File "markSceme-HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematics HL/Topic 10/markSceme-HL-paper3html
File size: 3.42 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p>Consider the recurrence relation \(a{u_{n + 2}} + b{u_{n + 1}} + c{u_n} = 0,{\text{ }}n \in \mathbb{N}\) where \(a\), \(b\) and \(c\) are constants. Let \(\alpha \) and \(\beta \) denote the roots of the equation \(a{x^2} + bx + c = 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the recurrence relation is satisfied by</p>
<p>\[{u_n} = A{\alpha ^n} + B{\beta ^n},\]</p>
<p>where \(A\) and \(B\) are arbitrary constants.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Solve the recurrence relation</p>
<p>\({u_{n + 2}} - 2{u_{n + 1}} + 5{u_n} = 0\) given that \({u_0} = 0\) and \({u_1} = 4\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to substitute the given expression for \({u_n}\) into the recurrence relation <strong><em>M1</em></strong></p>
<p>\(a{u_{n + 2}} + b{u_{n + 1}} + c{u_n} = a(A{\alpha ^{n + 2}} + B{\beta ^{n + 2}}) + b(A{\alpha ^{n + 1}} + B{\beta ^{n + 1}}) + c(A{\alpha ^n} + B{\beta ^n})\) <strong><em>A1</em></strong></p>
<p>\( = A{\alpha ^n}(a{\alpha ^2} + b\alpha + c) + B{\beta ^n}(a{\beta ^2} + b\beta + c)\) <strong><em>A1</em></strong></p>
<p>\( = 0\) because \(\alpha \) and \(\beta \) both satisfy \(a{x^2} + bx + c = 0\) <strong><em>R1AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>M1A0A1R0 </em></strong>for solutions that are set to zero throughout and conclude with \(0 = 0\). Award the <strong><em>R1 </em></strong>for any valid reason.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the auxiliary equation is \({x^2} - 2x + 5 = 0\) <strong><em>A1</em></strong></p>
<p>solving their quadratic equation <strong><em>(M1)</em></strong></p>
<p>the roots are \(1 \pm 2{\text{i}}\) <strong><em>A1</em></strong></p>
<p>the general solution is</p>
<p>\({u_n} = A{\left( {1 + 2{\text{i}}} \right)^n}{\mkern 1mu} + B{\left( {1 - 2{\text{i}}} \right)^n}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {{u_n} = {{\left( {\sqrt 5 } \right)}^n}\left( {A\,{\text{cis}}\left( {n\arctan 2} \right) + B\,{\text{cis}}\left( { - n\arctan 2} \right)} \right)} \right)\) <strong><em>(A1)</em></strong></p>
<p>attempt to substitute both boundary conditions <strong><em>M1</em></strong></p>
<p>\(A + B = 0;{\text{ }}A(1 + 2{\text{i}}) + B(1 - 2{\text{i}}) = 4\) <strong><em>A1</em></strong></p>
<p>attempt to solve their equations for \(A\) and \(B\) <strong><em>M1</em></strong></p>
<p>\(A = - {\text{i}},{\text{ }}B = {\text{i}}\) <strong><em>A1</em></strong></p>
<p>\({u_n} = {\text{i}}{(1 - 2{\text{i}})^n} - {\text{i}}{(1 + 2{\text{i}})^n}\,\,\,\left( {{u_n} = 2{{\left( {\sqrt 5 } \right)}^n}\sin (n\arctan 2)} \right)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept the trigonometric form for \({u_n}\).</p>
<p> </p>
<p><strong><em>[9 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right) = {\text{gcd}}\left( {k - 1,\,2} \right)\), where \(k \in {\mathbb{Z}^ + },\,k > 1\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for odd positive integers \(k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the value of \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\) for even positive integers \(k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempting to use the Euclidean algorithm <strong><em>M1</em></strong></p>
<p>\(4k + 2 = 1\left( {3k + 1} \right) + \left( {k + 1} \right)\)<em><strong> A1</strong></em></p>
<p>\(3k + 1 = 2\left( {k + 1} \right) + \left( {k - 1} \right)\)<em><strong> A1</strong></em></p>
<p>\(K + 1 = \left( {k - 1} \right) + 2\)<em><strong> A1</strong></em></p>
<p>\( = {\text{gcd}}\left( {k - 1,\,2} \right)\)<em><strong> AG</strong></em></p>
<p> </p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>\({\text{gcd}}\left( {4k + 2,\,3k + 1} \right)\)</p>
<p>\( = {\text{gcd}}\left( {4k + 2 - \left( {3k + 1} \right),\,3k + 1} \right)\)<em><strong> M1</strong></em></p>
<p>\( = {\text{gcd}}\left( {3k + 1,\,k + 1} \right)\,\,\left( { = {\text{gcd}}\left( {{\text{k + 1,}}\,{\text{3k + 1}}} \right)} \right)\)<em><strong> A1</strong></em></p>
<p>\( = {\text{gcd}}\left( {3k + 1 - 2\left( {k + 1} \right),\,k + 1} \right)\,\,\left( { = {\text{gcd}}\left( {k - 1{\text{,}}\,k + {\text{1}}} \right)} \right)\)<em><strong> A1</strong></em></p>
<p>\( = {\text{gcd}}\left( {k + 1 - \left( {k - 1} \right),\,k - 1} \right)\,\,\left( { = {\text{gcd}}\left( {{\text{2,}}\,k - {\text{1}}} \right)} \right)\)<em><strong> A1</strong></em></p>
<p>\( = {\text{gcd}}\left( {k - 1,\,2} \right)\)<em><strong> AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(for \(k\) odd), \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right) = 2\) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(for \(k\) even), \({\text{gcd}}\left( {4k + 2,\,3k + 1} \right) = 1\) <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights of the edges in the complete graph \(G\) are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-10_om_09.18.27.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at A , use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for \(G\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first deleting vertex A , use the deleted vertex algorithm together with Kruskal’s algorithm to find a lower bound for the travelling salesman problem for \(G\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the edges are traversed in the following order</p>
<p>AB <strong><em>A1</em></strong></p>
<p>BC</p>
<p>CF <strong><em>A1</em></strong></p>
<p>FE</p>
<p>ED <strong><em>A1</em></strong></p>
<p>DA <strong><em>A1</em></strong></p>
<p>\({\text{upper bound}} = {\text{weight of this cycle}} = 4 + 1 + 2 + 7 + 11 + 8 = 33\) <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>having deleted A, the order in which the edges are added is</p>
<p>BC <strong><em>A1</em></strong></p>
<p>CF <strong><em>A1</em></strong></p>
<p>CD <strong><em>A1</em></strong></p>
<p>EF <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept indication of the correct order on a diagram.</p>
<p> </p>
<p>to find the lower bound, we now reconnect A using the two edges with the lowest weights, that is AB and AF <strong><em>(M1)(A1)</em></strong></p>
<p>\({\text{lower bound}} = 1 + 2 + 5 + 7 + 4 + 6 = 25\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1)(A1)A1 </em></strong>for \({\text{LB}} = 15 + 4 + 6 = 25\) obtained either from an incorrect order of correct edges or where order is not indicated.</p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Mathilde delivers books to five libraries, A, B, C, D and E. She starts her deliveries at library D and travels to each of the other libraries once, before returning to library D. Mathilde wishes to keep her travelling distance to a minimum.</p>
<p>The weighted graph \(H\), representing the distances, measured in kilometres, between the five libraries, has the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-09_om_05.58.38.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the weighted graph \(H\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at library D use the nearest-neighbour algorithm, to find an upper bound for Mathilde’s minimum travelling distance. Indicate clearly the order in which the edges are selected.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first removing library C, use the deleted vertex algorithm, to find a lower bound for Mathilde’s minimum travelling distance.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-09_om_06.16.03.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/M/01.a"></p>
<p>complete graph on 5 vertices <strong><em>A1</em></strong></p>
<p>weights correctly marked on graph <strong><em>A1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>clear indication that the nearest-neighbour algorithm has been applied <strong><em>M1</em></strong></p>
<p>DA (or 16) <strong><em>A1</em></strong></p>
<p>AB (or 18) then BC (or 15) <strong><em>A1</em></strong></p>
<p>CE (or 17) then ED (or 19) <strong><em>A1</em></strong></p>
<p>\({\text{UB}} = 85\) <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an attempt to find the minimum spanning tree <strong><em>(M1)</em></strong></p>
<p>DA (16) then BE (17) then AB (18) (total 51) <strong><em>A1</em></strong></p>
<p>reconnect C with the two edges of least weight, namely CB (15) and CE (17) <strong><em>M1</em></strong></p>
<p>\({\text{LB}} = 83\) <strong><em>A1</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A recurrence relation is given by \({u_{n + 1}} + 2{u_n} + 1 = 0,{\text{ }}{u_1} = 4\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the recurrence relation to find \({u_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find an expression for \({u_n}\) in terms of \(n\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A second recurrence relation, where \({v_1} = {u_1}\) and \({v_2} = {u_2}\), is given by \({v_{n + 1}} + 2{v_n} + {v_{n - 1}} = 0,{\text{ }}n \ge 2\).</p>
<p class="p1">Find an expression for \({v_n}\) in terms of \(n\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({u_2} = - 9\) <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\({u_{n + 1}} = - 2{u_n} - 1\)</p>
<p>let \({u_n} = a{( - 2)^n} + b\) <strong><em>M1A1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\(a{( - 2)^{n + 1}} + b = - 2\left( {a{{( - 2)}^n} + b} \right) - 1\) <strong><em>M1</em></strong></p>
<p>\(a{( - 2)^{n + 1}} + b = a{( - 2)^{n + 1}} - 2b - 1\)</p>
<p>\(3b = - 1\)</p>
<p>\(b = - \frac{1}{3}\) <strong><em>A1</em></strong></p>
<p>\({u_1} = 4 \Rightarrow - 2a - \frac{1}{3} = 4\) <strong><em>(M1)</em></strong></p>
<p>\( \Rightarrow a = - \frac{{13}}{6}\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>using \({u_1} = 4,{\text{ }}{u_2} = - 9\)</p>
<p>\(4 = - 2a + b,{\text{ }} - 9 = 4a + b\) <strong><em>M1A1</em></strong></p>
<p>solving simultaneously <strong><em>M1</em></strong></p>
<p>\( \Rightarrow a = - \frac{{13}}{6},{\text{ and }}b = - \frac{1}{3}\) <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>so \({u_n} = - \frac{{13}}{6}{( - 2)^n} - \frac{1}{3}\)</p>
<p><strong>METHOD 2</strong></p>
<p>use of the formula \({u_n} = {a^n}{u_0} + b\left( {\frac{{1 - {a^n}}}{{1 - a}}} \right)\) <strong><em>(M1)</em></strong></p>
<p>letting \({u_0} = - \frac{5}{2}\) <strong><em>A1</em></strong></p>
<p>letting \(a = - 2\) and \(b = - 1\) <strong><em>A1</em></strong></p>
<p>\({u_n} = - \frac{5}{2}{( - 2)^n} - 1\left( {\frac{{1 - {{( - 2)}^n}}}{{1 - - 2}}} \right)\) <strong><em>M1A1</em></strong></p>
<p>\( = - \frac{{13}}{6}{( - 2)^n} - \frac{1}{3}\) <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>auxiliary equation is \({k^2} + 2k + 1 = 0\) <strong><em>M1</em></strong></p>
<p>hence \(k = - 1\) <strong><em>(A1)</em></strong></p>
<p>so let \({v_n} = (an + b){( - 1)^n}\) <strong><em>M1</em></strong></p>
<p>\((2a + b){( - 1)^2} = - 9\) and \((a + b){( - 1)^1} = 4\) <strong><em>A1</em></strong></p>
<p>so \(a = - 5,{\text{ }}b = 1\) <strong><em>M1A1</em></strong></p>
<p>\({v_n} = (1 - 5n){( - 1)^n}\)</p>
<p> </p>
<p><strong>Note: </strong>Caution necessary to allow FT from (a) to part (c).</p>
<p><em><strong>[6 marks]</strong></em></p>
<p><em><strong>Total [13 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider \({\kappa _n}\), a complete graph with \(n\) vertices, \(n \geqslant 2\). Let \(T\) be a fixed spanning tree of \({\kappa _n}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the complete bipartite graph \({\kappa _{3,3}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that \({\kappa _{3,3}}\) is not planar.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A connected graph \(G\) has \(v\) vertices. Prove, using Euler’s relation, that a spanning tree for \(G\) has \(v - 1\) edges.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If an edge \(E\) is chosen at random from the edges of \({\kappa _n}\), show that the probability that \(E\) belongs to \(T\) is equal to \(\frac{2}{n}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-09_om_06.44.36.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/M/03.a.i"> <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>assume \({\kappa _{3,3}}\) is planar</p>
<p>\({\kappa _{3,3}}\) has no cycles of length 3 <strong><em>R1</em></strong></p>
<p>use of \(e \leqslant 2v - 4\) <strong><em>M1</em></strong></p>
<p>\(e = 9\) and \(v = 6\) <strong><em>A1</em></strong></p>
<p>hence inequality not satisfied 9 \(\not \leqslant \) 8 <strong><em>R1</em></strong></p>
<p>so \({\kappa _{3,3}}\) is not planar <strong><em>AG</em></strong></p>
<p> </p>
<p><strong>Note:</strong> use of \(e \leqslant 3v - 6\) with \(e = 9\) and \(v = 6\) and concluding that this inequality does not show whether \({\kappa _{3,3}}\) is planar or not just gains <strong><em>R1</em></strong>.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a spanning tree (is planar and) has one face <strong><em>A1</em></strong></p>
<p>Euler’s relation is \(v - e + f = 2\)</p>
<p>\(v - e + 1 = 2\) <strong><em>M1</em></strong></p>
<p>\( \Rightarrow e = v - 1\) <strong><em>AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\kappa _n}\) has \(\left( {\begin{array}{*{20}{c}} n \\ 2 \end{array}} \right)\) edges \(\left( {\frac{{n(n - 1)}}{2}{\text{ edges}}} \right)\) <strong><em>(A1)</em></strong></p>
<p>\({\text{P}}(E{\text{ belongs to }}T) = \frac{{n - 1}}{{\left( {\frac{{n(n - 1)}}{2}} \right)}}\) <strong><em>M1A1</em></strong></p>
<p>clear evidence of simplification of the above expression <strong><em>M1</em></strong></p>
<p>\( = \frac{2}{n}\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The simple, complete graph \({\kappa _n}(n > 2)\) has vertices \({{\text{A}}_1},{\text{ }}{{\text{A}}_2},{\text{ }}{{\text{A}}_3},{\text{ }} \ldots ,{\text{ }}{{\text{A}}_n}\). The weight of the edge from \({{\text{A}}_i}\) to \({{\text{A}}_j}\) is given by the number \(i + j\).</p>
</div>
<div class="specification">
<p class="p1">Consider the general graph \({\kappa _n}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span>Draw the graph \({\kappa _4}\) </span>including the weights of all the edges.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Use the nearest-neighbour algorithm, starting at vertex \({{\text{A}}_1}\), <span class="s2">to find a Hamiltonian cycle.</span></p>
<p class="p2">(iii) <span class="Apple-converted-space"> </span>Hence, find an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Consider the graph \({\kappa _5}\). </span>Use the deleted vertex algorithm, with \({{\text{A}}_5}\) as the deleted vertex, to find a lower bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Use the nearest-neighbour algorithm, starting at vertex \({{\text{A}}_1}\), <span class="s1">to find a Hamiltonian cycle.</span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence find and simplify an expression in \(n\), for an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">By splitting the weight of the edge \({{\text{A}}_i}{{\text{A}}_j}\) </span>into two parts or otherwise, show that all Hamiltonian cycles of \({\kappa _n}\) have the same total weight, equal to the answer found in (c)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> <img src="images/Schermafbeelding_2017-03-02_om_08.49.36.png" alt="N16/5/MATHL/HP3/ENG/TZ/DM/M/04.a"></span> <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <em>A1 </em></strong>for the graph, <strong><em>A1 </em></strong>for the weights.</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>cycle is \({{\text{A}}_1}{{\text{A}}_2}{{\text{A}}_3}{{\text{A}}_4}{{\text{A}}_1}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>upper bound is \(3 + 5 + 7 + 5 = 20\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">with \({{\text{A}}_5}\) </span>deleted, (applying Kruskal’s Algorithm) the minimum spanning tree will consist of the edges \({{\text{A}}_1}{{\text{A}}_2},{\text{ }}{{\text{A}}_1}{{\text{A}}_3}{\text{, }}{{\text{A}}_1}{{\text{A}}_4}\), <span class="s1">of weights 3, 4, 5 <span class="Apple-converted-space"> </span></span><strong><em>(M1)A1</em></strong></p>
<p class="p2">the two edges of smallest weight from \({{\text{A}}_5}\) are \({{\text{A}}_5}{{\text{A}}_1}\) and \({{\text{A}}_5}{{\text{A}}_2}\) of weights 6 and 7 <span class="Apple-converted-space"> </span><span class="s2"><strong><em>(M1)A1</em></strong></span></p>
<p class="p1">so lower bound is \(3 + 4 + 5 + 6 + 7 = 25\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>starting at \({{\text{A}}_1}\) we go \({{\text{A}}_2},{\text{ }}{{\text{A}}_3}{\text{ }} \ldots {\text{ }}{{\text{A}}_n}\)</p>
<p class="p1">we now have to take \({{\text{A}}_n}{{\text{A}}_1}\)</p>
<p class="p1">thus the cycle is \({{\text{A}}_1}{{\text{A}}_2}{{\text{A}}_3} \ldots {{\text{A}}_{n - 1}}{{\text{A}}_n}{{\text{A}}_1}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: </strong>Final <strong><em>A1 </em></strong><span class="s2">is for \({{\text{A}}_n}{{\text{A}}_1}\).</span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>smallest edge from \({{\text{A}}_1}\) is \({{\text{A}}_1}{{\text{A}}_2}\) of weight 3, smallest edge from \({{\text{A}}_2}\) (to a new vertex) is \({{\text{A}}_2}{{\text{A}}_3}\) of weight 5, smallest edge from \({{\text{A}}_{n - 1}}\) (to a new vertex) is \({{\text{A}}_{n - 1}}{{\text{A}}_n}\) of weight \(2n - 1\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p3">weight of \({{\text{A}}_n}{{\text{A}}_1}\) is \(n + 1\)</p>
<p class="p1">weight is \(3 + 5 + 7 + \ldots + (2n - 1) + (n + 1)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="Apple-converted-space">\( = \frac{{(n - 1)}}{2}(2n + 2) + (n + 1)\) </span><strong><em>M1A1</em></strong></p>
<p class="p3">\( = n(n + 1)\) (which is an upper bound) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: </strong>Follow through is not applicable.</p>
<p class="p2"> </p>
<p class="p3"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">put a marker on each edge \({{\text{A}}_i}{{\text{A}}_j}\) <span class="s1">so that \(i\) </span>of the weight belongs to vertex \({{\text{A}}_i}\) <span class="s1">and \(j\) </span>of the weight belongs to vertex \({{\text{A}}_j}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">the Hamiltonian cycle visits each vertex once and only once and for vertex \({{\text{A}}_i}\) <span class="s1">there will be weight \(i\) </span>(belonging to vertex \({{\text{A}}_i}\)<span class="s1">) both going in and coming out <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></span></p>
<p class="p2">so the total weight will be \(\sum\limits_{i = 1}^n {2i = 2\frac{n}{2}(n + 1) = n(n + 1)} \) <span class="Apple-converted-space"> </span><strong><em>A1AG</em></strong></p>
<p class="p3"> </p>
<p class="p2"><strong>Note: </strong>Accept other methods for example induction.</p>
<p class="p3"> </p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In this question the notation \({({a_n}{a_{n - 1}} \ldots {a_2}{a_1}{a_0})_b}\) is used to represent a number in base \(b\), that has unit digit of \({a_0}\). For example \({(2234)_5}\) represents \(2 \times {5^3} + 2 \times {5^2} + 3 \times 5 + 4 = 319\) and it has a unit digit of 4.</p>
</div>
<div class="specification">
<p class="p1"><span class="s1">Let \(x\) </span>be the cube root of the base <span class="s2">7 </span>number \({(503231)_7}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>By converting the base <span class="s1">7 </span>number to base <span class="s1">10</span>, find the value of \(x\), in base <span class="s1">10</span><span class="s2">.</span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Express \(x\) as a base <span class="s1">5 </span>number.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Let \(y\) </span>be the base <span class="s2">9 </span>number \({({a_n}{a_{n - 1}} \ldots {a_1}{a_0})_9}\). Show that \(y\) is exactly divisible by <span class="s2">8 </span>if and only if the sum of its digits, \(\sum\limits_{i = 0}^n {{a_i}} \), is also exactly divisible by 8.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the method from part (b), find the unit digit when the base <span class="s1">9 </span><span class="s2">number \({(321321321)_9}\) is written as a base </span><span class="s1">8 </span><span class="s2">number.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>converting to base 10</p>
<p class="p1"><span class="Apple-converted-space">\({(503231)_7} = 5 \times {7^5} + 3 \times {7^3} + 2 \times {7^2} + 3 \times 7 + 1 = 85184\) </span><span class="s1"><strong><em>M1A1A1</em></strong></span></p>
<p class="p2">so \(x = 44\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>repeated division by 5 <span class="s1">gives <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></span></p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-02_om_07.37.56.png" alt="N16/5/MATHL/HP3/ENG/TZ/DM/M/01.a"></p>
<p class="p2"><span class="s2">so base 5 </span>value for \(x\) is \({(134)_5}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p1"><span class="s1"><strong>Notes: </strong></span>Alternative method is to successively subtract the largest multiple of 25 and then 5<span class="s1">.</span></p>
<p class="p2">Follow through if they forget to take the cube root and obtain \({(10211214)_5}\) then award <strong><em>(M1)(A1)A1</em></strong>.</p>
<p class="p3"> </p>
<p class="p2"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(9 \equiv 1(\bmod 8)\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\({9^i} \equiv {1^i} \equiv 1(\bmod 8)\) \(i \in \mathbb{N}\)</span> <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)(A1)</em></strong></span></p>
<p class="p1">\(y = {a_n}{9^n} + {a_{n - 1}}{9^{n - 1}} + \ldots + {a_1}9 + {a_0} \equiv {a_n}{1^n} + {a_{n - 1}}{1^{n - 1}} + \ldots + {a_1}1 + {a_0} \equiv \)</p>
<p class="p1"><span class="Apple-converted-space">\({a_n} + {a_{n - 1}} + \ldots + {a_1} + {a_0} \equiv \sum\limits_{i = 0}^n {{a_i}(\bmod 8)} \) </span><span class="s1"><strong><em>M1A1A1</em></strong></span></p>
<p class="p1"><span class="s1">so \(y = 0(\bmod 8)\) </span>and hence divisible by 8 <span class="s1">if and only if \(\sum\limits_{i = 0}^n {{a_i} \equiv 0(\bmod 8)} \) </span>and hence divisible by 8 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>R1AG</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: </strong>Accept alternative valid methods <em>eg </em><span class="s2">binomial expansion of \({(8 + 1)^i}\), factorization of \(({a^i} - 1)\) </span>if they have sufficient explanation.</p>
<p class="p2"> </p>
<p class="p3"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">using part (b), \({(321321321)_9} \equiv 3 + 2 + 1 + 3 + 2 + 1 + 3 + 2 + 1 = 18 \equiv 2(\bmod 8)\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p2">so the unit digit is 2 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the system of linear congruences</p>
<p>\[\begin{array}{*{20}{l}} {x \equiv 2(\bmod 5)} \\ {x \equiv 5(\bmod 8)} \\ {x \equiv 1(\bmod 3).} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the integers 5, 8 and 3, state why the Chinese remainder theorem guarantees a unique solution modulo 120 to this system of linear congruences.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the general solution to the above system of linear congruences.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>5, 8 and 3 are pairwise relatively prime (or equivalent) <strong><em>R1</em></strong></p>
<p>120 is the product of 5, 8 and 3 <strong><em>R1</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>\(x = 2 + 5t,{\text{ }}t \in \mathbb{Z}\) and \(2 + 5t \equiv 5(\bmod 8)\) <strong><em>M1</em></strong></p>
<p>\(5t \equiv 3(\bmod 8) \Rightarrow 5t \equiv 35(\bmod 8)\) <strong><em>(M1)</em></strong></p>
<p>\(t = 7 + 8u,{\text{ }}u \in \mathbb{Z}\) <strong><em>(A1)</em></strong></p>
<p>\(x = 2 + 5(7 + 8u) \Rightarrow x = 37 + 40u\) <strong><em>(A1)</em></strong></p>
<p>\(37 + 40u \equiv 1(\bmod 3) \Rightarrow u \equiv 0(\bmod 3)\) <strong><em>(A1)</em></strong></p>
<p>\(u = 3v,{\text{ }}v \in \mathbb{Z}\) <strong><em>(A1)</em></strong></p>
<p>\(x = 37 + 40(3v)\)</p>
<p>\(x = 37 + 120v{\text{ }}\left( {x \equiv 37(\bmod 120)} \right)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempting systematic listing of possibilities <strong><em>M1</em></strong></p>
<p>solutions to \(x \equiv 2(\bmod 5)\) are \(x = 2,{\text{ }}7,{\text{ }}12,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) <strong><em>(A1)</em></strong></p>
<p>solutions to \(x \equiv 5(\bmod 8)\) are \(x = 5,{\text{ }}13,{\text{ }}21,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) <strong><em>(A1)</em></strong></p>
<p>solutions to \(x \equiv 1(\bmod 3)\) are \(x = 1,{\text{ }}4,{\text{ }}7,{\text{ }} \ldots ,{\text{ }}37,{\text{ }} \ldots \) <strong><em>(A1)</em></strong></p>
<p>a solution is \(x = 37\) <strong><em>(A1)</em></strong></p>
<p>using the Chinese remainder theorem <strong><em>(M1)</em></strong></p>
<p>\(x = 37 + 120v{\text{ }}\left( {x \equiv 37(\bmod 120)} \right)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>attempting to find \({M_i},{\text{ }}i = 1,{\text{ }}2,{\text{ 3}}\)</p>
<p>\({M_1} = 8 \times 3 = 24,{\text{ }}{M_2} = 5 \times 3 = 15\) and \({M_3} = 5 \times 8 = 40\) <strong><em>M1</em></strong></p>
<p>using \({M_i}{x_i} \equiv 1(\bmod {m_i}),{\text{ }}i = 1,{\text{ }}2,{\text{ }}3\) to obtain</p>
<p>\(24{x_1} \equiv 1(\bmod 5),{\text{ }}15{x_2} \equiv 1(\bmod 8)\) and \(40{x_3} \equiv 1(\bmod 3)\) <strong><em>M1</em></strong></p>
<p>\({x_1} \equiv 4(\bmod 5),{\text{ }}{x_2} \equiv 7(\bmod 8)\) and \({x_3} \equiv 1(\bmod 3)\) <strong><em>(A1)(A1)(A1)</em></strong></p>
<p>use of \(x \equiv {a_1}{x_1}{M_1} + {a_2}{x_2}{M_2} + {a_3}{x_3}{M_3}(\bmod M)\) gives</p>
<p>\(x = (2 \times 4 \times 24 + 5 \times 7 \times 15 + 1 \times 1 \times 40)(\bmod 120)\) <strong><em>(M1)</em></strong></p>
<p>\(x \equiv 757(\bmod 120){\text{ }}\left( { \equiv 37(\bmod 120)} \right){\text{ }}(x = 37 + 120v,{\text{ }}v \in \mathbb{Z})\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In this question no graphs are required to be drawn. Use the handshaking lemma and other results about graphs to explain why,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">a graph cannot exist with a degree sequence of \(1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6,{\text{ }}7,{\text{ }}8,{\text{ }}9\)<span class="s1">;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">a simple, connected, planar graph cannot exist with a degree sequence of \(4,{\text{ }}4,{\text{ }}4,{\text{ }}4,{\text{ }}5,{\text{ }}5\);</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">a tree cannot exist with a degree sequence of \(1,{\text{ }}1,{\text{ }}2,{\text{ }}2,{\text{ }}3,{\text{ }}3\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">assume such a graph exists</p>
<p class="p1">by the handshaking lemma the sum of the degrees equals twice the number of edges <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">but \(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45\) which is odd <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">this is a contradiction so graph does not exist <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">assume such a graph exists</p>
<p class="p1">since the graph is simple and connected (and \(v = 6 > 2\)) then \(e \leqslant 3v - 6\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">by the handshaking lemma \(4 + 4 + 4 + 4 + 5 + 5 = 2e\) so \(e = 13\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">hence \(13 \leqslant 3 \times 6 - 6 = 12\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">this is a contradiction so graph does not exist <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">assume such a graph exists</p>
<p class="p2"><span class="s1">a tree with 6 vertices must have 5 </span>edges (since \({\text{V}} - {\text{E}} + 1 = 2\) for a tree) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2">using the Handshaking Lemma \(1 + 1 + 2 + 2 + 3 + 3 = 2 \times 5\) implies \(12 = 10\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p2">this is a contradiction so graph does not exist <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The distances by road, in kilometres, between towns in Switzerland are shown in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-25_om_10.43.43.png" alt></p>
<p class="p1">A cable television company wishes to connect the six towns placing cables along the road system.</p>
<p class="p1">Use Kruskal’s algorithm to find the minimum length of cable needed to connect the six towns.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Visitors to Switzerland can visit some principal locations for tourism by using a network of scenic railways as represented by the following graph:</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-25_om_10.44.46.png" alt></p>
<p class="p2">(i) <span class="Apple-converted-space"> </span>State whether the graph has any Hamiltonian paths or Hamiltonian cycles, justifying your answers.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>State whether the graph has any Eulerian trails or Eulerian circuits, justifying your answers.</p>
<p class="p2">(iii) <span class="Apple-converted-space"> </span>The tourist board would like to make it possible to arrive in Geneva, travel all the available scenic railways, exactly once, and depart from Zurich. Find which locations would need to be connected by a further scenic railway in order to make this possible.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Zurich-Basel <span class="Apple-converted-space"> </span>85 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p1">Berne-Basel <span class="Apple-converted-space"> </span>100 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">Sion-Berne <span class="Apple-converted-space"> </span>155</p>
<p class="p1">Sion-Geneva <span class="Apple-converted-space"> </span>160</p>
<p class="p1">Zurich-Lugano <span class="Apple-converted-space"> </span>210 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">total length of pipe needed is 710 km <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>M1 </em></strong>for attempt to start with smallest length.</p>
<p class="p4"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept graphical solution showing lengths chosen.</p>
<p class="p4"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>N1 </em></strong>for a correct spanning tree and <strong><em>N1 </em></strong><span class="s2">for 710 km </span>with no method shown.</p>
<p class="p3"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>possible Hamiltonian path <em>eg </em>Geneva-Montreux-Zermatt-Lugano-St Moritz-Interlaken-Luzern-Zurich-Berne <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">no possible Hamiltonian cycles <em>eg </em>we would have to pass through Montreux twice as Geneva is only connected to Montreux or Interlaken twice <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><span class="s1">(ii)</span> <span class="Apple-converted-space"> </span><span class="s1">possible Eulerian trail as there are 2 </span>odd vertices (Geneva and St Moritz) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">no possible Eulerian circuits as not all even vertices <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept an example of a Eulerian trail for the first <strong><em>R1</em></strong>.</p>
<p class="p2"> </p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>St Moritz to Zurich <span class="Apple-converted-space"> </span><strong><em>A2</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space"> </span>If St Moritz and Zurich are connected via existing edges award <strong><em>A1</em></strong>.</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<p class="p1"><em><strong>Total [11 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In a computer game, Fibi, a magic dragon, is climbing a very large staircase. The steps are labelled <span class="s1">0, 1, 2, 3 … </span>.</p>
<p class="p1">She starts on step <span class="s1">0</span>. If Fibi is on a particular step then she can either jump up one step or fly up two steps. Let \({u_n}\) represent the number of different ways that Fibi can get to step \(n\). When counting the number of different ways, the order of Fibi’s moves matters, for example jump, fly, jump is considered different to jump, jump, fly. Let \({u_0} = 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the values of \({u_1},{\text{ }}{u_2},{\text{ }}{u_3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \({u_{n + 2}} = {u_{n + 1}} + {u_n}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Write down the auxiliary equation for this recurrence relation.</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Hence find the solution to this recurrence relation, giving your answer in the form \({u_n} = A{\alpha ^n} + B{\beta ^n}\) where \(\alpha \) and \(\beta \) are to be determined exactly in surd form and \(\alpha > \beta \). The constants \(A\) and \(B\) do not have to be found at this stage.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Given that \(A = \frac{1}{{\sqrt 5 }}\left( {\frac{{1 + \sqrt 5 }}{2}} \right)\), use the value of \({u_0}\) to determine \(B\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence find the explicit formula for \({u_n}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \({u_{20}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the smallest value of \(n\) <span class="s1">for which \({u_n} > 100\,000\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\({u_1} = 1,{\text{ }}{u_2} = 2,{\text{ }}{u_3} = 3\) </span><strong><em>A1A1A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">to get to step \(n + 2\) she can either fly from step \(n\) or jump from step \(n + 1\) <span class="Apple-converted-space"> </span><strong><em>R2</em></strong></p>
<p class="p1">so \({u_{n + 2}} = {u_{n + 1}} + {u_n}\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>auxiliary equation \({\lambda ^2} - \lambda - 1 = 0\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p2"> </p>
<p class="p3"><span class="s1"><strong>Note: </strong>Award <strong><em>M1 </em></strong></span>for attempting to write down a relevant quadratic.</p>
<p class="p4"> </p>
<p class="p1"><span class="s2">(ii) <span class="Apple-converted-space"> \(\lambda = \frac{{1 \pm \sqrt {1 + 4} }}{2}\)</span></span> <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\({u_n} = A{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^n} + B{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^n}\) </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> \({u_0} = 1\)</span> implies \(A + B = 1\). <span class="s1">So \(B = - \frac{1}{{\sqrt 5 }}\left( {\frac{{1 - \sqrt 5 }}{2}} \right)\)</span> <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> \({u_n} = \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^{n + 1}} - \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^{n + 1}}\)</span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept equivalent expressions in parts (i) and (ii).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\({u_{20}} = 10946\) </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">using table, smallest value for \(n\) <span class="s1">is 25 (gives 121393</span>) <span class="Apple-converted-space"> </span><strong><em>(M1)A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept other methods, <em>eg</em>, logs on the dominant term.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the result \(2003 = 6 \times 333 + 5\) and Fermat’s little theorem to show that \({2^{2003}} \equiv 4(\bmod 7)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Find \({2^{2003}}(\bmod 11)\) and \({2^{2003}}(\bmod 13)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Chinese remainder theorem, or otherwise, to evaluate \({2^{2003}}(\bmod 1001)\), noting that \(1001 = 7 \times 11 \times 13\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{2003}} = {2^5} \times {({2^6})^{333}}\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 32 \times 1(\bmod 7)\) by Fermat’s little theorem <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 4(\bmod 7)\) <strong> <em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2003 = 3 + 10 \times 200\) <strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{2003}} = {2^3} \times {({2^{10}})^{200}}\left( { \equiv 8 \times 1(\bmod 11)} \right) \equiv 8(\bmod 11)\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{2003}} = {2^{11}} \times {({2^{12}})^{166}} \equiv 7(\bmod 13)\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">form \({M_1} = \frac{{1001}}{7} = 143;{\text{ }}{M_2} = \frac{{1001}}{{11}} = 91;{\text{ }}{M_3} = \frac{{1001}}{{13}} = 77\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">solve \(143{x_1} \equiv 1(\bmod 7) \Rightarrow {x_1} = 5\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_2} = 4;{\text{ }}{x_3} = 12\) <strong> <em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 4 \times 143 \times 5 + 8 \times 91 \times 4 + 7 \times 77 \times 12 = 12240 \equiv 228(\bmod 1001)\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[7 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to complete part (a) and then went on to part (b). Some candidates raced through part (c). Others, who attempted part (c) using the alternative strategy of repeatedly solving linear congruencies, were sometimes successful.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to complete part (a) and then went on to part (b). Some candidates raced through part (c). Others, who attempted part (c) using the alternative strategy of repeatedly solving linear congruencies, were sometimes successful.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates were able to complete part (a) and then went on to part (b). Some candidates raced through part (c). Others, who attempted part (c) using the alternative strategy of repeatedly solving linear congruencies, were sometimes successful.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let the greatest common divisor of 861 and 957 be <em>h </em>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the Euclidean algorithm, find <em>h </em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find integers <em>A </em>and <em>B </em>such that 861<em>A </em>+ 957<em>B </em>= <em>h </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Using part (b), solve \(287w \equiv 2(\bmod 319\)) , where \(w \in \mathbb{N},{\text{ }}w < 319\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the general solution to the diophantine equation \(861x + 957y = 6\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong> </strong></span></p>
<p><img src="" alt></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">by the above working on the left (or similar) <strong><em>M1A1A1</em></strong></span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for 96 and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for 93.</span></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;"> </em></p>
<p><em style="font-family: 'times new roman', times; font-size: medium;">h = </em><span style="font-family: 'times new roman', times; font-size: medium;">3 (since 3 divides 93) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(957 = 861 + 96\) <strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(861 = 8 \times 96 + 93\) <strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(96 = 93 + 3\)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">so <em>h = </em>3 (since 3 divides 93) <strong><em>A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">if method 1 was used for part (a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">by the above working on the right (or equivalent) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 10 \times 861 + 9 \times 957 = 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>A = –</em>10 and <em>B = </em>9 <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 = 96 - 93\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 96 - (861 - 8 \times 96) = 9 \times 96 - 861\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 9 \times (957 - 861) - 861\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = - 10 \times 861 + 9 \times 957\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>A = –</em>10 and <em>B = </em>9 <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">from (b) \( - 10 \times 287 + 9 \times 319 = 1\) so <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( - 10 \times 287 \equiv 1(\bmod 319)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(287w \equiv 2(\bmod 319) \Rightarrow - 10 \times 287w \equiv - 10 \times 2(\bmod 319)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow w \equiv - 20(\bmod 319)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(w = 299\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">from (b) \( - 10 \times 861 + 9 \times 957 = 3 \Rightarrow - 20 \times 861 + 18 \times 957 = 6\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so general solution is \(x = - 20 + 319t\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 18 - 287t\,\,\,\,\,(t \in \mathbb{Z})\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The Euclidean algorithm was well applied. If it is done in the format shown in the mark scheme then the keeping track method of the linear combinations of the 2 original numbers makes part (b) easier.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Again well answered but not quite as good as (a).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, since it is basic bookwork, this part was answered very badly indeed. Most candidates did not realise that \( - 10\) was the number to multiply by. Sadly, of the candidates that did do it, some did not read the question carefully enough to see that a positive integer answer was required.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Again this is standard bookwork. It was answered better than part (c). There were the usual mistakes in the final answer e.g. not having the two numbers, with the parameter, co-prime.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following weighted graph <em>G</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> has an Eulerian trail.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> does not have an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an Eulerian trail in <em>G</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the Chinese postman problem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting and finishing at B, find a solution to the Chinese postman problem for<em> G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total weight of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>G</em> has an Eulerian trail because it has (exactly) two vertices (B and F) of odd degree <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>G</em> does not have an Eulerian circuit because not all vertices are of even degree <em><strong>R1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example BAEBCEFCDF <em><strong>A1A1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for start/finish at B/F, <em><strong>A1</strong> </em>for the middle vertices.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>to determine the shortest route (walk) around a weighted graph <em><strong>A1</strong></em></p>
<p>using each edge (at least once, returning to the starting vertex) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Correct terminology must be seen. Do not accept trail, path, cycle or circuit.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>we require the Eulerian trail in (b), (weight = 65) <em><strong>(M1)</strong></em></p>
<p>and the minimum walk FEB (15) <em><strong>A1</strong></em></p>
<p>for example BAEBCEFCDFEB <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept EB added to the end or FE added to the start of their answer in (b) in particular for follow through.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total weight is (65 + 15=)80 <em><strong> A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The simple, connected graph \(G\) has <span class="s1"><em>e </em></span>edges and \(v\) vertices, where \(v \geqslant 3\).</p>
</div>
<div class="specification">
<p class="p1">Given that both \(G\) and \(G'\) are planar and connected,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the number of edges in \(G'\), the complement of \(G\), <span class="s1">is \(\frac{1}{2}{v^2} - \frac{1}{2}v - e\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">show that the sum of the number of faces in \(G\) and the number of faces in \(G'\) is independent of \(e\);</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">show that \({v^2} - 13v + 24 \leqslant 0\) and hence determine the maximum possible value of \(v\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the total number of edges in \(G\) and \(G'\) <span class="s1">is \(\frac{{v(v - 1)}}{2}\) <span class="Apple-converted-space"> </span></span><strong><em>(A1)</em></strong></p>
<p class="p2">the number of edges in \(G' = \frac{{v(v - 1)}}{2} - e\) <span class="Apple-converted-space"> </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = \frac{1}{2}{v^2} - \frac{1}{2}v - e\) </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">using Euler’s formula, number of faces in \(G = e + 2 - v\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">number of faces in \(G' = \frac{{{v^2}}}{2} - \frac{v}{2} - e + 2 - v\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">sum of these numbers \( = \frac{{{v^2}}}{2} - \frac{{5v}}{2} + 4\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">this is independent of \(e\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">for \(G\) to be planar, we require <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(e \leqslant 3v - 6\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">for \(e \leqslant 3v - 6\) to be planar, we require</p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{v^2}}}{2} - \frac{v}{2} - e \leqslant 3v - 6\) </span><strong><em>A1</em></strong></p>
<p class="p1">for these two inequalities to be satisfied simultaneously, adding or substituting we require</p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{{v^2}}}{2} - \frac{v}{2} \leqslant 6v - 12\) </span><strong><em>(M1)A1</em></strong></p>
<p class="p1">leading to \({v^2} - 13v + 24 \leqslant 0\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p2">the roots of the equation are 10.8 (and 2.23<span class="s1">) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></span></p>
<p class="p1">the largest value of \(v\) <span class="s2">is therefore 10 <span class="Apple-converted-space"> </span></span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally in this question, good candidates thought their way through it whereas weak candidates just wrote down anything they could off the formula booklet or drew pictures of particular graphs. It was important to keep good notation and not let the same symbol stand for different things.</p>
<p class="p1">(a) If they considered the complete graph they were fine.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally in this question, good candidates thought their way through it whereas weak candidates just wrote down anything they could off the formula booklet or drew pictures of particular graphs. It was important to keep good notation and not let the same symbol stand for different things.</p>
<p class="p1">(b) Some confusion here if they were not clear about which graph they were applying Euler’s formula to. If they were methodical with good notation they obtained the answer.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally in this question, good candidates thought their way through it whereas weak candidates just wrote down anything they could off the formula booklet or drew pictures of particular graphs. It was important to keep good notation and not let the same symbol stand for different things.</p>
<p class="p1">(c) Again the same confusion about applying the inequality to both graphs. Most candidates realised which inequality was applicable. Many candidates had the good exam technique to pick up the last two marks even if they did not obtain the quadratic inequality.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The Fibonacci sequence can be described by the recurrence relation \({f_{n + 2}} = {f_{n + 1}} + {f_n}\) where \({f_0} = 0,\,{f_1} = 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the auxiliary equation and use it to find an expression for \({f_n}\) in terms of \(n\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is known that \({\alpha ^2} = \alpha + 1\) where \(\alpha = \frac{{1 + \sqrt 5 }}{2}\).</p>
<p>For integers \(n\) ≥ 3, use strong induction on the recurrence relation \({f_{n + 2}} = {f_{n + 1}} + {f_n}\) to prove that \({f_n} > {\alpha ^{n - 2}}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>attempt to find the auxiliary equation (\({\lambda ^2} - \lambda - 1 = 0\)) <em><strong>M1</strong></em></p>
<p>\(\lambda = \frac{{1 \pm \sqrt 5 }}{2}\) <em><strong> (A1)</strong></em></p>
<p>the general solution is \({f_n} = A{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^n} + B{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^n}\) <em><strong> (M1)</strong></em> </p>
<p>imposing initial conditions (substituting \(n\) = 0,1) <em><strong>M1</strong></em></p>
<p><em>A</em> + <em>B</em> = 0 and \(A\left( {\frac{{1 + \sqrt 5 }}{2}} \right) + B\left( {\frac{{1 - \sqrt 5 }}{2}} \right) = 1\) <em><strong>A1</strong></em></p>
<p>\(A = \frac{1}{{\sqrt 5 }},\,\,B = - \frac{1}{{\sqrt 5 }}\) <em><strong>A1</strong></em></p>
<p>\({f_n} = \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 + \sqrt 5 }}{2}} \right)^n} - \frac{1}{{\sqrt 5 }}{\left( {\frac{{1 - \sqrt 5 }}{2}} \right)^n}\) <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Condone use of decimal numbers rather than exact answers.</p>
<p><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>let P(\(n\)) be \({f_n} > {\alpha ^{n - 2}}\) for integers \(n\) ≥ 3</p>
<p>consideration of two consecutive values of \(f\) <em><strong>R1</strong></em></p>
<p>\({f_3} = 2\) and \({\alpha ^{3 - 2}} = \frac{{1 + \sqrt 5 }}{2}\left( {1.618 \ldots } \right) \Rightarrow {\text{P}}\left( 3 \right)\) is true <em><strong>A1</strong></em></p>
<p>\({f_4} = 3\) and \({\alpha ^{4 - 2}} = \frac{{3 + \sqrt 5 }}{2}\left( {2.618 \ldots } \right) \Rightarrow {\text{P}}\left( 4 \right)\) is true <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>A</strong></em> marks for values of \(n\) other than \(n\) = 3 and \(n\) = 4.</p>
<p>(for \(k\) ≥ 4), assume that P(\(k\)) and P(\(k\) − 1) are true <em><strong>M1</strong></em></p>
<p>required to prove that P(\(k\) + 1) is true</p>
<p><strong>Note:</strong> Accept equivalent notation. Needs to start with 2 general consecutive integers and then prove for the next integer. This will affect the powers of the alphas.</p>
<p>\({f_{k + 1}} = {f_k} + {f_{k - 1}}\) (and \({f_k} > {\alpha ^{k - 2}},\,{f_{k - 1}} > {\alpha ^{k - 3}}\)) <em><strong>M1</strong></em></p>
<p>\({f_{k + 1}} > {\alpha ^{k - 2}} + {\alpha ^{k - 3}} = {\alpha ^{k - 3}}\left( {\alpha + 1} \right)\) <em><strong>A1</strong></em></p>
<p>\( = {\alpha ^{k - 3}}{\alpha ^2} = {\alpha ^{k - 1}} = {\alpha ^{\left( {k + 1} \right) - 2}}\) <em><strong>A1</strong></em></p>
<p>as P(3) and P(4) are true, and P(\(k\)) , P(\(k\) − 1) true ⇒ P(\(k\) + 1) true then P(\(k\)) is true for \(k\) ≥ 3 by strong induction <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> To obtain the final <em><strong>R1</strong></em>, at least five of the previous marks must have been awarded.</p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Euclidean Algorithm to find the greatest common divisor of 7854 and 3315.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence state the number of solutions to the diophantine equation 7854<em>x </em>+ 3315<em>y </em>= 41 and justify your answer.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(7854 = 2 \times 3315 + 1224\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3315 = 2 \times 1224 + 867\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1224 = 1 \times 867 + 357\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(867 = 2 \times 357 + 153\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(357 = 2 \times 153 + 51\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(153 = 3 \times 51\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The gcd is 51. <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Since 51 does not divide 41, <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">there are no solutions. <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to use the Euclidean Algorithm correctly to find the greatest common divisor. Candidates who used the GCD button on their calculators were given no credit. Some candidates seemed unaware of the criterion for the solvability of Diophantine equations.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the recurrence relation</p>
<p style="text-align: center;">\({u_n} = 5{u_{n - 1}} - 6{u_{n - 2}},{\text{ }}{u_0} = 0\) and \({u_1} = 1\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for \({u_n}\) in terms of \(n\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For every prime number \(p > 3\), show that \(p|{u_{p - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>the auxiliary equation is \({\lambda ^2} - 5\lambda + 6 = 0\) <strong><em>M1</em></strong></p>
<p>\( \Rightarrow \lambda = 2,{\text{ }}3\) <strong><em>(A1)</em></strong></p>
<p>the general solution is \({u_n} = A \times {2^n} + B \times {3^n}\) <strong><em>A1</em></strong></p>
<p>imposing initial conditions (substituting \(n = 0,{\text{ }}1\)) <strong><em>M1</em></strong></p>
<p>\(A + B = 0\) and \(2A + 3B = 1\) <strong><em>A1</em></strong></p>
<p>the solution is \(A = - 1,{\text{ }}B = 1\)</p>
<p>so that \({u_n} = {3^n} - {2^n}\) <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({u_{p - 1}} = {3^{p - 1}} - {2^{p - 1}}\)</p>
<p>\(p > 3\), therefore 3 or 2 are not divisible by \(p\) <strong><em>R1</em></strong></p>
<p>hence by FLT, \({3^{p - 1}} \equiv 1 \equiv {2^{p - 1}}(\bmod p)\) for \(p > 3\) <strong><em>M1A1</em></strong></p>
<p>\({u_{p - 1}} \equiv 0(\bmod p)\) <strong><em>A1</em></strong></p>
<p>\(p|{u_{p - 1}}\) for every prime number \(p > 3\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The decimal number 1071 is equal to \(a\)060 in base \(b\), where \(a > 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Convert the decimal number 1071 to base 12.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the decimal number 1071 as a product of its prime factors.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answers to part (a) and (b), prove that there is only one possible value for \(b\) and state this value.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the value of \(a\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>using a list of relevant powers of 12: 1, 12, 144 <strong><em>(M1)</em></strong></p>
<p>\(1071 = 7 \times {12^2} + 5 \times {12^1} + 3 \times {12^0}\) <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>attempted repeated division by 12 <strong><em>(M1)</em></strong></p>
<p>\(1071 \div 12 = 89{\text{rem}}3;{\text{ }}89 \div 12 = 7{\text{rem}}5\) <strong><em>(A1)</em></strong></p>
<p><strong>THEN</strong></p>
<p>\(1071 = {753_{12}}\) <strong><em>A1</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(1071 = 3 \times 3 \times 7 \times 17\) <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>in base \(b\) \(a060\) ends in a zero and so \(b\) is a factor of 1071 <strong><em>R1</em></strong></p>
<p>from part (a) \(b < 12\) as \(a060\) has four digits and so the possibilities are</p>
<p>\(b = 3,{\text{ }}b = 7\) <strong>or</strong> \(b = 9\) <strong><em>R1</em></strong></p>
<p>stating valid reasons to exclude both \(b = 3\) <em>eg</em>, there is a digit of 6</p>
<p>and \(b = 9\) <em>eg</em>, \(1071 = {(1420)_9}\) <strong><em>R1</em></strong></p>
<p>\(b = 7\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> The <strong><em>A </em></strong>mark is independent of the <strong><em>R </em></strong>marks.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(1071 = {(3060)_7} \Rightarrow a = 3\) <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the Euclidean algorithm to find the greatest common divisor of 264 and 1365.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, or otherwise, find the general solution of the Diophantine equation</p>
<p>\[264x - 1365y = 3.\]</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the general solution of the Diophantine equation</p>
<p>\[264x - 1365y = 6.\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expressing each of 264 and 1365 as a product of its prime factors, determine the lowest common multiple of 264 and 1365.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(1365 = 5 \times 264 + 45\) <strong><em>M1<br></em></strong></p>
<p>\(264 = 5 \times 45 + 39\) <strong><em>A1</em></strong></p>
<p>\(45 = 1 \times 39 + 6\) <strong><em>A1</em></strong></p>
<p>\(39 = 6 \times 6 + 3\)</p>
<p>\(6 = 2 \times 3\) <strong><em>A1</em></strong></p>
<p>so gcd is 3</p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>\(39 - 6 \times 6 = 3\) <strong><em>(M1)</em></strong></p>
<p>\(39 - 6 \times (45 - 39) = 3 \Rightarrow 7 \times 39 - 6 \times 45 = 3\) <strong><em>(A1)</em></strong></p>
<p>\(7 \times (264 - 5 \times 45) - 6 \times 45 = 3 \Rightarrow 7 \times 264 - 41 \times 45 = 3\) <strong><em>(A1)</em></strong></p>
<p>\(7 \times 264 - 41 \times (1365 - 5 \times 264) = 3 \Rightarrow 212 \times 264 - 41 \times 1365 = 3\) <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>tracking the linear combinations when applying the Euclidean algorithm (could be displayed in (a))</p>
<p><img src="images/Schermafbeelding_2017-08-10_om_09.43.57.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/M/01.b.i"></p>
<p><strong>THEN</strong></p>
<p>a solution is \(x = 212,y = 41\) (or equivalent <em>eg</em> \(x = - 243,y = - 47\)) <strong><em>(A1)</em></strong></p>
<p>\(x = 212 + 455N,y = 41 + 88N\) (or equivalent) \((N \in \mathbb{Z})\) <strong><em>A1</em></strong></p>
<p><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>a solution is \(x = 424,y = 82{\text{ }}({\text{or equivalent }}eg{\text{ }}x = - 31,{\text{ }}y = - 6)\) <strong><em>(A1)</em></strong></p>
<p>\(x = 424 + 455N,{\text{ }}y = 82 + 88N({\text{or equivalent}}){\text{ }}\left( {N \in \mathbb{Z}} \right)\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1A0 </em></strong>for \(x = 424 + 910N,{\text{ }}y = 82 + 176N\).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(264 = 2 \times 2 \times 2 \times 3 \times 11\) <strong><em>A1</em></strong></p>
<p>\(1365 = 3 \times 5 \times 7 \times 13\) <strong><em>A1</em></strong></p>
<p>\(1\,{\text{cm}} = 2 \times 2 \times 2 \times 3 \times 5 \times 7 \times 11 \times 13 = 120120\) <strong><em>A1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Only award marks if prime factorisation is used.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that a graph containing a triangle cannot be bipartite.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that the number of edges in a bipartite graph with <em>n </em>vertices is less than or equal to \(\frac{{{n^2}}}{4}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">At least two of the three vertices in the triangle must lie on one of the two disjoint sets <strong><em>M1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">These two are joined by an edge so the graph cannot be bipartite <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">If there are <em>x</em> vertices in one of the two disjoint sets then there are (<em>n</em> – <em>x</em>) vertices in the other disjoint set <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The greatest number of edges occurs when all vertices in one set are joined to all vertices in the other to give <em>x</em>(<em>n</em> – <em>x</em>) edges <em><strong>A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Function <em>f</em>(<em>x</em>) = <em>x</em>(<em>n – x</em>) has a parabolic graph. <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This graph has a unique maximum at \(\left( {\frac{n}{2},\frac{{{n^2}}}{4}} \right)\). <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x(n - x) \leqslant \frac{{{n^2}}}{4}\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was usually done correctly but then clear argument for parts (b) and (c) were rare.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was usually done correctly but then clear argument for parts (b) and (c) were rare.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The positive integer <em>N </em>is expressed in base <em>p </em>as \({({a_n}{a_{n - 1}}…{a_1}{a_0})_p}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that when <em>p </em>= 2 , <em>N </em>is even if and only if its least significant digit, \({a_0}\) , is 0.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that when <em>p </em>= 3 , <em>N </em>is even if and only if the sum of its digits is even.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = {a_n} \times {2^n} + {a_{n - 1}} \times {2^{n - 1}} + ... + {a_1} \times 2 + {a_0}\) <em><strong>M1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \({a_0} = 0\) , then <em>N </em>is even because all the terms are even. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Now consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a_0} = N - \sum\limits_{r = 1}^n {{a_r} \times {2^r}} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>N </em>is even, then \({a_0}\) is the difference of two even numbers and is therefore even. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It must be zero since that is the only even digit in binary arithmetic. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = {a_n} \times {3^n} + {a_{n - 1}} \times {3^{n - 1}} + ... + {a_1} \times 3 + {a_0}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a_n} \times ({3^n} - 1) + {a_{n - 1}} \times ({3^{n - 1}} - 1) + ... + {a_1} \times (3 - 1) + {a_n} + {a_{n - 1}} + ... + {a_1} + {a_0}\) <em><strong>M1A1</strong></em><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Since \({3^n}\) is odd for all \(n \in {\mathbb{Z}^ + }\) , it follows that \({3^n} - 1\) is even. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Therefore if the sum of the digits is even, <em>N </em>is the sum of even numbers and is even. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Now consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a_n} + {a_{n - 1}} + ... + {a_1} + {a_0} = N - \sum\limits_{r = 1}^n {{a_r}({3^r} - 1)} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If <em>N </em>is even, then the sum of the digits is the difference of even numbers and is therefore even. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The response to this question was disappointing. Many candidates were successful in showing the ‘if’ parts of (a) and (b) but failed even to realise that they had to continue to prove the ‘only if’ parts.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The response to this question was disappointing. Many candidates were successful in showing the ‘if’ parts of (a) and (b) but failed even to realise that they had to continue to prove the ‘only if’ parts.<span style="font: 26.0px Arial; color: #000000;"> </span></span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given a sequence of non negative integers \(\{ {a_r}\} \) show that</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(\sum\limits_{r = 0}^n {{a_r}{{(x + 1)}^r}(\bmod x) = \sum\limits_{r = 0}^n {{a_r}(\bmod x)} } \) where \(x \in \{ 2,{\text{ }}3,{\text{ }}4 \ldots \} \).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} } \).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence determine whether the base \(3\) number \(22010112200201\) is divisible by \(8\)<span class="s1">.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) \((x + 1)(\bmod x) \equiv 1(\bmod x)\) <strong><em>(M1)</em></strong></p>
<p>\({(x + 1)^r}(\bmod x)\left( { \equiv {1^r}(\bmod x)} \right) = 1(\bmod x)\) <strong><em>A1</em></strong></p>
<p>\(\sum\limits_{r - 0}^n {{a_r}{{(x + 1)}^r}(\bmod x) \equiv \sum\limits_{r = 0}^n {{a_r}(\bmod x)} } \) <strong><em>AG</em></strong></p>
<p>(ii) <strong>METHOD 1</strong></p>
<p>\(\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = \sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){3^{2r}}} } \) <strong><em>M1</em></strong></p>
<p>\( = \sum\limits_{r = 0}^n {({3^{2r + 1}}{a_{2r + 1}} + {3^{2r}}{a_{2r}})} \) <strong><em>M1A1</em></strong></p>
<p>\( = \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} \) <strong><em>AG</em></strong></p>
<p><strong>METHOD 2</strong></p>
<p>\(\sum\limits_{r = 0}^n {(3{a_{2r + 1}} + {a_{2r}}){9^r} = 3{a_1} + {a_0} + 9(3{a_3} + {a_2}) + \ldots + {9^n}(3{a_{2n + 1}} + {a_{2n}})} \) <strong><em>A1</em></strong></p>
<p>\( = {a_0} + 3{a_1} + {3^2}{a_2} + {3^3}{a_3} + \ldots + {3^{2n + 1}}{a_{2n + 1}}\) <strong><em>M1A1</em></strong></p>
<p>\( = \sum\limits_{r = 0}^{2n + 1} {{a_r}{3^r}} \) <strong><em>AG</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>using part (a) (ii) to separate the number into pairs of digits <strong><em>(M1)</em></strong></p>
<p>\(22010112200201{\text{ }}({\text{base }}3) \equiv 8115621{\text{ }}({\text{base }}9)\) <strong><em>A1</em></strong></p>
<p>using the sum of digits identity from part (a) (i) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>if result from a(i) is used to show that the number is divisible by \(2\), even if no other valid working given.</p>
<p> </p>
<p>\({\text{sum}} = 24\) <strong><em>A1</em></strong></p>
<p>which is divisible by \(8\) <strong><em>A1</em></strong></p>
<p>hence \(22010112200201\) (base \(3\)) is divisible by \(8\)</p>
<p><strong>METHOD 2</strong></p>
<p>\(\sum\limits_{r = 0}^{13} {{a_r}{3^r}\sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}}){9^r}} } \) <strong><em>(M1)</em></strong></p>
<p>\( \equiv \sum\limits_{r = 0}^6 {(3{a_{2r + 1}} + {a_{2r}})(\bmod 8)} \) <strong><em>A1</em></strong></p>
<p>\( = {a_0} + 3{a_1} + {a_2} + 3{a_3} + \ldots + {a_{12}} + 3{a_{13}}(\bmod 8)\) <strong><em>M1</em></strong></p>
<p>\( = (1 + 3 \times 0 + 2 + 3 \times 0 + \ldots + 3 \times 2)(\bmod 8) \equiv 24(\bmod 8)\) <strong><em>A1</em></strong></p>
<p>\( \equiv 0\) <strong>OR </strong>divisible by \(8\) <strong><em>A1</em></strong></p>
<p>hence \(22010112200201\) (base \(3\)) is divisible by \(8\)</p>
<p><em><strong>[5 marks]</strong></em></p>
<p><em><strong>Total [10 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the linear congruence \(ax \equiv b\left( {{\text{mod}}\,p} \right)\) where \(a,\,b,\,p,\,x \in {\mathbb{Z}^ + }\), \(p\) is prime and \(a\) is not a multiple of \(p\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State Fermat’s little theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Fermat’s little theorem to show that \(x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence solve the linear congruence \(5x \equiv 7\left( {{\text{mod}}\,13} \right)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>EITHER</strong></p>
<p>if \(p\) is prime (and \(a\) is any integer) then \({a^p} \equiv a\left( {{\text{mod}}\,p} \right)\) <em><strong>A1</strong></em><em><strong>A1</strong> </em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for \(p\) prime and <em><strong>A1</strong> </em>for the congruence or for stating that \(p\left| {{a^p} - a} \right.\).</p>
<p><strong>OR</strong></p>
<p><img src=""> <em><strong>A1</strong></em><em><strong>A1</strong> </em></p>
<p><strong>Note:</strong> Award <em><strong>A1</strong> </em>for \(p\) prime and <em><strong>A1</strong> </em>for the congruence or for stating that \(p\left| {{a^{p - 1}} - 1} \right.\).</p>
<p><strong>Note:</strong> Condone use of equals sign provided \(\left( {{\text{mod}}\,p} \right)\) is seen.</p>
<p><em><strong>[2 marks]</strong></em></p>
<p><em> </em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>multiplying both sides of the linear congruence by \({a^{p - 2}}\) <em><strong>(M1)</strong></em></p>
<p>\({a^{p - 1}}x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\) <em><strong>A1</strong></em></p>
<p>as \({a^{p - 1}} \equiv 1\left( {{\text{mod}}\,p} \right)\) <em><strong>R1</strong></em></p>
<p>\(x \equiv {a^{p - 2}}b\left( {{\text{mod}}\,p} \right)\) <em><strong>AG</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x \equiv {5^{11}} \times 7\left( {{\text{mod}}\,13} \right)\) <em><strong>(M1)</strong></em></p>
<p>\( \equiv 341796875\left( {{\text{mod}}\,13} \right)\) <em><strong>(</strong><strong>A1)</strong></em></p>
<p><strong>Note:</strong> Accept equivalent calculation <em>eg</em>, using \({5^2} \equiv - 1\,{\text{mod}}\,13\).</p>
<p>\( \equiv 4\left( {{\text{mod}}\,13} \right)\) <em><strong>A1</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows the graph \(G\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-25_om_11.49.05.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(G\) is bipartite.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State which two vertices should be joined to make \(G\) equivalent to \({K_{3,{\text{ }}3}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In a planar graph the degree of a face is defined as the number of edges adjacent to that face.</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Write down the degree of each of the four faces of \(G\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Explain why the sum of the degrees of all the faces is twice the number of edges.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\(H\) is a simple connected planar bipartite graph with \(e\) edges, \(f\) faces, \(v\) vertices and \(v \ge 3\).</p>
<p class="p1">Explain why there can be no face in \(H\) of degree</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>one;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>two;</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>three.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence prove that for \(H\)</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(e \ge 2f\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(e \le 2v - 4\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence prove that \({K_{3,{\text{ }}3}}\) is not planar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">shading alternate vertices or attempting to list pairs <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1"><strong>EITHER</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2016-01-25_om_12.08.48.png" alt> <em><strong>A1</strong></em></p>
<p class="p2"><strong>OR</strong></p>
<p class="p3">\(ADE\) and \(BCF\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">as no two equal shadings are adjacent, the graph is bipartite <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(C\) and \(E\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>degree of each of the four faces is \(4\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>each edge bounds two faces <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>simple so no loops <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>simple so no multiple edges (and \(v > 2\)) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>bipartite graph so no triangles <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(2e = \sum {\deg (f) \ge 4f} \) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>R1</em></strong></span></p>
<p class="p1">\(e \ge 2f\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>if \(H\) is a simple connected planar graph then <span class="s2">\(e + 2 = v + f\) <span class="Apple-converted-space"> </span></span><strong><em>M1</em></strong></p>
<p class="p1">\(e + 2 - v \le \frac{1}{2}e\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">\(2e + 4 - 2v \le e\)</p>
<p class="p1">\(e \le 2v - 4\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for \({K_{3,{\text{ }}3}}{\text{ }}v = 6\), and \(e = 9\) <strong><em>A1</em></strong></p>
<p>\(9 \le 2 \times 6 - 4\) is not true, therefore \({K_{3,{\text{ }}3}}\) cannot be planar <strong><em>R1AG</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<p><strong><em>Total [13 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Euclidean algorithm to express gcd (123, 2347) in the form 123<em>p </em>+ 2347<em>q</em>, where \(p,{\text{ }}q \in \mathbb{Z}\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the least positive solution of \(123x \equiv 1(\bmod 2347)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the general solution of \(123z \equiv 5(\bmod 2347)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State the solution set of \(123y \equiv 1(\bmod 2346)\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2347 = 19 \times 123 + 10\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\((123 = 12 \times 10 + 3)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(10 = 3 \times 3 + 1\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1(\gcd ) = 10 - 3 \times 3 = 10 - 3 \times (123 - 12 \times 10)\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 37 \times 10 - 3 \times 123\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 37 \times (2347 - 19 \times 123) - 3 \times 123\) (for continuation) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 37 \times 2347 - 706 \times 123\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[8 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1(\bmod 2347) = ( - 706 \times 123)(\bmod 2347)\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR<br></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = - 706 + 2347n\) <strong> <em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">solution: 1641 <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5(\bmod 2347) = ( - 3530 \times 123)(\bmod 2347)\) <strong> <em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{GS}}:z = - 3530 + k2347\) <strong> <em>A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Other common possibilities include \(1164 + k2347\) and \(8205 + k2347\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">empty set (123 and 2346 both divisible by 3) <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates were successful in parts (a) and (b). In part (c), some candidates failed to understand the distinction between a particular solution and a general solution. Part (d) was a 1 mark question that defeated all but the few who noticed that the gcd of the numbers concerned was 3.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates were successful in parts (a) and (b). In part (c), some candidates failed to understand the distinction between a particular solution and a general solution. Part (d) was a 1 mark question that defeated all but the few who noticed that the gcd of the numbers concerned was 3.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-size: medium; font-family: 'times new roman', times;">The majority of candidates were successful in parts (a) and (b). In part (c), some candidates failed to understand the distinction between a particular solution and a general solution. Part (d) was a 1 mark question that defeated all but the few who noticed that the gcd of the numbers concerned was 3.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The majority of candidates were successful in parts (a) and (b). In part (c), some candidates failed to understand the distinction between a particular solution and a general solution. Part (d) was a 1 mark question that defeated all but the few who noticed that the gcd of the numbers concerned was 3.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The planar graph <em>G</em> and its complement \(G'\) are both simple and connected.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>G</em> has 6 vertices and 10 edges, show that \(G'\) is a tree.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the complete graph with 6 vertices has 15 edges so \(G'\) has </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">6 vertices and 5 edges <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the number of faces in \(G'\) , \(f = 2 + e - v = 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it is therefore a tree because \(f = 1\) <em><strong>R1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept it is a tree because \(v = e + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well answered by many candidates.</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The graph \({K_{2,{\text{ }}2}}\) is the complete bipartite graph whose vertex set is the disjoint union of two subsets each of order two.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw \({K_{2,{\text{ }}2}}\) as a planar graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a spanning tree for \({K_{2,{\text{ }}2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the graph of the complement of \({K_{2,{\text{ }}2}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the complement of any complete bipartite graph does not possess a spanning tree.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong><em><img src="images/Schermafbeelding_2016-01-07_om_16.03.57.png" alt> A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1 </em></strong>for a correct version of <span class="s1">\({K_{2,{\text{ }}2}}\)</span> and <strong><em>A1 </em></strong>for a correct planar representation.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong><em><span class="Apple-converted-space"><img src="images/Schermafbeelding_2016-01-07_om_16.05.49.png" alt> </span></em></strong><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong><em><span class="Apple-converted-space"><img src="images/Schermafbeelding_2016-01-07_om_16.07.41.png" alt> </span>A1</em></strong></p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">the complete bipartite graph \({K_{m,{\text{ }}n}}\) has two subsets of vertices \(A\) and \(B\), such that each element of \(A\) is connected to every element of \(B\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">in the complement, no element of \(A\) is connected to any element of \(B\). The complement is not a connected graph <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">by definition a tree is connected <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">hence the complement of any complete bipartite graph does not possess a spanning tree <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [7 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was generally well done with a large number of candidates drawing a correct planar representation for \({K_{2,2}}\). Some candidates, however, produced a correct non-planar representation of \({K_{2,2}}\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b) and (c) were generally well done with many candidates drawing a correct spanning tree for \({K_{2,2}}\) and the correct complement of \({K_{2,2}}\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (b) and (c) were generally well done with many candidates drawing a correct spanning tree for \({K_{2,2}}\) and the correct complement of \({K_{2,2}}\).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (d) tested a candidate’s ability to produce a reasoned argument that clearly explained why the complement of \({K_{m,n}}\) does not possess a spanning tree. This was a question part in which only the best candidates provided the necessary rigour in explanation.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">Throughout this question, \({(abc \ldots )_n}\) </span>denotes the number \(abc \ldots \) written with number base \(n\). <span class="s1">For example \({(359)_n} = 3{n^2} + 5n + 9\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Given that \({(43)_n} \times {(56)_n} = {(3112)_n}\), show that \(3{n^3} - 19{n^2} - 38n - 16 = 0\).</p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>Hence determine the value of \(n\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the set of values of \(n\) <span class="s1">satisfying \({(13)_n} \times {(21)_n} = {(273)_n}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that there are no possible values of \(n\) <span class="s1">satisfying \({(32)_n} \times {(61)_n} = {(1839)_n}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(n\) satisfies the equation \((4n + 3)(5n + 6) = 3{n^3} + {n^2} + n + 2\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(3{n^3} - 19{n^2} - 38n - 16 = 0\) </span><span class="s1"><strong><em>(AG)</em></strong></span></p>
<p class="p1">(ii) <span class="Apple-converted-space"> \(n = 8\)</span> <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>If extra solutions \(( - 1,{\text{ }} - 2/3)\) are not rejected (them just not appearing is fine) do not award the final <strong><em>A1</em></strong>.</p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(n\) satisfies the equation \((n + 3)(2n + 1) = 2{n^2} + 7n + 3\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">this is an identity satisfied by all \(n\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(n > 7\) or \(n \geqslant 8\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(n\) satisfies the equation \((3n + 2)(6n + 1) = {n^3} + 8{n^2} + 3n + 9\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\({n^3} - 10{n^2} - 12n + 7 = 0\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">roots are 11.03, 0.434 and –1.46 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">since there are no integer roots therefore the product is not true in any number base <span class="Apple-converted-space"> </span><strong><em>R1AG</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept an argument by contradiction that considers the equation modulo \(n\), with \(n > 10\).</p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<p class="p4"> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The fact that this gave an identity was managed by most. Then some showed their misunderstanding by saying any real number. Few noticed that the digit 7 means that the base must be greater than 7.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The cubic equation was generally reached but many candidates then forgot what type of number \(n\) had to be. To justify that there are no positive integer roots you need to write down what the roots are. There were a couple of really neat solutions that obtained a contradiction by working modulo \(n\).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the recurrence relation \({v_n} + 4{v_{n - 1}} + 4{v_{n - 2}} = 0\) where \({v_1} = 0,{\text{ }}{v_2} = 1\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use strong induction to prove that the solution to the recurrence relation \({u_n} - 4{u_{n - 1}} + 4{u_{n - 2}} = 0\) where \({u_1} = 0,{\text{ }}{u_2} = 1\) is given by \({u_n} = {2^{n - 2}}(n - 1)\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find a simplified expression for \({u_n} + {v_n}\) given that,</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(n\) is even.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(n\) is odd.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the auxiliary equation is \({m^2} + 4m + 4 = 0\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(m = -2\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">the general solution is</p>
<p class="p2"><span class="Apple-converted-space">\({v_n} = (A + Bn) \times {( - 2)^n}\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">the boundary conditions give</p>
<p class="p2">\(0 = -{\text{ }}2(A + B)\)</p>
<p class="p2"><span class="Apple-converted-space">\(1 = 4(A + 2B)\) </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1">the solution is \(A = - \frac{1}{4},{\text{ }}B = \frac{1}{4}\) <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p1">so that \({v_n} = \frac{1}{4}(n - 1){( - 2)^n}{\text{ }}\left( {{\text{or }}(n - 1)( - 2{)^{n - 2}}} \right)\)</p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">\(n = 1\) gives \((1 - 1) \times \frac{1}{2} = 0\) </span>which is correct <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><span class="s1">\(n = 2\) gives \((2 - 1) \times 1 = 1\) </span>which is correct <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Must be checked for \(n = 1\) <span class="s1">and 2</span>, other values gain no marks.</p>
<p class="p1">assume that the result is true for all positive integers \( \leqslant k\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\({u_{k + 1}} = 4{u_k} - 4{u_{k - 1}}\) </span><span class="s2"><strong><em>(M1)</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\({u_{k + 1}} = 4 \times {2^{k - 2}}(k - 1) - 4 \times {2^{k - 3}}(k - 2)\) </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1"><span class="s3">\( = {2^{k - 1}}(2k - 2 - k + 2)\) </span>or equivalent <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p5"><span class="Apple-converted-space">\( = k{2^{k - 1}}\) </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p1">therefore true for \(n \leqslant k \Rightarrow \) true for \(n = k + 1\) and since true for \(n = 1\) and \(n = 2\), the result is proved by strong induction <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Only award the <strong><em>R1 </em></strong>if at least four of the above marks have been awarded.</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Allow true for \(k\) and \(k - 1\) (in 2 places) instead of stronger statement.</p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>First <strong><em>M1 </em></strong>does not have to be given for further marks to be gained but second <strong><em>(M1) </em></strong>does.</p>
<p class="p1"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> \({u_n} + {v_n} = {2^{n - 2}}(n - 1) + {( - 2)^{n - 2}}(n - 1)\)</span></p>
<p class="p2">when \(n\) is even \({u_n} + {v_n} = {2^{n - 2}}(n - 1) + {2^{n - 2}}(n - 1)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p3"><span class="Apple-converted-space">\( = {2^{n - 1}}(n - 1)\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">(ii) <span class="Apple-converted-space"> </span>when \(n\) <span class="s2">is odd \({u_n} + {v_n} = 0\) <span class="Apple-converted-space"> </span></span><strong><em>A1</em></strong></p>
<p class="p2"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was either done well and completely correct or very little achieved at all (working out \({v_0}\) for some reason). As expected a few candidates forgot what to do for a repeated root. The varied response to this question was surprising since it is just standard book work.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Strong induction proved to be a very good discriminator. Some candidates knew exactly what to do and did it well, others had no idea. Common mistakes were not checking \(n = 2\) and 2, trying ordinary induction and worse of all assuming the very thing that they were trying to prove.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates that had the 2 expressions, knew how to get rid of the minus sign in the 2 cases. Some candidates could not attempt this as they had not completed part (a) although when it was wrong, follow through marks could be obtained.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the Euclidean algorithm to show that <span class="s1">1463 </span>and <span class="s1">389 </span>are relatively prime.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find positive integers \(a\) and \(b\) <span class="s1">such that \[1463a - 389b = 1\].</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(1463 = 3 \times 389 + 296\) </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2">\(389 = 1 \times 296 + 93\)</p>
<p class="p2"><span class="Apple-converted-space">\(296 = 3 \times 93 + 17\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\(93 = 5 \times 17 + 8\)</p>
<p class="p1"><span class="s2">\(17 = 2 \times 8 + 1\) </span>which shows that the gcd is 1 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="s3">hence 1463 and 389 </span>are relatively prime <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p3"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>EITHER</strong></p>
<p class="p2"><span class="Apple-converted-space">\(1 = 17 - 2 \times 8\) </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = 17 - 2 \times (93 - 5 \times 17) = 11 \times 17 - 2 \times 93\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = 11 \times (296 - 3 \times 93) - 2 \times 93 = 11 \times 296 - 35 \times 93\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\( = 11 \times 296 - 35 \times (389 - 296) = 46 \times 296 - 35 \times 389\)</p>
<p class="p2"><span class="Apple-converted-space">\( = 46 \times (1463 - 3 \times 389) - 35 \times 389\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"><span class="Apple-converted-space">\( = 46 \times 1463 - 173 \times 389\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\((a = 46,{\text{ }}b = 173)\)</p>
<p class="p1"><strong>OR</strong></p>
<p class="p2">method of keeping track of the linear combinations from the beginning (could be seen alongside the working in (a))</p>
<table>
<tbody>
<tr>
<td>\((1,{\text{ }}0)\)</td>
<td> </td>
<td>\((0,{\text{ }}1)\)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>\( - 3(1,{\text{ }}0)\)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>\(( - 3,{\text{ }}1)\)</td>
</tr>
</tbody>
</table>
<p> <strong><em>(M1)(A1)</em></strong></p>
<table>
<tbody>
<tr>
<td>\( - ( - 3,{\text{ }}1)\)</td>
<td> </td>
<td> </td>
</tr>
<tr>
<td>\((4,{\text{ }} - 1)\)</td>
<td> </td>
<td> </td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>\( - 3(4,{\text{ }} - 1)\)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>\(( - 15,{\text{ }}4)\)</td>
</tr>
</tbody>
</table>
<p class="p2"> <span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2">\( - 5( - 15,{\text{ }}4)\)</p>
<p class="p2"><span class="Apple-converted-space">\((79,{\text{ }} - 21)\) </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<table>
<tbody>
<tr>
<td> </td>
<td> </td>
<td>\( - 2(79,{\text{ }} - 21)\)</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>\(( - 173,{\text{ }}46)\)</td>
</tr>
</tbody>
</table>
<p class="p2"><span class="s1">so \( - 173 \times 389 + 46 \times 1463 = 1\) </span>giving \(46 \times 1463 - 173 \times 389 = 1\) <span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">\((a = 46,{\text{ }}b = 173)\)</p>
<p class="p3"> </p>
<p class="p2"><span class="s1"><strong>Note: <span class="Apple-converted-space"> </span></strong></span>Accept any positive answers of the form \(a = 46 + 389t,{\text{ }}b = 173 + 1463t,{\text{ }}t\) <span class="s1">an integer.</span></p>
<p class="p4"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very well answered. Some candidates lost the final mark by not saying that their working showed that the greatest common divisor (gcd) was 1.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The working backwards method was generally well known but there were arithmetic mistakes. Some candidates did not realise that their aim was to keep 1 as a combination of <em>two </em>remainders. The final answer could have been checked with the calculator as could intermediary steps. What was sadly less well known was the linear combinations format of laying the work out. See the OR method in the mark scheme. This makes the numerical work much less tedious and deserves to be better known.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by a circuit;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph \(G\) has six vertices and an Eulerian circuit. Determine whether or not its complement \(G'\) can have an Eulerian circuit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an example of a graph \(H\), with five vertices, such that \(H\) and its complement \(H'\) both have an Eulerian trail but neither has an Eulerian circuit. Draw \(H\) and \(H'\) as your solution.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>a circuit is a walk that begins and ends at the same vertex and has no repeated edges <strong><em>A1</em></strong></p>
<p><strong><em> [1 mark] </em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>an Eulerian circuit is a circuit that contains every edge of a graph <strong><em>A1</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>if \(G\) has an Eulerian circuit all vertices are even (are of degree 2 or 4) <strong><em>A1</em></strong></p>
<p>hence, \(G'\) must have all vertices odd (of degree 1 or 3) <strong><em>R1</em></strong></p>
<p>hence, \(G'\) cannot have an Eulerian circuit <strong><em>R1</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>A1 </em></strong>to candidates who begin by considering a specific \(G\) and \(G'\) (diagram). Award <strong><em>R1R1 </em></strong>to candidates who then consider a general \(G\) and \(G'\).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example</p>
<p><img src="images/Schermafbeelding_2017-08-10_om_10.15.08.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/M/03.c"></p>
<p><strong><em>A2</em></strong></p>
<p><strong><em>A2</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Each graph must have 3 vertices of order 2 and 2 odd vertices. Award <strong><em>A2</em></strong> if one of the graphs satisfies that and the final <strong><em>A2 </em></strong>if the other graph is its complement.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">When numbers are written in base <em>n</em>, \({33^2} = 1331\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By writing down an appropriate polynomial equation, determine the value of <em>n</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Rewrite the above equation with numbers in base 7.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equation can be written as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(3n + 3)^2} = {n^3} + 3{n^2} + 3n + 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">any valid method of solution giving <em>n</em> = 8 <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Attempt to change at least one side into an equation in </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> gains the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;">.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as decimal numbers,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(33)_8} = 27,{\text{ }}{(1331)_8} = 729\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">converting to base 7 numbers,</span></p>
<p style="margin: 0px 0px 0px 30px; font: 32px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(27 = {(36)_7}\) <strong><em>A1</em></strong></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">7<span style="text-decoration: underline;">)729</span> <em><strong>M1</strong></em></span><br><span style="font-family: times new roman,times; font-size: medium;">7<span style="text-decoration: underline;">)104</span>(1</span><br><span style="font-family: times new roman,times; font-size: medium;">7<span style="text-decoration: underline;">) 14</span>(6</span><br><span style="font-family: times new roman,times; font-size: medium;">7<span style="text-decoration: underline;">) 2</span>(0</span><br><span style="font-family: times new roman,times; font-size: medium;">7<span style="text-decoration: underline;">) 0</span>(2</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(729 = {(2061)_7}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required equation is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({36^2} = 2061\) <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as a decimal number, \({(33)_8} = 27\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">converting to base 7,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(27 = {(36)_7}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">multiplying base 7 numbers</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> 36<br><span style="text-decoration: underline;">× 36</span><br>1440 <em><strong>M1</strong></em><br><span style="text-decoration: underline;"> 321</span> <em><strong>A1</strong></em><br>2061 </span><em style="font-family: 'times new roman', times; font-size: medium;"><strong>A1</strong></em></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required equation is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({36^2} = 2061\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Allow <strong><em>M1</em></strong> for showing the method of converting a number to base 7 regardless of what number they convert.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was a good indicator of overall ability. Many candidates did not write both sides of the equation in terms of n and thus had an impossible equation, which should have made them realise that they had a mistake. </span><span style="font-family: times new roman,times; font-size: medium;">The answers that were given in (a) and (b) could have been checked, so that the candidate knew they had done it correctly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (b) was not well answered and of those candidates that did, some only gave one side of the equation in base 7. The answers that were given in (a) and (b) could have been checked, so that the candidate knew they had done it correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Let \(f(n) = {n^5} - n,{\text{ }}n \in {\mathbb{Z}^ + }\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the values of \(f(3)\), \(f(4)\) and \(f(5)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the Euclidean algorithm to find</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(\gcd \left( {f(3),{\text{ }}f(4)} \right)\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(\gcd \left( {f(4),{\text{ }}f(5)} \right)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why \(f(n)\) is always exactly divisible by \(5\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">By factorizing \(f(n)\) explain why it is always exactly divisible by \(6\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the values of <em>\(n\) </em>for which \(f(n)\) is exactly divisible by \(60\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(240,{\rm{ }}1020,{\rm{ }}3120\) <span class="Apple-converted-space"> </span><strong><em>A2</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A2 </em></strong>for three correct answers, <strong><em>A1 </em></strong>for two correct answers.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(1020 = 240 \times 4 + 60\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\(240 = 60 \times 4\)</p>
<p class="p1">\(\gcd (1020,{\text{ }}240) = 60\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(3120 = 1020 \times 3 + 60\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\(1020 = 60 \times 17\)</p>
<p class="p1">\(\gcd (1020,{\text{ }}3120) = 60\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Must be done by Euclid’s algorithm.</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">by Fermat’s little theorem with \(p = 5\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\({n^5} \equiv n(\bmod 5)\)</p>
<p class="p1">so 5 divides \(f(n)\)</p>
<p class="p1"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f(n) = n({n^2} - 1)({n^2} + 1) = n(n - 1)(n + 1)({n^2} + 1)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(A1)A1</em></strong></span></p>
<p class="p1">\(n - 1,{\text{ }}n,{\text{ }}n + 1\) are consecutive integers and so contain a multiple of \(2\) and \(3\) <span class="Apple-converted-space"> </span><strong><em>R1R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>R1 </em></strong>for justification of \(2\) and <strong><em>R1 </em></strong>for justification of \(3\).</p>
<p class="p2"> </p>
<p class="p1">And therefore \(f(n)\) is a multiple of \(6\). <span class="Apple-converted-space"> </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p1"><span class="s2"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">from (c) and (d) \(f(n)\) is always divisible by \(30\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">considering the factorization, it is divisible by \(60\) when <em>\(n\) </em>is an odd number <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">or when <em>\(n\) </em>is a multiple of \(4\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept answers such as when <em>\(n\) </em>is not congruent to \(2(\bmod 4)\).</p>
<p class="p1"><em><strong>[3 marks]</strong></em></p>
<p class="p1"><em><strong>Total [14 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Well answered.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Also well answered. A few candidates did not use the Euclidean algorithm to find the gcd as instructed.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates essential said it was true because it was! There is only one mark which means one minute, so it must be a short answer which it is by using Fermat’s Little Theorem.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some good answers but too many did not factorize as instructed, so that they could then spot the consecutive numbers.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only the better candidates realised that they had to find another factor of \(2\).</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) One version of Fermat’s little theorem states that, under certain conditions,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[{a^{p - 1}} \equiv 1(\bmod p).\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that this result is not valid when <em>a</em> = 4, <em>p</em> = 9 and state which</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">condition is not satisfied.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Given that \({5^{64}} \equiv n(\bmod 7)\), where \(0 \leqslant n \leqslant 6\), find the value of <em>n</em>.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the general solution to the simultaneous congruences</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[x \equiv 3(\bmod 4)\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[3x \equiv 2(\bmod 5).\]</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({4^8} = 65536 \equiv 7(\bmod 9)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">not valid because 9 is not a prime number <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> The <strong><em>R1</em></strong> is independent of the <strong><em>A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) using Fermat’s little theorem <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^6} \equiv 1(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({({5^6})^{10}} = {5^{60}} \equiv 1(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">also, \({5^4} = 625\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 2(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{64}} \equiv 1 \times 2 \equiv 2(\bmod 7)\,\,\,\,\,{\text{(so }}n = 2)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept alternative solutions not using Fermat.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solutions to \(x \equiv 3(\bmod 4)\) are</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">3, 7, 11, 15, 19, 23, 27, … <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solutions to \(3x \equiv 2(\bmod 5).\) are</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">4, 9, 14, 19 … <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so a solution is <em>x</em> =19 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the Chinese remainder theorem (or otherwise) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is \(x = 19 + 20n{\text{ }}(n \in \mathbb{Z})\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {{\text{accept }}19(\bmod 20)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 3 + 4t \Rightarrow 9 + 12t \equiv 2(\bmod 5)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 2t \equiv 3(\bmod 5)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 6t \equiv 9(\bmod 5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t \equiv 4(\bmod 5)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(t = 4 + 5n{\text{ and }}x = 19 + 20n{\text{ }}(n \in \mathbb{Z})\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\left( {{\text{accept }}19(\bmod 20)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Also accept solutions done by formula.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered with a variety of methods seen in (a)(ii). This was set with Fermat’s Little Theorem in mind but in the event many candidates started off with many different powers of 5, eg \({5^4} \equiv 2,{\text{ }}{5^8} \equiv 4\) and \({5^3}\equiv- 1(\bmod 7)\) were all seen. A variety of methods was also seen in (b), ranging from use of the Chinese Remainder Theorem, finding tables of numbers congruent to \(3(\bmod 4)\)and \(4(\bmod 5)\) and the use of an appropriate formula.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered with a variety of methods seen in (a)(ii). This was set with Fermat’s Little Theorem in mind but in the event many candidates started off with many different powers of 5, eg \({5^4} \equiv 2,{\text{ }}{5^8} \equiv 4\) and \({5^3}\equiv - 1(\bmod 7)\) were all seen. A variety of methods was also seen in (b), ranging from use of the Chinese Remainder Theorem, finding tables of numbers congruent to \(3(\bmod 4)\)and \(4(\bmod 5)\) and the use of an appropriate formula.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Write down the general solution of the recurrence relation \({u_n} + 2{u_{n - 1}} = 0,{\text{ }}n \geqslant 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find a particular solution of the recurrence relation \({u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1\), in the</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> form \({u_n} = An + B\), where \(A,{\text{ }}B \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) Hence, find the solution to \({u_n} + 2{u_{n - 1}} = 3n - 2,{\text{ }}n \geqslant 1\) where \({u_1} = 7\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the solution of the recurrence relation \({u_n} = 2{u_{n - 1}} - 2{u_{n - 2}},{\text{ }}n \geqslant 2\), where \({u_0} = 2,{\text{ }}{u_1} = 2\). Express your solution in the form \({2^{f(n)}}\cos \left( {g(n)\pi } \right)\), where the functions <em>f </em>and <em>g </em>map \(\mathbb{N}\) to \(\mathbb{R}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) use of auxiliary equation or recognition of a geometric sequence <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \({u_n} = {( - 2)^n}{u_0}\) or \( = {\text{A}}{( - 2)^n}\) or \({u_1}{( - 2)^{n - 1}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) substitute suggested solution <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(An + B + 2\left( {A(n - 1) + B} \right) = 3n - 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> equate coefficients of powers of <em>n </em>and attempt to solve <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(A = 1,{\text{ }}B = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (so particular solution is \({u_n} = n\))</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (iii) use of general solution = particular solution + homogeneous solution <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \({u_n} = {\text{C}}{( - 2)^2} + n\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> attempt to find C using \({u_1} = 7\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \({u_n} = - 3{( - 2)^n} + n\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) the auxiliary equation is \({r^2} - 2r + 2 = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solutions: \({r_1},{\text{ }}{r_2} = 1 \pm {\text{i}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">general solution of the recurrence: \({u_n} = {\text{A}}{(1 + {\text{i}})^n} + {\text{B}}{(1 - {\text{i}})^n}\) or trig form <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempt to impose initial conditions <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = B = 1\) or corresponding constants for trig form <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} = {2^{\left( {\frac{n}{2} + 1} \right)}} \times \cos \left( {\frac{{n\pi }}{4}} \right)\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A version of Fermat’s little theorem states that when <em>p</em> is prime, <em>a</em> is a positive integer and <em>a</em> and <em>p</em> are relatively prime, then \({a^{p - 1}} \equiv 1(\bmod p)\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the above result to show that if <em>p</em> is prime then \({a^p} \equiv a(\bmod p)\) where <em>a</em> is any positive integer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({2^{341}} \equiv 2(\bmod 341)\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State the converse of the result in part (a).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Show that this converse is not true.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider two cases <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>a</em> and <em>p</em> be coprime</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a^{p - 1}} \equiv 1(\bmod p)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {a^p} \equiv a(\bmod p)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>a</em> and <em>p</em> not be coprime</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a \equiv 0(\bmod p)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a^p} = 0(\bmod p)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {a^p} = a(\bmod p)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \({a^p} = a(\bmod p)\) in both cases <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(341 = 11 \times 31\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we know by Fermat’s little theorem</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{10}} \equiv 1(\bmod 11)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {2^{341}} \equiv {({2^{10}})^{34}} \times 2 \equiv {1^{34}} \times 2 \equiv 2(\bmod 11)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">also \({2^{30}} \equiv 1(\bmod 31)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {2^{341}} \equiv {({2^{30}})^{11}} \times {2^{11}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv {1^{11}} \times 2048 \equiv 2(\bmod 31)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since 31 and 11 are coprime <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{341}} \equiv 2(\bmod 341)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) converse: if \({a^p} = a(\bmod p)\) then <em>p</em> is a prime <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) from part (b) we know \({2^{341}} \equiv 2(\bmod 341)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">however, 341 is composite</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence 341 is a counter-example and the converse is not true <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were very few fully correct answers. In (b) the majority of candidates assumed that 341 is a prime number and in (c) only a handful of candidates were able to state the converse.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were very few fully correct answers. In (b) the majority of candidates assumed that 341 is a prime number and in (c) only a handful of candidates were able to state the converse.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were very few fully correct answers. In (b) the majority of candidates assumed that 341 is a prime number and in (c) only a handful of candidates were able to state the converse.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The weighted graph <em>K</em>, representing the travelling costs between five customers, has the following adjacency table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-10_om_11.10.37.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph \(K\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Starting from customer D, use the nearest-neighbour algorithm, to determine an upper bound to the travelling salesman problem for <em>K</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">By removing customer A, use the method of vertex deletion, to determine a lower bound to the travelling salesman problem for <em>K</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="font: normal normal normal 21px/normal Helvetica; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/maths_1_markscheme.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">complete graph on five vertices <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">weights correctly marked on graph <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">clear indication that the nearest-neighbour algorithm has been applied <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">DA (or 7) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">AB (or 1) BC (or 9) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">CE (or 3), ED (or 12), giving UB = 32 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">attempt to use the vertex deletion method <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum spanning tree is ECBD <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(EC 3, BD 8, BC 9 total 20)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">reconnect A with the two edges of least weight, namely AB (1) and AE (4) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">lower bound is 25 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 26.0px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Given that \(a \equiv d(\bmod n)\) and \(b \equiv c(\bmod n)\) prove that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(a + b) \equiv (c + d)(\bmod n){\text{ .}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 26.0px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence solve the system</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 26.0px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left\{ {\begin{array}{*{20}{r}}<br> {2x + 5y \equiv 1(\bmod 6)} \\ <br> {x + y \equiv 5(\bmod 6)} <br>\end{array}} \right.\]</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; line-height: 12.1px; font: 25.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times;">Show that \({x^{97}} - x + 1 \equiv 0(\bmod 97)\) has no solution.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(a \equiv d(\bmod n){\text{ and }}b \equiv c(\bmod n)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(a - d = pn{\text{ and }}b - c = qn\) , <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a - d + b - c = pn + qn\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((a + b) - (c + d) = n(p + q)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((a + b) \equiv (c + d)(\bmod n)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(\left\{ {\begin{array}{*{20}{r}}<br> {2x + 5y \equiv 1(\bmod 6)} \\ <br> {x + y \equiv 5(\bmod 6)} <br>\end{array}} \right.\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">adding \(3x + 6y \equiv 0(\bmod 6)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6y \equiv 0(\bmod 6){\text{ so }}3x \equiv 0(\bmod 6)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 0{\text{ or }}x \equiv 2{\text{ or }}x \equiv 4(\bmod 6)\) <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(x \equiv 0,{\text{ }}0 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 5(\bmod 6)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \(x \equiv 2,{\text{ }}2 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 3(\bmod 6)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \(x \equiv 4(\bmod 6),{\text{ }}4 + y \equiv 5(\bmod 6){\text{ so }}y \equiv 1(\bmod 6)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Suppose <em>x </em>is a solution</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">97 is prime so \({x^{97}} \equiv x(\bmod 97)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^{97}} - x \equiv 0(\bmod 97)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^{97}} - x + 1 \equiv 1 \ne 0(\bmod 97)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence there are no solutions <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) (i) was not found difficult but using it in part (a)(ii) resulted in two or three correct lines and then abandonment of the problem.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The sequence \(\{ {u_n}\} ,{\text{ }}n \in \mathbb{N}\), satisfies the recurrence relation \({u_{n + 1}} = 7{u_n} - 6\).</p>
<p class="p1">Given that \({u_0} = 5\), find an expression for \({u_n}\) in terms of \(n\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The sequence \(\{ {v_n}\} ,{\text{ }}n \in \mathbb{N}\), satisfies the recurrence relation \({v_{n + 2}} = 10{v_{n + 1}} + 11{v_n}\).</p>
<p class="p1">Given that \({v_0} = 4\) and \({v_1} = 44\), find an expression for \({v_n}\) in terms of \(n\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The sequence \(\{ {v_n}\} ,{\text{ }}n \in \mathbb{N}\), satisfies the recurrence relation \({v_{n + 2}} = 10{v_{n + 1}} + 11{v_n}\).</p>
<p class="p1">Show that \({v_n} - {u_n} \equiv 15(\bmod 16),{\text{ }}n \in \mathbb{N}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong>METHOD 1</strong></p>
<p>attempting to find a solution in the form \({u_n} = A{7^n} + B\) <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p><em>eg</em>, and \({u_0} = 5 \Rightarrow 5 = A + B{\text{ and }}{u_1} = 29 \Rightarrow 29 = 7A + B\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(A{7^{n + 1}} + B = A{7^{n + 1}} + 7B - 6\;\;\;\)(or equivalent) <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>attempting to solve for \(A\) and \(B\) <strong><em>(M1)</em></strong></p>
<p>\({u_n} = 4 \times {7^n} + 1\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Accept \(A = 4,{\text{ }}B = 1\) provided the first <strong><em>M1 </em></strong>is awarded.</p>
<p> </p>
<p><strong>METHOD 2</strong></p>
<p>attempting an iterative method <em>eg</em>, \({u_1} = 7{\text{(}}5) - 6\) and</p>
<p>\({u_2} = {7^2}{\text{(}}5) - 6{\text{(}}7 + 1){\text{ }}(etc)\) <strong><em>(M1)</em></strong></p>
<p>\({u_n} = 5 \times {7^n} - 6\left( {\frac{{{7^n} - 1}}{{7 - 1}}} \right)\) <strong><em>M1A1</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>M1 </em></strong>for attempting to express \({u_n}\) in terms of \(n\).</p>
<p> </p>
<p>\({u_n} = 4 \times {7^n} + 1\) <strong><em>A1A1</em></strong></p>
<p> </p>
<p><strong>METHOD 3</strong></p>
<p>attempting to find a solution in the form \({u_n} = A{7^n} + B\) <strong><em>M1</em></strong></p>
<p>\(A(n + 1) + B = 7(An + B) - 6\)</p>
<p>\(7B - 6 = B\) <strong><em>A1</em></strong></p>
<p>attempting to solve for \(A\) <strong><em>(M1)</em></strong></p>
<p>\({u_n} = 4 \times {7^n} + 1\) <strong><em>A1A1</em></strong></p>
<p><strong>METHOD 4</strong></p>
<p>\({u_{n + 1}} - 7{u_n} + 6 - ({u_n} - 7{u_{n + 1}} + 6) = 0 \Rightarrow {u_{n + 1}} - 8{u_n} + 7{u_{n - 1}} = 0\)</p>
<p>\({r^2} - 8r + 7 = 0\)</p>
<p>\(r = 1,{\text{ }}7\)</p>
<p>attempting to find a solution in the form \({u_n} = A{7^n} + B\) <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p><em>eg</em>, \({u_0} = 5 \Rightarrow 5 = A + B{\text{ and }}{u_1} = 29 \Rightarrow 29 = 7A + B\) <strong><em>A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\(A{7^{n + 1}} + B = A{7^{n + 1}} + 7B - 6\;\;\;\)(or equivalent) <strong><em>A1</em></strong></p>
<p><strong>THEN</strong></p>
<p>attempting to solve for \(A\) and \(B\) <strong><em>(M1)</em></strong></p>
<p>\({u_n} = 4 \times {7^n} + 1\) <strong><em>A1A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>attempting to find the auxiliary equation <strong><em>M1</em></strong></p>
<p>\({r^2} - 10r - 11 = 0\;\;\;\left( {(r - 11)(r + 1) = 0} \right)\) <strong><em>A1</em></strong></p>
<p>\(r = 11,{\text{ }}r = - 1\) <strong><em>A1</em></strong></p>
<p>\({v_n} = A{11^n} + B{( - 1)^n}\) <strong><em>(M1)</em></strong></p>
<p>attempting to use the initial conditions <strong><em>M1</em></strong></p>
<p>\(A + B = 4,{\text{ }}11A - B = 44\) <strong><em>A1</em></strong></p>
<p>\({v_n} = 4 \times {11^n}\) <strong><em>A1</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({v_n} - {u_n} = 4({11^n} - {7^n}) - 1\) <strong><em>M1</em></strong></p>
<p><strong>EITHER</strong></p>
<p>\( = 4(11 - 7)({11^{n - 1}} + \ldots + {7^{n - 1}}) - 1\) <strong><em>M1A1</em></strong></p>
<p><strong>OR</strong></p>
<p>\( = 4\left( {{{(7 + 4)}^n} - {7^n}} \right) - 1\) <strong><em>A1</em></strong></p>
<p>subtracting the \({7^n}\) from the expanded first bracket <strong><em>M1</em></strong></p>
<p><strong>THEN</strong></p>
<p>obtaining \(16\) times a whole number \( - 1\) <strong><em>A1</em></strong></p>
<p>\({v_n} - {u_n} \equiv 15(\bmod 16),{\text{ }}n \in \mathbb{N}\) <strong><em>AG</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<p><strong><em>Total [16 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a), a good number of candidates were able to ‘see’ the solution form for \({u_n}\) and then (often in non-standard ways) successfully obtain \({u_n} = 4 \times {7^n} + 1\). A variety of methods and interesting approaches were seen here including use of the general closed form solution, iteration, substitution of \({u_n} = 4 \times {7^n} + 1\), substitution of \({u_n} = An + B\) and, interestingly, conversion to a second-degree linear recurrence relation. A number of candidates erroneously converted the recurrence relation to a quadratic auxiliary equation and obtained \({u_n} = {c_1}{(6)^n} + {c_2}{(1)^n}\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Compared to similar recurrence relation questions set in recent examination papers, part (b) was reasonably well attempted with a substantial number of candidates correctly obtaining \({v_n} = 4{(11)^n}\). It was pleasing to note the number of candidates who could set up the correct auxiliary equation and use the two given terms to obtain the required solution. It appeared that candidates were better prepared for solving second-order linear recurrence relations compared to first-order linear recurrence relations.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates found part (c) challenging. Only a small number of candidates attempted to either factorise \({11^n} - {2^n}\) or to subtract \({7^n}\) from the expansion of \({(7 + 4)^n}\). It was also surprising how few went for the option of stating that 11 and 7 are congruent \(\bmod 4\) so \({11^n} - {7^n} \equiv (\bmod 4)\) and hence is a multiple of 4.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a weighted graph with vertices A, B, C, D, E, F, G. The weight of each edge is marked on the diagram.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt> <br></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Explain briefly why the graph contains an Eulerian trail but not an </span><span style="font-family: 'times new roman', times; font-size: medium;">Eulerian circuit.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Write down an Eulerian trail.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Use Dijkstra’s algorithm to find the path of minimum total weight joining A to D.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) State the minimum total weight.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) there is an Eulerian trail because there are only 2 vertices of odd degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">there is no Eulerian circuit because not all vertices have even degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <em>eg</em> GBAGFBCFECDE <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">\(\begin{array}{*{20}{l}}<br> {{\text{Step}}}&{{\text{Vertices labelled}}}&{{\text{Working values}}}&{} \\ <br> 1&{\text{A}}&{{\text{A(0), B-3, G-2}}}&{{\boldsymbol{M1A1}}} \\ <br> 2&{{\text{A, G}}}&{{\text{A(0), G(2), B-3, F-8}}}&{{\boldsymbol{A1}}} \\ <br> 3&{{\text{A, G, B}}}&{{\text{A(0), G(2), B(3), F-7, C-10}}}&{{\boldsymbol{A1}}} \\ <br> 4&{{\text{A, G, B, F}}}&{{\text{A(0), G(2), B(3), F(7), C-9, E-12}}}&{} \\ <br> 5&{{\text{A, G, B, F, C}}}&{{\text{A(0), G(2), B(3), F(7), C(9), E-10, D-15}}}&{{\boldsymbol{A1}}} \\ <br> 6&{{\text{A, G, B, F, C, E}}}&{{\text{A(0), G(2), B(3), F(7), C(9), E(10), D-14}}}&{} \\ <br> 7&{{\text{A, G, B, F, C, E, D}}}&{{\text{A(0), G(2), B(3), F(7), C(9), E(10), D(14)}}}&{{\boldsymbol{A1}}} <br>\end{array}\)</span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"> In both (i) and (ii) accept the tabular method including back tracking or labels by the vertices on a graph.</span></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"> </strong></p>
<p><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>M1A1A1A1A0A0</em></strong><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"> if final labels are correct but intermediate ones are not shown.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"> </span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium; line-height: normal;">(ii) minimum weight path is ABFCED </span><strong style="font-family: 'times new roman', times; font-size: medium; line-height: normal;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">minimum weight is 14 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award the final two <strong><em>A1</em></strong> marks whether or not Dijkstra’s Algorithm is used.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In part (a) the criteria for Eulerian circuits and trails were generally well known and most candidates realised that they must start/finish at G/E. Candidates who could not do (a) generally struggled on the paper.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For part (b) the layout varied greatly from candidate to candidate. Not all candidates made their method clear and some did not show the temporary labels. It is recommended that teachers look at the tabular method with its backtracking system as it is an efficient way of tackling this type of problem and has a very clear layout.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Use the Euclidean algorithm to find gcd(\(12\,306\), 2976) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence give the general solution to the diophantine equation \(12\,306\)<em>x</em> + 2976<em>y</em> = 996 .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(12\,306 = 4 \times 2976 + 402\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2976 = 7 \times 402 + 162\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(402 = 2 \times 162 + 78\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(162 = 2 \times 78 + 6\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(78 = 13 \times 6\)<br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore gcd is 6 <strong><em>R1 </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(6|996\) means there is a solution</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6 = 162 - 2(78)\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 162 - 2\left( {402 - 2(162)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5(162) - 2(402)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5(2976) - 7(402)} \right) - 2(402)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5(2976) - 37(402)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 5(2976) - 37\left( {12\,306 - 4(2976)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 153(2976) - 37(12\,306)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(996 = 25\,398(2976) - 6142(12\,306)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x_0} = - 6142,{\text{ }}{y_0} = 25\,398\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = - 6142 + \left( {\frac{{2976}}{6}} \right)t = - 6142 + 496t\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = 25\,398 - \left( {\frac{{12\,306}}{6}} \right)t = 25\,398 - 2051t\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [14 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was the most accessible on the paper and was completed correctly by the majority of candidates. Most candidates were able to start part (b), but a number made errors on the way and quite a number failed to give the general solution.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Euclidean algorithm to find the greatest common divisor of the numbers 56 and 315.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the general solution to the diophantine equation \(56x + 315y = 21\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence or otherwise find the smallest positive solution to the congruence \(315x \equiv 21\) (modulo 56) .</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(315 = 5 \times 56 + 35\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(56 = 1 \times 35 + 21\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(35 = 1 \times 21 + 14\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(21 = 1 \times 14 + 7\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(14 = 2 \times 7\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore gcd = 7 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(7 = 21 - 14\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 21 - (35 - 21)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2 \times 21 - 35\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2 \times (56 - 35) - 35\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2 \times 56 - 3 \times 35\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2 \times 56 - 3 \times (315 - 5 \times 56)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 17 \times 56 - 3 \times 315\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(56 \times 51 + 315 \times (- 9) = 21\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 51,{\text{ }}y = - 9\) is a solution <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is \(x = 51 + 45N\) , \(y = - 9 - 8N\) , \(N \in \mathbb{Z}\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) putting <em>N</em> = –2 gives <em>y</em> = 7 which is the required value of <em>x</em> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well answered although some candidates were unable to proceed from a particular solution of the Diophantine equation to the general solution.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well answered although some candidates were unable to proceed from a particular solution of the Diophantine equation to the general solution.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that <em>a</em> , \(b \in \mathbb{N}\) and \(c \in {\mathbb{Z}^ + }\), show that if \(a \equiv 1(\bmod c)\) , then \(ab \equiv b(\bmod c)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using mathematical induction, show that \({9^n} \equiv 1(\bmod 4)\) , for \(n \in \mathbb{N}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The positive integer <em>M</em> is expressed in base 9. Show that <em>M</em> is divisible by 4 if the sum of its digits is divisible by 4.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(a = \lambda c + 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(ab = \lambda bc + b \Rightarrow ab \equiv b(\bmod c)\) <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the result is true for <em>n</em> = 0 since \({9^0} = 1 \equiv 1(\bmod 4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">assume the result is true for <em>n</em> = <em>k</em> , <em>i.e.</em> \({9^k} \equiv 1(\bmod 4)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider \({9^{k + 1}} = 9 \times {9^k}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 9 \times 1(\bmod 4)\) <strong>or</strong> \(1 \times {9^k}(\bmod 4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 1(\bmod 4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so true for \(n = k \Rightarrow \) true for <em>n</em> = <em>k</em> + 1 and since true for <em>n</em> = 0 result follows by induction <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Do not award the final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> unless both </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> marks have been awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award the final </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if candidates state </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = 1 rather than </span><em style="font-family: 'times new roman', times; font-size: medium;">n</em><span style="font-family: 'times new roman', times; font-size: medium;"> = 0</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \(M = {({a_n}{a_{n - 1}}…{a_0})_9}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a_n} \times {9^n} + {a_{n - 1}} \times {9^{n - 1}} + ... + {a_0} \times {9^0}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>EITHER</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv {a_n}(\bmod 4) + {a_{n - 1}}(\bmod 4) + ... + {a_0}(\bmod 4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv \sum {{a_i}(\bmod 4)} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>M</em> is divisible by 4 if \(\sum {{a_i}} \) is divisible by 4 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a_n}({9^n} - 1) + {a_{n - 1}}({9^{n - 1}} - 1) + ... + {a_1}({9^1} - 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( + {a_n} + {a_{n - 1}} + ... + {a_1} + {a_0}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Since \({9^n} \equiv 1(\bmod 4)\) , it follows that \({9^n} - 1\) is divisible by 4, <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>M</em> is divisible by 4 if \(\sum {{a_i}} \) is divisible by 4 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered. In (b), many candidates tested the result for <em>n</em> = 1 instead of <em>n</em> = 0. It has been suggested that the reason for this was a misunderstanding of the symbol <em>N</em> with some candidates believing it to denote the positive integers. It is important for candidates to be familiar with IB notation in which <em>N</em> denotes the positive integers and zero. In some scripts the presentation of the proof by induction was poor.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered. In (b), many candidates tested the result for <em>n</em> = 1 instead of <em>n</em> = 0. It has been suggested that the reason for this was a misunderstanding of the symbol <em>N</em> with some candidates believing it to denote the positive integers. It is important for candidates to be familiar with IB notation in which <em>N</em> denotes the positive integers and zero. In some scripts the presentation of the proof by induction was poor.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered. In (b), many candidates tested the result for <em>n</em> = 1 instead of <em>n</em> = 0. It has been suggested that the reason for this was a misunderstanding of the symbol <em>N</em> with some candidates believing it to denote the positive integers. It is important for candidates to be familiar with IB notation in which <em>N</em> denotes the positive integers and zero. In some scripts the presentation of the proof by induction was poor.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Two mathematicians are planning their wedding celebration and are trying to arrange the seating plan for the guests. The only restriction is that all tables must seat the same number of guests and each table must have more than one guest. There are fewer than 350 guests, but they have forgotten the exact number. However they remember that when they try to seat them with two at each table there is one guest left over. The same happens with tables of 3, 4, 5 and 6 guests. When there were 7 guests per table there were none left over. Find the number of guests.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>x</em> be the number of guests</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1(\bmod 2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1(\bmod 3)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1(\bmod 4)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1(\bmod 5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1(\bmod 6)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 0(\bmod 7)\) congruence (i) <strong><em>(M1)(A2)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the equivalent of the first five lines is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv 1\left( {\bmod ({\text{lcm of 2, 3, 4, 5, 6}})} \right) \equiv 1(\bmod 60)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 60t + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from congruence (i) \(60t + 1 \equiv 0(\bmod 7)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(60t \equiv - 1(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(60t \equiv 6(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4t \equiv 6(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2t \equiv 3(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t = 7u + 5\,\,\,\,\,{\text{(or equivalent)}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(x = 420u + 300 + 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 420u + 301\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">smallest number of guests is 301 <strong><em>A1 N6</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept alternative correct solutions including exhaustion or formula from Chinese remainder theorem.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were a number of totally correct solutions to this question, but many students were unable to fully justify the result. Some candidates had learnt a formula to apply to the Chinese remainder theorem, but could not apply it well in this situation. Many worked with the conditions for divisibility but did not make much progress with the justification.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that a positive integer, written in base 10, is divisible by 9 if the sum of its digits is divisible by 9.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The representation of the positive integer <em>N</em> in base <em>p</em> is denoted by \({(N)_p}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">If \({({5^{{{(126)}_7}}})_7} = {({a_n}{a_{n - 1}} \ldots {a_1}{a_0})_7}\) , find \({a_0}\) .</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider the decimal number \(A = {a_n}{a_{n - 1}} \ldots {a_0}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(A = {A_n} \times {10^n} + {a_{n - 1}} \times {10^{n - 1}} + \ldots + {a_1} \times 10 + {a_0}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a_n} \times ({10^n} - 1) + {a_{n - 1}} \times ({10^{n - 1}} - 1) + \ldots + {a_1} \times (10 - 1) + {a_n} + {a_{n - 1}} + \ldots + {a_0}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a_n} \times 99 \ldots 9(n{\text{ digits}}) + {a_{n - 1}} \times 99 \ldots 9(n - 1{\text{ digits}}) + \ldots + 9{a_1} + {a_n} + {a_{n - 1}} + \ldots + {a_0}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">all the numbers of the form 99…9 are divisible by 9 (to give 11…1), <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence <em>A</em> is divisible by 9 if \(\sum\limits_{i = 0}^n {{a_i}} \) is divisible by 9 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> A method that uses the fact that \({10^t} \equiv 1(\bmod 9)\) is equally valid.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by Fermat’s Little Theorem \({5^6} \equiv 1(\bmod 7)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({(126)_7} = {(49 + 14 + 6)_{10}} = {(69)_{10}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{{{(126)}_7}}} \equiv {5^{{{(11 \times 6 + 3)}_{10}}}} \equiv {5^{{{(3)}_{10}}}}(\bmod 7)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{{{(3)}_{10}}}} = {(125)_{10}} = {(17 \times 7 + 6)_{10}} \equiv 6(\bmod 7)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \({a_0} = 6\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Questions similar to (a) have been asked in the past so it was surprising to see that solutions this time were generally disappointing.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (b), most candidates changed the base 7 number 126 to the base 10 number 69. After that the expectation was that Fermat<span style="letter-spacing: 0.3px;">’</span>s little theorem would be used to complete the solution but few candidates actually did that. Many were unable to proceed any further and others used a variety of methods, for example working modulo 7,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{69}} = {({5^2})^{34}}.5 = {4^{34}}.5 = {({4^2})^{17}}.5 = {2^{17}}.5\) etc</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This is of course a valid method, but somewhat laborious.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The positive integer <em>N</em> is expressed in base 9 as \({({a_n}{a_{n - 1}} \ldots {a_0})_9}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that <em>N</em> is divisible by 3 if the least significant digit, \({a_0}\), is divisible by 3.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that <em>N</em> is divisible by 2 if the sum of its digits is even.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Without using a conversion to base 10, determine whether or not \({(464860583)_9}\) is divisible by 12.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) let \(N = {a_n}{a_{n - 1}} \ldots {a_1}{a_0} = {a_n} \times {9^n} + {a_{n - 1}} \times {9^{n - 1}} + \ldots + {a_1} \times 9 + {a_0}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">all terms except the last are divisible by 3 and so therefore is their sum <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that <em>N</em> is divisible by 3 if \({a_0}\) is divisible by 3 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider <em>N</em> in the form</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = {a_n} \times ({9^n} - 1) + {a_{n - 1}} \times ({9^{n - 1}} - 1) + \ldots + {a_1}(9 - 1) + \sum\limits_{i = 1}^n {{a_i}} \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">all terms except the last are even so therefore is their sum <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that <em>N</em> is even if \(\sum\limits_{i = 0}^n {{a_i}} \) is even <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">working modulo 2, \({9^k} \equiv 1(\bmod 2)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(N = {a_n}{a_{n - 1}} \ldots {a_1}{a_0} = {a_n} \times {9^n} + {a_{n - 1}} \times {9^{n - 1}} + \ldots + {a_1} \times 9 + {a_0} = \sum\limits_{i = 0}^n {{a_i}(\bmod 2)} \) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that <em>N</em> is even if \(\sum\limits_{i = 0}^n {{a_i}} \) is even <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) the number is divisible by 3 because the least significant digit is 3 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it is divisible by 2 because the sum of the digits is 44 which is even <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">dividing the number by 2 gives \({(232430286)_9}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">which is even because the sum of the digits is 30 which is even <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>N</em> is therefore divisible by a further 2 and is therefore divisible by 12 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept alternative valid solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [12 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were generally well answered. Part (c), however, caused problems for many candidates with some candidates even believing that showing divisibility by 2 and 3 was sufficient to prove divisibility by 12. Some candidates stated that the fact that the sum of the digits was 44 (which itself is divisible by 4) indicated divisibility by 4 but this was only accepted if the candidates extended their proof in (b) to cover divisibility by 4.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Explaining your method fully, determine whether or not 1189 is a prime number.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) State the fundamental theorem of arithmetic.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) The positive integers <em>M</em> and <em>N</em> have greatest common divisor <em>G</em> and least common multiple <em>L</em> . Show that <em>GL</em> = <em>MN</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">any clearly indicated method of dividing 1189 by successive numbers <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">find that 1189 has factors 29 and/or 41 <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that 1189 is not a prime number <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> If no method is indicated, award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the factors and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for the conclusion.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) every positive integer, greater than 1, is either prime or can be expressed uniquely as a product of primes <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for “product of primes” and </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> for “uniquely”.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) </span><strong style="font-family: 'times new roman', times; font-size: medium;">METHOD 1</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>M</em> and <em>N</em> be expressed as a product of primes as follows</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>M</em> = <em>AB</em> and <em>N</em> = <em>AC</em> <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">where <em>A</em> denotes the factors which are common and <em>B</em>, <em>C</em> the disjoint factors which are not common</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that <em>G</em> = <em>A</em> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and <em>L</em> = <em>GBC</em> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from these equations, it follows that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(GL = A \times ABC = MN\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(M = {2^{{x_1}}} \times {3^{{x_2}}} \times ...p_n^{{x_n}}\) and \(N = {2^{{y_1}}} \times {3^{{y_2}}} \times ...p_n^{{y_n}}\) where \({p_n}\) denotes the \({n^{{\text{th}}}}\) prime <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Then \(G = {2^{\min ({x_1},{y_1})}} \times {3^{\min ({x_2},{y_2})}} \times ...p_n^{\min ({x_n},{y_n})}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(L = {2^{\max ({x_1},{y_1})}} \times {3^{\max ({x_2},{y_2})}} \times ...p_n^{\max ({x_n},{y_n})}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">It follows that \(GL = {2^{{x_1}}} \times {2^{{y_1}}} \times {3^{{x_2}}} \times {3^{{y_2}}} \times ... \times p_n^{{x_n}} \times p_n^{{y_n}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">= <em>MN</em> <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), some candidates tried to use Fermat’s little theorem to determine whether or not 1189 is prime but this method will not always work and in any case the amount of computation involved can be excessive. For this reason, it is strongly recommended that this method should not be used in examinations. In (b), it was clear from the scripts that candidates who had covered this material were generally successful and those who had not previously seen the result were usually unable to proceed.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), some candidates tried to use Fermat’s little theorem to determine whether or not 1189 is prime but this method will not always work and in any case the amount of computation involved can be excessive. For this reason, it is strongly recommended that this method should not be used in examinations. In (b), it was clear from the scripts that candidates who had covered this material were generally successful and those who had not previously seen the result were usually unable to proceed.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Andy and Roger are playing tennis with the rule that if one of them wins a game when serving then he carries on serving, and if he loses then the other player takes over the serve.</p>
<p class="p1">The probability Andy wins a game when serving is \(\frac{1}{2}\) and the probability he wins a game when not serving is \(\frac{1}{4}\). Andy serves in the first game. Let \({u_n}\) denote the probability that Andy wins the \({n^{{\text{th}}}}\) game.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the value of \({u_1}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \({u_n}\) satisfies the recurrence relation</p>
<p class="p1">\[{u_n} = \frac{1}{4}{u_{n - 1}} + \frac{1}{4}.\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve this recurrence relation to find the probability that Andy wins the \({n^{{\text{th}}}}\) game.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">After they have played many games, Pat comes to watch. Use your answer from part (c) to estimate the probability that Andy will win the game they are playing when Pat arrives.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{1}{2}\) <em><strong>A1</strong></em></p>
<p class="p1"><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Andy could win the \({n^{{\text{th}}}}\) game by winning the \(n - {1^{{\text{th}}}}\) and then winning the \({n^{{\text{th}}}}\) game or by losing the \(n - {1^{{\text{th}}}}\) and then winning the \({n^{{\text{th}}}}\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\({u_n} = \frac{1}{2}{u_{n - 1}} + \frac{1}{4}(1 - {u_{n - 1}})\) <span class="Apple-converted-space"> </span><strong><em>A1A1M1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1 </em></strong>for each term and <strong><em>M1 </em></strong>for addition of two probabilities.</p>
<p class="p2"> </p>
<p class="p1">\({u_n} = \frac{1}{4}{u_{n - 1}} + \frac{1}{4}\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">general solution is \({u_n} = A{\left( {\frac{1}{4}} \right)^n} + p(n)\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">for a particular solution try \(p(n) = b\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(b = \frac{1}{4}b + \frac{1}{4}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(b = \frac{1}{3}\)</p>
<p class="p1">hence \({u_n} = A{\left( {\frac{1}{4}} \right)^n} + \frac{1}{3}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">using \({u_1} = \frac{1}{2}\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(\frac{1}{2} = A\left( {\frac{1}{4}} \right) + \frac{1}{3} \Rightarrow A = \frac{2}{3}\)</p>
<p class="p1">hence \({u_n} = \frac{2}{3}{\left( {\frac{1}{4}} \right)^n} + \frac{1}{3}\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept other valid methods.</p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">for large \(n{\text{ }}{u_n} \approx \frac{1}{3}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[2 marks]</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>Total [13 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Not all candidates wrote this answer down correctly although it was essentially told you in the question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Very badly answered. Candidates seemed to think that they were being told this relationship (so used it to find u(2)) rather than attempting to prove it.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This distinguished the better candidates. Some candidates though that they could use the method for homogeneous recurrence relations of second order and hence started solving a quadratic. Only the better candidates saw that it was a combined AP/GP.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The best candidates saw this but most had not done enough earlier to get to do this.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the pigeon-hole principle to prove that for any simple graph that has two or more vertices and in which every vertex is connected to at least one other vertex, there must be at least two vertices with the same degree.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Seventeen people attend a meeting.</p>
<p class="p1">Each person shakes hands with at least one other person and no-one shakes hands with</p>
<p class="p1">the same person more than once. Use the result from part (a) to show that there must be at least two people who shake hands with the same number of people.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why each person cannot have shaken hands with exactly nine other people.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">let there be <em>\(v\) </em>vertices in the graph; because the graph is simple the degree of each vertex is \( \le v - 1\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">the degree of each vertex is \( \ge 1\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">there are therefore \(v - 1\) possible values for the degree of each vertex <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">given there are <em>\(v\) </em>vertices by the pigeon-hole principle there must be at least two with the same degree <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">consider a graph in which the people at the meeting are represented by the vertices and two vertices are connected if the two people shake hands <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">the graph is simple as no-one shakes hands with the same person more than once (nor can someone shake hands with themselves) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">every vertex is connected to at least one other vertex as everyone shakes at least one hand <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">the degree of each vertex is the number of handshakes so by the proof above there must be at least two who shake the same number of hands <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Accept answers starting afresh rather than quoting part (a).</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(the handshaking lemma tells us that) the sum of the degrees of the vertices must be an even number <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">the degree of each vertex would be <em>\(9\)</em> and \(9 \times 17\) is an odd number (giving a contradiction) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<p class="p1"><strong><em>Total [10 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally there were too many “waffly” words and not enough precise statements leading to conclusions.</p>
<p class="p1">Misconceptions were: thinking that a few examples constituted a proof, thinking that the graph had to be connected, taking the edges as the pigeons not the degrees. The pigeon-hole principle was known but not always applied well.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally there were too many “waffly” words and not enough precise statements leading to conclusions.</p>
<p class="p1">Similar problems as in (a).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally there were too many “waffly” words and not enough precise statements leading to conclusions.</p>
<p class="p1">Many spurious reasons were given but good candidates went straight to the hand-shaking lemma.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A graph has <em>n</em> vertices with degrees 1, 2, 3, …, <em>n</em>. Prove that \(n \equiv 0(\bmod 4)\) or \(n \equiv 3(\bmod 4)\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <em>G</em> be a simple graph with <em>n</em> vertices, \(n \geqslant 2\). Prove, by contradiction, that at least two of the vertices of <em>G</em> must have the same degree.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as each edge contributes 1 to each of the vertices that it is incident with, each edge will contribute 2 to the sum of the degrees of all the vertices <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(2e = \sum {{\text{degrees}}} \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2e = \frac{{n(n + 1)}}{2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4|n(n + 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>n</em> and <em>n</em> + 1 are coprime <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept equivalent reasoning <em>e.g.</em> only one of <em>n</em> and <em>n</em> + 1 can be even.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4|n{\text{ or }}4|n + 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(n \equiv 0(\bmod 4){\text{ or }}n \equiv 3(\bmod 4)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">since <em>G</em> is simple, the highest degree that a vertex can have is <em>n</em> – 1 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">the degrees of the vertices must belong to the set \(S = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }} \ldots ,{\text{ }}n - 1\} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">proof by contradiction</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">if no two vertices have the same degree, all <em>n</em> vertices must have different degrees <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">as there are only <em>n</em> different degrees in set <em>S</em>, the degrees must be precisely the <em>n</em> numbers 0, 1, 2, ..., <em>n</em> – 1 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">let the vertex with degree 0 be A, then A is not adjacent to any of the other vertices <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">let the vertex with degree <em>n</em> – 1 be B, then B is adjacent to all of the other vertices including A <strong><em>R1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">this is our desired contradiction, so there must be two vertices of the same degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Only the top candidates were able to produce logically, well thought-out proofs.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Only the top candidates were able to produce logically, well thought-out proofs.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Euclidean algorithm to find \(\gcd (752,{\text{ }}352)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A farmer spends £8128 buying cows of two different breeds, A and B, for her farm. A cow of breed A costs £752 and a cow of breed B costs £352.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Set up a diophantine equation to show this.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Using your working from part (a), find the general solution to this equation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) <strong>Hence</strong> find the number of cows of each breed bought by the farmer.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">752 = 2(352) + 48 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">352 = 7(48) +16 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">48 = 3(16) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(\gcd (752,{\text{ }}352)\) is 16 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) let <em>x</em> be the number of cows of breed A</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>y</em> be the number of cows of breed B</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(752x + 352y = 8128\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(16|8128\) means there is a solution</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(16 = 352 - 7(48)\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(16 = 352 - 7\left( {752 - 2(352)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(16 = 15(352) - 7(752)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(8128 = 7620(352) - 3556(752)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x_0} = - 3556,{\text{ }}{y_0} = 7620\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = - 3556 + \left( {\frac{{352}}{{16}}} \right)t = - 3556 + 22t\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow y = 7620 - \left( {\frac{{752}}{{16}}} \right)t = 7620 - 47t\) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) for <em>x</em>, <em>y</em> to be \( \geqslant 0\), the only solution is <em>t</em> = 162 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 8,{\text{ }}y = 6\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was the most accessible on the paper and was completed correctly by the majority of candidates. It was pleasing to see that candidates were not put off by the question being set in context and most candidates were able to start part (b). However, a number made errors on the way, quite a number failed to give the general solution and it was only stronger candidates who were able to give a correct solution to part (b) (iii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) of this question was the most accessible on the paper and was completed correctly by the majority of candidates. It was pleasing to see that candidates were not put off by the question being set in context and most candidates were able to start part (b). However, a number made errors on the way, quite a number failed to give the general solution and it was only stronger candidates who were able to give a correct solution to part (b) (iii).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following diagram shows a weighted graph <em>G </em>with vertices A, B, C, D and E.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-17_om_14.54.24.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that graph \(G\) is Hamiltonian. Find the total number of Hamiltonian cycles in \(G\), giving reasons for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">State an upper bound for the travelling salesman problem for graph \(G\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hence find a lower bound for the travelling salesman problem for \(G\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Show that the lower bound found in (d) cannot be the length of an optimal solution for the travelling salesman problem for the graph \(G\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg </em>the cycle \({\text{A}} \to {\text{B}} \to {\text{C}} \to {\text{D}} \to {\text{E}} \to {\text{A}}\) is Hamiltonian <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">starting from any vertex there are four choices</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">from the next vertex there are three choices, <em>etc </em>… <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so the number of Hamiltonian cycles is \(4!{\text{ }}( = 24)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow 12 distinct cycles (direction not considered) or 60 (if different starting points count as distinct). In any case, just award the second <strong><em>A1 </em></strong>if <strong><em>R1 </em></strong>is awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">total weight of any Hamiltonian cycles stated</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg</em> \({\text{A}} \to {\text{B}} \to {\text{C}} \to {\text{D}} \to {\text{E}} \to {\text{A}}\) has weight \(5 + 6 + 7 + 8 + 9 = 35\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">a lower bound for the travelling salesman problem is then obtained by adding the weights of CA and CB to the weight of the minimum spanning tree <strong><em>(M1)</em></strong></span></p>
<p style="font: normal normal normal 20.5px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_15.02.15.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">a lower bound is then \(14 + 6 + 6 = 26\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>eg </em>eliminating A from <em>G, </em>a minimum spanning tree of weight 18 is <strong><em>(M1)</em></strong></span></p>
<p style="font: normal normal normal 20.5px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_15.07.06.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">adding AD and AB to the spanning tree gives a lower bound of \(18 + 4 + 5 = 27 > 26\) <strong><em>A1</em></strong></span></p>
<p style="font: normal normal normal 20.5px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_15.04.48.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so 26 is not the best lower bound <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Candidates may delete other vertices and the lower bounds obtained are B-28, D-27 and E-28.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">there are 12 distinct cycles (ignoring direction) with the following lengths</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Cycle Length</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABCDEA 35 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABCEDA 33</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABDCEA 39</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABDECA 37</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABECDA 31</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABEDCA 31</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ACBDEA 37</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>ACBEDA</strong> <strong>29</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ACDBEA 35</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ACEBDA 33</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">AEBCDA 31</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">AECBDA 37 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">as the optimal solution has length 29 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">26 is not the best possible lower bound <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow answers where candidates list the 24 cycles obtained by allowing both directions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered, with a variety of interpretations accepted.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) also had a number of acceptable possibilities.<br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (d) was generally well answered, but there were few good attempts at part (e).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (d) was generally well answered, but there were few good attempts at part (e).</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Define what is meant by the statement \(x \equiv y(\bmod n){\text{ where }}x{\text{, }}y{\text{, }}n \in {\mathbb{Z}^ + }\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence prove that if \(x \equiv y(\bmod n)\) then \({x^2} \equiv {y^2}(\bmod n)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Determine whether or not \({x^2} \equiv {y^2}(\bmod n)\) implies that \(x \equiv y(\bmod n)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv y(\bmod n) \Rightarrow x = y + kn,{\text{ }}(k \in \mathbb{Z})\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x \equiv y(\bmod n)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = y + kn\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} = {y^2} + 2kny + {k^2}{n^2}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^2} = {y^2} + (2ky + {k^2}n)n\) <em><strong>M1A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px 'Hiragino Kaku Gothic ProN';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^2} \equiv {y^2}(\bmod n)\) <em><strong>AG</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} \equiv {y^2}(\bmod n)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {x^2} - {y^2} = 0(\bmod n)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px 'Lucida Grande';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (x - y)(x + y) = 0(\bmod n)\) <em><strong>A1</strong></em><span style="font: 19.5px Symbol;"><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This will be the case if</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x + y = 0(\bmod n){\text{ or }}x = - y(\bmod n)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x \ne y(\bmod n)\) in general <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Any counter example, <em>e.g.</em> \(n = 5,{\text{ }}x = 3,{\text{ }}y = 2,\) in which case <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} \equiv {y^2}(\bmod n)\) but \(x \ne y(\bmod n)\). (false) <strong><em>R1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">While most candidates gave a correct meaning to \(x \equiv y(\bmod n)\) , there were some incorrect statements, the most common being \(x \equiv y(\bmod n)\) means that when <em>x</em> is divided by <em>n</em>, there is a remainder <em>y</em>. The true statement \(8 \equiv 5(\bmod 3)\) shows that this statement is incorrect. Part (b) was solved successfully by many candidates but (c) caused problems for some candidates who thought that the result in (c) followed automatically from the result in (b).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">While most candidates gave a correct meaning to \(x \equiv y(\bmod n)\) , there were some incorrect statements, the most common being \(x \equiv y(\bmod n)\) means that when <em>x</em> is divided by <em>n</em>, there is a remainder <em>y</em>. The true statement \(8 \equiv 5(\bmod 3)\) shows that this statement is incorrect. Part (b) was solved successfully by many candidates but (c) caused problems for some candidates who thought that the result in (c) followed automatically from the result in (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">While most candidates gave a correct meaning to \(x \equiv y(\bmod n)\) , there were some incorrect statements, the most common being \(x \equiv y(\bmod n)\) means that when <em>x</em> is divided by <em>n</em>, there is a remainder <em>y</em>. The true statement \(8 \equiv 5(\bmod 3)\) shows that this statement is incorrect. Part (b) was solved successfully by many candidates but (c) caused problems for some candidates who thought that the result in (c) followed automatically from the result in (b).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Convert the decimal number 51966 to base 16.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Using the Euclidean algorithm, find the greatest common divisor, <em>d </em>, of 901 and 612.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find integers <em>p </em>and <em>q </em>such that 901<em>p </em>+ 612<em>q </em>= <em>d </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Find the least possible positive integers <em>s </em>and <em>t </em>such that 901<em>s </em>− 612<em>t </em>= 85.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In each of the following cases find the solutions, if any, of the given linear congruence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(9x \equiv 3(\bmod 18)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(9x \equiv 3(\bmod 15)\)</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the relevant powers of 16 are 16, 256 and 4096 </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(51966 = 12 \times 4096{\text{ remainder }}2814\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2814 = 10 \times 256{\text{ remainder }}254\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(254 = 15 \times 16{\text{ remainder }}14\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the hexadecimal number is CAFE <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> CAFE is produced using a standard notation, accept explained alternative notations.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) using the Euclidean Algorithm <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(901 = 612 + 289\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(612 = 2 \times 289 + 34\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(289 = 8 \times 34 + 17\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\gcd (901,{\text{ }}612) = 17\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) working backwards <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(17 = 289 - 8 \times 34\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 289 - 8 \times (612 - 2 \times 289)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 17 \times (901 - 612) - 8 \times 612\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 27 \times 901 - 25 \times 612\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{so }}p = 17,{\text{ }}q = - 25\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) a particular solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = 5p = 85,{\text{ }}t = - 5q = 125\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = 85 + 36\lambda ,{\text{ }}t = 125 + 53\lambda \) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by inspection the solution satisfying all conditions is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((\lambda = - 2),{\text{ }}s = 13,{\text{ }}t = 19\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the congruence is equivalent to \(9x = 3 + 18\lambda \) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this has no solutions as 9 does not divide the RHS <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the congruence is equivalent to \(3x = 1 + 5\lambda ,{\text{ }}\left( {3x \equiv 1(\bmod 5)} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">one solution is \(x = 2\) , so the general solution is \(x = 2 + 5n\,\,\,\,\,\left( {x \equiv 2(\bmod 5)} \right)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many did not seem familiar with hexadecimal notation and often left their answer as 12101514 instead of CAFE.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">The Euclidean algorithm was generally found to be easy to deal with but getting a general solution in part (iii) eluded many candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Rewriting the congruence in the form \(9x = 3 + 18\lambda \) for example was not often seen but should have been the first thing thought of.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(a,{\text{ }}b,{\text{ }}c,{\text{ }}d \in \mathbb{Z}\), show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[(a - b)(a - c)(a - d)(b - c)(b - d)(c - d) \equiv 0(\bmod 3).\]</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we work modulo 3 throughout</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the values of <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em> can only be 0, 1, 2 <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since there are 4 variables but only 3 possible values, at least 2 of the variables must be equal \((\bmod 3)\) <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore at least 1 of the differences must be \(0(\bmod 3)\) <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the product is therefore \(0(\bmod 3)\) <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we attempt to find values for the differences which do not give \(0(\bmod 3)\) for the product</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we work modulo 3 throughout</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we note first that none of the differences can be zero <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>a</em> − <em>b</em> can therefore only be 1 or 2 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">suppose it is 1, then <em>b</em> − <em>c</em> can only be 1</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since if it is 2, \((a - b) + (b - c) \equiv 3 \equiv 0(\bmod 3)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>c</em> − <em>d</em> cannot now be 1 because if it is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((a - b) + (b - c) + (c - d) = a - d \equiv 3 \equiv 0(\bmod 3)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>c</em> − <em>d</em> cannot now be 2 because if it is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((b - c) + (c - d) = b - d \equiv 3 \equiv 0(\bmod 3)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we cannot therefore find values of <em>c</em> and <em>d</em> to give the required result <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a similar argument holds if we suppose <em>a</em> − <em>b</em> is 2, in which case <em>b</em> − <em>c</em> must be 2 and we cannot find a value of <em>c</em> − <em>d</em> <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the product is therefore \(0(\bmod 3)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates who solved this question used the argument that there are four variables which can take only one of three different values modulo 3 so that at least two must be equivalent modulo 3 which leads to the required result. This apparently simple result, however, requires a fair amount of insight and few candidates managed it.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The sequence \(\{ {u_n}\} \) , \(n \in {\mathbb{Z}^ + }\) , satisfies the recurrence relation \({u_{n + 2}} = 5{u_{n + 1}} - 6{u_n}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({u_1} = {u_2} = 3\) , obtain an expression for \({u_n}\) in terms of <em>n</em> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The sequence \(\{ {v_n}\} \) , \(n \in {\mathbb{Z}^ + }\) , satisfies the recurrence relation \({v_{n + 2}} = 4{v_{n + 1}} - 4{v_n}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \({v_1} = 2\) and \({v_2} = 12\) , use the principle of strong mathematical induction to show that \({v_n} = {2^n}(2n - 1)\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the auxiliary equation is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({m^2} - 5m + 6 = 0\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">giving \(m = 2,{\text{ 3}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({u_n} = A \times {2^n} + B \times {3^n}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substituting <em>n</em> = 1, 2</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2A + 3B = 3\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4A + 9B = 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solution is <em>A</em> = 3, B = –1 giving \({u_n} = 3 \times {2^n} - {3^n}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we first prove that \({v_n} = {2^n}(2n - 1)\) for <em>n</em> = 1, 2 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for <em>n</em> = 1, it gives \(2 \times 1 = 2\) which is correct</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for <em>n</em> = 2 , it gives \(4 \times 3 = 12\) which is correct <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we now assume that the result is true for \(n \leqslant k\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v_{k + 1}} = 4{v_k} - 4{v_{k - 1}}{\text{ }}(k \geqslant 2)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {4.2^k}(2k - 1) - {4.2^{k - 1}}(2k - 3)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {2^{k + 1}}(4k - 2 - 2k + 3)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {2^{k + 1}}\left( {2(k + 1) - 1} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this proves that if the result is true for \(n \leqslant k\) then it is true for \(n \leqslant k + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since we have also proved it true for \(n \leqslant 2\) , the general result is proved by induction <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> A reasonable attempt has to be made to the induction step for the final <strong><em>R1</em></strong> to be awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the Fundamental theorem of arithmetic for positive whole numbers greater than \(1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the Fundamental theorem of arithmetic, applied to \(5577\) and <span class="s1">\(99\,099\)</span>, to calculate \(\gcd (5577,{\text{ }}99\,099)\) and \({\text{lcm}}(5577,{\text{ }}99\,099)\), expressing each of your answers as a product of prime numbers.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Prove that \(\gcd (n,{\text{ }}m) \times {\text{lcm}}(n,{\text{ }}m) = n \times m\) for all \(n,{\text{ }}m \in {\mathbb{Z}^ + }\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">every positive integer, greater than \(1\), is either prime or can be expressed uniquely as a product of primes <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1 </em></strong>for “product of primes” and <strong><em>A1 </em></strong>for “uniquely”.</p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(5577 = 3 \times 11 \times {13^2}{\text{ and }}99099 = {3^2} \times 7 \times {11^2} \times 13\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1 </em></strong></span></p>
<p class="p1">\(\gcd (5577,{\text{ }}99099) = 3 \times 11 \times 13,{\text{ lcm}}(5577,{\text{ }}99099) = {3^2} \times 7 \times {11^2} \times {13^2}\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1A1</em></strong></span></p>
<p class="p1"><span class="s1"><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">\(n = p_1^{{k_1}}p_2^{{k_2}} \ldots p_r^{{k_r}}\) and \(m = p_1^{{j_1}}p_2^{{j_2}} \ldots p_r^{{j_r}}\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">employing all the prime factors of \(n\) and \(m\), and inserting zero exponents if necessary <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">define \({g_i} = \min ({k_i},{\text{ }}{j_i})\) and \({h_i} = \max ({k_i},{\text{ }}{j_i})\) for \(i = 1 \ldots r\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(\gcd (n,{\text{ }}m) = p_1^{{g_1}}p_2^{{g_2}} \ldots p_r^{{g_r}}\) and \({\text{lcm}}(n,{\text{ }}m) = p_1^{{h_1}}p_2^{{h_2}} \ldots p_r^{{h_r}}\) <span class="Apple-converted-space"> </span><strong><em>A1A1</em></strong></p>
<p class="p1">noting that \({g_i} + {h_i} = {k_i} + {j_i}\) for \(i = 1 \ldots r\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\(\gcd (n,{\text{ }}m) \times {\text{lcm}}(n,{\text{ }}m) = n \times m\) for all \(n,{\text{ }}m \in {\mathbb{Z}^ + }\)<strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">let \(m\) and \(n\) be expressed as a product of primes where \(m = ab\) and \(n = ac\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(a\) denotes the factors that are common and \(b,{\text{ }}c\) are the disjoint factors that are not common <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\(\gcd (n,{\text{ }}m) = a\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\({\text{lcm}}(n,{\text{ }}m) = \gcd (n,{\text{ }}m)bc\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\(\gcd (n,{\text{ }}m) \times {\text{lcm}}(n,{\text{ }}m) = a \times (abc)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( = ab \times ac\) and \(m = ab\) and \(n = ac\) so <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">\(\gcd (n,{\text{ }}m) \times 1{\text{ cm}}(n,{\text{ }}m) = n \times m\) for all \(n,{\text{ }}m \in {\mathbb{Z}^ + }\) <span class="Apple-converted-space"> </span><strong><em>AG<br></em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<p class="p1"><strong><em>Total [11 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a), most candidates omitted the 'uniquely' in their definition of the fundamental theorem of arithmetic. A few candidates defined what a prime number is.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b), a substantial number of candidates used the Euclidean algorithm rather than the fundamental theorem of arithmetic to calculate \(\gcd (5577,{\text{ }}99099)\) and \({\text{lcm}}(5577,{\text{ }}99099)\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), a standard proof that has appeared in previous examination papers, was answered successfully by candidates who were well prepared.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following figure shows the floor plan of a museum.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_11.01.03.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Draw a graph <em>G </em>that represents the plan of the museum where each exhibition room is represented by a vertex labelled with the exhibition room number and each door between exhibition rooms is represented by an edge. Do not consider the entrance foyer as a museum exhibition room.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Write down the degrees of the vertices that represent each exhibition room.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Virginia enters the museum through the entrance foyer. Use your answers to </span><span style="font-family: 'times new roman', times; font-size: medium;">(i) and (ii) to justify why it is possible for her to visit the thirteen exhibition rooms going through each internal doorway exactly once.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Let <em>G </em>and <em>H </em>be two graphs whose adjacency matrices are represented below.</span></p>
<p style="font: normal normal normal 21px/normal Helvetica; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_11.02.25.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Using the adjacency matrices,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) find the number of edges of each graph;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) show that exactly one of the graphs has a Eulerian trail;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) show that neither of the graphs has a Eulerian circuit.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) <br><img src="images/Schermafbeelding_2014-09-17_om_11.04.03.png" alt> <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Do not penalize candidates who include the entrance foyer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the degrees of the vertices are 4, 2, 4, 4, 2, 2, 4, 2, 2, 2, 2, 2, 2 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) the degree of all vertices is even and hence a Eulerian circuit exists, <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">hence it is possible to enter the museum through the foyer and visit each room 1–13 going through each internal doorway exactly once <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>The connected graph condition is not required.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) <br><img src="images/Schermafbeelding_2014-09-17_om_11.05.20.png" alt> <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">graph <em>G </em>has 15 edges and graph <em>H </em>has 22 edges <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the degree of every vertex is equal to the sum of the numbers in the corresponding row (or column) of the adjacency table </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">exactly two of the vertices of <em>G </em>have an odd degree (B and C) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>H </em>has four vertices with odd degree <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>G </em>is the graph that has a Eulerian trail (and <em>H </em>does not) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) neither graph has all vertices of even degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore neither of them has a Eulerian circuit <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was generally well answered. There were many examples of full marks in this part. Part (b) caused a few more difficulties, although there were many good solutions. Few candidates used the matrix to find the number of edges, preferring instead to draw the graph. A surprising number of students confused the ideas of having vertices of odd degree.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(30\) is a factor of \({n^5} - n\) for all \(n \in \mathbb{N}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that \({3^{{3^m}}} \equiv 3({\text{mod}}4)\) for all \(m \in \mathbb{N}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that there is exactly one pair \((m,{\text{ }}n)\) where \(m,{\text{ }}n \in \mathbb{N}\), satisfying the equation \({3^{{3^m}}} = {2^{{2^n}}} + {5^2}\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^5} - n = \underbrace {n(n - 1)(n + 1)}_{{\text{3 consecutive integers}}}({n^2} + 1) \equiv 0({\text{mod}}6)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">at least a factor is multiple of 3 and at least a factor is multiple of 2 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^5} - n = n({n^4} - 1) \equiv 0({\text{mod}}5)\) as \({n^4} \equiv 1({\text{mod}}5)\) by FLT <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore, as \({\text{(5, 6)}} = 1\), <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^5} - n \equiv 0\left( {\bmod \underbrace {5 \times 6}_{30}} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>ie </em>30 is a factor of \({n^5} - n\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">let \({\text{P}}(n)\) be the proposition: \({n^5} - n = 30\alpha \) for some \(\alpha \in \mathbb{Z}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({0^5} - 0 = 30 \times 0\), so \({\text{P}}(0)\) is true <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">assume \({\text{P}}(k)\) is true for some \(k\) and consider \({\text{P}}(k + 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({(k + 1)^5} - (k + 1) = {k^5} + 5{k^4} + 10{k^3} + 10{k^2} + 5k + 1 - k - 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = ({k^5} - k) + 5k\left( {\underbrace {{k^3} + 3{k^2} + 3k + 1}_{{{(k + 1)}^3}} - ({k^2} + k)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = ({k^5} - k) + 5k\left( {{{(k + 1)}^3} - k(k + 1)} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 30\alpha + \underbrace {5k(k + 1)\left( {\underbrace {{k^2} + k + 1}_{k(k + 1) + 1}} \right)}_{{\text{multiple of 6}}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 30\alpha + 30\beta \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">as \({\text{P}}(0)\) is true and \({\text{P}}(k)\) true implies \({\text{P}}(k + 1)\) true, by PMI \({\text{P}}(n)\) is true for all values \(n \in \mathbb{N}\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award the first <strong><em>M1 </em></strong>only if the correct induction procedure is followed and the correct first line is seen.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>R1 </em></strong>only if both <strong><em>M </em></strong>marks have been awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^5} - n = n({n^4} - 1)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = n({n^2} - 1)({n^2} + 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (n - 1)n(n + 1)({n^2} - 4 + 5)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = (n - 2)(n - 1)n(n + 1)(n + 2) + 5(n - 1)n(n + 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">each term is multiple of 2, 3 and 5 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore is divisible by 30 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">case 1: \(m = 0\) and \({3^{{3^0}}} \equiv 3{\text{mod}}4\) is true <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">case 2: \(m > 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">let \(N = {3^m} \geqslant 3\) and consider the binomial expansion <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({3^N} = {(1 + 2)^N} = \sum\limits_{k = 0}^N {} \) \(\left( \begin{array}{c}N\\k\end{array} \right){2^k} = 1 + 2N + \underbrace {\sum\limits_{k = 2}^N {\left( \begin{array}{c}N\\k\end{array} \right){2^k}} }_{ \equiv ({\text{mod}}4)} \equiv 1 + 2N({\text{mod}}4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">as \(\underbrace {{3^m}}_N \equiv {( - 1)^m}({\text{mod}}4) \Rightarrow 1 + 2N \equiv 1 + 2{( - 1)^m}({\text{mod}}4)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(\underbrace {{3^{{3^m}}}}_{{3^N}} \equiv 1 + 2{( - 1)^m}({\text{mod}}4) \Rightarrow \) \(\left\{ \begin{array}{l}\underbrace {{3^{{3^m}}}}_{{3^N}} \equiv \underbrace {1 + 2}_3({\text{mod}}4){\rm{for\,}} m {\rm{\,even}}\\\underbrace {{3^{{3^m}}}}_{{3^N}} \equiv \underbrace {1 - 2}_{ - 1 \equiv 3({\text{mod}}4)}({\text{mod}}4){\rm{for\,}} m {\rm{\,odd}}\end{array} \right.\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">which proves that \({3^{{3^m}}} \equiv 3({\text{mod}}4)\) for any \(m \in \mathbb{N}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">let \({\text{P}}(n)\) be the proposition: \({3^{{3^n}}} - 3 \equiv 0({\text{mod }}4,{\text{ or }}24)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({3^{{3^0}}} - 3 = 3 - 3 \equiv 0({\text{mod }}4{\text{ or }}24)\), so \({\text{P}}(0)\) is true <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">assume \({\text{P}}(k)\) is true for some \(k\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">consider \({3^{{3^{^{k + 1}}}}} - 3 = {3^{{3^k} \times 3}} - 3\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {(3 + 24r)^3} - 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 27 + 24t - 3\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 0({\text{mod }}4{\text{ or }}24)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">as \({\text{P}}(0)\) is true and \({\text{P}}(k)\) true implies \({\text{P}}(k + 1)\) true, by PMI \({\text{P}}(n)\) is true for all values \(n \in \mathbb{N}\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 3</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({3^{{3^m}}} - 3 = 3({3^{{3^m} - 1}} - 1)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3({3^{2k}} - 1)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3({9^k} - 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3\underbrace {\left( {{{(8 + 1)}^k} - 1} \right)}_{{\text{multiple of 8}}}\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 0({\text{mod}}24)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">which proves that \({3^{{3^m}}} \equiv 3({\text{mod}}4)\) for any \(m \in \mathbb{N}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) for \(m \in \mathbb{N},{\text{ }}{3^{{3^m}}} \equiv 3({\text{mod}}4)\) and, as \({2^{{2^n}}} \equiv 0({\text{mod}}4)\) and \({5^2} \equiv 1({\text{mod}}4)\) then \({2^{{2^n}}} + {5^2} \equiv 1({\text{mod}}4)\) for \(n \in {\mathbb{Z}^ + }\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">there is no solution to \({3^{{3^m}}} = {2^{{2^n}}} + {5^2}\) for pairs \((m,{\text{ }}n) \in \mathbb{N} \times {\mathbb{Z}^ + }\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">when \(n = 0\), we have \({3^{{3^m}}} = {2^{{2^0}}} + {5^2} \Rightarrow {3^{{3^m}}} = 27 \Rightarrow m = 1\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \((m,{\text{ }}n) = (1,{\text{ }}0)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">is the only pair of non-negative integers that satisfies the equation <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many students were able to get partial credit for part (a), although few managed to gain full marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">There seemed to be very few good attempts at part (b), many failing at the outset to understand what was meant by \({3^{{3^m}}}\).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Draw a spanning tree for</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> (i) the complete graph, \({K_4}\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) the complete bipartite graph, \({K_{4,4}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Prove that a simple connected graph with <em>n </em>vertices, where \(n > 1\), must have two vertices</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">of the same degree.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Prove that every simple connected graph has at least one spanning tree.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i)<br><img src="images/maths_3a_i_markscheme.png" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Or equivalent not worrying about the orientation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii)<br><img src="images/maths_3a_ii_markscheme.png" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Other trees are possible, but must clearly come from the bipartite graph, so, for example, a straight line graph is not acceptable unless the bipartite nature is clearly shown <em>eg</em>, with black and white vertices.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) graph is simple implies maximum degree is \(n - 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">graph is connected implies minimum degree is 1 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by a pigeon-hole principle two vertices must have the same degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) if the graph is not a tree it contains a cycle <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">remove one edge of this cycle <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the graph remains connected <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">repeat until there are no cycles <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the final graph is connected and has no cycles <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so is a tree <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow other methods <em>eg</em>, induction, reference to Kruskal’s algorithm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [10 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p class="p1">The weights of the edges in the complete graph \(G\) are shown in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-02-06_om_05.29.01.png" alt="M16/5/MATHL/HP3/ENG/TZ0/DM/02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Starting at A</span>, use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for \(G\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">By first removing A </span>, use the deleted vertex algorithm to find a lower bound for the travelling salesman problem for \(G\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to use the nearest neighbour algorithm <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(\begin{array}{*{20}{l}} {{\text{the nearest neighbour path is}}}&{{\text{A}} \to {\text{D}} \to {\text{C }}A1} \\ {}&{ \to {\text{E}} \to {\text{B}} \to {\text{F}} \to {\text{A }}A1} \end{array}\)</p>
<p class="p1">the upper bound is the total weight of this path, <em>ie</em> <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\(8 + 7 + 8 + 10 + 13 + 9 = 55\) </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>The <strong><em>(M1) </em></strong>is for adding 6 weights together.</p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">attempt to use an appropriate algorithm, with A <span class="s1">deleted, to determine the </span>minimum spanning tree, <em>eg </em>Kruskal’s <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2"><span class="s2">CD </span>(7) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">CE, CB (8,9) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">DF or EF (11) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">the weight of this minimum spanning tree is 35 <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">adding in the two smallest weights joining A (AD and AF) <span class="s1">to this tree gives </span>a lower bound <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p2">of \(35 + 8 + 9 = 52\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"><strong>Note: <span class="Apple-converted-space"> </span></strong>Clear diagrams aiding solutions are acceptable in (a) and (b).</p>
<p class="p2"><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Generally good use of the nearest neighbour algorithm. Some candidates showed no knowledge of it and there was some confusion with the twice the weight of a minimal spanning tree method. Some candidates forgot to go back to A and thus did not have a Hamiltonian cycle.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The method was generally known. Some candidates used nearest neighbour instead of Kruskal’s algorithm to find a minimal spanning tree. Some forgot to add in the two edges connected to . Some with the right method made mistakes in not noticing the correct edge to choose. <span class="s1">A</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following graph represents the cost in dollars of travelling by bus between 10 towns in a particular province.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-11_om_14.37.25.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use Dijkstra’s algorithm to find the cheapest route between \(A\) and \(J\), and state its cost.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For the remainder of the question you may find the cheapest route between any two towns by inspection.</p>
<p class="p1">It is given that the total cost of travelling on all the roads without repeating any is \(\$ 139\).</p>
<p class="p1">A tourist decides to go over all the roads at least once, starting and finishing at town \(A\).</p>
<p class="p1">Find the lowest possible cost of his journey, stating clearly which roads need to be travelled more than once. You must fully justify your answer.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2015-12-11_om_14.45.31.png" alt> <strong><em>M1A1A1A1</em></strong></p>
<p class="p1">(<strong><em>M1</em></strong> for an attempt at Dijkstra’s)</p>
<p class="p1">(<strong><em>A1</em></strong> for value of \({\text{D}} = 17\))</p>
<p class="p1">(<strong><em>A1</em></strong> for value of \({\text{H}} = 22\))</p>
<p class="p1">(<strong><em>A1</em></strong> for value of \({\text{G}} = 22\))</p>
<p class="p1">route is \(ABDHJ\) <span class="Apple-converted-space"> </span><strong><em>(M1)A1</em></strong></p>
<p class="p1">cost is \($27\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note:</strong> <span class="Apple-converted-space"> </span>Accept other layouts.</p>
<p class="p1"><em><strong>[7 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">there are 4 odd vertices \(A\), \(D\), \(F\) and \(J\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">these can be joined up in 3 ways with the following extra costs</p>
<p class="p1">\(AD\) and \(FJ\)\(\;\;\;17 + 13 = 30\)</p>
<p class="p1">\(AF\) and \(DJ\)\(\;\;\;23 + 10 = 33\)</p>
<p class="p1">\(AJ\) and \(DF\)\(\;\;\;27 + 12 = 39\) <span class="Apple-converted-space"> </span><strong><em>M1A1A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>M1 </em></strong>for an attempt to find different routes.</p>
<p class="p1">Award <strong><em>A1A1 </em></strong>for correct values for all three costs <strong><em>A1 </em></strong>for one correct.</p>
<p class="p2"> </p>
<p class="p1">need to repeat \(AB\), \(BD\), \(FG\) and \(GJ\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">total cost is \(139 + 30 = \$ 169\) <em><strong>A1</strong></em></p>
<p class="p1"><em><strong>[6 marks]</strong></em></p>
<p class="p1"><em><strong>Total [13 marks]</strong></em></p>
<p class="p1"> </p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates had the correct route and the cost. Not all showed sufficient working with their Dijkstra’s algorithm. See the mark-scheme for the neat way of laying out the working, including the back-tracking method. This tabular working is efficient, avoids mistakes and saves time.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">There was often confusion here between this problem and the travelling salesman. Good candidates started with the number of vertices of odd degree. Weaker candidates just tried to write the answer down without complete reasoning. All the 3 ways of joining the odd vertices had to be considered so that you knew you had the smallest. Sometimes a mark was lost by giving which routes (paths) had to be repeated rather than which roads (edges).</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use the Euclidean algorithm to find the greatest common divisor of 259 and 581.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence, or otherwise, find the general solution to the diophantine equation 259<em>x</em> + 581<em>y</em> = 7 .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(581 = 2 \times 259 + 63\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(259 = 4 \times 63 + 7\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(63 = 9 \times 7\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the GCD is therefore 7 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(7 = 259 - 4 \times 63\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 259 - 4 \times (581 - 2 \times 259)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 259 \times 9 + 581 \times ( - 4)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 9 + 83n;{\text{ }}y = - 4 - 37n{\text{ where }}n \in \mathbb{Z}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Notes:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Accept solutions laid out in tabular form. Dividing the diophantine equation by 7 is an equally valid method.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">An arithmetic sequence has first term 2 and common difference 4. Another arithmetic sequence has first term 7 and common difference 5. Find the set of all numbers which are members of both sequences.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the <em>m</em>th term of the first sequence \( = 2 + 4(m - 1)\) <strong><em>(M1)(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the <em>n</em>th term of the second sequence \( = 7 + 5(n - 1)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">equating these, <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5n = 4m - 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5n = 4(m - 1)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">4 and 5 are coprime <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 4|n\) so \(n = 4s\) or \(5|(m - 1)\) so \(m = 5s + 1\) , \(s \in {\mathbb{Z}^ + }\) <strong><em>(A1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">thus the common terms are of the form \(\{ 2 + 20s;{\text{ }}s \in {\mathbb{Z}^ + }\} \) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the numbers of both sequences are</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">2, 6, 10, 14, 18, 22</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">7, 12, 17, 22 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so 22 is common <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">identify the next common number as 42 <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is \(\{ 2 + 20s;{\text{ }}s \in {\mathbb{Z}^ + }\} \) <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[9 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Solutions to this question were extremely variable with some candidates taking several pages to give a correct solution and others taking several pages and getting nowhere. Some elegant solutions were seen including the fact that the members of the two sets can be represented as \(2\bmod 4\) and \(2\bmod 5\) respectively so that common members are \(2\bmod 20\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"> </p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using the Euclidean algorithm, show that \(\gcd (99,{\text{ }}332) = 1\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Find the general solution to the diophantine equation \(332x - 99y = 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence, or otherwise, find the smallest positive integer satisfying the congruence \(17z \equiv 1(\bmod 57)\).</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the Euclidean Algorithm,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(332 = 3 \times 99 + 35{\text{ }}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(99 = 2 \times 35 + 29\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(35 = 1 \times 29 + 6\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(29 = 4 \times 6 + 5\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6 = 1 \times 5 + 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence 332 and 99 have a gcd of 1 <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> For both (a) and (b) accept layout in tabular form, especially the brackets method of keeping track of the linear combinations as the method proceeds.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) working backwards, <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6 - 5 = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6 - (29 - 4 \times 6) = 1{\text{ or }}5 \times 6 - 29 = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5 \times (35-29)-29 = 1{\text{ or }}5 \times 35-6 \times 29 = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(5 \times 35-6 \times (99-2 \times 35) = 1{\text{ or }}17 \times 35-6 \times 99 = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(17 \times (332-3 \times 99)-6 \times 99 = 1{\text{ or }}17 \times 332-57 \times 99 = 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a solution to the Diophantine equation is therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 17,{\text{ }}y = 57\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 17 + 99N,{\text{ }}y = 57 + 332N\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> If part (a) is wrong it is inappropriate to give </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>FT</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> in (b) as the numbers will contradict, however the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>M1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> can be given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) it follows from previous work that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(17 \times 332 = 1 + 99 \times 57\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 1(\bmod 57)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>z</em> = 332 is a solution to the given congruence <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is 332 + 57<em>N</em> so the smallest solution is 47 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[11 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was well answered and (b) fairly well answered. There were problems with negative signs due to the fact that there was a negative in the question, so candidates had to think a little, rather than just remembering formulae by rote. The lay-out of the algorithm that keeps track of the linear combinations of the first 2 variables is recommended to teachers.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) was well answered and (b) fairly well answered. There were problems with negative signs due to the fact that there was a negative in the question, so candidates had to think a little, rather than just remembering formulae by rote. The lay-out of the algorithm that keeps track of the linear combinations of the first 2 variables is recommended to teachers.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve, by any method, the following system of linear congruences</p>
<p class="p1"><span class="Apple-converted-space"> </span>\(x \equiv 9(\bmod 11)\)</p>
<p class="p1"><span class="Apple-converted-space"> </span>\(x \equiv 1(\bmod 5)\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the remainder when \({41^{82}}\) is divided by 11.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answers to parts (a) and (b) find the remainder when \({41^{82}}\) is divided by \(55\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">listing \(9,{\rm{ }}20,{\rm{ }}31\), \( \ldots \) and \(1,{\rm{ }}6,11,16,{\rm{ }}21,{\rm{ }}26,{\rm{ }}31\), \( \ldots \) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">one solution is \(31\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">by the Chinese remainder theorem the full solution is</p>
<p class="p2">\(x \equiv 31(\bmod 55)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1 N2</em></strong></span></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">\(x \equiv 9(\bmod 11) \Rightarrow x = 9 + 11t\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( \Rightarrow 9 + 11t \equiv 1(\bmod 5)\)</p>
<p class="p1">\( \Rightarrow t \equiv 2(\bmod 5)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">\( \Rightarrow t = 2 + 5s\)</p>
<p class="p1">\( \Rightarrow x = 9 + 11(2 + 5s)\)</p>
<p class="p1">\( \Rightarrow x = 31 + 55s{\text{ }}\left( { \Rightarrow x \equiv 31(\bmod 55)} \right)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept other methods <em>eg </em>formula, Diophantine equation.</p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept other equivalent answers e.g. \( - 79(\bmod 55)\).</p>
<p class="p1"><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({41^{82}} \equiv {8^{82}}(\bmod 11)\)</p>
<p class="p1">by Fermat’s little theorem \({8^{10}} \equiv 1(\bmod 11)\;\;\;\left( {{\text{or }}{{41}^{10}} \equiv 1(\bmod 11)} \right)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\({8^{82}} \equiv {8^2}(\bmod 11)\) <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\( \equiv 9(\bmod 11)\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">remainder is \(9\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Accept simplifications done without Fermat.</p>
<p class="p1"><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({41^{82}} \equiv {1^{82}} \equiv 1(\bmod 5)\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">so \({41^{82}}\) has a remainder \(1\) when divided by \(5\) and a remainder \(9\) when divided by \(11\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">hence by part (a) the remainder is \(31\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [10 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">A variety of methods were used here. The Chinese Remainder Theorem method (Method 2 on the mark-scheme) is probably the most instructive. Candidates who tried to do it by formula often (as usual) made mistakes and got it wrong. Marks were lost by just saying 31 and not giving mod (55).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Time was lost here by not using Fermat’s Little Theorem as a starting point, although the ad hoc methods will work.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although it said use parts (a) and (b) not enough candidates saw the connection.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider an integer \(a\) with \((n + 1)\) digits written as \(a = {10^n}{a_n} + {10^{n - 1}}{a_{n - 1}} + \ldots + 10{a_1} + {a_0}\), where \(0 \leqslant {a_i} \leqslant 9\) for \(0 \leqslant i \leqslant n\), and \({a_n} \ne 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \(a \equiv ({a_n} + {a_{n - 1}} + \ldots + {a_0}) ({\text{mod9}})\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence find all pairs of values of the single digits \(x\) and \(y\) such that the number \(a = 476x212y\) is a multiple of \(45\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) If \(b = 34\,390\) in base 10, show that \(b\) is \(52\,151\) written in base 9.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence find \({b^2}\) in base 9, by performing all the calculations without changing base.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(10 \equiv 1(\bmod 9) \Rightarrow {10^i} \equiv 1({\text{mod9}}),{\text{ }}i = 1,{\text{ }} ... ,{\text{ }}n\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow {10^i}{a_i} \equiv {a_i}({\text{mod9}}),{\text{ }}i = 1,{\text{ }}n\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow \(i = 0\) but do not penalize its omission.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow ({10^n}{a_n} + {10^{n - 1}}{a_{n - 1}} + \ldots + {a_0}) \equiv ({a_n} + {a_{n - 1}} + \ldots + {a_0})({\text{mod9}})\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \(4 + 7 + 6 + x + 2 + 1 + 2 + y = 9k,{\text{ }}k \in \mathbb{Z}\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow (22 + x + y) \equiv 0(\bmod 9),{\text{ }} \Rightarrow (x + y) \equiv 5({\text{mod9}})\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x + y = 5\) or \(14\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">if \(5\) divides \(a\), then \(y = 0\) or \(5\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">so \(y = 0 \Rightarrow x = 5,{\text{ }}\left( {ie{\text{ }}(x,{\text{ }}y) = (5,{\text{ }}0)} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = 5 \Rightarrow x = 0\) or \(x = 9,{\text{ }}\left( {ie{\text{ }}(x,{\text{ }}y) = (0,{\text{ }}5){\text{ or }}(x,{\text{ }}y) = (9,{\text{ }}5)} \right)\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) <br><img src="images/Schermafbeelding_2014-09-17_om_14.51.30.png" alt> <strong><em>(M1)A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(b = {(52\,151)_9}\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <br><img src="images/Schermafbeelding_2014-09-17_om_14.52.41.png" alt> <strong><em>M1A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>M1 </em></strong>for attempt, <strong><em>A1 </em></strong>for two correct lines of multiplication, <strong><em>A2 </em></strong>for two correct lines of multiplication and a correct addition, <strong><em>A3 </em></strong>for all correct.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly few good answers. Part (a) had a number of correct solutions, but there were also many that seemed to be a memorised solution, not properly expressed – and consequently wrong. In part (b) many failed to understand the question, not registering that <em>x</em> and <em>y</em> were digits rather than numbers. Part (c)(i) was generally well answered, although there were a number of longer methods applied, and few managed to do (c)(ii).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Find the general solution for the following system of congruences.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(N \equiv 3(\bmod 11)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(N \equiv 4(\bmod 9)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> \(N \equiv 0(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find all values of <em>N</em> such that \(2000 \leqslant N \leqslant 4000\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(N = 3 + 11t\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 + 11t \equiv 4(\bmod 9)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2t \equiv 1(\bmod 9)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">multiplying by 5, \(10t \equiv 5(\bmod 9)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t \equiv 5(\bmod 9)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(t = 5 + 9s\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = 3 + 11(5 + 9s)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = 58 + 99s\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(58 + 99s \equiv 0(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2 + s \equiv 0(\bmod 7)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s \equiv 5(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(s = 5 + 7u\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = 58 + 99(5 + 7u)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(N = 553 + 693u\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Allow solutions that are done by formula or an exhaustive, systematic listing of possibilities.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <em>u</em> = 3 or 4</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">hence N = 553 + 2079 = 2632 or <em>N</em> = 553 + 2772 = 3325 <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [11 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"> </p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This was a standard Chinese remainder theorem problem that many candidates gained good marks on. Some candidates employed a formula, which was fine if they remembered it correctly (but not all did), although it did not always show good understanding of the problem.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Anna is playing with some cars and divides them into three sets of equal size. However, when she tries to divide them into five sets of equal size, there are four left over. Given that she has fewer than 50 cars, what are the possible numbers of cars she can have?</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>x</em> be the number of cars</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we know \(x \equiv 0(\bmod 3)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">also \(x \equiv 4(\bmod 5)\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(x = 3t \Rightarrow 3t \equiv 4(\bmod 5)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 6t \equiv 8(\bmod 5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t \equiv 3(\bmod 5)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t = 3 + 5s\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 9 + 15s\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since there must be fewer than 50 cars, <em>x</em> = 9, 24, 39 <strong><em>A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Only award two of the final three <strong><em>A1</em></strong> marks if more than three solutions are given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>x</em> is a multiple of 3 that ends in 4 or 9 <strong><em>R4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore <em>x</em> = 9, 24, 39 <strong><em>A1A1A1 N3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Only award two of the final three <strong><em>A1</em></strong> marks if more than three solutions are given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were a number of totally correct solutions to this question, but some students were unable to fully justify their results.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the integers \(a = 871\) and \(b= 1157\), given in base \(10\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Express \(a\) and \(b\) in base \(13\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence show that \({\text{gcd}}(a,{\text{ }}b) = 13\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A list \(L\) contains \(n+ 1\) distinct positive integers. Prove that at least two members of \(L\)leave the same remainder on division by \(n\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the simultaneous equations</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(4x + y + 5z = a\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(2x + z = b\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(3x + 2y + 4z = c\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">where \(x,{\text{ }}y,{\text{ }}z \in \mathbb{Z}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that 7 divides \(2a + b - c\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Given that <em>a </em>= 3, <em>b </em>= 0 and <em>c </em>= −1, find the solution to the system of equations modulo 2.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;">Consider the set \(P\) of numbers of the form \({n^2} - n + 41,{\text{ }}n \in \mathbb{N}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;">(i) Prove that all elements of <em>P </em>are odd.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;">(ii) List the first six elements of <em>P </em>for <em>n </em>= 0, 1, 2, 3, 4, 5.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-size: medium; font-family: 'times new roman', times;">(iii) Show that not all elements of <em>P </em>are prime.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) <strong>METHOD 1</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using a relevant list of powers of 13: (1), 13, 169, (2197) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(871 = 5 \times {13^2} + 2 \times 13\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(871 = {520_{13}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1157 = 6 \times {13^2} + 11 \times 13\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1157 = 6{\text{B}}{{\text{0}}_{13}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">attempted repeated division by 13 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(871 \div 13 = 67;{\text{ }}67 \div 13 = 5{\text{rem}}2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(871 = {520_{13}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1157 \div 13 = 89;{\text{ }}89 \div 13 = 6{\text{rem11}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(1157 = 6{\text{B}}{{\text{0}}_{13}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow (11) for B only if brackets or equivalent are present.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(871 = 13 \times 67;{\text{ }}1157 = 13 \times 89\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">67 and 89 are primes (base 10) or they are co-prime <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So \(\gcd (871,{\text{ }}1157) = 13\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Must be done by hence not Euclid’s algorithm on 871 and 1157.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>K </em>be the set of possible remainders on division by <em>n </em><strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">then \(K = \{ {\text{0, 1, 2, }} \ldots n - 1\} \) has <em>n </em>members <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">because \(n < n + 1{\text{ }}\left( { = n(L)} \right)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by the pigeon-hole principle (appearing anywhere and not necessarily mentioned by name as long as is explained) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">at least two members of <em>L </em>correspond to one member of <em>K </em><strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) form the appropriate linear combination of the equations: <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2a + b - c = 7x + 7z\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 7(x + z)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so 7 divides \(2a + b - c\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) modulo 2, the equations become <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y + z = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(z = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">solution: (1, 1, 0) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award full mark to use of GDC (or done manually) to solve the system giving \(x = - 1,{\text{ }}y = - 3,{\text{ }}z = 2\) and then converting mod 2.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) separate consideration of even and odd <em>n </em><strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{eve}}{{\text{n}}^2} - {\text{even}} + {\text{odd is odd}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{od}}{{\text{d}}^2} - {\text{odd}} + {\text{odd is odd}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">all elements of <em>P </em>are odd <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Allow other methods <em>eg</em>, \({n^2} - n = n(n - 1)\) which must be even.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the list is [41, 41, 43, 47, 53, 61] <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) \({41^2} - 41 + 41 = {41^2}\) divisible by 41 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">but is not a prime <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the statement is disproved (by counterexample) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">One version of Fermat’s little theorem states that, under certain conditions, \({a^{p - 1}} \equiv 1(\bmod p)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that this result is not true when <em>a</em> = 2, <em>p</em> = 9 and state which of the conditions is not satisfied.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find the smallest positive value of <em>k</em> satisfying the congruence \({2^{45}} \equiv k(\bmod 9)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find all the integers between 100 and 200 satisfying the simultaneous congruences \(3x \equiv 4(\bmod 5)\) and \(5x \equiv 6(\bmod 7)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \({2^8} = 256 \equiv 4(\bmod 9)\) (so not true) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">9 is not prime <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) consider various powers of 2, <em>e.g.</em> obtaining <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^6} = 64 \equiv 1(\bmod 9)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{45}} = {({2^6})^7} \times {2^3}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 8(\bmod 9){\text{ (so }}k = 8)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solutions to \(3x \equiv 4(\bmod 5)\) are 3, 8, 13, 18, 23,… <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the solutions to \(5x \equiv 6(\bmod 7)\) are 4, 11, 18,… <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">18 is therefore the smallest solution <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(18 + 35n{\text{ , }}n \in \mathbb{Z}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required solutions are therefore 123, 158, 193 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3x \equiv 4(\bmod 5) \Rightarrow 2 \times 3x \equiv 2 \times 4(\bmod 5) \Rightarrow x \equiv 3(\bmod 5)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 3 + 5t\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow 15 + 25t \equiv 6(\bmod 7) \Rightarrow 4t \equiv 5(\bmod 7) \Rightarrow 2 \times 4t \equiv 2 \times 5(\bmod 7) \Rightarrow t \equiv 3(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow t = 3 + 7n\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow x = 3 + 5(3 + 7n) = 18 + 35n\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required solutions are therefore 123, 158, 193 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the Chinese remainder theorem formula method</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">first convert the congruences to \(x \equiv 3(\bmod 5)\) and \(x \equiv 4(\bmod 7)\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(M = 35{\text{, }}{M_1} = 7{\text{, }}{M_2} = 5{\text{, }}{m_1} = 5,{\text{ }}{m_2} = 7,{\text{ }}{a_1} = 3,{\text{ }}{a_2} = 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_1}\) is the solution of \({M_2}{x_2} \equiv 1(\bmod {m_1})\) , <em>i.e.</em> \(7{x_1} \equiv 1(\bmod 5)\) so \({x_1} = 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x_2}\) is the solution of \({M_2}{x_2} \equiv 1(\bmod {m_2})\) , <em>i.e.</em> \(5{x_2} \equiv 1(\bmod 7)\) so \({x_2} = 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a solution is therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = {a_1}{M_1}{x_1} + {a_2}{M_2}{x_2}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 3 \times 7 \times 3 + 4 \times 5 \times 3 = 123\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the general solution is \(123 + 35n\) , \(n \in \mathbb{Z}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the required solutions are therefore 123, 158, 193 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A simple connected planar graph, has \(e\) edges, \(v\) vertices and \(f\) faces.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Show that \(2e \ge 3f{\text{ if }}v > 2\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence show that \({K_5}\), the complete graph on five vertices, is not planar.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the handshaking lemma.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the value of \(f\), if each vertex has degree \(2\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an example of a simple connected planar graph on \(6\) vertices each of degree \(3\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span><strong>METHOD 1</strong></p>
<p class="p1">attempting to use \(f = e - v + 2\) and \(e \le 3v - 6\) (if \(v > 2\)) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(2e \le 6v - 12 = 6(e - f + 2) - 12\) <span class="Apple-converted-space"> </span><strong><em>M1A1</em></strong></p>
<p class="p1">leading to \(2e \ge 3f\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">each face is bounded by at least three edges <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1 </em></strong>for stating \(e \ge 3f\).</p>
<p class="p2"> </p>
<p class="p1">each edge either separates two faces or, if an edge is interior to a face, it gets counted twice <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>R1 </em></strong>for stating that each edge contributes two to the sum of the degrees of the faces (or equivalent) <em>ie</em>, \(\sum {\deg (F) = 2e} \).</p>
<p class="p2"> </p>
<p class="p1">adding up the edges around each face <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">leading to \(2e \ge 3f\) <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\({K_5}\) has \(e = 10\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">if the graph is planar, \(f = 7\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">this contradicts the inequality obtained above <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1">hence the graph is non-planar <span class="Apple-converted-space"> </span><strong><em>AG</em></strong></p>
<p class="p1"><strong><em>[6 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>the sum of the vertex degrees \( = 2e\) (or is even) or equivalent <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>if each vertex has degree \(2\), then \(2v = 2e\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">substituting \(v = e\) into Euler’s formula <span class="Apple-converted-space"> </span><strong><em>M1</em></strong></p>
<p class="p1">\(f = 2\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">for example,</p>
<p class="p1"><img src="images/Schermafbeelding_2016-01-08_om_08.02.23.png" alt> <em><strong>A2</strong></em></p>
<p class="p1"><em><strong>[2 marks]</strong></em></p>
<p class="p1"><em><strong>Total [12 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a) (i), many candidates tried to prove \(2e \ge 3f\) with numerical examples. Only a few candidates were able to prove this inequality correctly. In part (a) (ii), most candidates knew that \({K_5}\) has 10 edges. However, a number of candidates simply drew a diagram with any number of faces and used this particular representation as a basis for their 'proof'. Many candidates did not recognise the 'hence' requirement in part (a) (ii).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (b) (i), many candidates stated the 'handshaking lemma' incorrectly by relating it to the 'handshake problem'. In part (b) (ii), only a few candidates determined that \(v = e\) and hence found that \(f = 2\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), a reasonable number of candidates were able to draw a simple connected planar graph on \(6\) vertices each of degree \(3\). The most common error here was to produce a graph that contained a multiple edge(s).</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The weights of the edges of a graph \(H\) are given in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-07_om_13.41.35.png" alt></p>
<p>(i) Draw the weighted graph \(H\).</p>
<p>(ii) Use Kruskal’s algorithm to find the minimum spanning tree of \(H\). Your solution should indicate the order in which the edges are added.</p>
<p>(iii) State the weight of the minimum spanning tree.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the following weighted graph.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-01-07_om_15.46.10.png" alt></p>
<p class="p1">(i) Write down a solution to the Chinese postman problem for this graph.</p>
<p class="p1">(ii) Calculate the total weight of the solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) State the travelling salesman problem.</p>
<p class="p1">(ii) Explain why there is no solution to the travelling salesman problem for this graph.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> <img src="images/Schermafbeelding_2016-01-08_om_08.53.20.png" alt></span> <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A2</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>A1 </em></strong>if one edge is missing. Award <strong><em>A1 </em></strong>if the edge weights are not labelled.</p>
<p class="p2"> </p>
<p class="p3"><span class="s2">(ii) <span class="Apple-converted-space"> </span></span>the edges are added in the order:</p>
<p class="p4">\(FG{\rm{ }}1\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p4">\(CE{\rm{ }}2\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4">\(ED{\rm{ }}3\)</p>
<p class="p4">\(EG{\rm{ }}4\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p4">\(AC{\rm{ }}4\)</p>
<p class="p5"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong><span class="s3">\(EG\) </span>and <span class="s3">\(AC\) </span>can be added in either order.</p>
<p class="p2"> </p>
<p class="p3">(Reject <span class="s3"> <span class="s3">\(EF\)</span></span>)</p>
<p class="p3">(Reject <span class="s3"> <span class="s3">\(CD\)</span></span>)</p>
<p class="p4">\(EB5\) <span class="s1"><strong>OR </strong></span>\(AB5\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Notes: <span class="Apple-converted-space"> </span></strong>The minimum spanning tree does not have to be seen.</p>
<p class="p3">If only a tree is seen, the order by which edges are added must be clearly indicated.</p>
<p class="p2"> </p>
<p class="p3">(iii) <span class="Apple-converted-space"> </span><span class="s3">\(19\) <span class="Apple-converted-space"> </span></span><strong><em>A1</em></strong></p>
<p class="p3"><strong><em>[8 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> </span><em>eg</em>, </span>\(PQRSRTSTQP\) <span class="s1"><strong>OR </strong></span>\(PQTSTRSRQP\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>M1A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>M1 </em></strong>if in either (i) or (ii), it is recognised that edge <span class="s2">\(PQ\) </span>is needed twice.</p>
<p class="p2"> </p>
<p class="p3">(ii) <span class="Apple-converted-space"> </span>total weight \( = 34\) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p3"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>to determine a cycle where each vertex is visited once only (Hamiltonian cycle) <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">of least total weight <span class="Apple-converted-space"> </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span><strong>EITHER</strong></p>
<p class="p1">to reach \(P\), \(Q\) must be visited twice which contradicts the definition of the \(TSP\) <span class="Apple-converted-space"> </span><strong><em>R1</em></strong></p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">the graph is not a complete graph and hence there is no solution to the \(TSP\) <span class="Apple-converted-space"> </span><strong><em>R1 </em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<p class="p1"><strong><em>Total [14 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (a) was generally very well answered. Most candidates were able to correctly sketch the graph of \(H\) and apply Kruskal’s algorithm to determine the minimum spanning tree of \(H\). A few candidates used Prim's algorithm (which is no longer part of the syllabus).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates understood the Chinese Postman Problem in part (b) and knew to add the weight of \(PQ\) to the total weight of \(H\). Some candidates, however, did not specify a solution to the Chinese Postman Problem while other candidates missed the fact that a return to the initial vertex is required.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (c), many candidates had trouble succinctly stating the Travelling Salesman Problem. Many candidates used an ‘edge’ argument rather than simply stating that the Travelling Salesman Problem could not be solved because to reach vertex \(P\), vertex \(Q\) had to be visited twice.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that there are exactly two solutions to the equation \(1982 = 36a + 74b\)<span class="s1">, with \(a,{\text{ }}b \in \mathbb{N}\).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, or otherwise, find the remainder when \({1982^{1982}}\) is divided by \(37\)<span class="s1">.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(74 = 2 \times 36 + 2\) <strong>OR </strong>\(\gcd (36,{\text{ }}74) = 2\) <strong><em>(A1)</em></strong></p>
<p>\(2 = ( - 2)(36) + (1)(74)\) <strong><em>M1</em></strong></p>
<p>\(1982 = ( - 1982)(36) + (991)(74)\) <strong><em>A1</em></strong></p>
<p>so solutions are \(a = - 1982 + 37t\) and \(b = 991 - 18t\) <strong><em>M1A1</em></strong></p>
<p>\(a,{\text{ }}b \in \mathbb{N}{\text{ so }}\frac{{1982}}{{37}} \le t \le \frac{{991}}{{18}}\;\;\;{\text{(}}15.56 \ldots \le t \le 55.055 \ldots )\) <strong><em>(M1)(A1)</em></strong></p>
<p>\(t\) can take values \(54\) or \(55\) only <strong><em>A1AG</em></strong></p>
<p>(Or the solutions are \((16,{\text{ }}19)\) or \((53,{\text{ }}1)\))</p>
<p> </p>
<p><strong>Note: </strong>Accept arguments from one solution of increasing/decreasing \(a\) by \(37\) and increasing/decreasing \(b\) by \(18\) to give the only possible positive solutions.</p>
<p><em><strong>[8 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(1982 = 53 \times 36 + 74\)</p>
<p class="p1">\(1982 = 55 \times 36 + 2\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({1982^{36}} \equiv 1(\bmod 37){\text{ }}({\text{by FLT}})\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p1">\({1982^{1982}} = {1982^{36 \times 55 + 2}} \equiv {1982^2}(\bmod 37)\) <span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p1">\( \equiv 34(\bmod 37)\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">so the remainder is \(34\) <span class="Apple-converted-space"> </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><span class="s1"><strong>Note: <span class="Apple-converted-space"> </span></strong></span>\(1982\) in the base can be replaced by \(21\)<span class="s1">.</span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award the first <strong><em>(M1) </em></strong><span class="s2">if the \(1982\) </span>in the experiment is correctly broken down to a smaller number.</p>
<p class="p3"> </p>
<p class="p3"><em><strong>[5 marks]</strong></em></p>
<p class="p3"><em><strong>Total [13 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Using Fermat’s little theorem, show that, in base 10, the last digit of <em>n</em> is always equal to the last digit of \({n^5}\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that this result is also true in base 30.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) using Fermat’s little theorem \({n^5} \equiv n(\bmod 5)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({n^5} - n \equiv 0(\bmod 5)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">now \({n^5} - n = n({n^4} - 1)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = n({n^2} - 1)({n^2} + 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = n(n - 1)(n + 1)({n^2} + 1)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence one of the first two factors must be even <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>i.e.</em> \({n^5} - n \equiv 0(\bmod 2)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">thus \({n^5} - n\) is divisible by 5 and 2</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence it is divisible by 10 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">in base 10, since \({n^5} - n\) is divisible by 10, then \({n^5} - n\) must end in zero and hence \({n^5}\) and <em>n</em> must end with the same digit <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) consider \({n^5} - n = n(n - 1)(n + 1)({n^2} + 1)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this is divisible by 3 since the first three factors are consecutive integers <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \({n^5} - n\) is divisible by 3, 5 and 2 and therefore divisible by 30 </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">in base 30, since \({n^5} - n\) is divisible by 30, then \({n^5} - n\) must end in zero and hence \({n^5}\) and <em>n</em> must end with the same digit <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There were very few fully correct answers. If Fermat‟s little theorem was known, it was not well applied.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Write 57128 as a product of primes.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(\left. {22} \right|{5^{11}} + {17^{11}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(457\,128 = 2 \times 228\,564\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(228\,564 = 2 \times 114\,282\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(114\,282 = 2 \times 57\,141\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(57\,141 = 3 \times 19\,047\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(19\,047 = 3 \times 6349\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(6349 = 7 \times 907\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">trial division by 11, 13, 17, 19, 23 and 29 shows that 907 is prime <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(457\,128 = {2^3} \times {3^2} \times 7 \times 907\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by a corollary to Fermat’s Last Theorem</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{11}} \equiv 5(\bmod 11){\text{ and }}{17^{11}} \equiv 17(\bmod 11)\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{11}} + {17^{11}} \equiv 5 + 17 \equiv 0(\bmod 11)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">this combined with the evenness of LHS implies \(\left. {25} \right|{5^{11}} + {17^{11}}\) <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates were obviously not sure what was meant by ‘product of primes’ which surprised the examiner.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">There were some reasonable attempts at part (c) using powers rather than Fermat’s little theorem.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows the graph G with vertices A, B, C, D, E and F.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 26px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Determine if any Hamiltonian cycles exist in <em>G</em> . If so, write one down.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Otherwise, explain what feature of G makes it impossible for a Hamiltonian cycle to exist.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Determine if any Eulerian circuits exist in <em>G</em> . If so, write one down.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Otherwise, explain what feature of <em>G</em> makes it impossible for an Eulerian circuit to exist.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) any Hamiltonian circuit ACBEFDA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) no Eulerian circuit exists because the graph contains vertices of odd degree <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (b) were well answered by many candidates. In (c), candidates who tried to prove the result by adding edges to a drawing of G were given no credit. Candidates should be aware that the use of the word ‘Prove’ indicates that a formal treatment is required Solutions to (d) were often disappointing although a graphical solution was allowed here.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following diagram shows a weighted graph.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_10.52.09.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Use Kruskal’s algorithm to find a minimum spanning tree, clearly showing the order in which the edges are added.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Sketch the minimum spanning tree found, and write down its weight.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) use Kruskal’s algorithm: begin by choosing the shortest edge and then select a sequence of edges of non-decreasing weights, checking at each stage that no cycle is completed <strong><em>(M1)</em></strong></span></p>
<table border="0">
<tbody>
<tr>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; font-size: medium; line-height: normal;">choice </span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; font-size: medium; line-height: normal;">edge </span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; font-size: medium; line-height: normal;">weight</span></td>
</tr>
<tr>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">1</span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">BG</span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">1</span></td>
</tr>
<tr>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">2</span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">AG</span></td>
<td><span style="color: #3f3f3f; font-family: 'times new roman', times; line-height: normal; font-size: medium;">2</span></td>
</tr>
<tr>
<td><span style="font-family: 'times new roman', times; font-size: medium;">3</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">FG</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">3</span></td>
</tr>
<tr>
<td><span style="font-family: 'times new roman', times; font-size: medium;">4</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">BC</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">4</span></td>
</tr>
<tr>
<td><span style="font-family: 'times new roman', times; font-size: medium;">5</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">DE</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">5</span></td>
</tr>
<tr>
<td><span style="font-family: 'times new roman', times; font-size: medium;">6</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">AH</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">6</span></td>
</tr>
<tr>
<td><span style="font-family: 'times new roman', times; font-size: medium;">7</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">EG</span></td>
<td><span style="font-family: 'times new roman', times; font-size: medium;">7</span></td>
</tr>
</tbody>
</table>
<p><strong style="line-height: normal; font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><strong style="font-family: 'times new roman', times; font-size: medium; background-color: #f7f7f7;"><em>A3</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>A1 </em></strong>for steps 2–4, <strong><em>A1</em></strong>for step 5 and <strong><em>A1</em></strong>for steps 6, 7.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> Award marks only if it is clear that Kruskal’s algorithm is being used.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks] </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) weight \( = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-17_om_10.54.42.png" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>FT </em></strong>only if it is a spanning tree.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman'; min-height: 23.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Well answered by the majority of candidates.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; line-height: 12.1px; font: 24.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">Let <span style="color: #000000;"><em>G </em></span>be a simple, connected, planar graph. </span></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Show that Euler’s relation \(f - e + v = 2\) is valid for a spanning tree of G.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 22px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) By considering the effect of adding an edge on the values of <em>f</em>, <em>e</em> and <em>v</em> show that Euler’s relation remains true.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that <em>K</em><sub>5</sub> is not planar.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) A spanning tree with <em>v </em>vertices and (<em>v </em>−1) edges where <em>f </em>= 1 <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>f </em>− <em>e </em>+ <em>v </em>=1 − (<em>v </em>− 1) + <em>v </em>= 2 <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">So the formula is true for the tree <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Adding one edge connects two different vertices, and hence an extra face is created <strong><em>M1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This leaves <em>v </em>unchanged but increases both <em>e </em>and <em>f </em>by 1 leaving <em>f </em>− <em>e </em>+ <em>v </em>unchanged. Hence <em>f </em>− <em>e </em>+ <em>v </em>= 2 . <strong><em>R1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Using \(e \leqslant 3v - 6\) , <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for \({K_5},{\text{ }}v = 5\) and \(e = \left( {\begin{array}{*{20}{c}}<br> 5 \\ <br> 2 <br>\end{array}} \right) = 10\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">but 3<em>v </em>− 6 = 3(5) − 6 = 9 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">9 is not greater or equal to 10 so \({K_5}\) is not planar <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [12 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a)(i) was done successfully but many students did not read part(ii) carefully. It said <strong>‘adding an edge’ </strong>nothing else. Many candidates assumed it was necessary to add a vertex when this was not the case. </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (b) was not found to be beyond many candidates if they used the inequality \(e \leqslant 3v - 6\)</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Write down Fermat’s little theorem.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) In base 5 the representation of a natural number <em>X</em> is \({\left( {k00013(5 - k)} \right)_5}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This means that \(X = k \times {5^6} + 1 \times {5^2} + 3 \times 5 + (5 - k)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In base 7 the representation of <em>X</em> is \({({a_n}{a_{n - 1}} \ldots {a_2}{a_1}{a_0})_7}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find \({a_0}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 33.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Given that <em>k</em> = 2, find <em>X</em> in base 7.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">if <em>p</em> is a prime \({a^p} \equiv a(\bmod p)\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">if <em>p</em> is a prime and \(a\) </span><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> \(0(\bmod p)\) then \({a^{p - 1}} \equiv 1(\bmod p)\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> for <em>p</em> being prime and <strong><em>A1</em></strong> for the congruence.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) \({a_0} \equiv X(\bmod 7)\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = k \times {5^6} + 25 + 15 + 5 - k\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">by Fermat \({5^6} \equiv 1(\bmod 7)\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = k + 45 - k(\bmod 7)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = 3(\bmod 7)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a_0} = 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) \(X = 2 \times {5^6} + 25 + 15 + 3 = 31\,293\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X - {7^5} = 14\,486\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X - {7^5} - 6 \times {7^4} = 80\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X - {7^5} - 6 \times {7^4} - {7^2} = 31\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X - {7^5} - 6 \times {7^4} - {7^2} - 4 \times 7 = 3\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = {7^5} + 6 \times {7^4} + {7^2} + 4 \times 7 + 3\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = {(160\,143)_7}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(31\,293 = 7 \times 4470 + 3\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(4470 = 7 \times 638 + 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(638 = 7 \times 91 + 1\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(91 = 7 \times 13 + 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(13 = 7 \times 1 + 6\) <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(X = {(160\,143)_7}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [11 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Fermat’s little theorem was reasonably well known. Not all candidates took the hint to use this in the next part and this part was not done well. Part (c) could and was done even if part (b) was not.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that, for a connected planar graph,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[v + f - e = 2.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Assuming that \(v \geqslant 3\), explain why, for a simple connected planar graph, \(3f \leqslant 2e\) and hence deduce that \(e \leqslant 3v - 6\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) The graph <em>G</em> and its complement \({G'}\) are simple connected graphs, each having 12 vertices. Show that \({G}\) and \({G'}\) cannot both be planar.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) start with a graph consisting of just a single vertex <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for this graph, <em>v</em> = 1, <em>f</em> = 1 and <em>e</em> = 0, the relation is satisfied <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Allow solutions that begin with 2 vertices and 1 edge.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to extend the graph you either join an existing vertex to another existing vertex which increases <em>e</em> by 1 and <em>f</em> by 1 so that <em>v</em> + <em>f</em> – <em>e</em> remains equal to 2 <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">or add a new vertex and a corresponding edge which increases <em>e</em> by 1 and <em>v</em> by 1 so that <em>v</em> + <em>f</em> – <em>e</em> remains equal to 2 <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore, however we build up the graph, the relation remains valid <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) since every face is bounded by at least 3 edges, the result follows by counting up the edges around each face <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the factor 2 follows from the fact that every edge bounds (at most) 2 faces <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(3f \leqslant 2e\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">from the Euler relation, \(3f = 6 + 3e - 3v\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">substitute in the inequality, \(6 + 3e - 3v \leqslant 2e\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(e \leqslant 3v - 6\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) let <em>G</em> have <em>e</em> edges <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since <em>G</em> and \({G'}\) have a total of \(\left( {\begin{array}{*{20}{c}}<br> {12} \\ <br> 2 <br>\end{array}} \right) = 66\) edges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that \({G'}\) has 66 – <em>e</em> edges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for planarity we require</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(e \leqslant 3 \times 12 - 6 = 30\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">and \(66 - e \leqslant 30 \Rightarrow e \geqslant 36\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">these two inequalities cannot both be met indicating that both graphs cannot be planar <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [18 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">Parts (a) and (b) were found difficult by many candidates with explanations often inadequate. In (c), candidates who realised that the union of a graph with its complement results in a complete graph were often successful.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">State Fermat’s little theorem.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">if <em>p </em>is a prime (and \(a \equiv 0(\bmod p)\) with \(a \in \mathbb{Z}\)) then <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({a^{p - 1}} \equiv 1(\bmod p)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note</strong>: Accept \({a^p} \equiv a(\bmod p)\) .</span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Fermat’s little theorem was reasonably well known. Some candidates forgot to mention that <em>p </em>was a prime. Not all candidates took the hint to use this in the next part.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The positive integer <em>p</em> is an odd prime number.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 34.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(\sum\limits_{k = 1}^p {{k^p} \equiv 0(\bmod p)} \).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Given that \(\sum\limits_{k = 1}^p {{k^{p - 1}} \equiv n(\bmod p)} \) where \(0 \leqslant n \leqslant p - 1\), find the value of <em>n</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using Fermat’s little theorem,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({k^p} \equiv k(\bmod p)\) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{k = 1}^p {{k^p} \equiv } \sum\limits_{k = 1}^p {k(\bmod p)} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv \frac{{p(p + 1)}}{2}(\bmod p)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv 0(\bmod p)\) <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since \(\frac{{(p + 1)}}{2}\) is an integer (so that the right-hand side is a multiple of <em>p</em>) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the alternative form of Fermat’s little theorem,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({k^{p - 1}} \equiv 1(\bmod p),{\text{ }}1 \leqslant k \leqslant p - 1\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({k^{p - 1}} \equiv 0(\bmod p),{\text{ }}k = p\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sum\limits_{k = 1}^p {{k^{p - 1}} \equiv } \sum\limits_{k = 1}^{p - 1} {1{\text{ }}( + 0)(\bmod p)} \) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \equiv p - 1(\bmod p)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(so <em>n</em> = <em>p</em> − 1)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Allow first </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> even if qualification on </span><em style="font-family: 'times new roman', times; font-size: medium;">k</em><span style="font-family: 'times new roman', times; font-size: medium;"> is not given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Only the top candidates were able to produce logically, well thought-out proofs. Too many candidates struggled with the summation notation and were not able to apply Fermat’s little theorem. There was poor logic i.e. looking at a particular example and poor algebra.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Only the top candidates were able to produce logically, well thought-out proofs. Too many candidates struggled with the summation notation and were not able to apply Fermat’s little theorem. There was poor logic i.e. looking at a particular example and poor algebra.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; font: 22.0px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Use the Euclidean algorithm to find the gcd of 324 and 129.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Hence show that \(324x + 129y = 12\) has a solution and find both a particular solution and the general solution.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Show that there are no integers <em>x</em> and <em>y</em> such that \(82x + 140y = 3\) .</span></p>
<div> </div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) \(324 = 2 \times 129 + 66\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(129 = 1 \times 66 + 63\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(66 = 1 \times 63 + 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">hence gcd (324, 129) = 3 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 1</strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Since \(\left. 3 \right|12\) the equation has a solution <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 = 1 \times 66 - 1 \times 63\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 = - 1 \times 129 + 2 \times 66\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 = 2 \times (324 - 2 \times 129) - 129\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(3 = 2 \times 324 - 5 \times 129\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(12 = 8 \times 324 - 20 \times 129\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\((x,\,y) = (8,\, - 20)\) is a particular solution <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>A calculator solution may gain <strong><em>M1M1A0A0A1</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A general solution is \(x = 8 + \frac{{129}}{3}t = 8 + 43t,{\text{ }}y = - 20 - 108t,{\text{ }}t \in \mathbb{Z}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>METHOD 2</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(324x + 129y = 12\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(108x + 43y = 4\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(108x \equiv 4(\bmod 43) \Rightarrow 27x \equiv 1(\bmod 43)\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = 8 + 43t\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(108(8 + 43t) + 43y = 4\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(864 + 4644t + 43y = 4\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(43y = - 860 - 4644t\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(y = - 20 - 108t\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">a particular solution (for example \(t = 0\)</span><span style="font-family: 'times new roman', times; font-size: medium;">) is \((x,\,y) = (8,\, - 20)\) </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) <span style="font-family: 'times new roman', times; font-size: medium;"><strong>EITHER</strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The left side is even and the right side is odd so there are no solutions <strong><em>M1R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\gcd (82,\,140) = 2\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">2 does not divide 3 therefore no solutions <strong><em>R1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [11 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This problem was not difficult but presenting a clear solution and doing part (b) alongside part (a) in two columns was. The simple answer to part (c) was often overlooked.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The weights of the edges of a graph <em>G</em> with vertices A, B, C, D and E are given in the following table.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Starting at A, use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for <em>G</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Use Kruskal’s algorithm to find and draw a minimum spanning tree for the subgraph obtained by removing the vertex A from <em>G</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Hence use the deleted vertex algorithm to find a lower bound for the travelling salesman problem for <em>G</em> .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using the nearest neighbour algorithm, starting with A,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{A}} \to {\text{E, E}} \to {\text{C}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{C}} \to {\text{D, D}} \to {\text{B}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{B}} \to {\text{A}}\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the upper bound is therefore 9 + 10 + 16 + 13 + 11 = 59 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the edges are added in the order CE <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">BD <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">BE <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the weight of the minimum spanning tree is 37 <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we now reconnect A with the 2 edges of least weight <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>i.e.</em> AE and AB <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the lower bound is therefore 37 + 9 + 11 = 57 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[8 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-size: medium; font-family: times new roman,times;">The graph <em>G </em>has adjacency matrix <strong><em>M </em></strong>given below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph <em>G </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">What information about <em>G </em>is contained in the diagonal elements of <em><strong>M</strong></em>\(^2\)<span style="font: 7.0px Times;"> </span>?</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">List the trails of length 4 starting at A and ending at C.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt> A2<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>if only one error, <strong><em>A0 </em></strong>for two or more.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[2 marks]</span><br></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the (<em>k</em>, <em>k</em>) element of <em><strong>M</strong></em>\(^2\) is the number of vertices directly connected to vertex <em>k</em> <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Accept comment about the number of walks of length 2, in which the initial and final vertices coincide.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[1 mark]</span><br></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">the trails of length 4 are ABEDC, AFEDC, AFEBC <strong><em>A1A1A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: <em>A1A1A1 </em></strong>for three correct with no additions; <strong><em>A1A1A0 </em></strong>for all correct, but with additions; <strong><em>A1A0A0 </em></strong>for two correct with or without additions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">[3 marks]</span><br></em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (c) were generally correctly answered. In part (b), a minority of candidates failed to mention that the starting and end points had to coincide. A large number of candidates gave all walks (trails were asked for) – an unnecessary loss of marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (c) were generally correctly answered. In part (b), a minority of candidates failed to mention that the starting and end points had to coincide. A large number of candidates gave all walks (trails were asked for) – an unnecessary loss of marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Parts (a) and (c) were generally correctly answered. In part (b), a minority of candidates failed to mention that the starting and end points had to coincide. A large number of candidates gave all walks (trails were asked for) – an unnecessary loss of marks.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that a graph is bipartite if and only if it contains only cycles of even length.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Suppose the graph is bipartite so that the vertices belong to one of two disjoint sets M, N. <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Then consider any vertex V in M. To generate a cycle returning to V, we must go to a vertex in N, then to a vertex in M, then to a vertex in N, then to a vertex in M, <em>etc.</em> <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">To return to V, therefore, which belongs to M, an even number of steps will be required. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Now suppose the graph contains only cycles of even length. <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Starting at any vertex V, define the set M as containing those vertices accessible from V in an even number of steps and the set N as containing those vertices accessible from V in an odd number of steps. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Suppose that the vertex X belongs to both M and N. Then consider the closed walk from V to X one way and back to V the other way. This closed walk will be of odd length. This closed walk can be contracted to a cycle which will also be of odd length, giving a contradiction to the initial assumption. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There can therefore be no vertices common to M and N which shows that the vertices can be divided into two disjoint sets and the graph is bipartite. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider any edge joining P to vertex Q. Then either \({\text{P}} \in {\text{M}}\) in which case \({\text{Q}} \in {\text{M}}\) or vice versa. In either case an edge always joins a vertex in M to a vertex in N so the graph is bipartite. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates made a reasonable attempt at showing that bipartite implies cycles of even length but few candidates even attempted the converse.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The weighted graph <em>H </em>is shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"> </p>
<p style="margin: 0px; font: 22px Helvetica; text-align: left;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Kruskal’s Algorithm, indicating the order in which the edges are added, to find and draw the minimum spanning tree for <em>H</em>.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) A tree has <em>v </em>vertices. State the number of edges in the tree, justifying your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) We will call a graph with <em>v </em>vertices a “forest” if it consists of <em>c </em>components each of which is a tree.</span><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Here is an example of a forest with 4 components.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica; min-height: 23.0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">How many edges will a forest with <em>v </em>vertices and <em>c </em>components have?</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The edges are included in the order</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">CF </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">EF <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">BC <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">CD <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">AB <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt> A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) A tree with <em>v </em>vertices has <em>v </em>−1 edges. <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using <em>v </em>+ <em>f </em>= <em>e </em>+ 2 with <em>f </em>= 1, the result follows. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Each of the <em>c </em>trees will have one less edge than the number of vertices. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Thus the forest will have <em>v </em>− <em>c </em>edges. <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), many candidates derived the minimum spanning tree although in some cases the method was not clearly indicated as required and some candidates used an incorrect algorithm. Part (b) was reasonably answered by many candidates although some justifications were unsatisfactory. Part (c) caused problems for many candidates who found difficulty in writing down a rigorous proof of the required result. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 17.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">In (a), many candidates derived the minimum spanning tree although in some cases the method was not clearly indicated as required and some candidates used an incorrect algorithm. Part (b) was reasonably answered by many candidates although some justifications were unsatisfactory. Part (c) caused problems for many candidates who found difficulty in writing down a rigorous proof of the required result. </span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0px; font: 29px Helvetica; text-align: left;"><span style="font-family: times new roman,times; font-size: medium;">The graph <em>G </em>has the following cost adjacency table.</span></p>
<p style="margin: 0px; font: 29px Helvetica; text-align: left;"><span style="font-family: times new roman,times; font-size: medium;">\[\begin{array}{*{20}{c|ccccc}}<br> {}&{\text{A}}&{\text{B}}&{\text{C}}&{\text{D}}&{\text{E}} \\ <br>\hline<br> {\text{A}}& {\text{ - }}&9&{\text{ - }}&8&4 \\ <br> {\text{B}}& 9&{\text{ - }}&7&{\text{ - }}&2 \\ <br> {\text{C}}& {\text{ - }}&7&{\text{ - }}&7&3 \\ <br> {\text{D}}& 8&{\text{ - }}&7&{\text{ - }}&5 \\ <br> {\text{E}}& 4&2&3&5&{\text{ - }} <br>\end{array}\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw <em>G </em>in a planar form.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Giving a reason, determine the maximum number of edges that could be added to <em>G </em>while keeping the graph both simple and planar.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">List all the distinct Hamiltonian cycles in <em>G </em>beginning and ending at A, noting that two cycles each of which is the reverse of the other are to be regarded as identical. Hence determine the Hamiltonian cycle of least weight.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="text-align: center;"><span style="font-family: arial, helvetica, sans-serif;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <span class="Apple-style-span" style="display: inline; float: none; line-height: normal;"><strong><em>A2</em></strong></span></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">For a simple planar graph containing triangles, \(e \leqslant 3v - 6\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Here \(v = 5{\text{ , so }}e \leqslant 9\) . <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">There are already 8 edges so the maximum number of edges that could be added is 1. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This can be done <em>e.g. </em>AC or BD <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The distinct Hamiltonian cycles are</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">ABCDEA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">ABCEDA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">ABECDA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">AEBCDA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Do not penalise extra cycles.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The weights are 32, 32, 29, 28 respectively. </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The Hamiltonian cycle of least weight is AEBCDA. <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[10 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A fairly common error in (a) was to draw a non-planar version of <em>G</em>, for which no credit was given. In (b), most candidates realised that only one extra edge could be added but a convincing justification was often not provided. Most candidates were reasonably successful in (c) although in some cases not all possible Hamiltonian cycles were stated.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A fairly common error in (a) was to draw a non-planar version of <em>G</em>, for which no credit was given. In (b), most candidates realised that only one extra edge could be added but a convincing justification was often not provided. Most candidates were reasonably successful in (c) although in some cases not all possible Hamiltonian cycles were stated.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A fairly common error in (a) was to draw a non-planar version of <em>G</em>, for which no credit was given. In (b), most candidates realised that only one extra edge could be added but a convincing justification was often not provided. Most candidates were reasonably successful in (c) although in some cases not all possible Hamiltonian cycles were stated.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The complete graph <em>H</em> has the following cost adjacency matrix.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the travelling salesman problem for <em>H</em> .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">By first finding a minimum spanning tree on the subgraph of <em>H</em> formed by deleting vertex A and all edges connected to A, find a lower bound for this problem.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the total weight of the cycle ADCBEA.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">What do you conclude from your results?</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">using any method, the minimum spanning tree is <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f; min-height: 26.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept MST = {BC, EC, DC} or {BC, EB, DC}</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f; min-height: 26.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> In graph, line CE may be replaced by BE.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f; min-height: 26.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">lower bound = weight of minimum spanning tree + 2 smallest weights connected to A <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">= 11 + 13 + 14 + 10 + 15 = 63 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">weight of ADCBEA = 10 + 14 + 11 + 13 + 15 = 63 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the conclusion is that ADCBEA gives a solution to the travelling salesman problem <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well answered although some candidates failed to realise the significance of the equality of the upper and lower bounds.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well answered although some candidates failed to realise the significance of the equality of the upper and lower bounds.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was generally well answered although some candidates failed to realise the significance of the equality of the upper and lower bounds.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Sameer is trying to design a road system to connect six towns, A, B, C, D, E and F. The possible roads and the costs of building them are shown in the graph below. Each vertex represents a town, each edge represents a road and the weight of each edge is the cost of building that road. He needs to design the lowest cost road system that will connect the six towns.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 24px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Name an algorithm which will allow Sameer to find the lowest cost road system.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Find the lowest cost road system and state the cost of building it. Show clearly the steps of the algorithm.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Prim’s algorithm <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Kruskal’s algorithm <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using Prim’s algorithm, starting at A</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">lowest cost road system contains roads AC, CD, CF, FE and AB <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">cost is 20 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using Kruskal’s algorithm</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">lowest cost road system contains roads CD, CF, FE, AC and AB <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">cost is 20 <em><strong>A1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept alternative correct solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to name an algorithm to find the lowest cost road system and then were able apply the algorithm. All but the weakest candidates were able to make a meaningful start to this question. In 1(b) some candidates lost marks by failing to indicate the order in which edges were added.</span></p>
</div>
<br><hr><br><div class="specification">
<p>Consider the complete bipartite graph \({\kappa _{3,\,3}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw \({\kappa _{3,\,3}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\kappa _{3,\,3}}\) has a Hamiltonian cycle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw \({\kappa _{3,\,2}}\) and explain why it does not have a Hamiltonian cycle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, state the handshaking lemma.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that a graph <em>G</em> with degree sequence 2, 3, 3, 4, 4, 5 cannot exist.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em>T</em> be a tree with \(v\) where \(v\) ≥ 2.</p>
<p>Use the handshaking lemma to prove that <em>T</em> has at least two vertices of degree one.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>for example ADBECFA <em><strong>A1</strong></em></p>
<p><strong>Note:</strong> Accept drawing the cycle on their diagram.</p>
<p><strong>Note:</strong> Accept Dirac’s theorem (although it is not on the syllabus for (a)(ii). There is no converse that could be applied for (a)(iii).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""> <em><strong>A1</strong></em></p>
<p>a Hamiltonian cycle would have to alternate between the two vertex subsets which is impossible as 2 ≠ 3 <em><strong>R1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>R1</strong> </em>for an attempt to construct a Hamiltonian cycle and an explanation of why it fails, <em>eg</em>, ADBEC but there is no route from C to A without re-using D or E so no cycle. There are other proofs <em>eg</em>, have to go in and out of A, similarly B and C giving all edges leading to a contradiction.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the sum of the vertex degrees is twice the number of edges <em><strong>A1</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>assume <em>G</em> exists</p>
<p>the sum 2 + 3 + 3 + 4 + 4 + 5 = 21 <em><strong>A1</strong></em></p>
<p>this is odd (not even) <em><strong>R1</strong></em></p>
<p>this contradicts the handshaking lemma</p>
<p>so <em>G</em> does not exist <em><strong>AG</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>T</em> has \(v - 1\) edges <em><strong>A1</strong></em></p>
<p><strong>EITHER</strong></p>
<p>if \(k\) vertices have degree 1 then \(v - k\) vertices have degree ≥ 2 <em><strong>R1</strong></em></p>
<p>by the handshaking lemma</p>
<p>\(2v - 2 \geqslant 1 \times k + 2\left( {v - k} \right)\left( { = 2v - k} \right)\) <em><strong>M1</strong></em></p>
<p>this gives \(k\) ≥ 2 <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>OR</strong></p>
<p>let <em>S</em> be the sum of vertex degrees</p>
<p>consider <em>T</em> having either no or one vertex of degree 1 <em><strong>R1</strong></em></p>
<p>case 1 suppose <em>T</em> has no vertices of degree 1 (<em>eg</em>, all vertices have degrees ≥ 2)</p>
<p>by the handshaking lemma</p>
<p>\(S \geqslant 2v \ne 2\left( {v - 1} \right)\) (not possible) <em><strong>A1</strong></em></p>
<p>case 2 suppose <em>T</em> has one vertex of degree 1 (<em>eg</em>, \(v - 1\) vertices have degrees ≥ 2)</p>
<p>by the handshaking lemma</p>
<p>\(S \geqslant 2\left( {v - 1} \right) + 1 \ne 2\left( {v - 1} \right)\) (not possible) <em><strong>A1</strong></em></p>
<p> </p>
<p><strong>THEN</strong></p>
<p>so <em>T</em> has at least two vertices of degree 1 <em><strong>AG</strong></em></p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the complement of the following graph as a planar graph.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><br><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">A simple graph <em>G </em>has <em>v </em>vertices and <em>e </em>edges. The complement \(G'\) of <em>G </em>has \({e'}\) edges.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Prove that \(e \leqslant \frac{1}{2}v(v - 1)\) .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Find an expression for \(e + e'\) in terms of <em>v </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Given that \({G'}\) is isomorphic to <em>G </em>, prove that <em>v </em>is of the form 4<em>n </em>or 4<em>n </em>+ 1 for \(n \in {\mathbb{Z}^ + }\)<span style="font: 7.0px Times;"> </span>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) Prove that there is a unique simple graph with 4 vertices which is isomorphic to its complement.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(v) Prove that if \(v \geqslant 11\) , then <em>G </em>and \({G'}\) cannot both be planar.</span></p>
<div class="marks">[14]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">as a first step, form the following graph</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <strong><em>(M1)(A1)<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">make it planar</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt> A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]<br></em></strong></span></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) an edge joins a pair of vertices <strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">there is a maximum of \(\left( {\begin{array}{*{20}{c}}<br> v \\ <br> 2 <br>\end{array}} \right) = \frac{1}{2}v(v - 1)\) possible unordered pairs of vertices, hence displayed result <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) an edge joins two vertices in \({G'}\) if it does not join them in <em>G </em>and <em>vice versa</em>; all possible edges are accounted for by the union of the two graphs <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(e + e' = \frac{1}{2}v(v - 1)\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) the two graphs have the same number of edges <strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\( \Rightarrow e = \frac{1}{4}v(v - 1)\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>v </em>and <em>v</em> – 1 are consecutive integers, so only one can be divisible by 4, hence displayed result <strong><em>A1AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) the required graphs have four vertices and three edges <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">if one vertex is adjacent to the other three, that uses up the edges; the resulting graph, necessarily connected, has a disconnected complement, and <em>vice versa </em><strong><em>R1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">if one vertex is adjacent to two others, that uses up two edges; the final vertex cannot be adjacent to the first; the result is the linear connected graph <strong><em>A1<br></em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">state it is isomorphic to its complement <strong><em>A1 N2</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Alternative proofs are possible, but should include the final statement for full marks.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">(v) using \(e \leqslant 3v - 6\) for planar graphs <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{1}{2}v(v - 1) = e + e' \leqslant 6v - 12\) <strong> <em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v^2} - 13v + 24 \leqslant 0\) is not possible for \(v \geqslant 11\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[14 marks] </em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done. The various parts of Parts (b) were often attempted, but with a disappointing feeling that the candidates did not have a confident understanding of what they were writing.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done. The various parts of Parts (b) were often attempted, but with a disappointing feeling that the candidates did not have a confident understanding of what they were writing.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) A connected planar graph <em>G </em>has <em>e </em>edges and <em>v </em>vertices.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Prove that \(e \geqslant v - 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Prove that <em>e </em>= <em>v </em>−1 if and only if <em>G </em>is a tree.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) A tree has <em>k </em>vertices of degree 1, two of degree 2, one of degree 3 and one of degree 4. Determine <em>k </em>and hence draw a tree that satisfies these conditions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) The graph <em>H </em>has the adjacency table given below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\left( {\begin{array}{*{20}{c}}<br> 0&1&1&0&0&0 \\ <br> 1&0&0&1&1&0 \\ <br> 1&0&0&0&1&1 \\ <br> 0&1&0&0&0&0 \\ <br> 0&1&1&0&0&0 \\ <br> 0&0&1&0&0&0 <br>\end{array}} \right)\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Explain why <em>H </em>cannot be a tree.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Draw the graph of <em>H </em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) Prove that a tree is a bipartite graph.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Euler’s relation is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(e = v - 2 + f \geqslant v - 1,{\text{ as }}f \geqslant 1\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) \(G{\text{ is a tree }} \Leftrightarrow {\text{ no cycles }} \Leftrightarrow {\text{ }}f = 1\) <strong><em>R1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) the result from (a) (ii) gives</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(e = k + 2 + 1 + 1 - 1 = k + 3\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for a tree we also have</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2e = {\text{sum of degrees}}\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(2k + 6 = k + 4 + 3 + 4 = k + 11\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence \(k = 5\) <strong><em>A1</em></strong></span></p>
<p style="font: 32px Helvetica; text-align: justify; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> </span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica; min-height: 38.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Accept alternative correct solutions.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) \(v - 1 = 5 < 6 = e\,\,\,\,\,{\text{by (a) (ii)}}\) <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>G</em> cannot be a tree <strong><em>AG</em></strong></span></p>
<p style="font: normal normal normal 32px/normal Helvetica; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) </span><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></span><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong></span></p>
<p style="font: normal normal normal 32px/normal Helvetica; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) take any vertex in the tree and colour it black <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">colour all adjacent vertices white</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">colour all vertices adjacent to a white vertex black</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">continue this procedure until all vertices are coloured <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">which must happen since the graph is connected <strong><em>R1</em></strong> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">as the tree contains no cycles, no vertex can be both black and white and the graph is proved to be bipartite <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 32.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [17 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Many candidates seem only to have a weak understanding of the requirements for the proof of a mathematical statement.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram below shows the weighted graph <em>G</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) What feature of the graph enables you to deduce that <em>G</em> contains an Eulerian circuit?</span></p>
<p style="margin: 0px 0px 0px 30px; font: 31px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Find an Eulerian circuit.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Use Kruskal’s Algorithm to find the minimum spanning tree for <em>G</em> , showing the order in which the edges are added.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) all the vertices have even degree <strong><em>A1</em></strong></span></p>
<p style="margin: 0px 0px 0px 30px; font: 30px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) for example ABCDECFBEFA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) the edges are included in the order shown</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> M1A1A1A1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award each <strong><em>A1</em></strong> for the edge added in the correct order. Award no further marks after the first error.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 28.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well answered in general. Part (c) was well answered.</span></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph <em>G</em> has vertices <em>P</em> , <em>Q</em> , <em>R</em> , <em>S</em> , <em>T</em> and the following table shows the number of edges joining each pair of vertices.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph <em>G</em> as a planar graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Giving a reason, state whether or not <em>G</em> is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) simple;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) connected;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 31.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) bipartite.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Explain what feature of <em>G</em> enables you to state that it has an Eulerian trail and write down a trail.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-size: medium; font-family: 'times new roman', times;">Explain what feature of <em>G</em> enables you to state it does not have an Eulerian circuit.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Find the maximum number of edges that can be added to the graph <em>G</em> (not including any loops or further multiple edges) whilst still keeping it planar.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em><img src="" alt> A2</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) <em>G</em> is not simple because 2 edges join P to T <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) <em>G</em> is connected because there is a path joining every pair of vertices <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) (P, R) and (Q, S, T) are disjoint vertices <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so <em>G</em> is bipartite <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Award the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> only if the </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>R1</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> is awarded.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>G</em> has an Eulerian trail because it has two vertices of odd degree (R and T have degree 3), all the other vertices having even degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the following example is such a trail</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">TPTRSPQR <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><em>G</em> has no Eulerian circuit because there are 2 vertices which have odd degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so it is possible to add 3 extra edges <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">consider <em>G</em> with one of the edges PT deleted; this is a simple graph with 6 edges; on addition of the new edges, it will still be simple <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(e \leqslant 3v - 6 \Rightarrow e \leqslant 3 \times 5 - 6 = 9\) <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so at most 3 edges can be added <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) A graph is simple, planar and connected. Write down the inequality connecting <em>v</em> and <em>e</em>, and give the condition on <em>v</em> for this inequality to hold.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Sketch a simple, connected, planar graph with <em>v</em> = 2 where the inequality from part (b)(i) is not true.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Sketch a simple, connected, planar graph with <em>v</em> =1 where the inequality from part (b)(i) is not true.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) Given a connected, planar graph with <em>v</em> vertices, \({v^2}\) edges and 8 faces, find <em>v</em>. Sketch a graph that fulfils all of these conditions.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) \(e \leqslant 3v - 6,{\text{ for }}v \geqslant 3\) <strong><em>A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) </span><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"> <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) </span><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"> <strong><em>A1</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) from Euler’s relation \(v - e + f = 2\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v - {v^2} + 8 = 2\) <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({v^2} - v - 6 = 0\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((v + 2)(v - 3) = 0\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(v = 3\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for example</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> There are many possible graphs.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In (b) most candidates gave the required inequality although some just wrote down both inequalities from their formula booklet. The condition \(v \geqslant 3\) was less well known but could be deduced from the next 2 graphs. Euler’s relation was used well to obtain the quadratic to solve and many candidates could then draw a correct graph.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">The table below shows the distances between towns A, B, C, D and E.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Draw the graph, in its planar form, that is represented by the table.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Write down with reasons whether or not it is possible to find an Eulerian trail in this graph.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; line-height: 12.1px; font: 22.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) Solve the Chinese postman problem with reference to this graph if A is to be the starting and finishing point. Write down the walk and determine the length of the walk.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; text-align: justify; line-height: 12.1px; font: 25.5px Times; color: #2c2728;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that a graph cannot have exactly one vertex of odd degree.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"><span class="Apple-style-span" style="line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="display: inline; float: none; line-height: normal;"> <strong><em>A1A1A1</em></strong></span></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Award <strong><em>A1 </em></strong>for the vertices, <strong><em>A1 </em></strong>for edges and <strong><em>A1 </em></strong>for planar form.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) It is possible to find an Eulerian trail in this graph since exactly two of the vertices have odd degree <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) B and D are the odd vertices <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(BC + CD = 3 + 2 = 5{\text{ and }}BD = 9,\) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since 5 < 9 , <em>BC </em>and <em>CD </em>must be traversed twice <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A possible walk by inspection is ACBDABCDCEA <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This gives a total length of</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">2(2 + 3) + 8 + 9 + 5 + 7 + 10 + 6 = 55 for the walk <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[9 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The sum of all the vertex degrees is twice the number of edges, <em>i.e. </em>an even number.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Hence a graph cannot have exactly one vertex of odd degree. <strong><em>M1R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 23.5px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Drawing the graph usually presented no difficulty. Distinguishing between Eulerian and semi-Eulerian needs attention but this part was usually done successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A simple, clear argument for part (c) was often hidden in mini-essays on graph theory.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Drawing the graph usually presented no difficulty. Distinguishing between Eulerian and semi-Eulerian needs attention but this part was usually done successfully.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">A simple, clear argument for part (c) was often hidden in mini-essays on graph theory.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">A graph <em>G</em> with vertices A, B, C, D, E has the following cost adjacency table.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\begin{array}{*{20}{c|ccccc}}<br> {}&{\text{A}}&{\text{B}}&{\text{C}}&{\text{D}}&{\text{E}} \\ <br>\hline<br> {\text{A}}& - &{12}&{10}&{17}&{19} \\ <br> {\text{B}}&{12}& - &{13}&{20}&{11} \\ <br> {\text{C}}&{10}&{13}& - &{16}&{14} \\ <br> {\text{D}}&{17}&{20}&{16}& - &{15} \\ <br> {\text{E}}&{19}&{11}&{14}&{15}& - <br>\end{array}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Use Kruskal’s algorithm to find and draw the minimum spanning tree for <em>G</em>.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 24px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) The graph <em>H</em> is formed from <em>G</em> by removing the vertex D and all the edges connected to D. Draw the minimum spanning tree for <em>H</em> and use it to find a lower bound for the travelling salesman problem for <em>G</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Show that 80 is an upper bound for this travelling salesman problem.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) the edges are joined in the order</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">AC</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">BE</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">AB</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">ED <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Final <strong><em>A1</em></strong> independent of the previous <strong><em>A2</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the weight of this spanning tree is 33 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">to find a lower bound for the travelling salesman problem, we add to that the two smallest weights of edges to D, <em>i.e.</em> 15 +16, giving 64 <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) an upper bound is the weight of any Hamiltonian cycle, <em>e.g.</em> ABCDEA has weight 75 so 80 is certainly an upper bound <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [9 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done by many candidates although some candidates simply drew the minimum spanning tree in (i) without indicating the use of Kruskal’s Algorithm. It is important to stress to candidates that, as indicated in the rubric at the top of Page 2, answers must be supported by working and/or explanations. Part (b) caused problems for some candidates who obtained the unhelpful upper bound of 96 by doubling the weight of the minimum spanning tree. It is useful to note that the weight of any Hamiltonian cycle is an upper bound and in this case it was fairly easy to find such a cycle with weight less than or equal to 80.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Kruskal’s algorithm to find the minimum spanning tree for the following weighted graph and state its length.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 22.0px Helvetica;"> </p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Use Dijkstra’s algorithm to find the shortest path from A to D in the following weighted graph and state its length.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">Kruskal’s algorithm gives the following edges</span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">CD (4) <strong><em>M1A1</em></strong></span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">AD (5)</span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">EF (7) <strong><em>A1</em></strong></span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">EA (8)</span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">BC (11)</span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">FG (12) <strong><em>A1</em></strong> <strong><em>N0</em></strong></span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">length of the spanning tree is 47 <strong><em>A1</em></strong></span></p>
<p style="font: normal normal normal 24px/normal Times; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">for Dijkstra’s algorithm there are three things associated with a node: order; distance from the initial node as a permanent or temporary node <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt> <span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A4</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Deduct <strong><em>A1</em></strong> for each error or omission.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the shortest path is AFBCD <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the length is 26 <strong><em>A1 N0</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[7 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Setting out clearly the steps of the algorithms is still a problem for many although getting the correct spanning tree and its length were not.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Setting out clearly the steps of the algorithms is still a problem for many although getting the correct spanning tree and its length were not.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The adjacency table of the graph <em>G</em> , with vertices P, Q, R, S, T is given by:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Draw the graph <em>G</em> .</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Define an Eulerian circuit.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Write down an Eulerian circuit in <em>G</em> starting at P.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) Define a Hamiltonian cycle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Explain why it is not possible to have a Hamiltonian cycle in <em>G</em> .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span><img src="" alt><span class="Apple-style-span" style="font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none; line-height: normal;"> <strong><em>A3</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica; min-height: 31.0px;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A2</em></strong> for one missing or misplaced edge,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for two missing or misplaced edges.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) an Eulerian circuit is one that contains every edge of the graph exactly once <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) a possible Eulerian circuit is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{P}} \to {\text{Q}} \to {\text{S}} \to {\text{P}} \to {\text{Q}} \to {\text{Q}} \to {\text{R}} \to {\text{T}} \to {\text{R}} \to {\text{R}} \to {\text{P}}\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) (i) a Hamiltonian cycle passes through each vertex of the graph <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">exactly once <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) to pass through T, you must have come from R and must return to R. <strong><em>R3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence there is no Hamiltonian cycle</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Stronger candidates had little problem with this question, but a significant number of weaker candidates started by making errors in drawing the graph G, where the most common error was the omission of the loops and double edges. They also had problems working with the concepts of Eulerian circuits and Hamiltonian cycles.</span></p>
</div>
<br><hr><br><div class="specification">
<p><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">In the graph given above, the numbers shown represent the distance along that edge.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Using Dijkstra’s algorithm, find the length of the shortest path from vertex <em>S</em> to vertex <em>T </em>. Write down this shortest path.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Does this graph have an Eulerian circuit? Justify your answer.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Does this graph have an Eulerian trail? Justify your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">The graph above is now to be considered with the edges representing roads in a town and with the distances being the length of that road in kilometres. Huan is a postman and he has to travel along every road in the town to deliver letters to all the houses in that road. He has to start at the sorting office at <em>S</em> and also finish his route at <em>S </em>. Find the shortest total distance of such a route. Fully explain the reasoning behind your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">from tabular method as shown above (or equivalent) <strong><em>M1A1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><strong style="font-family: 'times new roman', times; font-size: medium;">Note: </strong><span style="font-family: 'times new roman', times; font-size: medium;">Award the first </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1 </em></strong><span style="font-family: 'times new roman', times; font-size: medium;">for obtaining 3 as the shortest distance to C.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Award the second <strong><em>A1 </em></strong>for obtaining the rest of the shortest distances.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">shortest path has length 17 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">backtracking as shown above (or equivalent) <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">shortest path is SABT <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) no, as <em>S </em>and <em>T </em>have odd degree <strong><em>A1R1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>Mentioning one vertex of odd degree is sufficient.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) yes, as only <em>S </em>and <em>T </em>have odd degree <strong><em>A1R1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note: </strong>In each case only award the <strong><em>A1 </em></strong>if the <strong><em>R1 </em></strong>has been given.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Accept an actual trail in (b)(ii).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"> </p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">Huan has to travel along all the edges via an open Eulerian trail of length <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">4 + 3 + 5 + 2 + 1 + 3 + 5 + 4 + 7 + 8 + 5 + 6 + 7 + 6 + 6 + 8 + 9 = 94 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">and then back to <em>S </em>from <em>T </em>along the shortest path found in (a) of length 17 <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;">so shortest total distance is 94 + 17 = 111 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Times;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This was quite well answered. Some candidates did not make their method clear and others showed no method at all. Some clearly had a correct method but did not make it clear what their final answers were. It is recommended that teachers look at the tabular method with its backtracking system as shown in the mark scheme as an efficient way of tackling this type of problem.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;">Fairly good knowledge shown here but not by all.</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Some good answers but too much confusion with methods they partly remembered about the travelling salesman problem. Candidates should be aware of helpful connections between parts of a question.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following weighted graph.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="font: normal normal normal 27px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) Use Kruskal’s algorithm to find the minimum spanning tree. Indicate the order in which you select the edges and draw the final spanning tree.</span></p>
<p style="margin: 0px 0px 0px 30px; font: 27px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> (ii) Write down the total weight of this minimum spanning tree.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Sketch a spanning tree of maximum total weight and write down its weight.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) (i) <em>(Kruskal’s: successively take an edge of smallest weight without forming a cycle)</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({1^{{\text{st}}}}\) edge DC (weight 1) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({2^{{\text{nd}}}}\) edge EG (weight 2) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({3^{{\text{rd}}}}\) edge DE (weight 3) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({4^{{\text{th}}}}\) edge EF (weight 6) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({5^{{\text{th}}}}\) edge AD (weight 7) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({6^{{\text{th}}}}\) edge AB (weight 8) <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica; min-height: 32.0px;"><strong style="font-family: 'times new roman', times; font-size: medium;">Notes:</strong><span style="font-family: 'times new roman', times; font-size: medium;"> Weights are not required on the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica; min-height: 32.0px;"><span style="font-family: 'times new roman', times; font-size: medium;">Allow </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A2(d)</em></strong><span style="font-family: 'times new roman', times; font-size: medium;"> if the (correct) edges are in the wrong order </span><em style="font-family: 'times new roman', times; font-size: medium;">e.g.</em><span style="font-family: 'times new roman', times; font-size: medium;"> they have used Prim’s rather than Kruskal’s algorithm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica; min-height: 32.0px;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica; min-height: 32.0px;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) total weight is 1 + 2 + 3 + 6 + 7 + 8 = 27 </span><strong style="font-family: 'times new roman', times; font-size: medium;"><em>A1</em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[8 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) <strong>EITHER</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"> <strong><em>A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>OR</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><img src="" alt><span style="font-family: 'times new roman', times; font-size: medium;"> <strong><em>A3</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Notes:</strong> Award <strong><em>A2</em></strong> for five or four correct edges,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A1</em></strong> for three or two correct edges</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>A0</em></strong> otherwise.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Weights are not required on the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;"> </strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><strong style="font-family: 'times new roman', times; font-size: medium;">THEN</strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">total weight is 6 + 7 + 7 + 8 + 9 + 10 = 47 <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[4 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Total [12 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Good algorithm work was shown; sometimes there were mistakes in giving the order of the edges chosen by, for example doing Prim’s algorithm instead of Kruskal’s.</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The vertices of a graph <em>L</em> are A, B, C, D, E, F, G and H. The weights of the edges in <em>L</em> are given in the following table.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Draw the graph <em>L</em>.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span><img src="" alt><span style="font-family: times new roman,times; font-size: medium;"> <strong><em>A2</em></strong></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> Award <strong><em>A1</em></strong> if one line missing or one line misplaced. Weights are not required.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 35.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to draw the graph as required in (a) and most made a meaningful start to applying Prim’s algorithm in (b). Candidates were not always clear about the order in which the edges were to be added.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">In any graph, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) the sum of the degrees of all the vertices is even;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 27.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) there is an even number of vertices of odd degree.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the following graph, <em>M</em>.</span></p>
<p style="font: normal normal normal 25px/normal Helvetica; text-align: center; margin: 0px;"><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) Show that <em>M</em> is planar.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Explain why <em>M</em> is not Eulerian.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) By adding one edge to <em>M</em> it is possible to make it Eulerian. State which edge must be added.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">This new graph is called <em>N</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv) Starting at A, write down a possible Eulerian circuit for <em>N</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(v) Define a Hamiltonian cycle. If possible, write down a Hamiltonian cycle for <em>N</em>, and if not possible, give a reason.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(vi) Write down the adjacency matrix for <em>N</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 25.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(vii) Which pair of distinct vertices has exactly 30 walks of length 4 between them?</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) When we sum over the degrees of all vertices, we count each edge twice. Hence every edge adds two to the sum. Hence the sum of the degrees of all the vertices is even. <strong><em>R2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em> </em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) divide the vertices into two sets, those with even degree and those with odd degree <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let <em>S</em> be the sum of the degrees of the first set and let <em>T</em> be the sum of the degrees of the second set</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">we know <em>S</em> + <em>T</em> must be even</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since <em>S</em> is the sum of even numbers, then it is even <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence <em>T</em> must be even <strong><em>R1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">hence there must be an even number of vertices of odd degree <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span class="Apple-style-span" style="font-family: 'times new roman', times; font-size: medium; display: inline; float: none;"><img src="" alt> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) the graph <em>M</em> is not Eulerian because vertices D and F are of odd degree <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) the edge which must be added is DF <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iv)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><br><img src="" alt></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a possible Eulerian circuit is ABDFBCDEFGCA <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:</strong> award <strong><em>A1</em></strong> for a correct Eulerian circuit not starting and finishing at A.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(v) a Hamiltonian cycle is one that contains each vertex in <em>N</em> <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">with the exception of the starting and ending vertices, each vertex must only appear once <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">a possible Hamiltonian cycle is ACGFEDBA <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(vi) \(\left( {\begin{array}{*{20}{c}}<br> 0&1&1&0&0&0&0 \\ <br> 1&0&1&1&0&1&0 \\ <br> 1&1&0&1&0&0&1 \\ <br> 0&1&1&0&1&1&0 \\ <br> 0&0&0&1&0&1&0 \\ <br> 0&1&0&1&1&0&1 \\ <br> 0&0&1&0&0&1&0 <br>\end{array}} \right)\) <strong><em>A2</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(vii) using adjacency matrix to power 4 <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">C and F <strong><em>A1</em></strong></span><strong style="font-family: 'times new roman', times; font-size: medium;"><em> </em></strong></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 29.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[12 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to start (a), but many found problems in expressing their ideas clearly in words. Stronger candidates had little problem with (b), but a significant number of weaker candidates had problems working with the concepts of Eulerian circuits and Hamiltonian cycles and with understanding how to find a specific number of walks of a certain length as required in (b) (vii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 26.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to start (a), but many found problems in expressing their ideas clearly in words. Stronger candidates had little problem with (b), but a significant number of weaker candidates had problems working with the concepts of Eulerian circuits and Hamiltonian cycles and with understanding how to find a specific number of walks of a certain length as required in (b) (vii).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>