph or using <em>f</em>(0) = 2</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>c </em>= 2 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">setting up linear equations using <em>f</em>(1) = 0 and <em>f</em>(&ndash;1) = 0 (or <em>f</em>(2) = 0)&nbsp; &nbsp; &nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain <em>a </em>= &minus;2 , <em>b </em>= &minus;1 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">(i) &nbsp; &nbsp; (1, 0) <span style="font: 11.0px Helvetica;">, </span>(3, 0) <span style="font: 11.0px Helvetica;">and </span>(4, 0) &nbsp; &nbsp; <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">(ii) &nbsp; &nbsp; <em>g</em>(0) occurs at 3<em>f</em>(&minus;2) &nbsp; &nbsp; <em><strong>(M1)</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">= &minus;36 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well answered in general. Part b(ii) was often the most problematic, usually because of candidates going to the trouble of finding an explicit and sometimes incorrect expression for&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">(</span><em style="font-family: 'times new roman', times; font-size: medium;">x&nbsp;</em><span style="font-family: 'times new roman', times; font-size: medium;">&minus; 2)</span><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well answered in general. Part b(ii) was often the most problematic, usually because of candidates going to the trouble of finding an explicit and sometimes incorrect expression for&nbsp;<em>f</em>(<em>x&nbsp;</em>&minus; 2).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f(x) = \frac{{3x}}{{x - 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\), indicating clearly any asymptotes and points of intersection with the \(x\) and \(y\) axes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find all values of \(x\) for which \(f(x) = {f^{ - 1}}(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(\left| {f(x)} \right| &lt; \frac{3}{2}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the inequality \(f\left( {\left| x \right|} \right) &lt; \frac{3}{2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2015-12-24_om_11.13.35.png" alt></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: </strong><span class="s1">In the diagram, points marked&nbsp;\(A\) and&nbsp;\(B\) </span>refer to part (d) and do not need to be seen in part (a).</p>
<p class="p2">&nbsp;</p>
<p class="p1">shape of curve <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>This mark can only be awarded if there appear to be both horizontal and vertical asymptotes.</p>
<p class="p2">&nbsp;</p>
<p class="p4">intersection at \((0,{\text{ }}0)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1">horizontal asymptote at <span class="s3">\(y = 3\) <span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>A1</em></strong></p>
<p class="p1">vertical asymptote at \(x = 2\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = \frac{{3x}}{{x - 2}}\)</p>
<p class="p1">\(xy - 2y = 3x\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\(xy - 3x = 2y\)</p>
<p class="p1">\(x = \frac{{2y}}{{y - 3}}\)</p>
<p class="p1">\(\left( {{f^{ - 1}}(x)} \right) = \frac{{2x}}{{x - 3}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Final M1 is for interchanging of \(x\) and \(y\), which may be seen at any stage.</p>
<p class="p3"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p2"><span class="s1">attempt to solve </span>\(\frac{{2x}}{{x - 3}} = \frac{{3x}}{{x - 2}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong>(<em>M1)</em></strong></span></p>
<p class="p2">\(2x(x - 2) = 3x(x - 3)\)</p>
<p class="p2">\(x\left[ {2(x - 2) - 3(x - 3)} \right] = 0\)</p>
<p class="p2">\(x(5 - x) = 0\)</p>
<p class="p2">\(x = 0\;\;\;\)or\(\;\;\;x = 5\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p2">\(x = \frac{{3x}}{{x - 2}}\;\;\;\)or\(\;\;\;x = \frac{{2x}}{{x - 3}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1">(<strong><em>M1)</em></strong></span></p>
<p class="p2">\(x = 0\;\;\;\)or\(\;\;\;x = 5\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>at \({\text{A}}:\frac{{3x}}{{x - 2}} = \frac{3}{2}\) AND at \({\text{B}}:\frac{{3x}}{{x - 2}} =&nbsp; - \frac{3}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(6x = 3x - 6\)</p>
<p>\(x =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(6x = 6 - 3x\)</p>
<p>\(x = \frac{2}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>solution is \( - 2 &lt; x &lt; \frac{2}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\({\left( {\frac{{3x}}{{x - 2}}} \right)^2} &lt; {\left( {\frac{3}{2}} \right)^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(9{x^2} &lt; \frac{9}{4}{(x - 2)^2}\)</p>
<p>\(3{x^2} + 4x - 4 &lt; 0\)</p>
<p>\((3x - 2)(x + 2) &lt; 0\)</p>
<p>\(x =&nbsp; - 2\) &nbsp; &nbsp; (<strong><em>A1)</em></strong></p>
<p>\(x = \frac{2}{3}\) &nbsp; &nbsp; (<strong><em>A1)</em></strong></p>
<p>solution is \( - 2 &lt; x &lt; \frac{2}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 2 &lt; x &lt; 2\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; <em>A1 </em></strong>for correct end points, <strong><em>A1 </em></strong>for correct inequalities.</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>If working is shown, then <strong><em>A </em></strong>marks may only be awarded following correct working.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p><em><strong>Total [17 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined by \(h(x) = 2{{\text{e}}^x} - \frac{1}{{{{\text{e}}^x}}},{\text{ }}x \in \mathbb{R}\) . Find an expression for \({h^{ - 1}}(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 2{{\text{e}}^y} - \frac{1}{{{{\text{e}}^y}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> is for switching the variables and may be awarded at any stage in the process and is awarded independently. Further marks do not rely on this mark being gained.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x{{\text{e}}^y} = 2{{\text{e}}^{2y}} - 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{{\text{e}}^{2y}} - x{{\text{e}}^y} - 1 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^y} = \frac{{x \pm \sqrt {{x^2} + 8} }}{4}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \ln \left( {\frac{{x \pm \sqrt {{x^2} + 8} }}{4}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \({h^{ - 1}}(x) = \ln \left( {\frac{{x + \sqrt {{x^2} + 8} }}{4}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since ln is undefined for the second solution &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept \(y = \ln \left( {\frac{{x + \sqrt {{x^2} + 8} }}{4}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> The </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> may be gained by an appropriate comment earlier.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not recognise the need for the quadratic formula in order to find the inverse. Even when they did most candidates who got this far did not recognise the need to limit the solution to the positive only. This question was done well by a very limited number of candidates.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The polynomial \(P(x) = {x^3} + a{x^2} + bx + 2\) is divisible by (<em>x</em> +1) and by (<em>x</em> &minus; 2) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>a</em> and of <em>b</em>, where \(a,{\text{ }}b \in \mathbb{R}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">As (<em>x</em> +1) is a factor of <em>P</em>(<em>x</em>), then <em>P</em>(&minus;1) = 0 &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow a - b + 1 = 0\) (or equivalent) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">As (<em>x</em> &minus; 2) is a factor of <em>P</em>(<em>x</em>), then <em>P</em>(2) = 0 &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4a + 2b + 10 = 0\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve for <em>a</em> and <em>b</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>a</em> = &minus;2 and <em>b</em> = &minus;1 &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By inspection third factor must be <em>x</em> &minus;1. &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((x + 1)(x - 2)(x - 1) = {x^3} - 2{x^2} - x + 2\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Equating coefficients <em>a</em> = &minus;2, <em>b </em>= &minus;1 &nbsp; &nbsp; <strong><em>(M1)A1 &nbsp; &nbsp; N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Considering \(\frac{{P(x)}}{{{x^2} - x - 2}}\) or equivalent &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{P(x)}}{{{x^2} - x - 2}} = (x + a + 1) + \frac{{(a + b + 3)x + 2(a + 2)}}{{{x^2} - x - 2}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Recognising that \((a + b + 3)x + 2(a + 2) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve for <em>a</em> and <em>b</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>a</em> = &minus;2 and <em>b </em>= &minus;1 &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates successfully answered this question. The majority used the factor theorem, but a few employed polynomial division or a method based on inspection to determine the third linear factor.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\) defined by \(f(x) = {x^2} - {a^2},{\text{ }}x \in \mathbb{R}\) where \(a\) is a positive constant.</p>
</div>

<div class="specification">
<p>The function \(g\) is defined by \(g(x) = x\sqrt {f(x)} \) for \(\left| x \right| &gt; a\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = f(x)\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \frac{1}{{f(x)}}\);</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Showing any \(x\) and \(y\) intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.</p>
<p>\(y = \left| {\frac{1}{{f(x)}}} \right|\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\int {f(x)\cos x{\text{d}}x} \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding \(g'(x)\) explain why \(g\) is an increasing function.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.15.01.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct \(x\) and \(y\) intercepts and minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.17.28.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M"></p>
<p><strong><em>A1 </em></strong>for correct shape</p>
<p><strong><em>A1 </em></strong>for correct vertical asymptotes</p>
<p><strong><em>A1 </em></strong>for correct implied horizontal asymptote</p>
<p><strong><em>A1 </em></strong>for correct maximum point</p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-09_om_08.20.22.png" alt="M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M"></p>
<p><strong><em>A1 </em></strong>for reflecting negative branch from (ii) in the \(x\)-axis</p>
<p><strong><em>A1 </em></strong>for correctly labelled minimum point</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>attempt at integration by parts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x - \int {2x\sin x{\text{d}}x} } \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>\( = ({x^2} - {a^2})\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = ({x^2} - {a^2})\sin x + 2x\cos - 2\sin x + c\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = \int {{x^2}\cos x{\text{d}}x - \int {{a^2}\cos x{\text{d}}x} } } \)</p>
<p>attempt at integration by parts&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\(\int {{x^2}\cos x{\text{d}}x = {x^2}\sin x - \int {2x\sin x{\text{d}}x} } \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>\( = {x^2}\sin x - 2\left[ { - x\cos x + \int {\cos x{\text{d}}x} } \right]\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = {x^2}\sin x + 2x\cos x - 2\sin x\)</p>
<p>\( - \int {{a^2}\cos x{\text{d}}x = - {a^2}\sin x} \)</p>
<p>\(\int {({x^2} - {a^2})\cos x{\text{d}}x = ({x^2} - {a^2})\sin x + 2x\cos x - 2\sin x + c} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g(x) = x{({x^2} - {a^2})^{\frac{1}{2}}}\)</p>
<p>\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + \frac{1}{2}x{({x^2} - {a^2})^{ - \frac{1}{2}}}(2x)\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Method mark is for differentiating the product. Award <strong><em>A1 </em></strong>for each correct term.</p>
<p>&nbsp;</p>
<p>\(g'(x) = {({x^2} - {a^2})^{\frac{1}{2}}} + {x^2}{({x^2} - {a^2})^{ - \frac{1}{2}}}\)</p>
<p>both parts of the expression are positive hence \(g'(x)\) is positive&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em></strong></p>
<p>and therefore \(g\) is an increasing function (for \(\left| x \right| &gt; a\))&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by \(f(x) = 2x + \frac{\pi }{5},{\text{ }}x \in \mathbb{R}\) and \(g(x) = 3\sin x + 4,{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(g \circ f(x) = 3\sin \left( {2x + \frac{\pi }{5}} \right) + 4\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(g \circ f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(g \circ f\left( {\frac{{3\pi }}{{20}}} \right) = 7\), find the next value of \(x\), greater than \({\frac{{3\pi }}{{20}}}\), for which \(g \circ f(x) = 7\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g \circ f(x)\) can be obtained by applying four transformations to the graph of \(y = \sin x\). State what the four transformations represent geometrically and give the order in which they are applied.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(g \circ f(x) = g\left( {f(x)} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\( = g\left( {2x + \frac{\pi }{5}} \right)\)</p>
<p class="p1">\( = 3\sin \left( {2x + \frac{\pi }{5}} \right) + 4\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>since \( - 1 \le sin \theta&nbsp;&nbsp;\le&nbsp; + 1\), range is \([1,{\text{ }}7]\) &nbsp; &nbsp; <strong><em>(R1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3\sin \left( {2x + \frac{\pi }{5}} \right) + 4 = 7 \Rightarrow 2x + \frac{\pi }{5} = \frac{\pi }{2} + 2n\pi&nbsp; \Rightarrow x = \frac{{3\pi }}{{20}} + n\pi \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>so next biggest value is \(\frac{{23\pi }}{{20}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow use of period.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Transformations can be in any order but see notes below.</p>
<p class="p2">&nbsp;</p>
<p class="p3">stretch scale factor&nbsp;\(3\) parallel to&nbsp;<span class="s1"><em>\(y\) </em></span>axis (vertically) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p3">vertical translation of&nbsp;\(4\) up <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><span class="s2"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Vertical translation is </span>\(\frac{4}{3}\) up if it occurs before stretch parallel to <span class="s1"><em>\(y\) </em></span>axis.</p>
<p class="p4">&nbsp;</p>
<p class="p3">stretch scale factor \(\frac{1}{2}\) parallel to&nbsp;<span class="s1"><em>\(x\) </em></span>axis (horizontally) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p3">horizontal translation of \(\frac{\pi }{{10}}\) to the left <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p4">&nbsp;</p>
<p class="p3"><span class="s2"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Horizontal translation is </span>\(\frac{\pi }{{5}}\) to the left if it occurs before stretch parallel to&nbsp;<span class="s1"><em>\(x\) </em></span>axis.</p>
<p class="p4">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>A1 </em></strong>for magnitude and direction in each case.</p>
<p class="p1">Accept any correct terminology provided that the meaning is clear <em>eg </em>shift for translation.</p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<p class="p1"><strong><em>Total [9 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally well done, some used more complicated methods rather than considering the range of sine.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Fine if they realised the period was \(\pi \), not if they thought it was \(2\pi \).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Typically 3 marks were gained. It was the shift in the axis \(\chi \) of \(\frac{\pi }{{10}}\) that caused the problem.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \(f(x) = \tan x,{\text{ }}0 \le \ x &lt; \frac{\pi }{2}\) and \(g(x) = \frac{{x + 1}}{{x - 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g \circ f(x)\), stating its domain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that \(g \circ f(x) = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Let \(y = g \circ f(x)\)<span class="s1">, find an exact value for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) </span>at the point on the graph of \(y = g \circ f(x)\) where \(x = \frac{\pi }{6}\), expressing your answer in the form \(a + b\sqrt 3 ,{\text{ }}a,{\text{ }}b \in \mathbb{Z}\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area bounded by the graph of \(y = g \circ f(x)\), the \(x\)-axis and the lines \(x = 0\) and \(x = \frac{\pi }{6}\) is \(\ln \left( {1 + \sqrt 3 } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(g \circ f(x) = \frac{{\tan x + 1}}{{\tan x - 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\(x \ne \frac{\pi }{4},{\text{ }}0 \le x &lt; \frac{\pi }{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\tan x + 1}}{{\tan x - 1}} = \frac{{\frac{{\sin x}}{{\cos x}} + 1}}{{\frac{{\sin x}}{{\cos x}} - 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">\( = \frac{{\sin x + \cos x}}{{\sin x - \cos x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}}{{{{(\sin x - \cos x)}^2}}}\) &nbsp; &nbsp; <strong><em>M1(A1)</em></strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(2\sin x\cos x - {{\cos }^2}x - {{\sin }^2}x) - (2\sin x\cos x + {{\cos }^2}x + {{\sin }^2}x)}}{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}\)</p>
<p>\( = \frac{{ - 2}}{{1 - \sin 2x}}\)</p>
<p>Substitute \(\frac{\pi }{6}\) into any formula for \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{{ - 2}}{{1 - \sin \frac{\pi }{3}}}\)</p>
<p>\( = \frac{{ - 2}}{{1 - \frac{{\sqrt 3 }}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\)</p>
<p>\( = \frac{{ - 4}}{{2 - \sqrt 3 }}\left( {\frac{{2 + \sqrt 3 }}{{2 + \sqrt 3 }}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{{ - 8 - 4\sqrt 3 }}{1} =&nbsp; - 8 - 4\sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{(\tan x - 1){{\sec }^2}x - (\tan x + 1){{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\( = \frac{{ - 2{{\sec }^2}x}}{{{{(\tan x - 1)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{ - 2{{\sec }^2}\frac{\pi }{6}}}{{{{\left( {\tan \frac{\pi }{6} - 1} \right)}^2}}} = \frac{{ - 2\left( {\frac{4}{3}} \right)}}{{{{\left( {\frac{1}{{\sqrt 3 }} - 1} \right)}^2}}} = \frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for substitution \(\frac{\pi }{6}\).</p>
<p>&nbsp;</p>
<p>\(\frac{{ - 8}}{{{{\left( {1 - \sqrt 3 } \right)}^2}}} = \frac{{ - 8}}{{\left( {4 - 2\sqrt 3 } \right)}}\frac{{\left( {4 + 2\sqrt 3 } \right)}}{{\left( {4 + 2\sqrt 3 } \right)}} =&nbsp; - 8 - 4\sqrt 3 \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Area \(\left| {\int_0^{\frac{\pi }{6}} {\frac{{\sin x + \cos x}}{{\sin x - \cos x}}{\text{d}}x} } \right|\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left| {\left[ {\ln \left| {\sin x - \cos x} \right|} \right]_0^{\frac{\pi }{6}}} \right|\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absence of limits and absence of modulus signs at this stage.</p>
<p>&nbsp;</p>
<p>\( = \left| {\ln \left| {\sin \frac{\pi }{6} - \cos \frac{\pi }{6}} \right| - \ln \left| {\sin 0 - \cos 0} \right|} \right|\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left| {\ln \left| {\frac{1}{2} - \frac{{\sqrt 3 }}{2}} \right| - 0} \right|\)</p>
<p>\( = \left| {\ln \left( {\frac{{\sqrt 3&nbsp; - 1}}{2}} \right)} \right|\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( =&nbsp; - \ln \left( {\frac{{\sqrt 3&nbsp; - 1}}{2}} \right) = \ln \left( {\frac{2}{{\sqrt 3&nbsp; - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \ln \left( {\frac{2}{{\sqrt 3&nbsp; - 1}} \times \frac{{\sqrt 3&nbsp; + 1}}{{\sqrt 3&nbsp; + 1}}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \ln \left( {\sqrt 3&nbsp; + 1} \right)\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<p><strong><em>Total [16 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = \frac{1}{{{x^2} + 3x + 2}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne - 2,{\text{ }}x \ne - 1\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \({x^2} + 3x + 2\) in the form \({(x + h)^2} + k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Factorize \({x^2} + 3x + 2\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(f(x)\), indicating on it the equations of the asymptotes, the coordinates of the \(y\)-intercept and the local maximum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{1}{{{x^2} + 3x + 2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the value of \(p\) if \(\int_0^1 {f(x){\text{d}}x = \ln (p)} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( {\left| x \right|} \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the area of the region enclosed between the graph of \(y = f\left( {\left| x \right|} \right)\), the \(x\)-axis and the lines with equations \(x = - 1\) and \(x = 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} + 3x + 2 = {\left( {x + \frac{3}{2}} \right)^2} - \frac{1}{4}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({x^2} + 3x + 2 = (x + 2)(x + 1)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_13.58.40.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.b/M"></p>
<p><strong><em>A1</em></strong> for the shape</p>
<p><strong><em>A1</em></strong> for the equation \(y = 0\)</p>
<p><strong><em>A1</em></strong> for asymptotes \(x = - 2\) and \(x = - 1\)</p>
<p><strong><em>A1</em></strong> for coordinates \(\left( { - \frac{3}{2},{\text{ }} - 4} \right)\)</p>
<p><strong><em>A1</em></strong> \(y\)-intercept \(\left( {0,{\text{ }}\frac{1}{2}} \right)\)</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{{x + 1}} - \frac{1}{{x + 2}} = \frac{{(x + 2) - (x + 1)}}{{(x + 1)(x + 2)}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{1}{{{x^2} + 3x + 2}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\int\limits_0^1 {\frac{1}{{x + 1}} - \frac{1}{{x + 2}}{\text{d}}x} \)</p>
<p>\( = \left[ {\ln (x + 1) - \ln (x + 2)} \right]_0^1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\( = \ln 2 - \ln 3 - \ln 1 + \ln 2\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( = \ln \left( {\frac{4}{3}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\therefore p = \frac{4}{3}\)</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_14.20.03.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B11.e/M"></p>
<p>symmetry about the \(y\)-axis&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>correct shape&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Allow <strong><em>FT </em></strong>from part (b).</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2\int_0^1 {f(x){\text{d}}x} \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\( = 2\ln \left( {\frac{4}{3}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Do not award <strong><em>FT </em></strong>from part (e).</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(p(x) = 2{x^5} + {x^4} - 26{x^3} - 13{x^2} + 72x + 36,{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For the polynomial equation \(p(x) = 0\), state</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>the sum of the roots;</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>the product of the roots.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A new polynomial is defined by \(q(x) = p(x + 4)\).</p>
<p class="p1">Find the sum of the roots of the equation \(q(x) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\left( { - \frac{{{a_{n - 1}}}}{{{a_n}}} = } \right) - \frac{1}{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\left( {{{( - 1)}^n}\frac{{{a_0}}}{{{a_n}}} = } \right) - \frac{{36}}{2} = ( - 18)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>First <strong><em>A1 </em></strong>is for the negative sign.</p>
<p class="p1"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>if \(\lambda \) satisfies \(p(\lambda ) = 0\) then \(q(\lambda&nbsp; - 4) = 0\)</p>
<p>so the roots of \(q(x)\) are each&nbsp;\(4\) less than the roots of \(p(x)\) &nbsp; &nbsp; <strong><em>(R1)</em></strong></p>
<p>so sum of roots is \( - \frac{1}{2} - 4 \times 5 =&nbsp; - 20.5\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(p(x + 4) = 2{x^5} + 2 \times 5 \times 4{x^4} \ldots&nbsp; + {x^4} \ldots&nbsp; = 2{x^5} + 41{x^4} \ldots \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>so sum of roots is \( - \frac{{41}}{2} =&nbsp; - 20.5\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p><strong><em>Tofal [5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Both parts fine if they used the formula, some tried to use the quadratic equivalent formula. Surprisingly some even found all the roots.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some notation problems for weaker candidates. Good candidates used either of the methods shown in the Markscheme.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(y(x) = x{e^{3x}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove by induction that \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\) for \(n \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any local maximum and minimum points on the graph of \(y(x)\).</p>
<p class="p1">Justify whether any such point is a maximum or a minimum.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of any points of inflexion on the graph of \(y(x)\). Justify whether any such point is a point of inflexion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence sketch the graph of \(y(x)\), indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = ({{\text{e}}^{3x}} + 3x{{\text{e}}^{3x}})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let \(P(n)\) be the statement \(\frac{{{{\text{d}}^n}y}}{{{\text{d}}{x^n}}} = n{3^{n - 1}}{{\text{e}}^{3x}} + x{3^n}{{\text{e}}^{3x}}\)</p>
<p class="p1">prove for \(n = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="s1">\(LHS\) of </span>\(P(1)\) is \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) which is \(1 \times {{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}}\) and&nbsp;<span class="s1">\(RHS\)</span> is \({3^0}{{\text{e}}^{3x}} + x{3^1}{{\text{e}}^{3x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p1"><span class="s1">as </span>\({\text{LHS}} = {\text{RHS, }}P(1)\) is true</p>
<p class="p1">assume \(P(k)\) is true and attempt to prove \(P(k + 1)\) is true <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">assuming \(\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}} = k{3^{k - 1}}{{\text{e}}^{3x}} + x{3^k}{{\text{e}}^{3x}}\)</p>
<p class="p1">\(\frac{{{{\text{d}}^{k + 1}}y}}{{{\text{d}}{x^{k + 1}}}} = \frac{{\text{d}}}{{{\text{d}}x}}\left( {\frac{{{{\text{d}}^k}y}}{{{\text{d}}{x^k}}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1">(<strong><em>M1)</em></strong></span></p>
<p class="p1">\( = k{3^{k - 1}} \times 3{{\text{e}}^{3x}} + 1 \times {3^k}{{\text{e}}^{3x}} + x{3^k} \times 3{{\text{e}}^{3x}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\( = (k + 1){3^k}{{\text{e}}^{3x}} + x{3^{k + 1}}{{\text{e}}^{3x}}\;\;\;\)<span class="s1">(as required) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Can award the <strong><em>A </em></strong>marks independent of the <strong><em>M </em></strong>marks</p>
<p class="p4">&nbsp;</p>
<p class="p1">since \(P(1)\) is true and \(P(k)\) is true \( \Rightarrow P(k + 1)\) is true</p>
<p class="p1">then (by <span class="s1">\(PMI\)</span>), \(P(n)\) is true \((\forall n \in {\mathbb{Z}^ + })\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: </strong>To gain last <strong><em>R1 </em></strong>at least four of the above marks must have been gained.</p>
<p class="p3"><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({{\text{e}}^{3x}} + x \times 3{{\text{e}}^{3x}} = 0 \Rightarrow 1 + 3x = 0 \Rightarrow x =&nbsp; - \frac{1}{3}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>point is \(\left( { - \frac{1}{3},{\text{ }} - \frac{1}{{3{\text{e}}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\)</p>
<p>when \(x =&nbsp; - \frac{1}{3},{\text{ }}\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} &gt; 0\) therefore the point is a minimum &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_17.44.19.png" alt></p>
<p class="p1">nature table shows point is a minimum <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(2 \times 3{{\text{e}}^{3x}} + x \times {3^2}{{\text{e}}^{3x}} = 0 \Rightarrow 2 + 3x = 0 \Rightarrow x =&nbsp; - \frac{2}{3}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>point is \(\left( { - \frac{2}{3},{\text{ }} - \frac{2}{{3{{\text{e}}^2}}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_17.52.15.png" alt></p>
<p>since the curvature does change (concave down to concave up) it is a point of inflection &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow \({3^{{\text{rd}}}}\) derivative is not zero at \( - \frac{2}{3}\)</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="image.html" alt></p>
<p class="p1">(general shape including asymptote and through origin) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1">showing minimum and point of inflection &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p class="p1">&nbsp;</p>
<p class="p1"><strong>Note: &nbsp; &nbsp;&nbsp;</strong>Only indication of position of answers to (c) and (d) required, not coordinates.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<p class="p1"><em><strong>Total [21 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well done.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The logic of an induction proof was not known well enough. Many candidates used what they had to prove rather than differentiating what they had assumed. They did not have enough experience in doing Induction proofs.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Good, some forgot to test for min/max, some forgot to give the \(y\) value.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Again quite good, some forgot to check for change in curvature and some forgot the \(y\) value.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some accurate sketches, some had all the information from earlier parts but could not apply it. The asymptote was often missed.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The quadratic equation \({x^2} - 2kx + (k - 1) = 0\) has roots \(\alpha \) and \(\beta \) such that \({\alpha ^2} + {\beta ^2} = 4\). Without solving the equation, find the possible values of the real number \(k\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><span class="Apple-converted-space">\(\alpha  + \beta  = 2k\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(\alpha \beta  = k - 1\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({(\alpha  + \beta )^2} = 4{k^2} \Rightarrow {\alpha ^2} + {\beta ^2} + 2\underbrace {\alpha \beta }_{k - 1} = 4{k^2}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\({\alpha ^2} + {\beta ^2} = 4{k^2} - 2k + 2\)</p>
<p class="p1"><span class="Apple-converted-space">\({\alpha ^2} + {\beta ^2} = 4 \Rightarrow 4{k^2} - 2k - 2 = 0\)    </span><strong><em>A1</em></strong></p>
<p class="p1">attempt to solve quadratic <span class="Apple-converted-space">    </span>(<strong><em>M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\(k = 1,{\text{ }} - \frac{1}{2}\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A given polynomial function is defined as \(f(x) = {a_0} + {a_1}x + {a_2}{x^2} +&nbsp; \ldots&nbsp; + {a_n}{x^n}\). The roots of the polynomial equation \(f(x) = 0\) are consecutive terms of a geometric sequence with a common ratio of \(\frac{1}{2}\) and first term 2.</p>
<p>Given that \({a_{n - 1}} =&nbsp; - 63\) and \({a_n} = 16\) find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the degree of the polynomial;</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the value of \({a_0}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the sum of the roots of the polynomial \( = \frac{{63}}{{16}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(2\left( {\frac{{1 - {{\left( {\frac{1}{2}} \right)}^n}}}{{1 - \frac{1}{2}}}} \right) = \frac{{63}}{{16}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The formula for the sum of a geometric sequence must be equated to a value for the <strong><em>M1 </em></strong>to be awarded.</p>
<p class="p4">&nbsp;</p>
<p class="p1">\(1 - {\left( {\frac{1}{2}} \right)^n} = \frac{{63}}{{64}} \Rightarrow {\left( {\frac{1}{2}} \right)^n} = \frac{1}{{64}}\)</p>
<p class="p1">\(n = 6\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{a_0}}}{{{a_n}}} = 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{{16}},{\text{ (}}{{\text{a}}_n} = 16)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\({a_0} = 16 \times 2 \times 1 \times \frac{1}{2} \times \frac{1}{4} \times \frac{1}{8} \times \frac{1}{{16}}\)</p>
<p class="p1">\({a_0} = {2^{ - 5}}\;\;\;\left( { = \frac{1}{{32}}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<p class="p1"><strong><em>Total [6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function <em>f</em> , where \(f(x) = \arcsin (\ln x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the domain of <em>f</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Find \({f^{ - 1}}(x)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \( - 1 \leqslant \ln x \leqslant 1\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \frac{1}{{\text{e}}} \leqslant x \leqslant {\text{e}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(y = \arcsin (\ln x) \Rightarrow \ln x = \sin y\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\ln y = \sin x \Rightarrow y = {{\text{e}}^{\sin x}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {f^{ - 1}}(x) = {{\text{e}}^{\sin x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Very few candidates attempted part (a), and of those that did, few were successful. Part (b) was answered fairly well by most candidates.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{1}{{\sqrt n&nbsp; + \sqrt {n + 1} }} = \sqrt {n + 1}&nbsp; - \sqrt n \) where \(n \ge 0,{\text{ }}n \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that \(\sqrt 2&nbsp; - 1 &lt; \frac{1}{{\sqrt 2 }}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove, by mathematical induction, that \(\sum\limits_{r = 1}^{r = n} {\frac{1}{{\sqrt r }} &gt; \sqrt n } \) for \(n \ge 2,{\text{ }}n \in \mathbb{Z}\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{{\sqrt n&nbsp; + \sqrt {n + 1} }} = \frac{1}{{\sqrt n&nbsp; + \sqrt {n + 1} }} \times \frac{{\sqrt {n + 1}&nbsp; - \sqrt n }}{{\sqrt {n + 1}&nbsp; - \sqrt n }}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{{\sqrt {n + 1}&nbsp; - \sqrt n }}{{(n + 1) - n}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \sqrt {n + 1}&nbsp; - \sqrt n \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sqrt 2&nbsp; - 1 = \frac{1}{{\sqrt 2&nbsp; + \sqrt 1 }}\) &nbsp; &nbsp; <strong><em>A2</em></strong></p>
<p>\( &lt; \frac{1}{{\sqrt 2 }}\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the case \(n = 2\): required to prove that \(1 + \frac{1}{{\sqrt 2 }} &gt; \sqrt 2 \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>from part (b) \(\frac{1}{{\sqrt 2 }} &gt; \sqrt 2&nbsp; - 1\)</p>
<p>hence \(1 + \frac{1}{{\sqrt 2 }} &gt; \sqrt 2 \) is true for \(n = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>now assume true for \(n = k:\sum\limits_{r = 1}^{r = k} {\frac{1}{{\sqrt r }} &gt; \sqrt k } \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\frac{1}{{\sqrt 1 }} +&nbsp; \ldots&nbsp; + \frac{{\sqrt 1 }}{{\sqrt k }} &gt; \sqrt k \)</p>
<p>attempt to prove true for \(n = k + 1:\frac{1}{{\sqrt 1 }} +&nbsp; \ldots&nbsp; + \frac{{\sqrt 1 }}{{\sqrt k }} + \frac{1}{{\sqrt {k + 1} }} &gt; \sqrt {k + 1} \) &nbsp; &nbsp; (<strong><em>M1)</em></strong></p>
<p>from assumption, we have that \(\frac{1}{{\sqrt 1 }} +&nbsp; \ldots&nbsp; + \frac{{\sqrt 1 }}{{\sqrt k }} + \frac{1}{{\sqrt {k + 1} }} &gt; \sqrt k&nbsp; + \frac{1}{{\sqrt {k + 1} }}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>so attempt to show that \(\sqrt k&nbsp; + \frac{1}{{\sqrt {k + 1} }} &gt; \sqrt {k + 1} \) &nbsp; &nbsp; <strong>(<em>M1)</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(\frac{1}{{\sqrt {k + 1} }} &gt; \sqrt {k + 1}&nbsp; - \sqrt k \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\frac{1}{{\sqrt {k + 1} }} &gt; \frac{1}{{\sqrt k&nbsp; + \sqrt {k + 1} }}\), (from part a), which is true &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(\sqrt k&nbsp; + \frac{1}{{\sqrt {k + 1} }} = \frac{{\sqrt {k + 1} \sqrt k&nbsp; + 1}}{{\sqrt {k + 1} }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( &gt; \frac{{\sqrt k \sqrt k&nbsp; + 1}}{{\sqrt {k + 1} }} = \sqrt {k + 1} \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>so true for \(n = 2\) and \(n = k\) true \( \Rightarrow n = k + 1\) true. Hence true for all \(n \ge 2\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>R1 </em></strong>only if all previous <strong><em>M </em></strong>marks have been awarded.</p>
<p><em><strong>[9 marks]</strong></em></p>
<p><em><strong>Total [13 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(g(x) = {\log _5}\left| {2{{\log }_3}x} \right|\) . Find the product of the zeros of <em>g</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\log _5}\left| {2{{\log }_3}x} \right| = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {2{{\log }_3}x} \right| = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\log _3}x =&nbsp; \pm \frac{1}{2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = {3^{ \pm \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so the product of the zeros of <em>g</em> is \({3^{\frac{1}{2}}} \times {3^{ - \frac{1}{2}}} = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were many candidates showing difficulties in manipulating logarithms and the absolute value to solve the equation.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The functions \(f\) and \(g\) are defined by \(f(x) = a{x^2} + bx + c,{\text{ }}x \in \mathbb{R}\) and \(g(x) = p\sin x + qx + r,{\text{ }}x \in \mathbb{R}\) where \(a,{\text{ }}b,{\text{ }}c,{\text{ }}p,{\text{ }}q,{\text{ }}r\) are real constants.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(f\) is an even function, show that \(b = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(g\) is an odd function, find the value of \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(h\) is both odd and even, with domain \(\mathbb{R}\).</p>
<p class="p1">Find \(h(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p2">\(f( - x) = f(x)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2">\( \Rightarrow a{x^2} - bx + c = a{x^2} + bx + c \Rightarrow 2bx = 0,{\text{ }}(\forall x \in \mathbb{R})\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">\(y\)-axis is eqn of symmetry <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">so \(\frac{{ - b}}{{2a}} = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p2">\( \Rightarrow b = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g( - x) =&nbsp; - g(x) \Rightarrow p\sin ( - x) - qx + r =&nbsp; - p\sin x - qx - r\)</p>
<p>\( \Rightarrow&nbsp; - p\sin x - qx + r =&nbsp; - p\sin x - qx - r\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; <em>M1 </em></strong>is for knowing properties of sin.</p>
<p>&nbsp;</p>
<p>\( \Rightarrow 2r = 0 \Rightarrow r = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>In (a) and (b) allow substitution of a particular value of \(x\)</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h( - x) = h(x) =&nbsp; - h(x) \Rightarrow 2h(x) = 0 \Rightarrow h(x) = 0,{\text{ }}(\forall x)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Accept geometrical explanations.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p><em><strong>Total [6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Sometimes backwards working but many correct approaches.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some candidates did not know what odd and even functions were. Correct solutions from those who applied the definition.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some realised: just apply the definitions. Some did very strange things involving \(f\) and \(g\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial \(q(x) = 3{x^3} - 11{x^2} + kx + 8\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \(q(x)\) has a factor \((x - 4)\), find the value of \(k\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, factorize \(q(x)\) as a product of linear factors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(q(4) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(192 - 176 + 4k + 8 = 0{\text{ }}(24 + 4k = 0)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(k =&nbsp; - 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3{x^3} - 11{x^2} - 6x + 8 = (x - 4)(3{x^2} + px - 2)\)</p>
<p>equate coefficients of \({x^2}\): &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( - 12 + p =&nbsp; - 11\)</p>
<p>\(p = 1\)</p>
<p>\((x - 4)(3{x^2} + x - 2)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\((x - 4)(3x - 2)(x + 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Allow part (b) marks if any of this work is seen in part (a).</p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Allow equivalent methods (<em>eg</em>, synthetic division) for the <strong><em>M </em></strong>marks in each part.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the polynomial \(P\left( z \right) = {z^5} - 10{z^2} + 15z - 6,{\text{ }}z \in \mathbb{C}\).</p>
</div>

<div class="specification">
<p>The polynomial can be written in the form \(P(z) = {(z - 1)^3}({z^2} + bz + c)\).</p>
</div>

<div class="specification">
<p>Consider the function \(q\left( x \right) = {x^5} - 10{x^2} + 15x - 6,{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the sum and the product of the roots of \(P(z) = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \((z - 1)\) is a factor of \(P(z)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(b\) and the value of \(c\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the complex roots of \(P(z) = 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the graph of \(y = q(x)\) is concave up for \(x &gt; 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = q(x)\) showing clearly any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({\text{sum}} = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\({\text{product}} = 6\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(P(1) = 1 - 10 + 15 - 6 = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>\( \Rightarrow (z - 1)\) is a factor of \(P(z)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Accept use of division to show remainder is zero.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({(z - 1)^3}\left( {{z^2} + bz + c} \right) = {z^5} - 10{z^2} + 15z - 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>by inspection \(c = 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(({z^3} - 3{z^2} + 3z - 1)({z^2} + bz + 6) = {z^5} - 10{z^2} + 15z - 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\(b = 3\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\alpha \), \(\beta \) are two roots of the quadratic</p>
<p>\(b = - (\alpha + \beta ),{\text{ }}c = \alpha \beta \)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(A1)</em></strong></p>
<p>from part (a) \(1 + 1 + 1 + \alpha + \beta = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow b = 3\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(1 \times 1 \times 1 \times \alpha \beta = 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow c = 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award <strong><em>FT </em></strong>if \(b = - 7\) following through from their sum \( = 10\).</p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p>\(({z^5} - 10{z^2} + 15z - 6) \div (z - 1) = {z^4} + {z^3} + {z^2} - 9z + 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; This may have been seen in part (b).</p>
<p>&nbsp;</p>
<p>\({z^4} + {z^3} + {z^2} - 9z + 6 \div (z - 1) = {z^3} + 2{z^2} + 3z - 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></p>
<p>\({z^3} + 2{z^2} + 3z - 6 \div (z - 1) = {z^2} + 3z + 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({z^2} + 3z + 6 = 0\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\(z = \frac{{ - 3 \pm \sqrt {9 - 4 \bullet 6} }}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></p>
<p>\( = \frac{{ - 3 \pm \sqrt { - 15} }}{2}\)</p>
<p>\(z = - \frac{3}{2} \pm \frac{{{\text{i}}\sqrt {15} }}{2}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>(or \(z = 1\))</p>
<p>&nbsp;</p>
<p><strong>Notes:</strong>&nbsp;&nbsp;&nbsp;&nbsp; Award the second <strong><em>M1 </em></strong>for an attempt to use the quadratic formula or to complete the square.</p>
<p>Do not award <strong><em>FT </em></strong>from (c).</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 20{x^3} - 20\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></p>
<p>for \(x &gt; 1,{\text{ }}20{x^3} - 20 &gt; 0 \Rightarrow \) concave up&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1AG</em></strong></p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_16.48.38.png" alt="M17/5/MATHL/HP1/ENG/TZ1/B12.e.ii/M"></p>
<p>\(x\)-intercept at \((1,{\text{ }}0)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>\(y\)-intercept at \((0,{\text{ }} - 6)\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p>stationary point of inflexion at \((1,{\text{ }}0)\) with correct curvature either side&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The function \(f\)  is defined as \(f(x) = \frac{{3x + 2}}{{x + 1}},{\text{ }}x \in \mathbb{R},{\text{ }}x \ne  - 1\).</p>
<p class="p1">Sketch the graph of \(y = f(x)\), clearly indicating and stating the equations of any asymptotes and the coordinates of any axes intercepts.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><strong><img src="images/Schermafbeelding_2017-01-27_om_10.01.12.png" alt="M16/5/MATHL/HP1/ENG/TZ2/02/M">     </strong><strong><em>A1A1A1A1A1</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A1 </em></strong>for correct shape, <strong><em>A1 </em></strong>for \(x =  - 1\) clearly stated and asymptote shown, <strong><em>A1 </em></strong>for \(y = 3\) clearly stated and asymptote shown, <strong><em>A1 </em></strong><span class="s1">for \(\left( { - \frac{2}{3},{\text{ }}0} \right)\) </span>and <strong><em>A1 </em></strong><span class="s1">for \((0,{\text{ }}2)\).</span></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Another standard question. On this occasion, specific coordinates were asked for, so some otherwise good candidates missed out on a couple of marks which they would have gained through greater care.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The cubic equation \({x^3} + p{x^2} + qx + c = 0\)<span class="s1">, has roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \)</span>. By expanding \((x - \alpha )(x - \beta )(x - \gamma )\) show that</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; \(p =&nbsp; - (\alpha&nbsp; + \beta&nbsp; + \gamma )\);</p>
<p>(ii) &nbsp; &nbsp; \(q = \alpha \beta&nbsp; + \beta \gamma&nbsp; + \gamma \alpha \);</p>
<p>(iii) &nbsp; &nbsp; \(c =&nbsp; - \alpha \beta \gamma \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is now given that \(p =&nbsp; - 6\) and \(q = 18\) for parts (b) and (c) below.</p>
<p>(i) &nbsp; &nbsp; In the case that the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) form an arithmetic sequence, show that one of the roots is \(2\).</p>
<p>(ii) &nbsp;&nbsp;&nbsp; Hence determine the value of \(c\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In another case the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \) <span class="s1">form a geometric sequence. Determine the value of \(c\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)-(iii) given the three roots \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \), we have</p>
<p>\({x^3} + p{x^2} + qx + c = (x - \alpha )(x - \beta )(x - \gamma )\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( = \left( {{x^2} - (\alpha&nbsp; + \beta )x + \alpha \beta } \right)(x - \gamma )\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = {x^3} - (\alpha&nbsp; + \beta&nbsp; + \gamma ){x^2} + (\alpha \beta&nbsp; + \beta \gamma&nbsp; + \gamma \alpha )x - \alpha \beta \gamma \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>comparing coefficients:</p>
<p>\(p =&nbsp; - (\alpha&nbsp; + \beta&nbsp; + \gamma )\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>\(q = (\alpha \beta&nbsp; + \beta \gamma&nbsp; + \gamma \alpha )\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>\(c =&nbsp; - \alpha \beta \gamma \) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>(i) &nbsp; &nbsp; Given \( - \alpha&nbsp; - \beta&nbsp; - \gamma&nbsp; =&nbsp; - 6\)</p>
<p>And \(\alpha \beta&nbsp; + \beta \gamma&nbsp; + \gamma \alpha&nbsp; = 18\)</p>
<p>Let the three roots be \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \)</p>
<p>So \(\beta&nbsp; - \alpha&nbsp; = \gamma&nbsp; - \beta \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>or \(2\beta&nbsp; = \alpha&nbsp; + \gamma \)</p>
<p>Attempt to solve simultaneous equations: &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\beta&nbsp; + 2\beta&nbsp; = 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\beta&nbsp; = 2\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(\alpha&nbsp; + \gamma&nbsp; = 4\)</p>
<p>\(2\alpha&nbsp; + 2\gamma&nbsp; + \alpha \gamma&nbsp; = 18\)</p>
<p>\( \Rightarrow {\gamma ^2} - 4\gamma&nbsp; + 10 = 0\)</p>
<p>\( \Rightarrow \gamma&nbsp; = \frac{{4 \pm {\text{i}}\sqrt {24} }}{2}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>Therefore \(c =&nbsp; - \alpha \beta \gamma&nbsp; =&nbsp; - \left( {\frac{{4 + {\text{i}}\sqrt {24} }}{2}} \right)\left( {\frac{{4 - {\text{i}}\sqrt {24} }}{2}} \right)2 =&nbsp; - 20\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>(i) &nbsp; &nbsp; let the three roots be \(\alpha ,{\text{ }}\alpha&nbsp; - d,{\text{ }}\alpha&nbsp; + d\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>adding roots &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>to give \(3\alpha&nbsp; = 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\alpha&nbsp; = 2\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(\alpha \) is a root, so \({2^3} - 6 \times {2^2} + 18 \times 2 + c = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(8 - 24 + 36 + c = 0\)</p>
<p>\(c =&nbsp; - 20\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 3</strong></p>
<p>(i) &nbsp; &nbsp; let the three roots be \(\alpha ,{\text{ }}\alpha&nbsp; - d,{\text{ }}\alpha&nbsp; + d\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>adding roots &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>to give \(3\alpha&nbsp; = 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\alpha&nbsp; = 2\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(q = 18 = 2(2 - d) + (2 - d)(2 + d) + 2(2 + d)\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({d^2} =&nbsp; - 6 \Rightarrow d = \sqrt 6 {\text{i}}\)</p>
<p>\( \Rightarrow c =&nbsp; - 20\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>Given \( - \alpha&nbsp; - \beta&nbsp; - \gamma&nbsp; =&nbsp; - 6\)</p>
<p>And \(\alpha \beta&nbsp; + \beta \gamma&nbsp; + \gamma \alpha&nbsp; = 18\)</p>
<p>Let the three roots be \(\alpha ,{\text{ }}\beta ,{\text{ }}\gamma \).</p>
<p>So \(\frac{\beta }{\alpha } = \frac{\gamma }{\beta }\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>or \({\beta ^2} = \alpha \gamma \)</p>
<p>Attempt to solve simultaneous equations: &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(\alpha \beta&nbsp; + \gamma \beta&nbsp; + {\beta ^2} = 18\)</p>
<p>\(\beta (\alpha&nbsp; + \beta&nbsp; + \gamma ) = 18\)</p>
<p>\(6\beta&nbsp; = 18\)</p>
<p>\(\beta&nbsp; = 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\alpha&nbsp; + \gamma&nbsp; = 3,{\text{ }}\alpha&nbsp; = \frac{9}{\gamma }\)</p>
<p>\( \Rightarrow {\gamma ^2} - 3\gamma&nbsp; + 9 = 0\)</p>
<p>\( \Rightarrow \gamma&nbsp; = \frac{{3 \pm {\text{i}}\sqrt {27} }}{2}\) &nbsp; &nbsp; (<strong><em>A1)(A1)</em></strong></p>
<p>Therefore \(c =&nbsp; - \alpha \beta \gamma&nbsp; =&nbsp; - \left( {\frac{{3 + {\text{i}}\sqrt {27} }}{2}} \right)\left( {\frac{{3 - {\text{i}}\sqrt {27} }}{2}} \right)3 =&nbsp; - 27\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>let the three roots be \(a,{\text{ }}ar,{\text{ }}a{r^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>attempt at substitution of \(a,{\text{ }}ar,{\text{ }}a{r^2}\) and \(p\) and \(q\) into equations from (a) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(6 = a + ar + a{r^2}\left( { = a(1 + r + {r^2})} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(18 = {a^2}r + {a^2}{r^3} + {a^2}{r^2}\left( { = {a^2}r(1 + r + {r^2})} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>therefore \(3 = ar\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>therefore \(c =&nbsp; - {a^3}{r^3} =&nbsp; - {3^3} =&nbsp; - 27\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<p><strong><em>Total [14 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(h(x) = \arctan (x),{\text{ }}x \in \mathbb{R}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(g(x) = \frac{1}{x}\), \(x\in \mathbb{R}\)</span><span style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;">, \({\text{ }}x \ne 0\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = h(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(h \circ g(x)\) and state its domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = h(x) + h \circ g(x)\),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; find \(f'(x)\) in simplified form;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; show that \(f(x) = \frac{\pi }{2}\) for \(x &gt; 0\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Nigel states that \(f\) is an odd function and Tom argues that \(f\) is an even function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; State who is correct and justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence find the value of \(f(x)\) for \(x &lt; 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_14a_markscheme.png" alt>&nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; <strong><em>A1</em></strong> for correct shape, <strong><em>A1 </em></strong>for asymptotic behaviour at \(y =&nbsp; \pm \frac{\pi }{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(h \circ g(x) = \arctan \left( {\frac{1}{x}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">domain of \(h \circ g\) is equal to the domain of \(g:x \in&nbsp; \circ ,{\text{ }}x \ne 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f(x) = \arctan (x) + \arctan \left( {\frac{1}{x}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{1 + {x^2}}} + \frac{1}{{1 + \frac{1}{{{x^2}}}}} \times&nbsp; - \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{1 + {x^2}}} + \frac{{ - \frac{1}{{{x^2}}}}}{{\frac{{{x^2} + 1}}{{{x^2}}}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{{1 + {x^2}}} - \frac{1}{{1 + {x^2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f </em>is a constant &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">when \(x &gt; 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(1) = \frac{\pi }{4} + \frac{\pi }{4}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_14c_markscheme.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">from diagram</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; = \arctan \frac{1}{x}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha&nbsp; = \arctan x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta&nbsp; + \alpha&nbsp; = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(f(x) = \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan \left( {f(x)} \right) = \tan \left( {\arctan (x) + \arctan \left( {\frac{1}{x}} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{x + \frac{1}{x}}}{{1 - x\left( {\frac{1}{x}} \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">denominator = 0, so \(f(x) = \frac{\pi }{2}{\text{ (for }}x &gt; 0)\) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Nigel is correct. &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\arctan (x)\) is an odd function and \(\frac{1}{x}\) is an odd function</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">composition of two odd functions is an odd function and sum of two odd functions is an odd function &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = \arctan ( - x) + \arctan \left( { - \frac{1}{x}} \right) =&nbsp; - \arctan (x) - \arctan \left( {\frac{1}{x}} \right) =&nbsp; - f(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore <em>f </em>is an odd function. &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f(x) =&nbsp; - \frac{\pi }{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The function \(f\) is defined by \(f(x) = 2{x^3} + 5,{\text{ }} - 2 \leqslant x \leqslant 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of \(f\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for \({f^{ - 1}}(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the domain and range of \({f^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\( - 11 \leqslant f(x) \leqslant 21\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1 </em></strong>for correct end points, <strong><em>A1 </em></strong>for correct inequalities.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({f^{ - 1}}(x) = \sqrt[3]{{\frac{{x - 5}}{2}}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 11 \leqslant x \leqslant 21,{\text{ }} - 2 \leqslant {f^{ - 1}}(x) \leqslant 2\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function defined by \(f(x) = x\sqrt {1 - {x^2}} \) <span class="s1">on the domain \( - 1 \le x \le 1\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(f\)&nbsp;is an odd function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the \(x\)-coordinates of any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the range of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the graph of \(y = f(x)\) indicating clearly the coordinates of the \(x\)-intercepts and any local maximum or minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of the region enclosed by the graph of \(y = f(x)\) and the \(x\)-axis for \(x \ge 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(f( - x) = ( - x)\sqrt {1 - {{( - x)}^2}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( =&nbsp; - x\sqrt {1 - {x^2}} \)</p>
<p>\( =&nbsp; - f(x)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>hence \(f\) is odd &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f'(x) = x \bullet \frac{1}{2}{(1 - {x^2})^{ - \frac{1}{2}}} \bullet&nbsp; - 2x + {(1 - {x^2})^{\frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f'(x) = \sqrt {1 - {x^2}}&nbsp; - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }}\;\;\;\left( { = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>This may be seen in part (b).</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Do not allow FT from part (b).</p>
<p>&nbsp;</p>
<p>\(f'(x) = 0 \Rightarrow 1 - 2{x^2} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(x =&nbsp; \pm \frac{1}{{\sqrt 2 }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y\)-coordinates of the Max Min Points are \(y =&nbsp; \pm \frac{1}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>so range of \(f(x)\) is \(\left[ { - \frac{1}{2},{\text{ }}\frac{1}{2}} \right]\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Allow FT from (c) if values of \(x\), within the domain, are used.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-01-28_om_19.00.15.png" alt></p>
<p class="p1">Shape: The graph of an odd function, on the given domain, s-shaped,</p>
<p class="p1">where the max(min) is the right(left) of \(0.5{\text{ }}( - 0.5)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\(x\)-intercepts <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2">turning points <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{area}} = \int_0^1 {x\sqrt {1 - {x^2}} {\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>attempt at &ldquo;backwards chain rule&rdquo; or substitution &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( =&nbsp; - \frac{1}{2}\int_0^1 {( - 2x)\sqrt {1 - {x^2}} {\text{d}}x} \)</p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Condone absence of limits for first two marks.</p>
<p>&nbsp;</p>
<p>\( = \left[ {\frac{2}{3}{{(1 - {x^2})}^{\frac{3}{2}}} \bullet&nbsp; - \frac{1}{2}} \right]_0^1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \left[ { - \frac{1}{3}{{(1 - {x^2})}^{\frac{3}{2}}}} \right]_0^1\)</p>
<p>\( = 0 - \left( { - \frac{1}{3}} \right) = \frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; 0} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">\(\left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right| = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">so \(\int_{ - 1}^1 {\left| {x\sqrt {1 - {x^2}} } \right|{\text{d}}x &gt; \left| {\int_{ - 1}^1 {x\sqrt {1 - {x^2}} {\text{d}}x} } \right|} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<p class="p1"><strong><em>Total [20 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2x - 1,}&amp;{x \leqslant 2} \\ <br>&nbsp; {a{x^2} + bx - 5,}&amp;{2 &lt; x &lt; 3} <br>\end{array}} \right.\]<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where a , \(b \in \mathbb{R}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>f</em> and its derivative, \(f'\) , are continuous for all values in the domain of <em>f</em> , find the values of <em>a</em> and <em>b</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that <em>f</em> is a one-to-one function.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Obtain expressions for the inverse function \({f^{ - 1}}\) and state their domains.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f</em> continuous \( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4a + 2b = 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {2,}&amp;{x &lt; 2} \\ <br>&nbsp; {2ax + b,}&amp;{2 &lt; x &lt; 3} <br>\end{array}} \right.\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'{\text{ continuous}} \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f'(x) = \mathop {\lim }\limits_{x \to {2^ \div }} f'(x)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4a + b = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solve simultaneously &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to obtain <em>a</em> = &ndash;1 and <em>b</em> = 6 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(x \leqslant 2,{\text{ }}f'(x) = 2 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(2 &lt; x &lt; 3,{\text{ }}f'(x) = - 2x + 6 &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(f'(x) &gt; 0\) for all values in the domain of <em>f</em> , <em>f</em> is increasing &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore one-to-one &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 2y - 1 \Rightarrow y = \frac{{x + 1}}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - {y^2} + 6y - 5 \Rightarrow {y^2} - 6y + x + 5 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 3 \pm \sqrt {4 - x} \)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {\frac{{x + 1}}{2},}&amp;{x \leqslant 3} \\ <br>&nbsp; {3 - \sqrt {4 - x} ,}&amp;{3 &lt; x &lt; 4} <br>\end{array}} \right.\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for the first line and <strong><em>A1A1</em></strong> for the second line.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined by</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ \begin{array}{r}1 - 2x,\\{\textstyle{3 \over 4}}{(x - 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \le 2}\\{x &gt; 2}\end{array}\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \(f\)is continuous.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained by applying the following transformations to the graph of \(f\):</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">a reflection in the \(y\)&ndash;axis followed by a translation by the vector \(\left( \begin{array}{l}2\\0\end{array} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(g(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1 - 2(2) = - &nbsp;3\) and \(\frac{3}{4}{(2 - 2)^2} - 3 =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">both answers are the same, hence <em>f</em> is continuous (at \(x = 2\)) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; <strong><em>R1</em></strong> may be awarded for justification using a graph or referring to limits. Do not award <strong><em>A0R1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">reflection in the <em>y</em>-axis</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = \left\{ \begin{array}{r}1 + 2x,\\{\textstyle{3 \over 4}}{(x + 2)^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge &nbsp;- 2}\\{x &lt; &nbsp;- 2}\end{array}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1 </em></strong>for evidence of reflecting a graph in <em>y</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( \begin{array}{l}2\\0\end{array} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = \left\{ \begin{array}{r}2x - 3,\\{\textstyle{3 \over 4}}{x^2} - 3,\end{array} \right.\begin{array}{*{20}{c}}{x \ge 0}\\{x &lt; 0}\end{array}\) &nbsp; &nbsp;&nbsp;<strong><em>(M1)A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>(M1) </em></strong>for attempting to substitute \((x - 2)\) for <span style="font: 20.0px 'Times New Roman';"><em>x</em></span>, or&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">translating a graph along positive <em>x</em>-axis.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for the correct domains (this mark can be awarded independent of the <strong><em>M1</em></strong>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for the correct expressions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = \frac{{1 - 3x}}{{x - 2}}\), showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_17.42.06.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a"></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, solve the inequality \(\left| {\frac{{1 - 3x}}{{x - 2}}} \right| &lt; 2\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-07_om_17.44.18.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.a/M"></p>
<p>correct vertical asymptote &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>shape including correct horizontal asymptote &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\left( {\frac{1}{3},{\text{ }}0} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\left( {0,{\text{ }} - \frac{1}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Accept \(x = \frac{1}{3}\) and \(y =&nbsp; - \frac{1}{2}\) marked on the axes.</p>
<p>&nbsp;</p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p><img src="images/Schermafbeelding_2018-02-07_om_18.03.17.png" alt="N17/5/MATHL/HP1/ENG/TZ0/06.b/M"></p>
<p>\(\frac{{1 - 3x}}{{x - 2}} = 2\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow x = 1\) &nbsp; &nbsp;<strong><em>A1</em></strong></p>
<p>\( - \left( {\frac{{1 - 3x}}{{x - 2}}} \right) = 2\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award this <strong><em>M1 </em></strong>for the line above or a correct sketch identifying a second critical value.</p>
<p>&nbsp;</p>
<p>\( \Rightarrow x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>solution is \( - 3 &lt; x &lt; 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>\(\left| {1 - 3x} \right| &lt; 2\left| {x - 2} \right|,{\text{ }}x \ne 2\)</p>
<p>\(1 - 6x + 9{x^2} &lt; 4({x^2} - 4x + 4)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p>\(1 - 6x + 9{x^2} &lt; 4{x^2} - 16x + 16\)</p>
<p>\(5{x^2} + 10x - 15 &lt; 0\)</p>
<p>\({x^2} + 2x - 3 &lt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\((x + 3)(x - 1) &lt; 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>solution is \( - 3 &lt; x &lt; 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 3</strong></p>
<p>\( - 2 &lt; \frac{{1 - 3x}}{{x - 2}} &lt; 2\)</p>
<p>consider \(\frac{{1 - 3x}}{{x - 2}} &lt; 2\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Also allow consideration of &ldquo;&gt;&rdquo; or &ldquo;=&rdquo; for the awarding of the <strong><em>M </em></strong>mark.</p>
<p>&nbsp;</p>
<p>recognition of critical value at \(x = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>consider \( - 2 &lt; \frac{{1 - 3x}}{{x - 2}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Also allow consideration of &ldquo;&gt;&rdquo; or &ldquo;=&rdquo; for the awarding of the <strong><em>M </em></strong>mark.</p>
<p>&nbsp;</p>
<p>recognition of critical value at \(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>solution is \( - 3 &lt; x &lt; 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<p><strong><em>&nbsp;</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f\) is given by \(f(x) = x{{\text{e}}^{ - x}}{\text{ }}(x \geqslant 0)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine the coordinates of the point A, where \(f'(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \(f''(x)\) and hence show the point A is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find the coordinates of B, the point of inflexion.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of the function \(g\) is obtained from the graph of \(f\) by stretching it in the <em>x</em>-direction by a scale factor 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (i) &nbsp; &nbsp; Write down an expression for \(g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (ii) &nbsp; &nbsp; State the coordinates of the maximum C of \(g\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (iii) &nbsp; &nbsp; Determine the <em>x</em>-coordinates of D and E, the two points where \(f(x) = g(x)\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graphs of \(y = f(x)\) and \(y = g(x)\) on the same axes, showing clearly the points A, B, C, D and E.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find an exact value for the area of the region bounded by the curve \(y = g(x)\), the <em>x</em>-axis and the line \(x = 1\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = {{\text{e}}^{ - x}} - x{{\text{e}}^{ - x}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f'(x) = 0 \Rightarrow x = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates \(\left( {1,{\text{ }}{{\text{e}}^{ - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) =&nbsp; - {{\text{e}}^{ - x}} - {{\text{e}}^{ - x}} + x{{\text{e}}^{ - x}}{\text{ }}\left( { =&nbsp; - {{\text{e}}^{ - x}}(2 - x)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting \(x = 1\) into \(f''(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(1){\text{ }}\left( { =&nbsp; - {{\text{e}}^{ - 1}}} \right) &lt; 0\) hence maximum &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0{\text{ (}} \Rightarrow x = 2)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">coordinates \(\left( {2,{\text{ 2}}{{\text{e}}^{ - 2}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(g(x) = \frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; coordinates of maximum \(\left( {2,{\text{ }}{{\text{e}}^{ - 1}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; equating \(f(x) = g(x)\) and attempting to solve \(x{{\text{e}}^{ - x}} = \frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x\left( {2{{\text{e}}^{\frac{x}{2}}} - {{\text{e}}^x}} \right) = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; or</strong> \(2{{\text{e}}^{\frac{x}{2}}} = {{\text{e}}^x}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow {{\text{e}}^{\frac{x}{2}}} = 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; \( \Rightarrow x = 2\ln 2\) &nbsp; \((\ln 4)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award first (<strong><em>A1) </em></strong>only if factorisation seen or if two correct</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">solutions are seen.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_10e_markscheme.png" alt> &nbsp; &nbsp;&nbsp;<strong><em>A4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for shape of \(f\), including domain extending beyond \(x = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Ignore any graph shown for \(x &lt; 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for A and B correctly identified.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for shape of \(g\), including domain extending beyond \(x = 2\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Ignore any graph shown for \(x &lt; 0\). Allow follow through from \(f\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; Award <strong><em>A1 </em></strong>for C, D and E correctly identified (D and E are&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">interchangeable).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^1 {\frac{x}{2}{{\text{e}}^{ - \frac{x}{2}}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - x{{\text{e}}^{ - \frac{x}{2}}}} \right]_0^1 - \int_0^1 { - {{\text{e}}^{ - \frac{x}{2}}}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Condone absence of limits or incorrect limits.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - {{\text{e}}^{ - \frac{1}{2}}} - \left[ {2{{\text{e}}^{ - \frac{x}{2}}}} \right]_0^1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( =&nbsp; - {{\text{e}}^{ - \frac{1}{2}}} - \left( {2{{\text{e}}^{ - \frac{1}{2}}} - 2} \right) = 2 - 3{{\text{e}}^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) proved to be an easy start for the vast majority of candidates.</span></p>
<div class="question_part_label">a(i)(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Full marks for part b) were again likewise seen, though a small number shied away from considering the sign of their second derivative, despite the question asking them to do so.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part c) again proved to be an easily earned 2 marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Full marks for part b) were again likewise seen, though a small number shied away from considering the sign of their second derivative, despite the question asking them to do so.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part c) again proved to be an easily earned 2 marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates lost their way in part d). A variety of possibilities for \(g(x)\) were suggested, commonly \(2x{{\text{e}}^{ - 2x}}\), \(\frac{{x{{\text{e}}^{ - 1}}}}{2}\) or similar variations. Despite section ii) being worth only one mark, (and &lsquo;state&rsquo; being present in the question), many laborious attempts at further differentiation were seen. Part diii was usually answered well by those who gave the correct function for \(g(x)\).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part e) was also answered well by those who had earned full marks up to that point.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">While the integration by parts technique was clearly understood, it was somewhat surprising how many careless slips were seen in this part of the question. Only a minority gained full marks for part f).</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A rational function is defined by \(f(x) = a + \frac{b}{{x - c}}\) where the parameters \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\) and \(x \in \mathbb{R}\backslash \{ c\} \). The following diagram represents the graph of \(y = f(x)\).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-02-28_om_09.42.27.png" alt="N16/5/MATHL/HP1/ENG/TZ0/03"></p>
<p class="p1">Using the information on the graph,</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">state the value of \(a\) <span class="s1">and the value of </span>\(c\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">find the value of \(b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(a = 1\)    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(c = 3\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">use the coordinates of \((1,{\text{ }}0)\) <span class="s1">on the graph <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\(f(1) = 0 \Rightarrow 1 + \frac{b}{{1 - 3}} = 0 \Rightarrow b = 2\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The equation \(5{x^3} + 48{x^2} + 100x + 2 = a\) has roots \({r_1}\), \({r_2}\) and \({r_3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({r_1} + {r_2} + {r_3} + {r_1}{r_2}{r_3} = 0\), find the value of <em>a</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({r_1} + {r_2} + {r_3} = \frac{{ - 48}}{5}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({r_1}{r_2}{r_3} = \frac{{a - 2}}{5}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{ - 48}}{5} + \frac{{a - 2}}{5} = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 50\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M1A0M1A0M1A1 </em></strong>if answer of 50 is found using \(\frac{{48}}{5}\) and \(\frac{{2 - a}}{5}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the equation \(9{x^3} - 45{x^2} + 74x - 40 = 0\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the numerical value of the sum and of the product of the roots of this equation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The roots of this equation are three consecutive terms of an arithmetic sequence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Taking the roots to be \(\alpha {\text{ , }}\alpha&nbsp; \pm \beta \) , solve the equation.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{sum}} = \frac{{45}}{9},{\text{ product}} = \frac{{40}}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that \(3\alpha = \frac{{45}}{9}\) and \(\alpha ({\alpha ^2} - {\beta ^2}) = \frac{{40}}{9}\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solving, \(\alpha = \frac{5}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{5}{3}\left( {\frac{{25}}{9} - {\beta ^2}} \right) = \frac{{40}}{9}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\beta = ( \pm )\frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the other two roots are 2, \(\frac{4}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Let <em>f</em>(<em>x</em>) = <em>x</em><sup>4</sup> + <em>px</em><sup>3</sup> + <em>qx</em> + 5 where <em>p</em>, <em>q</em> are constants.</p>
<p>The remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> + 1) is 7, and the remainder when <em>f</em>(<em>x</em>) is divided by (<em>x</em> − 2) is 1. Find the value of <em>p</em> and the value of <em>q</em>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>attempt to substitute <em>x</em> = −1 or <em>x</em> = 2 or to divide polynomials      <em><strong>(M1)</strong></em></p>
<p>1 − <em>p</em> − <em>q</em> + 5 = 7, 16 + 8<em>p</em> + 2<em>q</em> + 5 = 1 or equivalent      <em><strong>A1A1</strong></em></p>
<p>attempt to solve their two equations <em><strong>M1</strong></em></p>
<p><em>p</em> = −3, <em>q</em> = 2     <em><strong> A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The cubic polynomial \(3{x^3} + p{x^2} + qx - 2\) has a factor \((x + 2)\) and leaves a remainder 4 when divided by \((x + 1)\). Find the value of <em>p </em>and the value of <em>q</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 2) = 0{\text{ }}( \Rightarrow&nbsp; - 24 + 4p - 2q - 2 = 0)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 1) = 4{\text{ }}( \Rightarrow&nbsp; - 3 + p - q - 2 = 4)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; In each case award the <strong><em>M </em></strong>marks if correct substitution attempted and right-hand side correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to solve simultaneously \((2p - q = 13,{\text{ }}p - q = 9)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(p = 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(q =&nbsp; - 5\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates scored full marks on what was thought to be an easy first question. However, a number of candidates wrote down two correct equations but proceeded to make algebraic errors and thus found incorrect values for <em>p</em> and <em>q</em>. A small number also attempted to answer this question using long division, but fully correct answers using this technique were rarely seen.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The quadratic equation \(2{x^2} - 8x + 1 = 0\) has roots \(\alpha \) and \(\beta \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Without solving the equation, find the value of</p>
<p>(i) &nbsp; &nbsp; \(\alpha&nbsp; + \beta \);</p>
<p>(ii) &nbsp; &nbsp; \(\alpha \beta \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Another quadratic equation \({x^2} + px + q = 0,{\text{ }}p,{\text{ }}q \in \mathbb{Z}\) has roots \(\frac{2}{\alpha }\) and \(\frac{2}{\beta }\).</p>
<p class="p1">Find the value of \(p\) and the value of \(q\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>using the formulae for the sum and product of roots:</p>
<p>(i) &nbsp; &nbsp; \(\alpha&nbsp; + \beta&nbsp; = 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>(ii) &nbsp; &nbsp; \(\alpha \beta&nbsp; = \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A0A0 </em></strong>if the above results are obtained by solving the original equation (except for the purpose of checking).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>required quadratic is of the form \({x^2} - \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)x + \left( {\frac{2}{\alpha }} \right)\left( {\frac{2}{\beta }} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\(q = \frac{4}{{\alpha \beta }}\)</p>
<p>\(q = 8\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(p =&nbsp; - \left( {\frac{2}{\alpha } + \frac{2}{\beta }} \right)\)</p>
<p>\( =&nbsp; - \frac{{2(\alpha&nbsp; + \beta )}}{{\alpha \beta }}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\( =&nbsp; - \frac{{2 \times 4}}{{\frac{1}{2}}}\)</p>
<p>\(p =&nbsp; - 16\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Accept the use of exact roots</p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p>&nbsp;</p>
<p>replacing \(x\) with \(\frac{2}{x}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(2{\left( {\frac{2}{x}} \right)^2} - 8\left( {\frac{2}{x}} \right) + 1 = 0\)</p>
<p>\(\frac{8}{{{x^2}}} - \frac{{16}}{x} + 1 = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\({x^2} - 16x + 8 = 0\)</p>
<p>\(p =&nbsp; - 16\) and \(q = 8\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>A1A0 </em></strong>for \({x^2} - 16x + 8 = 0\) <em>ie</em>, if \(p =&nbsp; - 16\) and \(q = 8\) are not explicitly stated.</p>
<p><em><strong>[4 marks]</strong></em></p>
<p><em><strong>Total [6 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates obtained full marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates obtained full marks, but some responses were inefficiently expressed. A very small minority attempted to use the exact roots, usually unsuccessfully.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following functions:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \frac{{2{x^2} + 3}}{{75}},{\text{ }}x \geqslant 0\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[g(x) = \frac{{\left| {3x - 4} \right|}}{{10}},{\text{ }}x \in \mathbb{R}{\text{ }}.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f </em>and of <em>g </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for the composite function \(f \circ g(x)\)&nbsp;in the form \(\frac{{a{x^2} + bx + c}}{{3750}}\),&nbsp;where \(a,{\text{ }}b{\text{ and }}c \in \mathbb{Z}\)&nbsp;.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for the inverse function \({f^{ - 1}}(x)\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; State the domain and range of \({f^{ - 1}}\)<span style="font: 7.0px Helvetica;">&nbsp;</span>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="line-height: normal; font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">The domains of <em>f</em> and <em>g</em> are now restricted to {0, 1, 2, 3, 4} .</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">By considering the values of <em>f </em>and <em>g </em>on this new domain, determine which of&nbsp;<em>f </em>and <em>g </em>could be used to find a probability distribution for a discrete random&nbsp;variable <em>X </em>, stating your reasons clearly.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Using this probability distribution, calculate the mean of <em>X </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) \geqslant \frac{1}{{25}}\) &nbsp; &nbsp;<strong> <em>A1&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) \in \mathbb{R},{\text{ }}g(x) \geqslant 0\) &nbsp; &nbsp;<strong> <em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f \circ g(x) = \frac{{2{{\left( {\frac{{3x - 4}}{{10}}} \right)}^2} + 3}}{{75}}\) &nbsp; &nbsp;<strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{\frac{{2(9{x^2} - 24x + 16)}}{{100}} + 3}}{{75}}\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{9{x^2} - 24x + 166}}{{3750}}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[4 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{2{x^2} + 3}}{{75}}\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} = \frac{{75y - 3}}{2}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p>\(x = \sqrt {\frac{{75y - 3}}{2}} \) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {f^{ - 1}}(x) = \sqrt {\frac{{75x - 3}}{2}} \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept &plusmn; in line 3 for the <strong><em>(A1) </em></strong>but not in line 4 for the <strong><em>A1</em></strong>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award the <strong><em>A1 </em></strong>only if written in the form \({f^{ - 1}}(x) = \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;">&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{2{x^2} + 3}}{{75}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{2{y^2} + 3}}{{75}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \sqrt {\frac{{75x - 3}}{2}} \) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {f^{ - 1}}(x) = \sqrt {\frac{{75x - 3}}{2}} \) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span>&nbsp;<span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept &plusmn; in line 3 for the <strong><em>(A1) </em></strong>but not in line 4 for the <strong><em>A1</em></strong>.</span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award the <strong><em>A1 </em></strong>only if written in the form \({f^{ - 1}}(x) = \)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;">&nbsp;</p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; domain: \(x \geqslant \frac{1}{{25}}\)&nbsp;; range: \({f^{ - 1}}(x) \geqslant 0\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">probabilities from \(f(x)\) :</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for one error, <strong><em>A0 </em></strong>otherwise.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">probabilities from \(g(x)\) :</span></p>
<p><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp; &nbsp;&nbsp; A2<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for one error, <strong><em>A0 </em></strong>otherwise.&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">only in the case of \(f(x)\) does \(\sum {P(X = x) = 1} \) , hence only \(f(x)\) can be used as a probability mass function &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(E(x) = \sum {x \cdot {\text{P}}(X = x)} \) &nbsp; &nbsp;<strong> <em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{5}{{75}} + \frac{{22}}{{75}} + \frac{{63}}{{75}} + \frac{{140}}{{75}} = \frac{{230}}{{75}}\left( { = \frac{{46}}{{15}}} \right)\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the ranges were often given incorrectly, particularly the range of <em>g </em>where the modulus signs appeared to cause difficulty. In (b), it was disappointing to see so many candidates making algebraic errors in attempting to determine the expression for \(f \circ g(x)\). Many candidates were unable to solve (d) correctly with arithmetic errors and incorrect reasoning often seen. Since the solution to (e) depended upon a correct choice of function in (d), few correct solutions were seen with some candidates even attempting to use integration, inappropriately, to find the mean of <em>X</em>.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the ranges were often given incorrectly, particularly the range of <em>g </em>where the modulus signs appeared to cause difficulty. In (b), it was disappointing to see so many candidates making algebraic errors in attempting to determine the expression for \(f \circ g(x)\). Many candidates were unable to solve (d) correctly with arithmetic errors and incorrect reasoning often seen. Since the solution to (e) depended upon a correct choice of function in (d), few correct solutions were seen with some candidates even attempting to use integration, inappropriately, to find the mean of <em>X</em>.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the ranges were often given incorrectly, particularly the range of <em>g </em>where the modulus signs appeared to cause difficulty. In (b), it was disappointing to see so many candidates making algebraic errors in attempting to determine the expression for \(f \circ g(x)\). Many candidates were unable to solve (d) correctly with arithmetic errors and incorrect reasoning often seen. Since the solution to (e) depended upon a correct choice of function in (d), few correct solutions were seen with some candidates even attempting to use integration, inappropriately, to find the mean of <em>X</em>.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the ranges were often given incorrectly, particularly the range of <em>g </em>where the modulus signs appeared to cause difficulty. In (b), it was disappointing to see so many candidates making algebraic errors in attempting to determine the expression for \(f \circ g(x)\). Many candidates were unable to solve (d) correctly with arithmetic errors and incorrect reasoning often seen. Since the solution to (e) depended upon a correct choice of function in (d), few correct solutions were seen with some candidates even attempting to use integration, inappropriately, to find the mean of <em>X</em>.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the ranges were often given incorrectly, particularly the range of <em>g </em>where the modulus signs appeared to cause difficulty. In (b), it was disappointing to see so many candidates making algebraic errors in attempting to determine the expression for \(f \circ g(x)\). Many candidates were unable to solve (d) correctly with arithmetic errors and incorrect reasoning often seen. Since the solution to (e) depended upon a correct choice of function in (d), few correct solutions were seen with some candidates even attempting to use integration, inappropriately, to find the mean of <em>X</em>.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graphs of \(y = \left| x \right|\) and \(y =&nbsp; - \left| x \right| + b\), where \(b \in {\mathbb{Z}^ + }\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs on the same set of axes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the graphs enclose a region of area 18 square units, find the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-08_om_11.15.31.png" alt="M17/5/MATHL/HP1/ENG/TZ1/A6.a/M"></p>
<p>graphs sketched correctly (condone missing <em>b</em>)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{b^2}}}{2} = 18\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)A1</em></strong></p>
<p>\(b = 6\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the functions given below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\[f(x) = 2x + 3\]\[g(x) = \frac{1}{x},x \ne 0\]<br></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Find \(\left( {g \circ f} \right)\left( x \right)\) and write down the domain of the function.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Find \(\left( {f \circ g} \right)\left( x \right)\) and write down the domain of the function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the coordinates of the point where the graph of \(y = f(x)\) and the graph of \(y = \left( {{g^{ - 1}} \circ f \circ g} \right)(x)\) intersect.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;">(i) &nbsp; &nbsp; </span><span style="font-size: medium;">\(\left( {g \circ f} \right)\left( x \right) = \frac{1}{{2x + 3}}\), \(x \ne - \frac{3}{2}\) </span><span style="font-size: medium;">(or equivalent) &nbsp; &nbsp; <em><strong>A1</strong></em></span></span></p>
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;"><em><strong>&nbsp;</strong></em></span></span></p>
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; </span>\(\left( {f \circ g} \right)\left( x \right) = \frac{2}{x} + 3\), \(x \ne 0\)<span style="font-size: medium;"> (or equivalent)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(f(x) = \left( {{g^{ - 1}} \circ f \circ g} \right)(x) \Rightarrow \left( {f \circ g} \right)\left( x \right)\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{1}{{2x + 3}} = \frac{2}{x} + 3\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\left( {{g^{ - 1}} \circ f \circ g} \right)(x) = \frac{1}{{\frac{2}{x} + 3}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(2x + 3 = \frac{1}{{\frac{2}{x} + 3}}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">THEN</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(6{x^2} + 12x + 6 = 0\) (or equivalent) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = - 1\), \(y = 1\) (coordinates are (&minus;1, 1) )&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was in general well answered and part (b) well attempted. Some candidates had difficulties with the order of composition and in using correct notation to represent the domains of the functions.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was in general well answered and part (b) well attempted. Some candidates had difficulties with the order of composition and in using correct notation to represent the domains of the functions.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \({f_n}(x) = (\cos 2x)(\cos 4x) \ldots (\cos {2^n}x),{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether \({f_n}\) is an odd or even function, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using mathematical induction, prove that</p>
<p style="text-align: center;">\({f_n}(x) = \frac{{\sin {2^{n + 1}}x}}{{{2^n}\sin 2x}},{\text{ }}x \ne \frac{{m\pi }}{2}\) where \(m \in \mathbb{Z}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find an expression for the derivative of \({f_n}(x)\) with respect to \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, for \(n &gt; 1\), the equation of the tangent to the curve \(y = {f_n}(x)\) at \(x = \frac{\pi }{4}\) is \(4x - 2y - \pi&nbsp; = 0\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>even function &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since \(\cos kx = \cos ( - kx)\) <strong>and</strong> \({f_n}(x)\) is a product of even functions &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><strong>OR</strong></p>
<p>even function &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since \((\cos 2x)(\cos 4x) \ldots&nbsp; = \left( {\cos ( - 2x)} \right)\left( {\cos ( - 4x)} \right) \ldots \) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award <strong><em>A0R1</em></strong>.</p>
<p>&nbsp;</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>consider the case \(n = 1\)</p>
<p>\(\frac{{\sin 4x}}{{2\sin 2x}} = \frac{{2\sin 2x\cos 2x}}{{2\sin 2x}} = \cos 2x\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>hence true for \(n = 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>assume true for \(n = k\), <em>ie</em>, \((\cos 2x)(\cos 4x) \ldots (\cos {2^k}x) = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Do not award <strong><em>M1 </em></strong>for &ldquo;let \(n = k\)&rdquo; or &ldquo;assume \(n = k\)&rdquo; or equivalent.</p>
<p>&nbsp;</p>
<p>consider \(n = k + 1\):</p>
<p>\({f_{k + 1}}(x) = {f_k}(x)(\cos {2^{k + 1}}x)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( = \frac{{\sin {2^{k + 1}}x}}{{{2^k}\sin 2x}}\cos {2^{k + 1}}x\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{2\sin {2^{k + 1}}x\cos {2^{k + 1}}x}}{{{2^{k + 1}}\sin 2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\( = \frac{{\sin {2^{k + 2}}x}}{{{2^{k + 1}}\sin 2x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>so \(n = 1\) true and \(n = k\) true \( \Rightarrow n = k + 1\) true. Hence true for all \(n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; To obtain the final <strong><em>R1</em></strong>, all the previous <strong><em>M </em></strong>marks must have been awarded.</p>
<p>&nbsp;</p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempt to use \(f&rsquo; = \frac{{vu' - uv'}}{{{v^2}}}\) (or correct product rule) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({f&rsquo;_n}(x) = \frac{{({2^n}\sin 2x)({2^{n + 1}}\cos {2^{n + 1}}x) - (\sin {2^{n + 1}}x)({2^{n + 1}}\cos 2x)}}{{{{({2^n}\sin 2x)}^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for correct numerator and <strong><em>A1 </em></strong>for correct denominator.</p>
<p>&nbsp;</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = \frac{{\left( {{2^n}\sin \frac{\pi }{2}} \right)\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right) - \left( {\sin {2^{n + 1}}\frac{\pi }{4}} \right)\left( {{2^{n + 1}}\cos \frac{\pi }{2}} \right)}}{{{{\left( {{2^n}\sin \frac{\pi }{2}} \right)}^2}}}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></p>
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = \frac{{({2^n})\left( {{2^{n + 1}}\cos {2^{n + 1}}\frac{\pi }{4}} \right)}}{{{{({2^n})}^2}}}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>\( = 2\cos {2^{n + 1}}\frac{\pi }{4}{\text{ }}( = 2\cos {2^{n - 1}}\pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({f&rsquo;_n}\left( {\frac{\pi }{4}} \right) = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({f_n}\left( {\frac{\pi }{4}} \right) = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note:</strong> &nbsp; &nbsp; This <strong><em>A </em></strong>mark is independent from the previous marks.</p>
<p>&nbsp;</p>
<p>\(y = 2\left( {x - \frac{\pi }{4}} \right)\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(4x - 2y - \pi&nbsp; = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function <em>f</em> is defined by \(f(x) = \frac{{2x - 3}}{{x - 1}},{\text{ }}x \ne 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Solve the equation \(\left| {{f^{ - 1}}(x)} \right| = 1 + {f^{ - 1}}(x)\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; <strong>Note:</strong> Interchange of variables may take place at any stage.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for the inverse, solve for <em>x</em> in</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{2x - 3}}{{x - 1}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y(x - 1) = 2x - 3\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(yx - 2x = y - 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x(y - 2) = y - 3\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{y - 3}}{{y - 2}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {f^{ - 1}}(x) = \frac{{x - 3}}{{x - 2}}\,\,\,\,\,(x \ne 2)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not award final <strong><em>A1</em></strong> unless written in the form&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) =&nbsp; \ldots \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \( \pm {f^{ - 1}}(x) = 1 + {f^{ - 1}}(x)\) leads to</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\frac{{x - 3}}{{x - 2}} = - 1\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{8}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates gained the correct answer to part (a), although a significant minority left the answer in the form \(y = \ldots {\text{ or }}x =&nbsp; \ldots \) rather than \({f^{ - 1}}(x) =&nbsp; \ldots \). Only the better candidates were able to make significant progress in part (b).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The quadratic function \(f(x) = p + qx - {x^2}\) has a maximum value of 5 when <em>x </em>= 3.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>p</em> and the value of <em>q</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of <em>f</em>(<em>x</em>) is translated 3 units in the positive direction parallel to the <em>x</em>-axis. Determine the equation of the new graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = q - 2x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(3) = q - 6 = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>q</em> = 6 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f</em>(3) = <em>p</em> + 18 &minus; 9 = 5 &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>p</em> = &minus;4 &nbsp; &nbsp; <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = - {(x - 3)^2} + 5\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - {x^2} + 6x - 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>q</em> = 6, <em>p</em> = &minus;4 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = - 4 + 6(x - 3) - {(x - 3)^2}{\text{ }}( = - 31 + 12x - {x^2})\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept any alternative form which is correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>M1A0</em></strong> for a substitution of (<em>x</em> + 3) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In general candidates handled this question well although a number equated the derivative to the function value rather than zero. Most recognised the shift in the second part although a number shifted only the squared value and not both <em>x</em> values.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In general candidates handled this question well although a number equated the derivative to the function value rather than zero. Most recognised the shift in the second part although a number shifted only the squared value and not both <em>x</em> values.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider a function <em>f </em>, defined by \(f(x) = \frac{x}{{2 - x}}{\text{ for }}0 \leqslant x \leqslant 1\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find an expression for \((f \circ f)(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">Let \({F_n}(x) = \frac{x}{{{2^n} - ({2^n} - 1)x}}\),&nbsp;where \(0 \leqslant x \leqslant 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">Use mathematical induction to show that for any \(n \in {\mathbb{Z}^ + }\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman',times; font-size: medium;">\[\underbrace {(f \circ f \circ ... \circ f)}_{n{\text{ times}}}(x) = {F_n}(x)\] .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({F_{ - n}}(x)\) is an expression for the inverse of \({F_n}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; State \({F_n}(0){\text{ and }}{F_n}(1)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that \({F_n}(x) &lt; x\) , given 0 &lt; <em>x </em>&lt; 1, \(n \in {\mathbb{Z}^ + }\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; For \(n \in {\mathbb{Z}^ + }\) , let \({A_n}\) be the area of the region enclosed by the graph of \(F_n^{ - 1}\) ,&nbsp;the <em>x</em>-axis and the line <em>x </em>= 1. Find the area \({B_n}\) of the region enclosed by \({F_n}\) and \(F_n^{ - 1}\) in terms of \({A_n}\) .<span style="font: 7.0px Helvetica;"><br></span></span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((f \circ f)(x) = f\left( {\frac{x}{{2 - x}}} \right) = \frac{{\frac{x}{{2 - x}}}}{{2 - \frac{x}{{2 - x}}}}\) &nbsp; &nbsp;&nbsp;<em><strong>M1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((f \circ f)(x) = \frac{x}{{4 - 3x}}\) &nbsp; &nbsp;<em><strong> A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><em><strong><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(P(n):\underbrace {(f \circ f \circ ... \circ f)}_{n{\text{ times}}}(x) = {F_n}(x)\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(P(1):{\text{ }}f(x) = {F_1}(x)\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(LHS = f(x) = \frac{x}{{2 - x}}{\text{ and }}RHS = {F_1}(x) = \frac{x}{{{2^1} - ({2^1} - 1)x}} = \frac{x}{{2 - x}}\) &nbsp; &nbsp; <em><strong>A1A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore P(1){\text{ true}}\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">assume that <em>P</em>(<em>k</em>) is true, <em>i.e.</em>, \(\underbrace {(f \circ f \circ ... \circ f)}_{{\text{k times}}}(x) = {F_k}(x)\) &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">consider \(P(k + 1)\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\underbrace {(f \circ f \circ ... \circ f)}_{{\text{k}} + 1{\text{ times}}}(x) = \left( {f \circ \underbrace {f \circ f \circ ... \circ f}_{{\text{k times}}}} \right)(x) = f\left( {{F_k}(x)} \right)\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = f\left( {\frac{x}{{{2^k} - ({2^k} - 1)x}}} \right) = \frac{{\frac{x}{{{2^k} - ({2^k} - 1)x}}}}{{2 - \frac{x}{{{2^k} - ({2^k} - 1)x}}}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{2\left( {{2^k} - ({2^k} - 1)x} \right) - x}} = \frac{x}{{{2^{k + 1}} - ({2^{k + 1}} - 2)x - x}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR </strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\underbrace {(f \circ f \circ ... \circ f)}_{{\text{k}} + 1{\text{ times}}}(x) = \left( {f \circ \underbrace {f \circ f \circ ... \circ f}_{{\text{k times}}}} \right)(x) = {F_k}(f(x))\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = {F_k}\left( {\frac{x}{{2 - x}}} \right) = \frac{{\frac{x}{{2 - x}}}}{{{2^k} - ({2^k} - 1)\frac{x}{{2 - x}}}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{{2^{k + 1}} - {2^k}x - {2^k}x + x}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{{2^{k + 1}} - ({2^{k + 1}} - 1)x}} = {F_{k + 1}}(x)\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><em>P</em>(<em>k</em>) true implies <em>P</em>(<em>k</em> + 1) true, <em>P</em>(1) true so <em>P</em>(<em>n</em>) true for all \(n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[8 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{y}{{{2^n} - ({2^n} - 1)y}} \Rightarrow {2^n}x - ({2^n} - 1)xy = y\) &nbsp; &nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {2^n}x = \left( {({2^n} - 1)x + 1} \right)y \Rightarrow y = \frac{{{2^n}x}}{{({2^n} - 1)x + 1}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(F_n^{ - 1}(x) = \frac{{{2^n}x}}{{({2^n} - 1)x + 1}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(F_n^{ - 1}(x) = \frac{x}{{\frac{{{2^n} - 1}}{{{2^n}}}x + \frac{1}{{{2^n}}}}}\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(F_n^{ - 1}(x) = \frac{x}{{(1 - {2^{ - n}})x + {2^{ - n}}}}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(F_n^{ - 1}(x) = \frac{x}{{{2^{ - n}} - ({2^{ - n}} - 1)x}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt \({F_{ - n}}\left( {{F_n}(x)} \right)\) &nbsp; &nbsp;<em><strong> M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {F_{ - n}}\left( {\frac{x}{{{2^n} - ({2^n} - 1)x}}} \right) = \frac{{\frac{x}{{{2^n} - ({2^n} - 1)x}}}}{{{2^{ - n}} - ({2^{ - n}} - 1)\frac{x}{{{2^n} - ({2^n} - 1)x}}}}\) &nbsp; &nbsp;&nbsp;<em><strong>A1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{{2^{ - n}}({2^n} - ({2^n} - 1)x) - ({2^{ - n}} - 1)x}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">marks for numerators and denominators</span><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{1} = x\) &nbsp; &nbsp;&nbsp;<strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt \({F_n}\left( {{F_{ - n}}(x)} \right)\) &nbsp; &nbsp;<strong> M1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {F_n}\left( {\frac{x}{{{2^{ - n}} - ({2^{ - n}} - 1)x}}} \right) = \frac{{\frac{x}{{{2^{ - n}} - ({2^{ - n}} - 1)x}}}}{{{2^n} - ({2^n} - 1)\frac{x}{{{2^{ - n}} - ({2^{ - n}} - 1)x}}}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{{{2^n}({2^{ - n}} - ({2^{ - n}} - 1)x) - ({2^n} - 1)x}}\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">marks for numerators and denominators.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{x}{1} = x\) &nbsp; &nbsp;&nbsp;<strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({F_n}(0) = 0,{\text{ }}{F_n}(1) = 1\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^n} - ({2^n} - 1)x - 1 = ({2^n} - 1)(1 - x)\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( &gt; 0{\text{ if }}0 &lt; x &lt; 1{\text{ and }}n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \({2^n} - ({2^n} - 1)x &gt; 1{\text{ and }}{F_n}(x) = \frac{x}{{{2^n} - ({2^n} - 1)x}} &lt; \frac{x}{1}( &lt; x)\) &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({F_n}(x) = \frac{x}{{{2^n} - ({2^n} - 1)x}} &lt; x{\text{ for }}0 &lt; x &lt; 1{\text{ and }}n \in {\mathbb{Z}^ + }\) &nbsp; &nbsp; <em><strong>AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{x}{{{2^n} - ({2^n} - 1)x}} &lt; x \Leftrightarrow {2^n} - ({2^n} - 1)x &gt; 1\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Leftrightarrow ({2^n} - 1)x &lt; {2^n} - 1\) &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Leftrightarrow x &lt; \frac{{{2^n} - 1}}{{{2^n} - 1}} = 1\) true in the interval \(\left] {0,{\text{ }}1} \right[\) &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \({B_n} = 2\left( {{A_n} - \frac{1}{2}} \right){\text{ }}( = 2{A_n} - 1)\) &nbsp; &nbsp; <em><strong>(M1)A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[6 marks]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<div><span style="font-family: 'times new roman', times; font-size: medium;">Part a) proved to be an easy 3 marks for most candidates.&nbsp;</span></div>
<div>&nbsp;</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part b) was often answered well, and candidates were well prepared in this session for this type of question. Candidates still need to take care when showing explicitly that P(1) is true, and some are still writing &lsquo;Let </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = </span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><em style="font-family: 'times new roman', times; font-size: medium;">&rsquo; </em><span style="font-family: 'times new roman', times; font-size: medium;">which gains no marks. The inductive step was often well argued, and given in clear detail, though the final inductive reasoning step was incorrect, or appeared rushed, even from&nbsp;the better candidates. &lsquo;True for </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;=1, </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = </span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = </span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><span style="font-family: 'times new roman', times; font-size: medium;"> + 1&rsquo; is still disappointingly seen, as were some even more unconvincing variations.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Part c) was again very well answered by the majority. A few weaker candidates attempted to find an inverse for the individual case n = 1 , but gained no credit for this.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Part d) was not at all well understood, with virtually no candidates able to tie together the hints given by connecting the different parts of the question. Rash, and often thoughtless attempts were made at each part, though by this stage some seemed to be struggling through lack of time. The inequality part of the question tended to be &lsquo;fudged&rsquo;, with arguments seen by examiners being largely unconvincing and lacking clarity. A tiny number of candidates provided the correct answer to the final part, though a surprising number persisted with what should have been recognised as fruitless working &ndash; usually in the form of long-winded integration attempts.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the set of values of \(a\) for which the function \(x \mapsto {\log _a}x\) exists, for all \(x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Given that \({\log _x}y = 4{\log _y}x\)</span>, find all the possible expressions of \(y\) as a function of \(x\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(a &gt; 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">\(a \ne 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({\log _x}y = \frac{{\ln y}}{{\ln x}}\) and \({\log _y}x = \frac{{\ln x}}{{\ln y}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: &nbsp; &nbsp; </strong>Use of any base is permissible here, not just &ldquo;e&rdquo;.</p>
<p>&nbsp;</p>
<p>\({\left( {\frac{{\ln y}}{{\ln x}}} \right)^2} = 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\ln y =&nbsp; \pm 2\ln x\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = {x^2}\;\;\;\)or\(\;\;\;\frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\({\log _y}x = \frac{{{{\log }_x}x}}{{{{\log }_x}y}} = \frac{1}{{{{\log }_x}y}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\({({\log _x}y)^2} = 4\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({\log _x}y =&nbsp; \pm 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = {x^2}\;\;\;\)or\(\;\;\;y = \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></p>
<p>&nbsp;</p>
<p><strong>Note: </strong>The final two <strong><em>A </em></strong>marks are independent of the one coming before.</p>
<p><em><strong>[6 marks]</strong></em></p>
<p><em><strong>Total [8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When the function \(q(x) = {x^3} + k{x^2} - 7x + 3\) is divided by (<em>x</em> + 1) the remainder is seven times the remainder that is found when the function is divided by (<em>x</em> + 2) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(q( - 1) = k + 9\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(q( - 2) = 4k + 9\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k + 9 = 7(4k + 9)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes:</strong> The first <strong><em>M1</em></strong> is for one substitution and the consequent equations.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Accept expressions for \(q( - 1)\) and \(q( - 2)\) that are not simplified.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]&nbsp;</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to access this question although the number who used either synthetic division or long division was surprising as this often lead to difficulty and errors. The most common error was in applying the factor of 7 to the wrong side of the equation. It was also disappointing the number of students who made simple algebraic errors late in the question.</span></p>
</div>
<br><hr><br><div class="question">
<p>Solve \({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) &lt; 2{\left( {{\text{ln}}\,2} \right)^2}\).</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>\({\left( {{\text{ln}}\,x} \right)^2} - \left( {{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x} \right) - 2{\left( {{\text{ln}}\,2} \right)^2}\left( { = 0} \right)\)</p>
<p><strong>EITHER</strong></p>
<p>\({\text{ln}}\,x = \frac{{{\text{ln}}\,2 \pm \sqrt {{{\left( {{\text{ln}}\,2} \right)}^2} + 8{{\left( {{\text{ln}}\,2} \right)}^2}} }}{2}\)     <em><strong>M1</strong></em></p>
<p>\( = \frac{{{\text{ln}}\,2 \pm 3\,{\text{ln}}\,2}}{2}\)     <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p>\(\left( {{\text{ln}}\,x - 2\,{\text{ln}}\,2} \right)\left( {{\text{ln}}\,x + 2\,{\text{ln}}\,2} \right)\left( { = 0} \right)\)    <em><strong> M1A1</strong></em></p>
<p><strong>THEN</strong></p>
<p>\({\text{ln}}\,x = 2\,{\text{ln}}\,2\) or \( - {\text{ln}}\,2\)     <em><strong>A1</strong></em></p>
<p>\( \Rightarrow x = 4\) or \(x = \frac{1}{2}\)      <em><strong> (M1)A1</strong></em>   </p>
<p><strong>Note:</strong> <em><strong>(M1)</strong></em> is for an appropriate use of a log law in either case, dependent on the previous <em><strong>M1</strong></em> being awarded, <strong>A1</strong> for both correct answers.</p>
<p>solution is \(\frac{1}{2} &lt; x &lt; 4\)     <em><strong>A1</strong></em></p>
<p><em><strong>[6 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The roots of a quadratic equation \(2{x^2} + 4x - 1 = 0\) are \(\alpha \) and \(\beta \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Without solving the equation,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; find the value of \({\alpha ^2} + {\beta ^2}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; find a quadratic equation with roots \({\alpha ^2}\) and \({\beta ^2}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) using the formulae for the sum and product of roots:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha&nbsp; + \beta&nbsp; =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\alpha \beta&nbsp; =&nbsp; - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\alpha ^2} + {\beta ^2} = {(\alpha&nbsp; + \beta )^2} - 2\alpha \beta \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {( - 2)^2} - 2\left( { - \frac{1}{2}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>M0 </em></strong>for attempt to solve quadratic equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \((x - {\alpha ^2})(x - {\beta ^2}) = {x^2} - ({\alpha ^2} + {\beta ^2})x + {\alpha ^2}{\beta ^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - 5x + {\left( { - \frac{1}{2}} \right)^2} = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - 5x + \frac{1}{4} = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Final answer must be an equation. Accept alternative correct forms.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">When the polynomial \(3{x^3} + ax + b\) is divided by \((x - 2)\), the remainder is 2, and when divided by \((x + 1)\), it is 5. Find the value of <em>a </em>and the value of <em>b</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(P(2) = 24 + 2a + b = 2,{\text{ }}P( - 1) =&nbsp; - 3 - a + b = 5\) &nbsp; &nbsp; <em><strong>M1A1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\((2a + b =&nbsp; - 22,{\text{ }} - a + b = 8)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: &nbsp; &nbsp; </strong>Award <strong><em>M1&nbsp;</em></strong>for substitution of 2 or &minus;1 and equating to remainder, <strong><em>A1&nbsp;</em></strong>for each correct equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to solve simultaneously &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(a =&nbsp; - 10,{\text{ }}b =&nbsp; - 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch on the same axes the curve \(y = \left| {\frac{7}{{x - 4}}} \right|\) and the line \(y = x + 2\), clearly indicating any axes intercepts and any asymptotes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the exact solutions to the equation \(x + 2 = \left| {\frac{7}{{x - 4}}} \right|\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-01-31_om_09.19.46.png" alt="M16/5/MATHL/HP1/ENG/TZ1/07.a/M"></p>
<p class="p1"><strong><em>A1 </em></strong>for vertical asymptote and for the \(y\)-intercept \(\frac{7}{4}\)</p>
<p class="p1"><strong><em>A1 </em></strong><span class="s1">for general shape of \(y = \left| {\frac{7}{{x - 4}}} \right|\) </span>including the \(x\)-axis as asymptote</p>
<p class="p1"><strong><em>A1 </em></strong>for straight line with \(y\)-intercept 2 and \(x\)<span class="s1">-intercept of \( - 2\) <span class="Apple-converted-space">    </span></span><strong><em>A1A1A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">for \(x &gt; 4\)</p>
<p class="p1">\((x + 2)(x - 4) = 7\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2">\({x^2} - 2x - 8 = 7 \Rightarrow {x^2} - 2x - 15 = 0\)</p>
<p class="p2">\((x - 5)(x + 3) = 0\)</p>
<p class="p1">\(({\text{as }}x &gt; 4{\text{ then}}){\text{ }}x = 5\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A0 </em></strong>if \(x =  - 3\) is also given as a solution.</p>
<p class="p1">for \(x &lt; 4\)</p>
<p class="p1">\((x + 2)(x - 4) =  - 7\) <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2">\( \Rightarrow {x^2} - 2x - 1 = 0\)</p>
<p class="p2">\(x = \frac{{2 \pm \sqrt {4 + 4} }}{2} = 1 \pm \sqrt 2 \) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Second <strong><em>M1 </em></strong>is dependent on first <strong><em>M1</em></strong>.</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p4">\({(x + 2)^2} = \frac{{49}}{{{{(x - 4)}^2}}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p5">\({x^4} - 4{x^3} - 12{x^2} + 32x + 15 = 0\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p6">\((x + 3)(x - 5)({x^2} - 2x - 1) = 0\)</p>
<p class="p6">\(x = 5\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>A0 </em></strong>if \(x =  - 3\) <span class="s2">is also given as a solution.</span></p>
<p class="p7"> </p>
<p class="p2">\(x = \frac{{2 \pm \sqrt {4 + 4} }}{2} = 1 \pm \sqrt 2 \) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Though generally well done, some candidates lost marks unnecessarily by not heeding the instruction to clearly indicate the axes intercepts and asymptotes.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Though this was generally well done, quite a few of the candidates failed to use the graph drawn in part (a) to discount one of the solutions obtained in part (b).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a sketch of the graph of \(y = f(x)\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-16_om_05.50.26.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = {f^{ - 1}}(x)\) on the same axes.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of \({f^{ - 1}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = \ln (ax + b),{\text{ }}x &gt; 1\), find the value of \(a\) and the value of \(b\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp;&nbsp;</span><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-16_om_05.54.52.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">shape with <em>y</em>-axis intercept (0, 4) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Accept curve with an asymptote at \(x = 1\) suggested.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">correct asymptote \(y = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">range is \({f^{ - 1}}(x) &gt; 1{\text{ (or }}\left] {1,{\text{ }}\infty } \right[)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Also accept \(\left] {1,{\text{ 10}}} \right]\) or \(\left] {1,{\text{ 10}}} \right[\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Do not allow follow through from incorrect asymptote in (a).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((4,{\text{ }}0) \Rightarrow \ln (4a + b) = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4a + b = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">asymptote at \(x = 1 \Rightarrow a + b = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow a = \frac{1}{3},{\text{ }}b =&nbsp; - \frac{1}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A number of candidates were able to answer a) and b) correctly but found part c) more challenging. Correct sketches for the inverse were seen, but with a few missing a horizontal asymptote. The range in part b) was usually seen correctly. In part c), only a small number of very good candidates were able to gain full marks. A large number used the point \((4,{\text{ 0)}}\) to form the equation \(4a + b = 1\) but were unable (or did not recognise the need) to use the asymptote to form a second equation.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A number of candidates were able to answer a) and b) correctly but found part c) more challenging. Correct sketches for the inverse were seen, but with a few missing a horizontal asymptote. The range in part b) was usually seen correctly. In part c), only a small number of very good candidates were able to gain full marks. A large number used the point \((4,{\text{ 0)}}\) to form the equation \(4a + b = 1\) but were unable (or did not recognise the need) to use the asymptote to form a second equation.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A number of candidates were able to answer a) and b) correctly but found part c) more challenging. Correct sketches for the inverse were seen, but with a few missing a horizontal asymptote. The range in part b) was usually seen correctly. In part c), only a small number of very good candidates were able to gain full marks. A large number used the point \((4,{\text{ 0)}}\) to form the equation \(4a + b = 1\) but were unable (or did not recognise the need) to use the asymptote to form a second equation.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the set of values of <em>x</em> for which \(\left| {x - 1} \right| &gt; \left| {2x - 1} \right|\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {x - 1} \right| &gt; \left| {2x - 1} \right| \Rightarrow {(x - 1)^2} &gt; {(2x - 1)^2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - 2x + 1 &gt; 4{x^2} - 4x + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2} - 2x &lt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; x &lt; \frac{2}{3}\) &nbsp; &nbsp; <strong><em>A1A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A0</em></strong> for incorrect inequality signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {x - 1} \right| &gt; \left| {2x - 1} \right|\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x - 1 = 2x - 1\) &nbsp; &nbsp; \(x - 1 = 1 - 2x\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - x = 0\) &nbsp; &nbsp; \(3x = 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0\) &nbsp; &nbsp; \(x = \frac{2}{3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for any attempt to find a critical value. If graphical methods are used, award <strong><em>M1</em></strong> for correct graphs, <strong><em>A1</em></strong> for correct values of <em>x</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; x &lt; \frac{2}{3}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A1 &nbsp; &nbsp; N2</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A0</em></strong> for incorrect inequality signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question turned out to be more difficult than expected. Candidates who squared both sides or drew a graph generally gave better solutions than those who relied on performing algebraic operations on terms involving modulus signs.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = \frac{4}{{x + 2}},{\text{ }}x \ne - 2{\text{ and }}g(x) = x - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(h = g \circ f\) , find</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; <em>h</em>(<em>x</em>) ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({h^{ - 1}}(x)\) , where \({h^{ - 1}}\) is the inverse of <em>h</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(h(x) = g\left( {\frac{4}{{x + 2}}} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{4}{{x + 2}} - 1\,\,\,\,\,\left( { = \frac{{2 - x}}{{2 + x}}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{4}{{y + 2}} - 1\,\,\,\,\,\)(interchanging <em>x</em> and <em>y</em>) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve for <em>y</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((y + 2)(x + 1) = 4\,\,\,\,\,\left( {y + 2 = \frac{4}{{x + 1}}} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({h^{ - 1}}(x) = \frac{4}{{x + 1}} - 2\,\,\,\,\,(x \ne - 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{2 - y}}{{2 + y}}\,\,\,\,\,\)(interchanging <em>x</em> and <em>y</em>) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Attempting to solve for <em>y</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(xy + y = 2 - 2x\,\,\,\,\,\left( {y(x + 1) = 2(1 - x)} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({h^{ - 1}}(x) = \frac{{2(1 - x)}}{{x + 1}}\,\,\,\,\,(x \ne - 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong> &nbsp; &nbsp; <strong><em>N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> In either </span><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 1</strong><span style="font-family: 'times new roman', times; font-size: medium;"> or </span><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 2</strong><span style="font-family: 'times new roman', times; font-size: medium;"> rearranging first and interchanging afterwards is equally acceptable.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well done, with very few candidates calculating \(f \circ g\) rather than \(g \circ f\).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is given by \(f(x) = \frac{{{3^x} + 1}}{{{3^x} - {3^{ - x}}}}\), for <em>x</em> &gt; 0.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f(x) &gt; 1\) for all <em>x</em> &gt; 0.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the equation \(f(x) = 4\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) - 1 = \frac{{1 + {3^{ - x}}}}{{{3^x} - {3^{ - x}}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&gt; 0 as both numerator and denominator are positive &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({3^x} + 1 &gt; {3^x} &gt; {3^x} - {3^{ - x}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept a convincing valid argument the numerator is greater than the denominator.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">numerator and denominator are positive &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(f(x) &gt; 1\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">one line equation to solve, for example, \(4({3^x} - {3^{ - x}}) = {3^x} + 1\), or equivalent &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {3{y^2} - y - 4 = 0} \right)\)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to solve a three-term equation &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(y = \frac{4}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = {\log _3}\left( {\frac{4}{3}} \right)\) or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if an extra solution for </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> is given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) This is a question where carefully organised reasoning is crucial. It is important to state that both the numerator and the denominator are positive for \(x &gt; 0\). Candidates were more successful with part (b) than with part (a).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) This is a question where carefully organised reasoning is crucial. It is important to state that both the numerator and the denominator are positive for \(x &gt; 0\). Candidates were more successful with part (b) than with part (a).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Express each of the complex numbers \({z_1} = \sqrt 3&nbsp; + {\text{i, }}{z_2} = - \sqrt 3&nbsp; + {\text{i}}\) and \({z_3} = - 2{\text{i}}\) in modulus-argument form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence show that the points in the complex plane representing \({z_1}\), \({z_2}\) and \({z_3}\) form the vertices of an equilateral triangle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Show that \({\text{z}}_1^{3n} + z_2^{3n} = 2z_3^{3n}\) where \(n \in \mathbb{N}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; State the solutions of the equation \({z^7} = 1\) for \(z \in \mathbb{C}\), giving them in modulus-argument form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; If <em>w</em> is the solution to \({z^7} = 1\) with least positive argument, determine the argument of 1 + <em>w</em>. Express your answer in terms of \(\pi \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Show that \({z^2} - 2z\cos \left( {\frac{{2\pi }}{7}} \right) + 1\) is a factor of the polynomial \({z^7} - 1\). State the two other quadratic factors with real coefficients.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({z_1} = 2{\text{cis}}\left( {\frac{\pi }{6}} \right),{\text{ }}{z_2} = 2{\text{cis}}\left( {\frac{{5\pi }}{6}} \right),{\text{ }}{z_3} = 2{\text{cis}}\left( { - \frac{\pi }{2}} \right){\text{ or }}2{\text{cis}}\left( {\frac{{3\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept modulus and argument given separately, or the use of exponential (Euler) form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept arguments given in rational degrees, except where exponential form is used.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the points lie on a circle of radius 2 centre the origin &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">differences are all \(\frac{{2\pi }}{3}(\bmod 2\pi )\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow \) points equally spaced \( \Rightarrow \) triangle is equilateral &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept an approach based on a clearly marked diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; \({\text{z}}_1^{3n} + z_2^{3n} = {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right) + {2^{3n}}{\text{cis}}\left( {\frac{{5n\pi }}{2}} \right)\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2z_3^{3n} = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{9n\pi }}{2}} \right) = 2 \times {2^{3n}}{\text{cis}}\left( {\frac{{n\pi }}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; attempt to obtain <strong>seven</strong> solutions in modulus argument form &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z = {\text{cis}}\left( {\frac{{2k\pi }}{7}} \right),{\text{ }}k = 0,{\text{ }}1 \ldots 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <em>w</em> has argument \(\frac{{2\pi }}{7}\) and 1 + <em>w</em> has argument \(\phi \),</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then \(\tan (\phi ) = \frac{{\sin \left( {\frac{{2\pi }}{7}} \right)}}{{1 + \cos \left( {\frac{{2\pi }}{7}} \right)}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2\sin \left( {\frac{\pi }{7}} \right)\cos \left( {\frac{\pi }{7}} \right)}}{{2{{\cos }^2}\left( {\frac{\pi }{7}} \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \tan \left( {\frac{\pi }{7}} \right) \Rightarrow \phi&nbsp; = \frac{\pi }{7}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept alternative approaches.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; since roots occur in conjugate pairs, &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(R1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({z^7} - 1\) has a quadratic factor \(\left( {z - {\text{cis}}\left( {\frac{{2\pi }}{7}} \right)} \right) \times \left( {z - {\text{cis}}\left( { - \frac{{2\pi }}{7}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {z^2} - 2z\cos \left( {\frac{{2\pi }}{7}} \right) + 1\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">other quadratic factors are \({z^2} - 2z\cos \left( {\frac{{4\pi }}{7}} \right) + 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \({z^2} - 2z\cos \left( {\frac{{6\pi }}{7}} \right) + 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) A disappointingly large number of candidates were unable to give the correct arguments for the three complex numbers. Such errors undermined their efforts to tackle parts (ii) and (iii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were successful in part (i), but failed to capitalise on that &ndash; in particular, few used the fact that roots of \({z^7} - 1 = 0\) come in complex conjugate pairs.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given the complex numbers \({z_1} = 1 + 3{\text{i}}\) and \({z_2} = - 1 - {\text{i}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the exact values of \(\left| {{z_1}} \right|\) and \(\arg ({z_2})\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the minimum value of \(\left| {{z_1} + \alpha{z_2}} \right|\), where \(\alpha \in \mathbb{R}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {{z_1}} \right| = \sqrt {10} ;{\text{ }}\arg ({z_2}) = - \frac{{3\pi }}{4}{\text{ }}\left( {{\text{accept }}\frac{{5\pi }}{4}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {{z_1} + \alpha{z_2}} \right| = \sqrt {{{(1 - \alpha )}^2} + {{(3 - \alpha )}^2}} \) or the squared modulus &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to minimise \(2{\alpha ^2} - 8\alpha&nbsp; + 10\) or their quadratic or its half or its square root &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(\alpha&nbsp; = 2\) at minimum &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">state \(\sqrt 2 \) as final answer &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Disappointingly, few candidates obtained the correct argument for the second complex number, mechanically using arctan(1) but not thinking about the position of the number in the complex plane.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates obtained the correct quadratic or its square root, but few knew how to set about minimising it.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The same remainder is found when \(2{x^3} + k{x^2} + 6x + 32\)&nbsp;and \({x^4} - 6{x^2} - {k^2}x + 9\) are&nbsp;divided by \(x + 1\) . Find the possible values of <em>k </em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(f(x) = 2{x^3} + k{x^2} + 6x + 32\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(g(x) = {x^4} - 6{x^2} - {k^2}x + 9\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 1) = &nbsp;- 2 + k - 6 + 32( = 24 + k)\) &nbsp; &nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g( - 1) = 1 - 6 + {k^2} + 9( = 4 + {k^2})\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 24 + k = 4 + {k^2}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {k^2} - k - 20 = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (k - 5)(k + 4) = 0\) &nbsp; &nbsp;<strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow k = 5,\, - 4\) &nbsp; &nbsp;<strong> <em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]<br></em></strong></span></p>
<p>&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates who used the remainder theorem usually went on to find the two possible values of <em>k</em>. Some candidates, however, attempted to find the remainders using long division. While this is a valid method, the algebra involved proved to be too difficult for most of these candidates.&nbsp;</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(3{x^5} - ax + b\) is divided by <em>x</em> &minus;1 and <em>x</em> +1 the remainders are equal. Given that a , \(b \in \mathbb{R}\) , find</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; the value of <em>a</em> ;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; the set of values of <em>b</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(f(1) = 3 - a + b\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 1) = - 3 + a + b\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 - a + b = - 3 + a + b\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2a = 6\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = 3\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; <em>b</em> is any real number &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates answered part (a) successfully. For part (b), some candidates did not consider that the entire set of real numbers was asked for.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Express the quadratic \(3{x^2} - 6x + 5\) in the form \(a{(x + b)^2} + c\), where <em>a</em>, <em>b</em>, <em>c </em>\( \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Describe a sequence of transformations that transforms the graph of \(y = {x^2}\) to the graph of \(y = 3{x^2} - 6x + 5\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; attempt at completing the square &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3{x^2} - 6x + 5 = 3({x^2} - 2x) + 5 = 3{(x - 1)^2} - 1 + 5\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3{(x - 1)^2} + 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((a = 3,{\text{ }}b = - 1,{\text{ }}c = 2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; definition of suitable basic transformations:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{T}}_1} = \) stretch in <em>y</em> direction scale factor 3 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{T}}_2} = \) translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 1 \\ <br>&nbsp; 0 <br>\end{array}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{T}}_3} = \) translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 0 \\ <br>&nbsp; 2 <br>\end{array}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were fewer correct solutions to this question than might be expected with a significant minority of candidates unable to complete the square successfully and a number of candidates unable to describe the transformations. A minority of candidates knew the correct terminology for the transformations and this potentially highlights the need for teachers to teach students appropriate terminology.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined by \(f(x) = \frac{1}{x},{\text{ }}x \ne 0\).</p>
<p class="p1">The graph of the function \(y = g(x)\) is obtained by applying the following transformations to</p>
<p class="p1">the graph of \(y = f(x)\) :</p>
<p class="p1">&nbsp; &nbsp; &nbsp;\({\text{a translation by the vector }}\left( {\begin{array}{*{20}{c}}{ - 3} \\ 0 \end{array}} \right);\) \({\text{a translation by the vector }}\left( {\begin{array}{*{20}{c}} 0 \\ 1 \end{array}} \right);\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \(g(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equations of the asymptotes of the graph of \(g\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(g(x) = \frac{1}{{x + 3}} + 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>A1 </em></strong>for \(x + 3\) in the denominator and <strong><em>A1 </em></strong>for the &ldquo;\( + 1\)&rdquo;.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x =&nbsp; - 3\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p><strong><em>Total [4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally well done. A few candidates made a sign error for the horizontal translation. A few candidates expressed the required equations for the asymptotes as &lsquo;inequalities&rsquo;, which received no marks.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was generally well done. A few candidates made a sign error for the horizontal translation. A few candidates expressed the required equations for the asymptotes as &lsquo;inequalities&rsquo;, which received no marks.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Factorize \({z^3} + 1\) into a linear and quadratic factor.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(\gamma = \frac{{1 + {\text{i}}\sqrt 3 }}{2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that \(\gamma \) is one of the cube roots of &minus;1.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Show that \({\gamma ^2} = \gamma - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Hence find the value of \({(1 - \gamma )^6}\).</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the factor theorem <em>z</em> +1 is a factor &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({z^3} + 1 = (z + 1)({z^2} - z + 1)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({z^3} = - 1 \Rightarrow {z^3} + 1 = (z + 1)({z^2} - z + 1) = 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solving \({z^2} - z + 1 = 0\) &nbsp; &nbsp;&nbsp;<strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z = \frac{{1 \pm \sqrt {1 - 4} }}{2} = \frac{{1 \pm {\text{i}}\sqrt 3 }}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore one cube root of &minus;1 is \(\gamma \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\gamma ^2} = \left( {{{\frac{{1 + i\sqrt 3 }}{2}}^2}} \right) = \frac{{ - 1 + i\sqrt 3 }}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\gamma ^2} = \frac{{ - 1 + i\sqrt 3 }}{2} \times \frac{{1 + i\sqrt 3 }}{2} = \frac{{ - 1 - 3}}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= &minus;1 &nbsp; &nbsp; AG</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\gamma&nbsp; = \frac{{1 + i\sqrt 3 }}{2} = {e^{i\frac{\pi }{3}}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\gamma ^3} = {e^{i\pi }} = - 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(\gamma \) is a root of \({z^2} - z + 1 = 0\) then \({\gamma ^2} - \gamma + 1 = 0\) &nbsp; &nbsp; <strong><em>M1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\therefore {\gamma ^2} = \gamma - 1\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the use of \({z^2} - z + 1 = 0\) in any way.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>R1</em></strong> for a correct reasoned approach.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\gamma ^2} = \frac{{ - 1 + i\sqrt 3 }}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\gamma - 1 = \frac{{1 + i\sqrt 3 }}{2} - 1 = \frac{{ - 1 + i\sqrt 3 }}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 - \gamma )^6} = {( - {\gamma ^2})^6}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {(\gamma )^{12}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {({\gamma ^3})^4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {( - 1)^4}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 - \gamma )^6}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 - 6\gamma + 15{\gamma ^2} - 20{\gamma ^3} + 15{\gamma ^4} - 6{\gamma ^5} + {\gamma ^6}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for attempt at binomial expansion.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of any previous result </span><em style="font-family: 'times new roman', times; font-size: medium;">e.g.</em><span style="font-family: 'times new roman', times; font-size: medium;"> \( = 1 - 6\gamma + 15{\gamma ^2} + 20 - 15\gamma&nbsp; + 6{\gamma ^2} + 1\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong></p>
<p style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; font: 19px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= 1 &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> As the question uses the word &lsquo;hence&rsquo;, other methods that do not use previous results are awarded no marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica; min-height: 23.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In part a) the factorisation was, on the whole, well done.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was done well by most although using a substitution method rather than the result above. This used much m retime than was necessary but was successful. A number of candidates did not use the previous results in part (iii) and so seemed to not understand the use of the &lsquo;hence&rsquo;.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the graph of \(y = \frac{{{{(\ln x)}^2}}}{x},{\text{ }}x &gt; 0\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-01-31_om_06.37.32.png" alt="M16/5/MATHL/HP1/ENG/TZ1/13"></p>
</div>

<div class="specification">
<p class="p1">The region \(R\) is enclosed by the curve, the \(x\)-axis and the line \(x = e\).</p>
</div>

<div class="specification">
<p class="p1">Let \({I_n} = \int_1^{\text{e}} {\frac{{{{(\ln x)}^n}}}{{{x^2}}}{\text{d}}x,{\text{ }}n \in \mathbb{N}} \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the curve passes through the point \((a,{\text{ }}0)\)<span class="s1">, state the value of \(a\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the substitution \(u = \ln x\) to find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the value of \({I_0}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Prove that \({I_n} = \frac{1}{{\text{e}}} + n{I_{n - 1}},{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Hence find the value of \({I_1}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the volume of the solid formed when the region \(R\) <span class="s1">is rotated through \(2\pi \) </span>about the \(x\)-axis.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(a = 1\)    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = \frac{1}{x}\)    </span><strong><em>(A1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(\int {\frac{{{{(\ln x)}^2}}}{x}{\text{d}}x = \int {{u^2}{\text{d}}u} } \)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">area \( = \left[ {\frac{1}{3}{u^3}} \right]_0^1\) or \(\left[ {\frac{1}{3}{{(\ln x)}^3}} \right]_1^{\text{e}}\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( = \frac{1}{3}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \({I_0} = \left[ { - \frac{1}{x}} \right]_1^{\text{e}}\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = 1 - \frac{1}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>use of integration by parts <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\({I_n} = \left[ { - \frac{1}{x}{{(\ln x)}^n}} \right]_1^{\text{e}} + \int_1^{\text{e}} {\frac{{n{{(\ln x)}^{n - 1}}}}{{{x^2}}}{\text{d}}x} \)    </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + n{I_{n - 1}}\)    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p4"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>If the substitution \(u = \ln x\) is used <strong><em>A1A1 </em></strong>can be awarded for \({I_n} = [ - {{\text{e}}^{ - u}}{u^n}]_0^1 + \int_0^1 n {{\text{e}}^{ - u}}{u^{n - 1}}{\text{d}}u\).</p>
<p class="p4"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    \({I_1} =  - \frac{1}{{\text{e}}} + 1 \times {I_0}\)</span> <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( = 1 - \frac{2}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(d) <span class="Apple-converted-space">    </span>volume \( = \pi \int_1^{\text{e}} {\frac{{{{(\ln x)}^4}}}{{{x^2}}}{\text{d}}x{\text{ }}( = \pi {I_4})} \) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p2"><span class="Apple-converted-space">\({I_4} =  - \frac{1}{{\text{e}}} + 4{I_3}\)    </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + 4\left( { - \frac{1}{{\text{e}}} + 3{I_2}} \right)\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p3">\( =  - \frac{5}{{\text{e}}} + 12{I_2} =  - \frac{5}{{\text{e}}} + 12\left( { - \frac{1}{{\text{e}}} + 2{I_1}} \right)\)</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">using parts \(\int_1^{\text{e}} {\frac{{{{(\ln x)}^4}}}{{{x^2}}}{\text{d}}x =  - \frac{1}{{\text{e}}} + 4\int_1^{\text{e}} {\frac{{{{(\ln x)}^3}}}{{{x^2}}}{\text{d}}x} } \) <span class="Apple-converted-space">    </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\( =  - \frac{1}{{\text{e}}} + 4\left( { - \frac{1}{{\text{e}}} + 3\int_1^{\text{e}} {\frac{{{{(\ln x)}^2}}}{{{x^2}}}{\text{d}}x} } \right)\)    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><strong>THEN</strong></p>
<p class="p3"><span class="Apple-converted-space">\( =  - \frac{{17}}{{\text{e}}} + 24\left( {1 - \frac{2}{{\text{e}}}} \right) = 24 - \frac{{65}}{{\text{e}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3">volume \( = \pi \left( {24 - \frac{{65}}{{\text{e}}}} \right)\)</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a) and (b) were well done. Most candidates could integrate by substitution, though many did not change the limits during the substitution and, though they changed back to \(x\) at the end of their solution, under a different markscheme they might have lost marks for this in the intermediate stages.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(a) and (b) were well done. Most candidates could integrate by substitution, though many did not change the limits during the substitution and, though they changed back to \(x\) at the end of their solution, under a different markscheme they might have lost marks for this in the intermediate stages.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(c)(i) This part was well done by the candidates.</p>
<p class="p1">(c)(ii) This proved to be the part that was done by fewest candidates. Those who spotted that they should use integration by parts obtained the answer fairly easily.</p>
<p class="p1">(c)(iii) Many candidates displayed good exam technique in this question and obtained full marks without being able to do part (ii).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The same good exam technique was on show here as many students who failed to prove the expression in (c)(ii) were able to use it to obtain full marks in this question. A few candidates failed to remember correctly the formula for a volume of revolution.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Given that \(A{x^3} + B{x^2} + x + 6\) is exactly divisible by \((x +1)(x &minus; 2)\), find the value of <em>A</em> and the value of&nbsp;<em>B</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">using the factor theorem or long division&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1)</strong></em></span><br><span style="font-family: times new roman,times; font-size: medium;">\( - A + B - 1 + 6 = 0 \Rightarrow A - B = 5\) &nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span><br><span style="font-family: times new roman,times; font-size: medium;">\(8A + 4B + 2 + 6 = 0 \Rightarrow 2A + B = - 2\) &nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span><br><span style="font-family: times new roman,times; font-size: medium;">\(3A = 3 \Rightarrow A = 1\) &nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span><br><span style="font-family: times new roman,times; font-size: medium;">\(B = - 4\) &nbsp;&nbsp;&nbsp; <em><strong>(A1) &nbsp; &nbsp; (N3)</strong></em></span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>M1A0A0A1A1</strong></em><span style="font-family: 'times new roman', times; font-size: medium;"> for using \((x - 3)\) as the third factor, without justification that the leading coefficient is 1.</span></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></em></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;"><strong>[5 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted this question and it was the best done question on the paper with many fully correct answers. It was good to see a range of approaches used (mainly factor theorem or long division). A number of candidates assumed \((x - 3)\) was the missing factor without justification.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined, for \( - \frac{\pi }{2} \leqslant x \leqslant \frac{\pi }{2}\) , by \(f(x) = 2\cos x + x\sin x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether <em>f</em> is even, odd or neither even nor odd.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(f''(0) = 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John states that, because \(f''(0) = 0\) , the graph of <em>f</em> has a point of inflexion at the point (0, 2) . Explain briefly whether John&rsquo;s statement is correct or not.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - x) = 2\cos ( - x) + ( - x)\sin ( - x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2\cos x + x\sin x\,\,\,\,\,\left( { = f(x)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore <em>f</em> is even &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = - 2\sin x + \sin x + x\cos x\,\,\,\,\,( = - \sin x + x\cos x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = - \cos x + \cos x - x\sin x\,\,\,\,\,( = - x\sin x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(f''(0) = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">John&rsquo;s statement is incorrect because</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">either; there is a stationary point at (0, 2) and since <em>f</em> is an even function and therefore symmetrical about the <em>y</em>-axis it must be a maximum or a minimum</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">or; \(f''(x)\) is even and therefore has the same sign either side of (0, 2) &nbsp; &nbsp; <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = \left| {\cos \left( {\frac{x}{4}} \right)} \right|\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve \(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\) for \(0 \leqslant x \leqslant 8\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_5a_markscheme.png" alt>&nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for correct shape and <strong><em>A1 </em></strong>for correct domain and range.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left| {\cos \left( {\frac{x}{4}} \right)} \right| = \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{4\pi }}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempting to find any other solutions &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>(M1) </em></strong>if at least one of the other solutions is correct (in radians or degrees) or clear use of symmetry is seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 8\pi&nbsp; - \frac{{4\pi }}{3} = \frac{{20 \pi }}{3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 4\pi&nbsp; - \frac{{4\pi }}{3} = \frac{{8\pi }}{3}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 4\pi&nbsp; + \frac{{4\pi }}{3} = \frac{{16\pi }}{3}\) &nbsp; &nbsp; <strong><em>A</em>1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award <strong><em>A1 </em></strong>for all other three solutions correct and no extra solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; If working in degrees, then max <strong><em>A0M1A0</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The functions <em>f</em> and <em>g</em> are defined as:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = {{\text{e}}^{{x^2}}},{\text{ }}x \geqslant 0\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\[g(x) = \frac{1}{{x + 3}},{\text{ }}x \ne - 3.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find \(h(x){\text{ where }}h(x) = g \circ f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; State the domain of \({h^{ - 1}}(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find \({h^{ - 1}}(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \(h(x) = g \circ f(x) = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}},{\text{ }}(x \geqslant 0)\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \(0 &lt; x \leqslant \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for limits and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct inequality signs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \(y = \frac{1}{{{{\text{e}}^{{x^2}}} + 3}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y{{\text{e}}^{{x^2}}} + 3y = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{e}}^{{x^2}}} = \frac{{1 - 3y}}{y}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} = \ln \frac{{1 - 3y}}{y}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \pm \sqrt {\ln \frac{{1 - 3y}}{y}} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {h^{ - 1}}(x) = \sqrt {\ln \frac{{1 - 3x}}{x}} {\text{ }}\left( { = \sqrt {\ln \left( {\frac{1}{x} - 3} \right)} } \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was correctly done by the vast majority of candidates. In contrast, only the very best students gave the correct answer to part (b). Part (c) was correctly started by a majority of candidates, but many did not realise that they needed to use logarithms and were careless about the use of notation</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When \(f(x) = {x^4} + 3{x^3} + p{x^2} - 2x + q\) is divided by (<em>x</em> &minus; 2) the remainder is 15, and (<em>x</em> + 3) is a factor of <em>f</em>(<em>x</em>) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the values of <em>p</em> and <em>q</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(2) = 16 + 24 + 4p - 4 + q = 15\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4p + q = - 21\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f( - 3) = 81 - 81 + 9p + 6 + q = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 9p + q = - 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow p = 3{\text{ and }}q = - 33\) &nbsp; &nbsp; <strong><em>A1A1</em></strong> &nbsp; &nbsp; <strong><em>N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates made a meaningful attempt at this question. Weaker candidates often made arithmetic errors and a few candidates tried using long division, which also often resulted in arithmetic errors. Overall there were many fully correct solutions.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Solve the following equations:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \({\log _2}(x - 2) = {\log _4}({x^2} - 6x + 12)\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({x^{\ln x}} = {{\text{e}}^{{{(\ln x)}^3}}}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; \({\log _2}(x - 2) = {\log _4}({x^2} - 6x + 12)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\log _2}(x - 2) = \frac{{{{\log }_2}({x^2} - 6x + 12)}}{{{{\log }_2}4}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{\log _2}(x - 2) = {\log _2}({x^2} - 6x + 12)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{{\log }_4}(x - 2)}}{{{{\log }_4}2}} = {\log _4}({x^2} - 6x + 12)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2{\log _4}(x - 2) = {\log _4}({x^2} - 6x + 12)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(x - 2)^2} = {x^2} - 6x + 12\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - 4x + 4 = {x^2} - 6x + 12\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 4\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; \({x^{\ln x}} = {{\text{e}}^{{{(\ln x)}^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">taking ln of both sides or writing \(x = {{\text{e}}^{\ln x}}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(\ln x)^2} = {(\ln x)^3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(\ln x)^2}(\ln x - 1) = 0\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1,{\text{ }}x = {\text{e}}\) &nbsp; &nbsp; <strong><em>A1A1 &nbsp; &nbsp; N2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> &nbsp; &nbsp; Award second (<strong><em>A1) </em></strong>only if factorisation seen or if two correct</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">solutions are seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part a) was answered well, and a very large proportion of candidates displayed familiarity and confidence with this type of change-of base equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In part b), good candidates were able to solve this proficiently. A number obtained only one solution, either through observation or mistakenly cancelling a \(\ln x\) term. An incorrect solution \(x = {{\text{e}}^3}\) was somewhat prevalent amongst the weaker candidates.</span></p>
</div>
<br><hr><br><div class="specification">
<p>The function&nbsp;\(f\) is defined by&nbsp;\(f\left( x \right) = \frac{{ax + b}}{{cx + d}}\), for&nbsp;\(x \in \mathbb{R},\,\,x \ne&nbsp; - \frac{d}{c}\).</p>
</div>

<div class="specification">
<p>The function&nbsp;\(g\) is defined by&nbsp;\(g\left( x \right) = \frac{{2x - 3}}{{x - 2}},\,\,x \in \mathbb{R},\,\,x \ne 2\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the inverse function \({f^{ - 1}}\), stating its domain.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express \(g\left( x \right)\) in the form \(A + \frac{B}{{x - 2}}\) where A, B are constants.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = g\left( x \right)\). State the equations of any asymptotes and the coordinates of any intercepts with the axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function \(h\) is defined by \(h\left( x \right) = \sqrt x \), for \(x\) ≥ 0.</p>
<p>State the domain and range of \(h \circ g\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to make \(x\) the subject of \(y = \frac{{ax + b}}{{cx + d}}\)      <em><strong>M1</strong></em></p>
<p>\(y\left( {cx + d} \right) = ax + b\)      <em><strong>A1</strong></em></p>
<p>\(x = \frac{{dy - b}}{{a - cy}}\)     <em><strong>A1</strong></em></p>
<p>\({f^{ - 1}}\left( x \right) = \frac{{dx - b}}{{a - cx}}\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not allow \(y = \) in place of \({f^{ - 1}}\left( x \right)\).</p>
<p>\(x \ne \frac{a}{c},\,\,\,\left( {x \in \mathbb{R}} \right)\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> The final <em><strong>A</strong></em> mark is independent.</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g\left( x \right) = 2 + \frac{1}{{x - 2}}\)    <em><strong> A1A1</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>hyperbola shape, with single curves in second and fourth quadrants and third quadrant blank, including vertical asymptote \(x = 2\)     <em><strong>A1</strong></em></p>
<p>horizontal asymptote \(y = 2\)     <em><strong>A1</strong></em></p>
<p>intercepts \(\left( {\frac{3}{2},\,0} \right),\,\left( {0,\,\frac{3}{2}} \right)\)     <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the domain of \(h \circ g\) is \(x \leqslant \frac{3}{2},\,\,x &gt; 2\)     <em><strong>A1A1</strong></em></p>
<p>the range of \(h \circ g\) is \(y \geqslant 0,\,\,y \ne \sqrt 2 \)     <em><strong>A1A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{1}{{4{x^2} - 4x + 5}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(4{x^2} - 4x + 5\) in the form \(a{(x - h)^2} + k\) where <em>a</em>, <em>h</em>, \(k \in \mathbb{Q}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = {x^2}\) is transformed onto the graph of \(y = 4{x^2} - 4x + 5\). Describe a sequence of transformations that does this, making the order of transformations clear.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By using a suitable substitution show that \(\int {f(x){\text{d}}x = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{\pi }{{16}}} \).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4{(x - 0.5)^2} + 4\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for two correct parameters, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A2</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for all three correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; {0.5} \\ <br>&nbsp; 0 <br>\end{array}} \right)\) (allow &ldquo;0.5 to the right&rdquo;) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">stretch parallel to <em>y</em>-axis, scale factor 4 (allow vertical stretch or similar) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">translation \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 0 \\ <br>&nbsp; 4 <br>\end{array}} \right)\) (allow &ldquo;4 up&rdquo;) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> All transformations must state magnitude and direction.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> First two transformations can be in either order.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It could be a stretch followed by a single translation of </span><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {\begin{array}{*{20}{c}}<br>&nbsp; {0.5} \\ <br>&nbsp; 4 <br>\end{array}} \right)\)</span>. If the vertical translation is before the stretch it is \(\left( {\begin{array}{*{20}{c}}<br>&nbsp; 0 \\ <br>&nbsp; 1 <br>\end{array}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">general shape (including asymptote and single maximum in first quadrant), &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">intercept \(\left( {0,\frac{1}{5}} \right)\) or maximum \(\left( {\frac{1}{2},\frac{1}{4}} \right)\) shown &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(0 &lt; f(x) \leqslant \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \( \leqslant \frac{1}{4}\), </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for \(0 &lt; \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(u = x - \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{{\text{d}}u}}{{{\text{d}}x}} = 1\,\,\,\,\,{\text{(or d}}u = {\text{d}}x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \int {\frac{1}{{4{{\left( {x - \frac{1}{2}} \right)}^2} + 4}}{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int {\frac{1}{{4{u^2} + 4}}{\text{d}}u = \frac{1}{4}\int {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> If following through an incorrect answer to part (a), do not award final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> mark.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_1^{3.5} {\frac{1}{{4{x^2} - 4x + 5}}{\text{d}}x = \frac{1}{4}\int_{0.5}^3 {\frac{1}{{{u^2} + 1}}{\text{d}}u} } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:&nbsp;</strong><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct change of limits. Award also if they do not change limits but go back to </span><em style="font-family: 'times new roman', times; font-size: medium;">x</em><span style="font-family: 'times new roman', times; font-size: medium;"> values when substituting the limit (even if there is an error in the integral).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{4}\left[ {\arctan (u)} \right]_{0.5}^3\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>(M1)</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{4}\left( {\arctan (3) - \arctan \left( {\frac{1}{2}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let the integral = <em>I</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\tan 4I = \tan \left( {\arctan (3) - \arctan \left( {\frac{1}{2}} \right)} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{3 - 0.5}}{{1 + 3 \times 0.5}} = \frac{{2.5}}{{2.5}} = 1\) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4I = \frac{\pi }{4} \Rightarrow I = \frac{\pi }{{16}}\) &nbsp; &nbsp; <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) Exam technique would have helped those candidates who could not get part (a) correct as any solution of the form given in the question could have led to full marks in part (b). Several candidates obtained expressions which were not of this form in (a) and so were unable to receive any marks in (b) Many missed the fact that if a vertical translation is performed before the vertical stretch it has a different magnitude to if it is done afterwards. Though on this occasion the markscheme was fairly flexible in the words it allowed to be used by candidates to describe the transformations it would be less risky to use the correct expressions.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(c) Generally the sketches were poor. The general rule for all sketch questions should be that any asymptotes or intercepts should be clearly labelled. Sketches do not need to be done on graph paper, but a ruler should be used, particularly when asymptotes are involved.<br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) and (f) were well done up to the final part of (f), in which candidates did not realise they needed to use the compound angle formula.<br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question covered many syllabus areas, completing the square, transformations of graphs, range, integration by substitution and compound angle formulae. There were many good solutions to parts (a) &ndash; (e) but the following points caused some difficulties.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(e) and (f) were well done up to the final part of (f), in which candidates did not realise they needed to use the compound angle formula.<br></span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined by \(f(x) = \frac{{2x - 1}}{{x + 2}}\), with domain \(D = \{ x: - 1 \leqslant x \leqslant 8\} \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Express \(f(x)\) in the form \(A + \frac{B}{{x + 2}}\), where \(A\) and \(B \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \(f'(x) &gt; 0\) on <em>D</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">State the range of <em>f</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \({f^{ - 1}}(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\), showing the points of intersection with both axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; On the same diagram, sketch the graph of \(y = f'(x)\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; On a different diagram, sketch the graph of \(y = f(|x|)\) where \(x \in D\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find all solutions of the equation \(f(|x|) = - \frac{1}{4}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by division or otherwise</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = 2 - \frac{5}{{x + 2}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{5}{{{{(x + 2)}^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&gt; 0 as \({(x + 2)^2} &gt; 0\) (on <em>D</em>) &nbsp; &nbsp; <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not penalise candidates who use the original form of the function to compute its derivative.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(S = \left[ { - 3,\frac{3}{2}} \right]\) &nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the correct endpoints and an open interval.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">rearrange \(y = f(x)\) to make <em>x</em> the subject &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain one-line equation, <em>e.g.</em> \(2x - 1 = xy + 2y\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{2y + 1}}{{2 - y}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">interchange <em>x</em> and <em>y</em> &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain one-line equation, <em>e.g.</em> \(2y - 1 = xy + 2x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = \frac{{2x + 1}}{{2 - x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \frac{{2x + 1}}{{2 - x}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept \(\frac{5}{{2 - x}} - 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii), (iii) <br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for correct shape of \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1</em></strong> for <em>x</em> intercept \(\frac{1}{2}\) seen. Award <strong><em>A1</em></strong> for <em>y</em> intercept \( - \frac{1}{2}\) seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1</em></strong> for the graph of \(y = {f^{ - 1}}(x)\) being the reflection of \(y = f(x)\) in the line \(y = x\). Candidates are not required to indicate the full domain, but \(y = f(x)\) should not be shown approaching \(x = - 2\). Candidates, in answering (iii), can <strong>FT</strong> on their sketch in (ii).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> <strong><em>A1</em></strong> for correct sketch \(x &gt; 0\), <strong><em>A1</em></strong> for symmetry, <strong><em>A1</em></strong> for correct domain (from &ndash;1 to +8).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Candidates can <strong>FT</strong> on their sketch in (d)(ii).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempt to solve \(f(x) = - \frac{1}{4}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(x = \frac{2}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">use of symmetry or valid algebraic approach &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">obtain \(x = - \frac{2}{9}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Generally well done.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In their answers to Part (b), most candidates found the derivative, but many assumed it was obviously positive.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (d)(i) Generally well done, but some candidates failed to label their final expression as \({f^{ - 1}}(x)\). Part (d)(ii) Marks were lost by candidates who failed to mark the intercepts with values.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Marks were also lost in this part and in part (e)(i) for graphs that went beyond the explicitly stated domain.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The function \(f\) is defined as \(f(x) = {{\text{e}}^{3x + 1}},{\text{ }}x \in \mathbb{R}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find \({f^{ - 1}}(x)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State the domain of \({f^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The function \(g\) is defined as \(g(x) = \ln x,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">The graph of \(y = g(x)\) and the graph of \(y = {f^{ - 1}}(x)\) intersect at the point \(P\).</p>
<p class="p1">Find the coordinates of \(P\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = g(x)\) intersects the \(x\)-axis at the point \(Q\).</p>
<p class="p1">Show that the equation of the tangent \(T\) to the graph of \(y = g(x)\) at the point&nbsp;\(Q\) is \(y = x - 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">Find the area of the region \(R\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A region \(R\) is bounded by the graphs of \(y = g(x)\), the tangent \(T\) and the line \(x = {\text{e}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Show that \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>By replacing \(x\) with \(\frac{1}{x}\) in part (e)(i), show that \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(x = {{\text{e}}^{3y + 1}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The <strong><em>M1 </em></strong>is for switching variables and can be awarded at any stage.</p>
<p class="p1">Further marks do not rely on this mark being awarded.</p>
<p class="p2">&nbsp;</p>
<p class="p1">taking the natural logarithm of both sides and attempting to transpose <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\(\left( {{f^{ - 1}}(x)} \right) = \frac{1}{3}(\ln x - 1)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(x \in {\mathbb{R}^ + }\) or equivalent, for example \(x &gt; 0\).&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\ln x = \frac{1}{3}(\ln x - 1) \Rightarrow \ln x - \frac{1}{3}\ln x =&nbsp; - \frac{1}{3}\) (or equivalent) &nbsp; &nbsp; <strong><em>M1A1</em></strong></p>
<p>\(\ln x =&nbsp; - \frac{1}{2}\) (or equivalent) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = {{\text{e}}^{ - \frac{1}{2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>coordinates of&nbsp;\(P\) are \(\left( {{{\text{e}}^{ - \frac{1}{2}}},{\text{ }} - \frac{1}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">coordinates of&nbsp;\(Q\) are (\(1,{\rm{ }}0\)) seen anywhere <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{1}{x}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">at \({\text{Q, }}\frac{{{\text{d}}y}}{{{\text{d}}x}} = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(y = x - 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">let the required area be \(A\)</p>
<p class="p1">\(A = \int_1^e {x - 1{\text{d}}x - \int_1^e {\ln x{\text{d}}x} } \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The <strong><em>M1 </em></strong>is for a difference of integrals. Condone absence of limits here.</p>
<p class="p2">&nbsp;</p>
<p class="p1">attempting to use integration by parts to find \(\int {\ln x{\text{d}}x} \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\( = \left[ {\frac{{{x^2}}}{2} - x} \right]_1^{\text{e}} - [x\ln x - x]_1^{\text{e}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>Award <strong><em>A1 </em></strong>for \(\frac{{{x^2}}}{2} - x\) and <strong><em>A1 </em></strong>for \(x\ln x - x\).</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The second <strong><em>M1 </em></strong>and second <strong><em>A1 </em></strong>are independent of the first <strong><em>M1 </em></strong>and the first <strong><em>A1</em></strong>.</p>
<p class="p2">&nbsp;</p>
<p class="p1">\( = \frac{{{{\text{e}}^2}}}{2} - {\text{e}} - \frac{1}{2}\left( { = \frac{{{{\text{e}}^2} - 2{\text{e}} - 1}}{2}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <strong>METHOD 1</strong></p>
<p>consider for example \(h(x) = x - 1 - \ln x\)</p>
<p>\(h(1) = 0\;\;\;{\text{and}}\;\;\;h'(x) = 1 - \frac{1}{x}\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></p>
<p>as \(h'(x) \ge 0\;\;\;{\text{for}}\;\;\;x \ge 1,\;\;\;{\text{then}}\;\;\;h(x) \ge 0\;\;\;{\text{for}}\;\;\;x \ge 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>as \(h'(x) \le 0\;\;\;{\text{for}}\;\;\;0 &lt; x \le 1,\;\;\;{\text{then}}\;\;\;h(x) \ge 0\;\;\;{\text{for}}\;\;\;0 &lt; x \le 1\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>so \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p>\(g''(x) =&nbsp; - \frac{1}{{{x^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(g''(x) &lt; 0\;\;\;\)(concave down) for\(\;\;\;x \in {\mathbb{R}^ + }\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p class="p1">the graph of \(y = g(x)\) is below its tangent \((y = x - 1\;\;\;{\text{at}}\;\;\;x = 1)\) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p class="p1">so \(g(x) \le x - 1,{\text{ }}x \in {\mathbb{R}^ + }\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">&nbsp; &nbsp; </span></strong>The reasoning may be supported by drawn graphical arguments.</p>
<p class="p2">&nbsp;</p>
<p class="p1"><strong>METHOD 3</strong></p>
<p class="p1"><img src="" alt></p>
<p class="p1">clear correct graphs of \(y = x - 1\;\;\;{\text{and}}\;\;\;\ln x\;\;\;{\text{for}}\;\;\;x &gt; 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1A1</em></strong></p>
<p class="p1">statement to the effect that the graph of \(\ln x\) is below the graph of its tangent at \(x = 1\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1AG</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>replacing \(x\) by \(\frac{1}{x}\) to obtain \(\ln \left( {\frac{1}{x}} \right) \le \frac{1}{x} - 1\left( { = \frac{{1 - x}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( - \ln x \le \frac{1}{x} - 1\left( { = \frac{{1 - x}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(\ln x \ge 1 - \frac{1}{x}\left( { = \frac{{x - 1}}{x}} \right)\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">so \(\frac{{x - 1}}{x} \le g(x),{\text{ }}x \in {\mathbb{R}^ + }\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<p class="p1"><strong><em>Total [23 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally very well done, even by candidates who had shown considerable weaknesses elsewhere on the paper.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A productive question for many candidates, but some didn&rsquo;t realise that a difference of areas/integrals was required.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp; Many candidates adopted a graphical approach, but sometimes with unconvincing reasoning.</p>
<p class="p1">(ii) &nbsp; &nbsp; Poorly answered. Many candidates applied the suggested substitution only to one side of the inequality, and then had to fudge the answer.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The random variable <em>X</em> has probability density function <em>f</em> where</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ {\begin{array}{*{20}{c}}<br>&nbsp; {kx(x + 1)(2 - x),}&amp;{0 \leqslant x \leqslant 2} \\ <br>&nbsp; {0,}&amp;{{\text{otherwise }}{\text{.}}} <br>\end{array}} \right.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of the function. You are not required to find the coordinates of the maximum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of <em>k</em> .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for intercepts of 0 and 2 and a concave down curve in the given domain .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A0</em></strong> if the cubic graph is extended outside the domain [0, 2] .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^2 {kx(x + 1)(2 - x){\text{d}}x = 1} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> The correct limits and =1 must be seen but may be seen later.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k\int_0^2 {( - {x^3} + {x^2} + 2x){\text{d}}x = 1} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k\left[ { - \frac{1}{4}{x^4} + \frac{1}{3}{x^3} + {x^2}} \right]_0^2 = 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k\left( { - 4 + \frac{8}{3} + 4} \right) = 1\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = \frac{3}{8}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates completed this question well. A number extended the graph beyond the given domain.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates completed this question well. A number extended the graph beyond the given domain.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;\(f\left( x \right) = \frac{{2 - 3{x^5}}}{{2{x^3}}},\,\,x \in \mathbb{R},\,\,x \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of \(y = f\left( x \right)\) has a local maximum at A. Find the coordinates of A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is exactly one point of inflexion, B, on the graph of \(y = f\left( x \right)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The coordinates of B can be expressed in the form B\(\left( {{2^a},\,b \times {2^{ - 3a}}} \right)\) where <em>a</em>, <em>b</em>\( \in \mathbb{Q}\). Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f\left( x \right)\) showing clearly the position of the points A and B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to differentiate     <em><strong> (M1)</strong></em></p>
<p>\(f'\left( x \right) =  - 3{x^{ - 4}} - 3x\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for using quotient or product rule award <em><strong>A1</strong> </em>if correct derivative seen even in unsimplified form, for example \(f'\left( x \right) = \frac{{ - 15{x^4} \times 2{x^3} - 6{x^2}\left( {2 - 3{x^5}} \right)}}{{{{\left( {2{x^3}} \right)}^2}}}\).</p>
<p>\( - \frac{3}{{{x^4}}} - 3x = 0\)     <em><strong>M1</strong></em></p>
<p>\( \Rightarrow {x^5} =  - 1 \Rightarrow x =  - 1\)     <em><strong>A1</strong></em></p>
<p>\({\text{A}}\left( { - 1,\, - \frac{5}{2}} \right)\)     <em><strong>A1</strong></em></p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f''\left( x \right) = 0\)     <em><strong>M1</strong></em></p>
<p>\(f''\left( x \right) = 12{x^{ - 5}} - 3\left( { = 0} \right)\)     <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct derivative seen even if not simplified.</p>
<p>\( \Rightarrow x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)\)     <em><strong>A1</strong></em></p>
<p>hence (at most) one point of inflexion      <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> This mark is independent of the two <em><strong>A1</strong> </em>marks above. If they have shown or stated their equation has only one solution this mark can be awarded.</p>
<p>\(f''\left( x \right)\) changes sign at \(x = \sqrt[5]{4}\left( { = {2^{\frac{2}{5}}}} \right)\)      <em><strong>R1</strong></em></p>
<p>so exactly one point of inflexion</p>
<p><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = \sqrt[5]{4} = {2^{\frac{2}{5}}}\left( { \Rightarrow a = \frac{2}{5}} \right)\)      <em><strong>A1</strong></em></p>
<p>\(f\left( {{2^{\frac{2}{5}}}} \right) = \frac{{2 - 3 \times {2^2}}}{{2 \times {2^{\frac{6}{5}}}}} =  - 5 \times {2^{ - \frac{6}{5}}}\left( { \Rightarrow b =  - 5} \right)\)     <em><strong>(M1)A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>M1</strong> </em>for the substitution of their value for \(x\) into \(f\left( x \right)\).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>A1A1A1A1</strong></em></p>
<p><em><strong>A1</strong></em> for shape for <em>x</em> &lt; 0<br><em><strong>A1 </strong></em>for shape for <em>x</em> &gt; 0<br><em><strong>A1 </strong></em>for maximum at A<br><em><strong>A1 </strong></em>for POI at B.</p>
<p><strong>Note:</strong> Only award last two <em><strong>A1</strong></em>s if A and B are placed in the correct quadrants, allowing for follow through.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Shown below are the graphs of \(y = f(x)\) and \(y = g(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \((f \circ g)(x) = 3\), find all possible values of <em>x</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(g(x) = 0{\text{ or 3}}\) &nbsp; &nbsp; <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> = &ndash;1 or 4 or 1 or 2 &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes:</strong> Award <strong><em>A1A1</em></strong> for all four correct values,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1A0</em></strong> for two or three correct values,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A0A0</em></strong> for less than two correct values.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>M1</em></strong> and corresponding <strong><em>A</em></strong> marks for correct attempt to find expressions for <em>f</em> and <em>g</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A small number of candidates gave correct and well explained answers. Many candidates answered the question without showing any kind of work and in many cases it was clear that candidates were guessing and clearly did not know about composition of functions. A number of candidates attempted to find expressions for both functions but made little progress and wasted time.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f</em> is defined on the domain \(x \geqslant 0\) by \(f(x) = {{\text{e}}^x} - {x^{\text{e}}}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find an expression for \(f'(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Given that the equation \(f'(x) = 0\) has two roots, state their values.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f</em> , showing clearly the coordinates of the maximum and minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence show that \({{\text{e}}^\pi } &gt; {\pi ^{\text{e}}}\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = {{\text{e}}^x} - {\text{e}}{x^{{\text{e}} - 1}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; by inspection the two roots are 1, e &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for maximum, <strong><em>A1</em></strong> for minimum and <strong><em>A1</em></strong> for general shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 36.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the graph: \({{\text{e}}^x} &gt; {x^{\text{e}}}\) for all \(x &gt; 0\) except <em>x</em> = e &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">putting \(x = \pi \) , conclude that \({{\text{e}}^\pi } &gt; {\pi ^{\text{e}}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The function <em>f </em>is defined on the domain \(\left[ {0,\,\frac{{3\pi }}{2}} \right]\) by \(f(x) = {e^{ - x}}\cos x\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the two zeros of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of <em>f </em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The region bounded by the graph, the <em>x</em>-axis and the <em>y</em>-axis is denoted by <em>A </em>and&nbsp;the region bounded by the graph and the <em>x</em>-axis is denoted by <em>B </em>. Show that the&nbsp;ratio of the area of <em>A </em>to the area of <em>B </em>is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{e^\pi }\left( {{e^{\frac{\pi }{2}}} + 1} \right)}}{{{e^\pi } + 1}}.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({e^{ - x}}\cos x = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = \frac{\pi }{2},{\text{ }}\frac{{3\pi }}{2}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp; &nbsp;&nbsp; A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><strong>&nbsp;</strong></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><strong>Note: </strong></strong>Accept any form of concavity for \(x \in \left[ {0,\frac{\pi }{2}} \right]\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize unmarked zeros if given in part (a).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><strong>&nbsp;</strong></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Zeros written on diagram can be used to allow the mark in part (a) to be awarded retrospectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt at integration by parts &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x = &nbsp;- {{\text{e}}^{ - x}}\cos x{\text{d}}x - \int {{{\text{e}}^{ - x}}\sin x{\text{d}}x} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = &nbsp;- {{\text{e}}^{ - x}}\cos x{\text{d}}x - \left[ { - {{\text{e}}^{ - x}}\sin x + \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x} } \right]\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = \frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x) + C\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize absence of <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x = {{\text{e}}^{ - x}}\sin x + \int {{{\text{e}}^{ - x}}\sin x{\text{d}}x} } \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(I = {{\text{e}}^{ - x}}\sin x - {{\text{e}}^{ - x}}\cos x - \int {{{\text{e}}^{ - x}}\cos x{\text{d}}x} \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow I = \frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x) + C\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize absence of <em>C</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>THEN<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{2}} {{{\text{e}}^{ - x}}\cos x{\text{d}}x = \left[ {\frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x)} \right]} _0^{\frac{\pi }{2}} = \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2} + \frac{1}{2}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {{{\text{e}}^{ - x}}\cos x{\text{d}}x = \left[ {\frac{{{{\text{e}}^{ - x}}}}{2}(\sin x - \cos x)} \right]_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} = &nbsp;- \frac{{{{\text{e}}^{ - \frac{{3\pi }}{2}}}}}{2} - \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2}} \) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">ratio of <em>A</em>:<em>B </em>is \(\frac{{\frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2} + \frac{1}{2}}}{{\frac{{{{\text{e}}^{ - \frac{{3\pi }}{2}}}}}{2} + \frac{{{{\text{e}}^{ - \frac{\pi }{2}}}}}{2}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{{\text{e}}^{\frac{{3\pi }}{2}}}\left( {{{\text{e}}^{ - \frac{\pi }{2}}} + 1} \right)}}{{{{\text{e}}^{\frac{{3\pi }}{2}}}\left( {{{\text{e}}^{ - \frac{{3\pi }}{2}}} + {{\text{e}}^{ - \frac{\pi }{2}}}} \right)}}\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{{{\text{e}}^\pi }\left( {{{\text{e}}^{\frac{\pi }{2}}} + 1} \right)}}{{{{\text{e}}^\pi } + 1}}\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]&nbsp;</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">of&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;correctly but the graph of </span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;"> was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros of <em>f</em> correctly but the graph of <em>f</em> was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates stated the two zeros of <em>f</em> correctly but the graph&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">of&nbsp;</span><em style="font-family: 'times new roman', times; font-size: medium;">f</em><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;was often incorrectly drawn. In (c), many candidates failed to realise that integration by parts had to be used twice here and even those who did that often made algebraic errors, usually due to the frequent changes of sign.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows the graph of the function \(y = f(x)\) , defined for all \(x \in \mathbb{R}\),</span><br><span style="font-family: times new roman,times; font-size: medium;">where \(b &gt; a &gt; 0\) .</span></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt><br><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(g(x) = \frac{1}{{f(x - a) - b}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the largest possible domain of the function \(g\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">On the axes below, sketch the graph of \(y = g(x)\) . On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates</span>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f(x - a) \ne b\) &nbsp; &nbsp; <em><strong>(M1)</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x \ne 0\) and \(x \ne 2a\) (or equivalent)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">vertical asymptotes \(x = 0\), \(x = 2a\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">horizontal asymptote \(y = 0\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Equations must be seen to award these marks.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">maximum \(\left( {a, - \frac{1}{b}} \right)\)</span><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; </span><em><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for correct <em>x</em>-coordinate and <em><strong>A1</strong></em> for correct <em>y</em>-coordinate.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">one branch correct shape&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">other 2 branches correct shape&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><img src="" alt></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A significant number of candidates did not answer this question. Among the candidates who attempted it there were many who had difficulties in connecting vertical asymptotes and the domain of the function and dealing with transformations of graphs. In a few cases candidates managed to answer (a) but provided an answer to (b) which was inconsistent with the domain found.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A significant number of candidates did not answer this question. Among the candidates who attempted it there were many who had difficulties in connecting vertical asymptotes and the domain of the function and dealing with transformations of graphs. In a few cases candidates managed to answer (a) but provided an answer to (b) which was inconsistent with the domain found.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(f(x) = 1 + \sin x,{\text{ }}0 \leqslant x \leqslant \frac{{3\pi }}{2}\),</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">sketch the graph of \(f\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 31px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">show that \({\left( {f(x)} \right)^2} = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\);</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find the volume of the solid formed when the graph of <em>f</em> is rotated through \(2\pi \) radians about the <em>x</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times;"><span style="font-size: medium;">&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times;"><span style="font-size: medium;"><strong><em>[1 mark]</em></strong></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(1 + \sin x)^2} = 1 + 2\sin x + {\sin ^2}x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 1 + 2\sin x + \frac{1}{2}(1 - \cos 2x)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \pi \int_0^{\frac{{3\pi }}{2}} {{{(1 + \sin x)}^2}{\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \int_0^{\frac{{3\pi }}{2}} {\left( {\frac{3}{2} + 2\sin x - \frac{1}{2}\cos 2x} \right){\text{d}}x} \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \pi \left[ {\frac{3}{2}x - 2\cos x - \frac{{\sin 2x}}{4}} \right]_0^{\frac{{3\pi }}{2}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{9{\pi ^2}}}{4} + 2\pi \) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were almost invariably correctly answered by candidates. In (c), most errors involved the integration of \(\cos (2x)\) and the insertion of the limits.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graphs of \(y = \frac{x}{2} + 1\) and \(y = \left| {x - 2} \right|\) on the following axes.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the equation \(\frac{x}{2} + 1 = \left| {x - 2} \right|\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>straight line graph with correct axis intercepts      <em><strong>A1</strong></em></p>
<p>modulus graph: V shape in upper half plane      <em><strong>A1</strong></em></p>
<p>modulus graph having correct vertex and <em>y</em>-intercept      <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD</strong> <strong>1</strong></p>
<p>attempt to solve \(\frac{x}{2} + 1 = x - 2\)     <em><strong>(M1)</strong></em></p>
<p>\(x = 6\)      <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept \(x = 6\) using the graph.</p>
<p>attempt to solve (algebraically) \(\frac{x}{2} + 1 = 2 - x\)     <em><strong>M1</strong></em></p>
<p>\(x = \frac{2}{3}\)    <em><strong> A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\({\left( {\frac{x}{2} + 1} \right)^2} = {\left( {x - 2} \right)^2}\)      <em><strong>M1</strong></em></p>
<p>\(\frac{{{x^2}}}{4} + x + 1 = {x^2} - 4x + 4\)</p>
<p>\(0 = \frac{{3{x^2}}}{4} - 5x + 3\)</p>
<p>\(3{x^2} - 20x + 12 = 0\)</p>
<p>attempt to factorise (or equivalent)       <em><strong>M1</strong></em></p>
<p>\(\left( {3x - 2} \right)\left( {x - 6} \right) = 0\)</p>
<p>\(x = \frac{2}{3}\)    <em><strong> A1</strong></em></p>
<p>\(x = 6\)      <em><strong>A1</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A function is defined as \(f(x) = k\sqrt x \), with \(k &gt; 0\) and \(x \geqslant 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Sketch the graph of \(y = f(x)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that <em>f</em> is a one-to-one function.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Find the inverse function, \({f^{ - 1}}(x)\) and state its domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; If the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) intersect at the point (4, 4) find the value of <em>k</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Consider the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) using the value of <em>k</em> found in part (d).</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Find the area enclosed by the two graphs.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; The line <em>x</em> = <em>c</em> cuts the graphs of \(y = f(x)\) and \(y = {f^{ - 1}}(x)\) at the points P and Q respectively. Given that the tangent to \(y = f(x)\) at point P is parallel to the tangent to \(y = {f^{ - 1}}(x)\) at point Q find the value of <em>c</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;">&nbsp; &nbsp; <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct concavity, passing through (0, 0) and increasing.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Scales need not be there.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; a statement involving the application of the Horizontal Line Test or equivalent &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; \(y = k\sqrt x \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for either \(x = k\sqrt y \) or \(x = \frac{{{y^2}}}{{{k^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({f^{ - 1}}(x) = \frac{{{x^2}}}{{{k^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{dom}}\left( {{f^{ - 1}}(x)} \right) = \left[ {0,\infty } \right[\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; \(\frac{{{x^2}}}{{{k^2}}} = k\sqrt x \,\,\,\,\,\)or equivalent method &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = \sqrt x \)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(k = 2\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; (i) &nbsp; &nbsp; \(A = \int_a^b {({y_1} - {y_2}){\text{d}}x} \) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = \int_0^4 {\left( {2{x^{\frac{1}{2}}} - \frac{1}{4}{x^2}} \right){\text{d}}x} \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ {\frac{4}{3}{x^{\frac{3}{2}}} - \frac{1}{{12}}{x^3}} \right]_0^4\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{16}}{3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; attempt to find either \(f'(x)\) or \(({f^{ - 1}})'(x)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f'(x) = \frac{1}{{\sqrt x }},{\text{ }}\left( {({f^{ - 1}})'(x) = \frac{x}{2}} \right)\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{{\sqrt c }} = \frac{c}{2}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = {2^{\frac{2}{3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [16 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many students could not sketch the function. There was confusion between the vertical and horizontal line test for one-to-one functions. A significant number of students gave long and inaccurate explanations for a one-to-one function. Finding the inverse was done very well by most students although the notation used was generally poor. The domain of the inverse was ignored by many or done incorrectly even if the sketch was correct. Many did not make the connections between the parts of the question. An example of this was the number of students who spent time finding the point of intersection in part e) even though it was given in d).</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of a polynomial function <em>f </em>of degree 4 is shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({(x + {\text{i}}y)^2} = - 5 + 12{\text{i}},{\text{ }}x,{\text{ }}y \in \mathbb{R}\)&nbsp;. Show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({x^2} - {y^2} = - 5\)&nbsp;;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(xy = 6\)&nbsp;.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find the two square roots of \( - 5 + 12{\text{i}}\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">For any complex number <em>z </em>, show that \({(z^*)^2} = ({z^2})^*\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence write down the two square roots of \( - 5 - 12{\text{i}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain why, of the four roots of the equation \(f(x) = 0\) , two are real and two&nbsp;are complex.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The curve passes through the point \(( - 1,\, - 18)\) . Find \(f(x)\) in the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = (x - a)(x - b)({x^2} + cx + d),{\text{ where }}a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\)<em>&nbsp;</em>.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the two complex roots of the equation \(f(x) = 0\) in Cartesian form.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the four roots on the complex plane (the Argand diagram).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Express each of the four roots of the equation in the form \(r{{\text{e}}^{{\text{i}}\theta }}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">B.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({(x + {\text{i}}y)^2} = - 5 + 12{\text{i}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} + 2{\text{i}}xy + {{\text{i}}^2}{y^2} = - 5 + 12{\text{i}}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; equating real and imaginary parts &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - {y^2} = - 5\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(xy = 6\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting &nbsp; &nbsp; <strong><em>M1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>EITHER<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} - \frac{{36}}{{{x^2}}} = - 5\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^4} + 5{x^2} - 36 = 0\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} = 4,\, - 9\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \pm 2\) and \(y = \pm 3\) &nbsp; &nbsp;&nbsp;<strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>OR<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{{36}}{{{y^2}}} - {y^2} = - 5\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^4} - 5{y^2} - 36 = 0\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = 9,\, - 4\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = \pm 3\)<strong> and</strong> \(x = \pm 2\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept solution by inspection if completely correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>THEN<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the square roots are \((2 + 3{\text{i}})\) and \(( - 2 - 3{\text{i}})\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \(z = x + {\text{i}}y\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z^* = x - {\text{i}}y\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(z^*)^2} = {x^2} - {y^2} - 2{\text{i}}xy\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({z^2}) = {x^2} - {y^2} + 2{\text{i}}xy\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({z^2})^* = {x^2} - {y^2} - 2{\text{i}}xy\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(z^*)^2} = ({z^2})^*\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z^* = r{{\text{e}}^{ - {\text{i}}\theta }}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(z^*)^2} = {r^2}{{\text{e}}^{ - 2{\text{i}}\theta }}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({z^2} = {r^2}{{\text{e}}^{2{\text{i}}\theta }}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(({z^2})^* = {r^2}{{\text{e}}^{ - 2{\text{i}}\theta }}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(z^*)^2} = ({z^2})^*\) &nbsp; &nbsp;<strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">\((2 - 3{\text{i}})\) and \(( - 2 + 3{\text{i}})\) &nbsp; &nbsp;&nbsp;<strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the graph crosses the <em>x</em>-axis twice, indicating two real roots &nbsp; &nbsp; <strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">since the quartic equation has four roots and only two are real, the other&nbsp;two roots must be complex &nbsp; &nbsp; <em><strong>R1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(x) = (x + 4)(x - 2)({x^2} + cx + d)\) &nbsp; &nbsp;<strong> <em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(f(0) = - 32 \Rightarrow d = 4\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Since the curve passes through \(( - 1,\, - 18)\)<span style="font: 11.5px Times;">,<br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 18 = 3 \times ( - 3)(5 - c)\) &nbsp; &nbsp;<strong> <em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(c = 3\) &nbsp; &nbsp; <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence \(f(x) = (x + 4)(x - 2)({x^2} + 3x + 4)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[5 marks]</span><br></em></strong></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{{ - 3 \pm \sqrt {9 - 16} }}{2}\) &nbsp; &nbsp;<strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = - \frac{3}{2} \pm {\text{i}}\frac{{\sqrt 7 }}{2}\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp; &nbsp;&nbsp; A1A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept points or vectors on complex plane.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1 </em></strong>for two real roots and <strong><em>A1 </em></strong>for two complex roots.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">real roots are \(4{{\text{e}}^{{\text{i}}\pi }}\) and \(2{{\text{e}}^{{\text{i}}0}}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">considering \( - \frac{3}{2} \pm {\text{i}}\frac{{\sqrt 7 }}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(r = \sqrt {\frac{9}{4} + \frac{7}{4}} &nbsp;= 2\) &nbsp; &nbsp;<strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">finding \(\theta \) using \(\arctan \left( {\frac{{\sqrt 7 }}{3}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\theta &nbsp;= \arctan \left( {\frac{{\sqrt 7 }}{3}} \right) + \pi {\text{ or }}\theta &nbsp;= \arctan \left( { - \frac{{\sqrt 7 }}{3}} \right) + \pi \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow z = 2{{\text{e}}^{{\text{i}}\left( {\arctan \left( {\frac{{\sqrt 7 }}{3}} \right) + \pi } \right)}}{\text{ or}} \Rightarrow z = 2{{\text{e}}^{{\text{i}}\left( {\arctan \left( {\frac{{ - \sqrt 7 }}{3}} \right) + \pi } \right)}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept arguments in the range \( - \pi {\text{ to }}\pi {\text{ or }}0{\text{ to }}2\pi \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Accept answers in degrees.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[6 marks]</span><br></em></strong></p>
<div class="question_part_label">B.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Since (a) was a &lsquo;show that&rsquo; question, it was essential for candidates to give a convincing explanation of how the quoted results were obtained. Many candidates just wrote</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{(x + {\text{i}}y)^2} = {x^2} - {y^2} + 2{\text{i}}xy = - 5 + 12{\text{i}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{\text{Therefore }}{x^2} - {y^2} = - 5{\text{ and }}xy = 6\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was not given full credit since it simply repeated what was given in the question. Candidates were expected to make it clear that they were equating real and imaginary parts. In (b), candidates who attempted to use de Moivre&rsquo;s Theorem to find the square roots were given no credit since the question stated &lsquo;hence&rsquo;.</span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Since (a) was a &lsquo;show that&rsquo; question, it was essential for candidates to give a convincing explanation of how the quoted results were obtained. Many candidates just wrote</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{(x + {\text{i}}y)^2} = {x^2} - {y^2} + 2{\text{i}}xy = - 5 + 12{\text{i}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{\text{Therefore }}{x^2} - {y^2} = - 5{\text{ and }}xy = 6\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was not given full credit since it simply repeated what was given in the question. Candidates were expected to make it clear that they were equating real and imaginary parts. In (b), candidates who attempted to use de Moivre&rsquo;s Theorem to find the square roots were given no credit since the question stated &lsquo;hence&rsquo;.</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Since (a) was a &lsquo;show that&rsquo; question, it was essential for candidates to give a convincing explanation of how the quoted results were obtained. Many candidates just wrote</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{(x + {\text{i}}y)^2} = {x^2} - {y^2} + 2{\text{i}}xy = - 5 + 12{\text{i}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{\text{Therefore }}{x^2} - {y^2} = - 5{\text{ and }}xy = 6\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was not given full credit since it simply repeated what was given in the question. Candidates were expected to make it clear that they were equating real and imaginary parts. In (b), candidates who attempted to use de Moivre&rsquo;s Theorem to find the square roots were given no credit since the question stated &lsquo;hence&rsquo;.</span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Since (a) was a &lsquo;show that&rsquo; question, it was essential for candidates to give a convincing explanation of how the quoted results were obtained. Many candidates just wrote</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{(x + {\text{i}}y)^2} = {x^2} - {y^2} + 2{\text{i}}xy = - 5 + 12{\text{i}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{\text{Therefore }}{x^2} - {y^2} = - 5{\text{ and }}xy = 6\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was not given full credit since it simply repeated what was given in the question. Candidates were expected to make it clear that they were equating real and imaginary parts. In (b), candidates who attempted to use de Moivre&rsquo;s Theorem to find the square roots were given no credit since the question stated &lsquo;hence&rsquo;.</span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the explanations were often unconvincing. Candidates were expected to make it clear that the two intersections with the <em>x</em>-axis gave two real roots and, since the polynomial was a quartic and therefore had four zeros, the other two roots must be complex. Candidates who made vague statements such as &lsquo;the graph shows two real roots&rsquo; were not given full credit. In (b), most candidates stated the values of <em>a </em>and <em>b </em>correctly but algebraic errors often led to&nbsp;incorrect values for the other parameters. Candidates who failed to solve (b) correctly were unable to solve (c), (d) and (e) correctly although follow through was used where possible.</span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the explanations were often unconvincing. Candidates were expected to make it clear that the two intersections with the <em>x</em>-axis gave two real roots and, since the polynomial was a quartic and therefore had four zeros, the other two roots must be complex. Candidates who made vague statements such as &lsquo;the graph shows two real roots&rsquo; were not given full credit. In (b), most candidates stated the values of <em>a </em>and <em>b </em>correctly but algebraic errors often led to&nbsp;incorrect values for the other parameters. Candidates who failed to solve (b) correctly were unable to solve (c), (d) and (e) correctly although follow through was used where possible.</span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the explanations were often unconvincing. Candidates were expected to make it clear that the two intersections with the <em>x</em>-axis gave two real roots and, since the polynomial was a quartic and therefore had four zeros, the other two roots must be complex. Candidates who made vague statements such as &lsquo;the graph shows two real roots&rsquo; were not given full credit. In (b), most candidates stated the values of <em>a </em>and <em>b </em>correctly but algebraic errors often led to&nbsp;incorrect values for the other parameters. Candidates who failed to solve (b) correctly were unable to solve (c), (d) and (e) correctly although follow through was used where possible.</span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the explanations were often unconvincing. Candidates were expected to make it clear that the two intersections with the <em>x</em>-axis gave two real roots and, since the polynomial was a quartic and therefore had four zeros, the other two roots must be complex. Candidates who made vague statements such as &lsquo;the graph shows two real roots&rsquo; were not given full credit. In (b), most candidates stated the values of <em>a </em>and <em>b </em>correctly but algebraic errors often led to&nbsp;incorrect values for the other parameters. Candidates who failed to solve (b) correctly were unable to solve (c), (d) and (e) correctly although follow through was used where possible.</span></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), the explanations were often unconvincing. Candidates were expected to make it clear that the two intersections with the <em>x</em>-axis gave two real roots and, since the polynomial was a quartic and therefore had four zeros, the other two roots must be complex. Candidates who made vague statements such as &lsquo;the graph shows two real roots&rsquo; were not given full credit. In (b), most candidates stated the values of <em>a </em>and <em>b </em>correctly but algebraic errors often led to&nbsp;incorrect values for the other parameters. Candidates who failed to solve (b) correctly were unable to solve (c), (d) and (e) correctly although follow through was used where possible.</span></p>
<div class="question_part_label">B.e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = \frac{{a + x}}{{b + cx}}\) is drawn below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 32px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find the value of <em>a</em>, the value of <em>b</em> and the value of <em>c</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Using the values of <em>a</em>, <em>b</em> and <em>c</em> found in part (a), sketch the graph of \(y = \left| {\frac{{b + cx}}{{a + x}}} \right|\) on the axes below, showing clearly all intercepts and asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 26px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; an attempt to use either asymptotes or intercepts &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = - 2,{\text{ }}b = 1,{\text{ }}c = \frac{1}{2}\) &nbsp; &nbsp; <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; </span><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp; &nbsp; <strong><em>A4</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for both asymptotes,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for both intercepts,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong>, <strong><em>A1</em></strong> for the shape of each branch, ignoring shape at \((x = - 2)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It was pleasing to see a lot of good work with part (a), though some candidates lost marks due to problems with the algebra which led to one or more incorrect values. Regarding part (b), most candidates did not succeed in finding the new intercepts and asymptotes and were unable to apply the absolute value function. A significant number of candidates misread part (b) and took it as the modulus of the graph in part (a).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph below shows&nbsp;\(y = f(x)\)&nbsp;, where \(f(x) = x + \ln x\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) On the graph below, sketch the curve \(y = {f^{ - 1}}(x)\)&nbsp;.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> <br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the coordinates of the point of intersection of the graph of \(y = f(x)\)&nbsp;and&nbsp;the graph of \(y = {f^{ - 1}}(x)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times;"><span style="font-size: medium;">(a)</span></span></p>
<p><span style="font-family: 'times new roman', times;"><span style="font-size: medium;"><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1</strong></em></span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><br></em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct asymptote with correct behaviour and <strong><em>A1 </em></strong>for shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[2 marks]</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(b)&nbsp;&nbsp;&nbsp;&nbsp; intersect on \(y = x\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x + \ln x = x \Rightarrow \ln x = 0\) &nbsp; &nbsp;<strong> <em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">intersect at (1, 1) &nbsp; &nbsp;&nbsp;<strong><em>A1 &nbsp; &nbsp; A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [6 marks]<br></em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most students were able to sketch the correct graph, but then many failed to recognise that they could use their solution to determine the solution of part (b). Those who did were generally successful and those who embarked on attempts to find the inverse function did not realise that this was leading them nowhere.<br></span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = \frac{{\ln x}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Solve the equation \(f'(x) = 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Hence show the graph of \(f\) has a local maximum.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of the function \(f\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that there is a point of inflexion on the graph and determine its coordinates.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Sketch the graph of \(y = f(x)\) , indicating clearly the asymptote, <em>x</em>-intercept and </span><span style="font-family: times new roman,times; font-size: medium;">the local maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Now consider the functions \(g(x) = \frac{{\ln \left| x \right|}}{x}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(h(x) = \frac{{\ln \left| x \right|}}{{\left| x \right|}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , where \(0 &lt; x &lt; {{\text{e}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Sketch the graph of \(y = g(x)\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the range of \(g\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Find the values of \(x\) such that \(h(x) &gt; g(x)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; \(f'(x) = \frac{{x\frac{1}{x} - \ln x}}{{{x^2}}}\) &nbsp; &nbsp;</span><strong><em><span style="font-family: times new roman,times; font-size: medium;"> M1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{1 - \ln x}}{{{x^2}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so \(f'(x) = 0\) when \(\ln x = 1\), <em>i.e.</em> \(x = {\text{e}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; \(f'(x) &gt; 0\) when \(x &lt; {\text{e}}\) and \(f'(x) &lt; 0\) when \(x &gt; {\text{e}}\) &nbsp; &nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>R1</strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">hence local maximum &nbsp; &nbsp; <em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Accept argument using correct second derivative.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; \(y \leqslant \frac{1}{{\text{e}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong></em></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;"><strong>[5 marks]</strong></em></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(f''(x) = \frac{{{x^2}\frac{{ - 1}}{x} - \left( {1 - \ln x} \right)2x}}{{{x^4}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{ - x - 2x + 2x\ln x}}{{{x^4}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{ - 3 + 2\ln x}}{{{x^3}}}\) &nbsp; &nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> May be seen in part (a).</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(f''(x) = 0\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>(M1)</strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({ - 3 + 2\ln x = 0}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = {{\text{e}}^{\frac{3}{2}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">since \(f''(x) &lt; 0\) when \(x &lt; {{\text{e}}^{\frac{3}{2}}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> and \(f''(x) &gt; 0\) when </span><span style="font-family: times new roman,times; font-size: medium;">\(x &gt; {{\text{e}}^{\frac{3}{2}}}\) &nbsp; &nbsp;</span><em><strong><span style="font-family: times new roman,times; font-size: medium;"> R1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">then point of inflexion \(\left( {{{\text{e}}^{\frac{3}{2}}},\frac{3}{{2{{\text{e}}^{\frac{3}{2}}}}}} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[5 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times;"><img src="" alt></span><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for the maximum and intercept, <em><strong>A1</strong></em> for a vertical asymptote </span><span style="font-family: times new roman,times; font-size: medium;">and <em><strong>A1</strong></em> for shape (including turning concave up).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">(i)</span><br><img src="" alt><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; A1A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>A1</strong></em> for each correct branch.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) all real values &nbsp; &nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">(iii)</span><br><img src="" alt><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; (M1)(A1)</span></strong></em></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;"><strong>Note:</strong> Award <em><strong>(M1)(A1)</strong></em> for sketching the graph of <em>h</em>, ignoring any graph of <em>g</em>.</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p style="text-align: justify;"><span style="font-family: times new roman,times; font-size: medium;">\( - {{\text{e}}^2} &lt; x &lt;&nbsp; - 1\) (accept \(x &lt; - 1\) )&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates attempted parts (a), (b) and (c) and scored well, although many did not gain the reasoning marks for the justification of the existence of local maximum and inflexion point. The graph sketching was poorly done. A wide selection of range shapes were seen, in some cases showing little understanding of the relation between the derivatives of the function and its graph and difficulties with transformation of graphs. In some cases candidates sketched graphs consistent with their previous calculations but failed to label them properly.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the graph of <em>y</em> = <em>f</em>(<em>x</em>) . The graph has a horizontal asymptote at <em>y</em> = 2 .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of \(y = \frac{1}{{f(x)}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sketch the graph of&nbsp; \(y = x{\text{ }}f(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A3<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for each correct branch with position of asymptotes clearly indicated.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>x</em> = 2 is not indicated, only penalise once.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for behaviour at \(x = 0\)</span><span style="font-family: 'times new roman', times; font-size: medium;">, </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for intercept at \(x = 2\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> , </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for behaviour for large \({\left| x \right|}\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to find the reciprocal but many struggled with the second part. Sketches were quite poor in detail.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to find the reciprocal but many struggled with the second part. Sketches were quite poor in detail.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Sketch the graphs of \(y = \sin x\) and \(y = \sin 2x\) , on the same set of axes, for \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find the x-coordinates of the points of intersection of the graphs in the domain \(0 \leqslant x \leqslant \frac{\pi }{2}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Find the area enclosed by the graphs.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the value of \(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} }{{\text{d}}x} \) using the substitution \(x = 4{\sin ^2}\theta \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The increasing function <em>f</em> satisfies \(f(0) = 0\) and \(f(a) = b\) , where \(a &gt; 0\) and \(b &gt; 0\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; By reference to a sketch, show that \(\int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} } \) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>Hence</strong> find the value of \(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x} \) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><img src="" alt><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none;">&nbsp; &nbsp; <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for correct \(\sin x\) , <strong><em>A1</em></strong> for correct \(\sin 2x\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1A0</em></strong> for two correct shapes with \(\frac{\pi }{2}\) and/or 1 missing.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Condone graph outside the domain.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(\sin 2x = \sin x\) , \(0 \leqslant x \leqslant \frac{\pi }{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2\sin x\cos x - \sin x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sin x(2\cos x - 1) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 0,\frac{\pi }{3}\) &nbsp; &nbsp; <strong><em>A1A1</em></strong> &nbsp; &nbsp; <strong><em>N1N1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; area \( = \int_0^{\frac{\pi }{3}} {(\sin 2x - \sin x){\text{d}}x} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for an integral that contains limits, not necessarily correct, with \(\sin x\) and \(\sin 2x\) subtracted in either order.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left[ { - \frac{1}{2}\cos 2x + \cos x} \right]_0^{\frac{\pi }{3}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( { - \frac{1}{2}\cos \frac{{2\pi }}{3} + \cos \frac{\pi }{3}} \right) - \left( { - \frac{1}{2}\cos 0 + \cos 0} \right)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{3}{4} - \frac{1}{2}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{1}{4}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^1 {\sqrt {\frac{x}{{4 - x}}} } {\text{d}}x = \int_0^{\frac{\pi }{6}} {\sqrt {\frac{{4{{\sin }^2}\theta }}{{4 - 4{{\sin }^2}\theta }}}&nbsp; \times 8\sin \theta \cos \theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span><span style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>M1</em></strong> for substitution and reasonable attempt at finding expression for d<em>x</em> in terms of \({\text{d}}\theta \) , first <strong><em>A1</em></strong> for correct limits, second <strong><em>A1</em></strong> for correct substitution for d<em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica; min-height: 24.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{6}} {8{{\sin }^2}\theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^{\frac{\pi }{6}} {4 - 4\cos 2\theta {\text{d}}\theta } \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = [4\theta - 2\sin 2\theta ]_0^{\frac{\pi }{6}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {\frac{{2\pi }}{3} - 2\sin \frac{\pi }{3}} \right) - 0\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{{2\pi }}{3} - \sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp;&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"><img src="" alt>&nbsp; &nbsp;&nbsp; <strong><em>M1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the diagram above</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the shaded area \( = \int_0^a {f(x){\text{d}}x = ab - \int_0^b {{f^{ - 1}}(y){\text{d}}y} } \) &nbsp; &nbsp; <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({ = ab - \int_0^b {{f^{ - 1}}(x){\text{d}}x} }\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \(f(x) = \arcsin \frac{x}{4} \Rightarrow {f^{ - 1}}(x) = 4\sin x\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\int_0^2 {\arcsin \left( {\frac{x}{4}} \right){\text{d}}x = \frac{\pi }{3} - \int_0^{\frac{\pi }{6}} {4\sin x{\text{d}}x} } \) &nbsp; &nbsp; <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for the limit \(\frac{\pi }{6}\) seen anywhere, <strong><em>A1</em></strong> for all else correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{3} - [ - 4\cos x]_0^{\frac{\pi }{6}}\) &nbsp; &nbsp; </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \frac{\pi }{3} - 4 + 2\sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award no marks for methods using integration by parts.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A significant number of candidates did not seem to have the time required to attempt this question satisfactorily.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was done quite well by most but a number found sketching the functions difficult, the most common error being poor labelling of the axes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (ii) was done well by most the most common error being to divide the equation by \(\sin x\) and so omit the <em>x</em> = 0 value. Many recognised the value from the graph and corrected this in their final solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The final part was done well by many candidates.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates found (b) challenging. Few were able to substitute the <em>dx</em> expression correctly and many did not even seem to recognise the need for this term. Those that did tended to be able to find the integral correctly. Most saw the need for the double angle expression although many did not change the limits successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Few candidates attempted part c). Those who did get this far managed the sketch well and were able to explain the relationship required. Among those who gave a response to this many were able to get the result although a number made errors in giving the inverse function. On the whole those who got this far did it well.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows a solid with volume <em>V</em> , obtained from a cube with edge \(a &gt; 1\) when a smaller cube with edge \(\frac{1}{a}\) is removed.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 29px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(x = a - \frac{1}{a}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Find <em>V</em> in terms of <em>x</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Hence or otherwise, show that the only value of <em>a</em> for which <em>V</em> = 4<em>x</em> is \(a = \frac{{1 + \sqrt 5 }}{2}\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = {a^3} - \frac{1}{{{a^3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^3} = {\left( {a - \frac{1}{a}} \right)^3}\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a^3} - 3a + \frac{3}{a} - \frac{1}{{{a^3}}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a^3} - \frac{1}{{{a^3}}} - 3\left( {a - \frac{1}{a}} \right)\,\,\,\,\,\)(or equivalent) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {a^3} - \frac{1}{{{a^3}}} = {x^3} + 3x\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = {x^3} + 3x\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = {a^3} - \frac{1}{{{a^3}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to use difference of cubes formula, \({x^3} - {y^3} = (x - y)({x^2} + xy + {y^2})\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = \left( {a - \frac{1}{a}} \right)\left( {{a^2} + 1 + {{\left( {\frac{1}{a}} \right)}^2}} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {a - \frac{1}{a}} \right)\left( {{{\left( {a - \frac{1}{a}} \right)}^2} + 3} \right)\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = x({x^2} + 3){\text{ or }}{x^3} + 3x\) &nbsp; &nbsp;&nbsp;<strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="font: normal normal normal 24px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">diagram showing that the solid can be decomposed &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">into three congruent \(x \times a \times \frac{1}{a}\) cuboids with volume <em>x</em> &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and a cube with edge <em>x</em> with volume \({x^3}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, \(V = {x^3} + 3x\) &nbsp; &nbsp; <strong><em>A1 &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Do not accept any method where candidate substitutes the given value of <em>a</em> into \(x = a - \frac{1}{a}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(V = 4x \Leftrightarrow {x^3} + 3x = 4x \Leftrightarrow {x^3} - x = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Leftrightarrow x(x - 1)(x + 1) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 1\) as \(x &gt; 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so, \(a - \frac{1}{a} = 1 \Rightarrow {a^2} - a - 1 = 0 \Rightarrow a = \frac{{1 \pm \sqrt 5 }}{2}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(a &gt; 1\) , \(a = \frac{{1 + \sqrt 5 }}{2}\) &nbsp; &nbsp; <strong><em>AG &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a^3} - \frac{1}{{{a^3}}} = 4\left( {a - \frac{1}{a}} \right) \Rightarrow {a^6} - 4{a^4} + 4{a^2} - 1 = 0 \Leftrightarrow ({a^2} - 1)({a^4} - 3{a^2} + 1) = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as \(a &gt; 1 \Rightarrow {a^2} &gt; 1\), \({a^2} = \frac{{3 + \sqrt 5 }}{2} \Leftrightarrow {a^2} = \sqrt {{{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)}^2}} \) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow a = \frac{{1 + \sqrt 5 }}{2}\) &nbsp; &nbsp; <strong><em>AG &nbsp; &nbsp; N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A fair amount of candidates had difficulties with this question. In part (a) many candidates were able to write down an expression for the volume in terms of <em>a</em>, but thereafter were largely unsuccessful. There is evidence that many candidates have lack of algebraic skills to manipulate the expression and obtain the volume in terms of <em>x</em>. In part (b) some candidates started with what they were trying to show to be true.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph of \(y = f(x)\) is shown below, where A is a local maximum point and D is a&nbsp;local minimum point.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of \(y = \frac{1}{{f(x)}}\)&nbsp;, clearly showing the&nbsp;coordinates of the images of the points A, B and D, labelling them \({{\text{A}'}}\), \({{\text{B}'}}\), and&nbsp;\({{\text{D}'}}\) respectively, and the equations of any vertical asymptotes.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">On the axes below, sketch the graph of the derivative \(y = f'(x)\)&nbsp;, clearly showing&nbsp;the coordinates of the images of the points&nbsp; A and D, labelling them </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{A}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> and </span><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{D}}}''\)</span><span style="font-family: 'times new roman', times; font-size: medium;"> respectively.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt>&nbsp;&nbsp;&nbsp;&nbsp; A1A1A1&nbsp;</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for correct shape.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1 </em></strong>for two correct asymptotes, and \(x = 1\) and \(x = 3\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award <strong><em>A1 </em></strong>for correct coordinates, \({\text{A}'}\left( { - 1,\frac{1}{4}} \right),{\text{ B}'}\left( {0,\frac{1}{3}} \right){\text{ and D}'}\left( {2, -\frac{1}{3}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><img src="" alt><span style="font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1A1A1</strong></em></span></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note: </strong>Award <em><strong>A1</strong></em> for correct general shape including the horizontal asymptote.</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Award <em><strong>A1</strong></em> for recognition of 1 maximum point and 1 minimum point.</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Award <em><strong>A1</strong></em> for correct coordinates, \({\text{A}}''( - 1,0)\) and \({\text{D}}''(2,0)\) .</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (a), the shape of the graph was often incorrect and many candidates failed to give the equations of the asymptotes and the coordinates of the image points. In (b), many candidates produced incorrect graphs although the coordinates of the image points were often given correctly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were generally disappointing. In (a), the shape of the graph was often incorrect and many candidates failed to give the equations of the asymptotes and the coordinates of the image points. In (b), many candidates produced incorrect graphs although the coordinates of the image points were often given correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;"> <!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>14</o:Words>
  <o:Characters>83</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>96</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment-->The graphs of \(y = \left| {x + 1} \right|\) and \(y = \left| {x - 3} \right|\) are shown below.</span></p>
<p><img src="" alt></p>
<p><!--[if gte mso 9]><xml>
 <o:DocumentProperties>
  <o:Revision>0</o:Revision>
  <o:TotalTime>0</o:TotalTime>
  <o:Pages>1</o:Pages>
  <o:Words>11</o:Words>
  <o:Characters>62</o:Characters>
  <o:Company>Bontegraphics</o:Company>
  <o:Lines>1</o:Lines>
  <o:Paragraphs>1</o:Paragraphs>
  <o:CharactersWithSpaces>72</o:CharactersWithSpaces>
  <o:Version>14.0</o:Version>
 </o:DocumentProperties>
 <o:OfficeDocumentSettings>
  <o:AllowPNG/>
 </o:OfficeDocumentSettings>
</xml><![endif]--> <!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:TrackMoves/>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>NL</w:LidThemeOther>
  <w:LidThemeAsian>JA</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:SplitPgBreakAndParaMark/>
   <w:EnableOpenTypeKerning/>
   <w:DontFlipMirrorIndents/>
   <w:OverrideTableStyleHps/>
   <w:UseFELayout/>
  </w:Compatibility>
  <m:mathPr>
   <m:mathFont m:val="Cambria Math"/>
   <m:brkBin m:val="before"/>
   <m:brkBinSub m:val="&#45;-"/>
   <m:smallFrac m:val="off"/>
   <m:dispDef/>
   <m:lMargin m:val="0"/>
   <m:rMargin m:val="0"/>
   <m:defJc m:val="centerGroup"/>
   <m:wrapIndent m:val="1440"/>
   <m:intLim m:val="subSup"/>
   <m:naryLim m:val="undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true"
  DefSemiHidden="true" DefQFormat="false" DefPriority="99"
  LatentStyleCount="276">
  <w:LsdException Locked="false" Priority="0" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Normal"/>
  <w:LsdException Locked="false" Priority="9" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="heading 1"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/>
  <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 1"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 2"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 3"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 4"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 5"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 6"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 7"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 8"/>
  <w:LsdException Locked="false" Priority="39" Name="toc 9"/>
  <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/>
  <w:LsdException Locked="false" Priority="10" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Title"/>
  <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/>
  <w:LsdException Locked="false" Priority="11" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/>
  <w:LsdException Locked="false" Priority="22" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Strong"/>
  <w:LsdException Locked="false" Priority="20" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/>
  <w:LsdException Locked="false" Priority="59" SemiHidden="false"
   UnhideWhenUsed="false" Name="Table Grid"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/>
  <w:LsdException Locked="false" Priority="1" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 1"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/>
  <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/>
  <w:LsdException Locked="false" Priority="34" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/>
  <w:LsdException Locked="false" Priority="29" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Quote"/>
  <w:LsdException Locked="false" Priority="30" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 1"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 1"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 2"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 2"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 2"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 3"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 3"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 3"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 4"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 4"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 4"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 5"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 5"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 5"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/>
  <w:LsdException Locked="false" Priority="60" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="61" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light List Accent 6"/>
  <w:LsdException Locked="false" Priority="62" SemiHidden="false"
   UnhideWhenUsed="false" Name="Light Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="63" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="64" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="65" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="66" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="67" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/>
  <w:LsdException Locked="false" Priority="68" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/>
  <w:LsdException Locked="false" Priority="69" SemiHidden="false"
   UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/>
  <w:LsdException Locked="false" Priority="70" SemiHidden="false"
   UnhideWhenUsed="false" Name="Dark List Accent 6"/>
  <w:LsdException Locked="false" Priority="71" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/>
  <w:LsdException Locked="false" Priority="72" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful List Accent 6"/>
  <w:LsdException Locked="false" Priority="73" SemiHidden="false"
   UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/>
  <w:LsdException Locked="false" Priority="19" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/>
  <w:LsdException Locked="false" Priority="21" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/>
  <w:LsdException Locked="false" Priority="31" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/>
  <w:LsdException Locked="false" Priority="32" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/>
  <w:LsdException Locked="false" Priority="33" SemiHidden="false"
   UnhideWhenUsed="false" QFormat="true" Name="Book Title"/>
  <w:LsdException Locked="false" Priority="37" Name="Bibliography"/>
  <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/>
 </w:LatentStyles>
</xml><![endif]--> <!--[if gte mso 10]>
<style>
 /* Style Definitions */
table.MsoNormalTable
	{mso-style-name:Standaardtabel;
	mso-tstyle-rowband-size:0;
	mso-tstyle-colband-size:0;
	mso-style-noshow:yes;
	mso-style-priority:99;
	mso-style-parent:"";
	mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
	mso-para-margin:0cm;
	mso-para-margin-bottom:.0001pt;
	mso-pagination:widow-orphan;
	font-size:12.0pt;
	font-family:Cambria;
	mso-ascii-font-family:Cambria;
	mso-ascii-theme-font:minor-latin;
	mso-hansi-font-family:Cambria;
	mso-hansi-theme-font:minor-latin;
	mso-ansi-language:NL;}
</style>
<![endif]--> <!--StartFragment--><span style="font-size: 12.0pt; font-family: 'TimesNewRomanPSMT','serif'; mso-fareast-font-family: 'MS 明朝'; mso-fareast-theme-font: minor-fareast; mso-bidi-font-family: TimesNewRomanPSMT; mso-ansi-language: EN-US; mso-fareast-language: NL; mso-bidi-language: AR-SA;">Let <em>f </em>(<em>x</em>) = \(\left| {\,x + 1\,} \right| - \left| {\,x - 3\,} \right|\).</span><!--EndFragment--></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph of <em>y </em>= <em>f </em>(<em>x</em>) on the blank grid below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence state the value of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; <span lang="NL">\(f'( - 3)\);</span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp;&nbsp;<span lang="NL">\(f'(2.7)\);</span><!--EndFragment--></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp;&nbsp;\(\int_{ - 3}^{ - 2} {f(x)dx} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times;"><img src="" alt>&nbsp;&nbsp;&nbsp; <strong><em>M1A1A1A1</em></strong></span></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times;"><strong><em>&nbsp;</em></strong></span></span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;"><strong><strong>Note:</strong></strong> Award<strong> <em><strong><em>M1 </em></strong></em></strong>for any of the three sections completely correct, <strong><em>A1 </em></strong>for each correct segment of the graph.</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;">&nbsp;</span></p>
<p style="font: normal normal normal 11px/normal Times; display: inline !important; margin: 0px;"><span style="font-size: medium; font-family: 'times new roman', times;"><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; 0 &nbsp; &nbsp;&nbsp;<strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; 2 &nbsp; &nbsp;&nbsp;<strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; finding area of rectangle &nbsp; &nbsp;&nbsp;<strong><em>(M1)<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 4\) &nbsp; &nbsp;<strong><em> A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>M1A0 </em></strong>for the answer 4.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><em><strong>[4 marks]</strong></em>&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to produce a good graph, and many were able to interpret that to get correct answers to part (b). The most common error was to give 4 as the answer to (b) (iii). Some candidates did not recognise that the &ldquo;hence&rdquo; in the question meant that they had to use their graph to obtain their answers to part (b).&nbsp;</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to produce a good graph, and many were able to interpret that to get correct answers to part (b). The most common error was to give 4 as the answer to (b) (iii). Some candidates did not recognise that the &ldquo;hence&rdquo; in the question meant that they had to use their graph to obtain their answers to part (b).&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>