File "markSceme-SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 7/markSceme-SL-paper2html
File size: 3.17 MB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Given \(f (x) = x^2 − 3x^{−1}, x \in {\mathbb{R}}, - 5 \leqslant x \leqslant 5, x \ne 0\),</span></p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A football is kicked from a point A (a, 0), 0 < a < 10 on the ground towards a goal to the right of A.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The ball follows a path that can be modelled by <strong>part</strong> of the graph</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(y = − 0.021x^2 + 1.245x − 6.01, x \in {\mathbb{R}}, y \geqslant 0\).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>x</em> is the horizontal distance of the ball from the origin</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>y</em> is the height above the ground</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Both <em>x</em> and <em>y</em> are measured in metres.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator or otherwise, write down the coordinates of any point where the graph of \(y = f (x)\) has zero gradient.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down all intervals in the given domain for which \(f (x)\) is increasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator or otherwise, find the value of <em>a</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{dy}}{{dx}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Use your answer to part (b) to calculate the horizontal distance the ball has travelled from A when its height is a maximum.</span></p>
<p><span>(ii) Find the maximum vertical height reached by the football.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a graph showing the path of the football from the point where it is kicked to the point where it hits the ground again. Use 1 cm to represent 5 m on the horizontal axis and 1 cm to represent 2 m on the vertical scale.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The goal posts are 35 m from <strong>the point where the ball is kicked</strong>.</span></p>
<p><span>At what height does the ball pass over the goal posts?</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>equation of asymptote is <em>x</em> = 0 <em><strong>(A1)</strong></em></span></p>
<p><em><span>(Must be an equation.)</span></em></p>
<p><strong><em><span>[1 mark]</span></em></strong></p>
<p> </p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f '(x) = 2x + 3x^{-2}\) <em>(or equivalent) <strong>(A1)</strong> for each term <strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>stationary point (–1.14, 3.93) <em><strong>(G1)(G1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em>(-1,4) or similar error is awarded <strong>(G0)(G1)</strong></em><strong>(ft)</strong>. <em>Here and also as follow through in part (d) accept exact values</em> \( - {\left( {\frac{3}{2}} \right)^{\frac{1}{3}}}\)<em>for the x coordinate and </em>\(3{\left( {\frac{3}{2}} \right)^{\frac{2}{3}}}\) <em>for the y</em> <em>coordinate.</em></span></p>
<p><span><strong>OR</strong> \(2x + \frac{3}{{{x^2}}} = 0\) </span><span><em>or equivalent</em></span></p>
<p><span>Correct coordinates as above</span> <span> <em><strong>(M1)</strong></em></span></p>
<p><span><em>Follow through from candidate’s</em> \(f ′(x)\). <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span>In all alternative answers for (d), follow through from</span> <span>candidate’s x coordinate in part (c).</span></em></p>
<p><span>Alternative answers include:</span></p>
<p><span>–1.14 ≤ <em>x</em> < 0, 0 < <em>x</em> < 5 <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p><span><strong>OR</strong> [</span><span><span>–</span>1.14,0), (0,5)</span></p>
<p><span><em>Accept alternative bracket notation for open interval ] [. (Union of these sets is not correct, award <strong>(A2)</strong> if all else is right in this case.)</em></span></p>
<p><span><strong>OR</strong> \( - 1.14 \leqslant x < 5,x \ne 0\)</span></p>
<p><span><em>In all versions 0 <strong>must</strong> be excluded <strong>(A1)</strong>. -1.14 must be the left bound </em><em>. 5 must be the right bound <strong>(A1)</strong>. For </em>\(x \geqslant - 1.14\)</span><em><span> or </span></em><span>\(x > - 1.14\)</span><em><span> alone, award <strong>(A1)</strong>. For </span></em><span>\( - 1.4 \leqslant x < 0\) </span><em><span>together with</span></em><span> \(x > 0\)</span><em><span> award <strong>(A2)</strong>.</span></em></p>
<p><strong><em><span>[3 marks]</span></em></strong></p>
<p> </p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>a</em> = 5.30 <em>(3sf)</em> <em>(Allow (5.30, 0) but 5.3 receives an</em> <strong><em>(AP)</em></strong><em>.)</em></span> <em><strong><span>(A1)</span></strong></em></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 0.042x + 1.245\) <em> <strong>(A1)</strong> for each term. <strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</span></em></p>
<p> </p>
<p><span>(i) Maximum value when \(f ' (x) = 0\), \( - 0.042x + 1.245 = 0\), <em><strong>(M1)</strong></em></span></p>
<p><em><span><strong>(M1)</strong> is for either of the above but at least one must be</span> <span>seen.</span></em></p>
<p><span>(<em>x</em> = 29.6.)</span></p>
<p><span>Football has travelled 29.6 – 5.30 = 24.3 m (3sf)</span> <span>horizontally. <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><em><span>For answer of 24.3 m with no working or for correct</span> <span>subtraction of 5.3 from candidate’s x-coordinate at</span> <span>the maximum (if not 29.6), award <strong>(A1)</strong>(d).</span></em></p>
<p><br><span><strong><em>(UP)</em></strong> (ii) Maximum vertical height, <em>f</em> (29.6) = 12.4 m <strong><em>(M1)(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><em><span><strong>(M1)</strong> is for substitution into f of a value seen in part (c)(i).</span> <span>f(24.3) with or without evaluation is awarded <strong>(M1)(A0)</strong>.</span> <span>For any other value without working, award <strong>(G0)</strong>. </span><span>If lines are seen on the graph in part (d) award <strong>(M1)</strong></span> </em><span><em>and then <strong>(A1)</strong> for candidate’s value</em> \( \pm 0.5\)<em> (3sf not</em></span><em> <span>required.)</span></em></p>
<p> </p>
<p><strong><em><span>[4 marks]</span></em></strong></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(not to scale)</span></p>
<p><span><img src="" alt> <strong><em>(A1)(A1)(A1)</em>(ft)<em>(A1)</em>(ft)</strong></span></p>
<p><em><span>Award <strong>(A1)</strong> for labels (units not required) and scale,</span></em><span> </span><span><strong><em>(A1)</em>(ft)</strong></span><em><span> </span></em><em><span>for max</span></em><span>(29.6,12.4), </span><span> <strong><em>(A1)</em>(ft) </strong></span><span>for</span><em><span> x-intercepts at 5.30 and 53.9, (all coordinates can be within 0.5), <strong>(A1)</strong> for well-drawn parabola ending at the x-intercepts.</span></em></p>
<p><strong><em><span>[4 marks]</span></em></strong></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><em></em></span></span></p>
<p><em><span>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</span></em></p>
<p><span><em><strong>(UP)</strong> f</em> (40.3) = 10.1 m (3sf).</span></p>
<p><em><span>Follow through from (a).</span> <span>If graph used, award <strong>(M1)</strong> for lines drawn and <strong>(A1)</strong> for</span> <span>candidate’s value </span></em><span>\( \pm 0.5\)</span><em><span>. (3sf not required). </span><strong><span> (M1)(A1)</span></strong></em><span><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) An attempt at part (a) was seen only rarely. If there was an attempt, it was often not a meaningful equation. If an equation was seen, sometimes it was for <em>y</em>, not <em>x</em>.</span></p>
<p> </p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The derivative seemed manageable for many, though with the expected mis-handling of the negative power quite often. Parts (c) and (d) proved problematical. Marking of (d) was lenient and it was reaffirmed that testing of the concept in (d) will be done in a more straightforward context in future, when done at all.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The derivative seemed manageable for many, though with the expected mis-handling of the negative power quite often. Parts (c) and (d) proved problematical. Marking of (d) was lenient and it was reaffirmed that testing of the concept in (d) will be done in a more straightforward context in future, when done at all.</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The derivative seemed manageable for many, though with the expected mis-handling of the negative power quite often. Parts (c) and (d) proved problematical. Marking of (d) was lenient and it was reaffirmed that testing of the concept in (d) will be done in a more straightforward context in future, when done at all.</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Many candidates failed to recognise that extensive use of the GDC was intended for this question. An indicator of this was the choice of awkward coefficients. It is recognised that the context confused some candidates and that the horizontal shift was a bit disturbing for some.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Nevertheless, a lot of candidates could have earned more marks here if they had persevered. Many gave up on the graph, and elementary marks for scale and labels were lost unnecessarily.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">As this was the first time for the unit penalty, we were lenient about the units left off the labels but this is likely to change in the future.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Many candidates failed to recognise that extensive use of the GDC was intended for this question. An indicator of this was the choice of awkward coefficients. It is recognised that the context confused some candidates and that the horizontal shift was a bit disturbing for some.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Nevertheless, a lot of candidates could have earned more marks here if they had persevered. Many gave up on the graph, and elementary marks for scale and labels were lost unnecessarily.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">As this was the first time for the unit penalty, we were lenient about the units left off the labels but this is likely to change in the future.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Many candidates failed to recognise that extensive use of the GDC was intended for this question. An indicator of this was the choice of awkward coefficients. It is recognised that the context confused some candidates and that the horizontal shift was a bit disturbing for some.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Nevertheless, a lot of candidates could have earned more marks here if they had persevered. Many gave up on the graph, and elementary marks for scale and labels were lost unnecessarily.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">As this was the first time for the unit penalty, we were lenient about the units left off the labels but this is likely to change in the future.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Many candidates failed to recognise that extensive use of the GDC was intended for this question. An indicator of this was the choice of awkward coefficients. It is recognised that the context confused some candidates and that the horizontal shift was a bit disturbing for some.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Nevertheless, a lot of candidates could have earned more marks here if they had persevered. Many gave up on the graph, and elementary marks for scale and labels were lost unnecessarily.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">As this was the first time for the unit penalty, we were lenient about the units left off the labels but this is likely to change in the future.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Many candidates failed to recognise that extensive use of the GDC was intended for this question. An indicator of this was the choice of awkward coefficients. It is recognised that the context confused some candidates and that the horizontal shift was a bit disturbing for some.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Nevertheless, a lot of candidates could have earned more marks here if they had persevered. Many gave up on the graph, and elementary marks for scale and labels were lost unnecessarily.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">As this was the first time for the unit penalty, we were lenient about the units left off the labels but this is likely to change in the future.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = - {x^4} + a{x^2} + 5\), where \(a\) is a constant. Part of the graph of \(y = f(x)\) is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>It is known that at the point where \(x = 2\) the tangent to the graph of \(y = f(x)\) is horizontal.</p>
</div>
<div class="specification">
<p>There are two other points on the graph of \(y = f(x)\) at which the tangent is horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(y\)-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f'(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(a = 8\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(x\)-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of \(y = f(x)\) is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of \(f(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation \(f(x) = 5\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation \(f(x) = m\), where \(m \in \mathbb{R}\), has four solutions. Find the possible values of \(m\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>5 <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Accept an answer of \((0,{\text{ }}5)\).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {f'(x) = } \right) - 4{x^3} + 2ax\) <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for \( - 4{x^3}\) and <strong><em>(A1) </em></strong>for \( + 2ax\). Award at most <strong><em>(A1)(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 4 \times {2^3} + 2a \times 2 = 0\) <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substitution of \(x = 2\) into their derivative, <strong><em>(M1) </em></strong>for equating their derivative, written in terms of \(a\), to 0 leading to a correct answer (note, the 8 does not need to be seen).</p>
<p> </p>
<p>\(a = 8\) <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {f(2) = } \right) - {2^4} + 8 \times {2^2} + 5\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution of \(x = 2\) and \(a = 8\) into the formula of the function.</p>
<p> </p>
<p>21 <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((x = ){\text{ }} - 2,{\text{ }}(x = ){\text{ 0}}\) <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for each correct solution. Award at most <strong><em>(A0)(A1)</em>(ft) </strong>if answers are given as \(( - 2{\text{ }},21)\) and \((0,{\text{ }}5)\) or \(( - 2,{\text{ }}0)\) and \((0,{\text{ }}0)\).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x < - 2,{\text{ }}0 < x < 2\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for \(x < - 2\), follow through from part (d)(i) provided their value is negative.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for \(0 < x < 2\), follow through only from their 0 from part (d)(i); 2 must be the upper limit.</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y \leqslant 21\) <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft) </strong>for 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for “\(y \leqslant \)”.</p>
<p>Accept interval notation.</p>
<p>Accept \( - \infty < y \leqslant 21\) or \(f(x) \leqslant 21\).</p>
<p>Follow through from their answer to part (c)(ii). Award at most <strong><em>(A1)</em>(ft)<em>(A0) </em></strong>if \(x\) is seen instead of \(y\). Do not award the second <strong><em>(A1) </em></strong>if a (finite) lower limit is seen.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>3 (solutions) <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5 < m < 21\) or equivalent <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft) </strong>for 5 and 21 seen in an interval or an inequality, <strong><em>(A1) </em></strong>for correct strict inequalities. Follow through from their answers to parts (a) and (c)(ii).</p>
<p>Accept interval notation.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A parcel is in the shape of a rectangular prism, as shown in the diagram. It has a length \(l\) cm, width \(w\) cm and height of \(20\) cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The total volume of the parcel is \(3000{\text{ c}}{{\text{m}}^3}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the volume of the parcel in terms of \(l\) and \(w\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(l = \frac{{150}}{w}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_4.png" alt><br></span></p>
<p><span>Show that the length of string, \(S\) cm, required to tie up the parcel can be written as</span></p>
<p><span>\[S = 40 + 4w + \frac{{300}}{w},{\text{ }}0 < w \leqslant 20.\]</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_1.png" alt><br></span></p>
<p><span>Draw the graph of \(S\) for \(0 < w \leqslant 20\) and \(0 < S \leqslant 500\), clearly showing the local minimum point. Use a scale of \(2\) cm to represent \(5\) units on the horizontal axis \(w\)<em> </em>(cm), and a scale of \(2\) cm to represent \(100\) units on the vertical axis \(S\) (cm).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29.png" alt><br></span></p>
<p><span>Find \(\frac{{{\text{d}}S}}{{{\text{d}}w}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_5.png" alt><br></span></p>
<p><span>Find the value of \(w\) for which \(S\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_3.png" alt><br></span></p>
<p><span>Write down the value, \(l\), of the parcel for which the length of string is a minimum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_2.png" alt><br></span></p>
<p><span>Find the minimum length of string required to tie up the parcel.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(20lw\) <strong>OR</strong> \(V = 20lw\) <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3000 = 20lw\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their answer to part (a) to \(3000\).</span></p>
<p> </p>
<p><span>\(l = \frac{{3000}}{{20w}}\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for rearranging equation to make \(l\) subject of the formula. The above equation must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(150 = lw\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for division by \(20\) on both sides. The above equation must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span>\(l = \frac{{150}}{w}\) <strong><em>(AG)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(S = 2l + 4w + 2(20)\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for setting up a correct expression for \(S\).</span></p>
<p> </p>
<p><span>\(2\left( {\frac{{150}}{w}} \right) + 4w + 2(20)\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the expression for \(S\). The above expression must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span>\( = 40 + 4w + \frac{{300}}{w}\) <strong><em>(AG)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><span><strong><br><img src="images/curvy.jpg" alt> </strong> <strong><em>(A1)(A1)(A1)(A1)</em></strong></span></span></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for correct scales, window and labels on axes, <strong><em>(A1) </em></strong>for approximately correct shape, <strong><em>(A1) </em></strong>for minimum point in approximately correct position, <strong><em>(A1) </em></strong>for asymptotic behaviour at \(w = 0\).</span></p>
<p><span> Axes must be drawn with a ruler and labeled \(w\) and \(S\)<em>.</em></span></p>
<p><span> For a smooth curve (with approximately correct shape) there should be <strong>one </strong>continuous thin line, no part of which is straight and no (one-to-many) mappings of \(w\).</span></p>
<p><span> The \(S\)-axis must be an asymptote. The curve must not touch the \(S\)-axis nor must the curve approach the asymptote then deviate away later.</span></p>
<p> </p>
<p><span><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 - \frac{{300}}{{{w^2}}}\) <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for \(4\), <strong><em>(A1) </em></strong>for \(-300\), <strong><em>(A1) </em></strong>for \(\frac{1}{{{w^2}}}\) or \({w^{ - 2}}\). If extra terms present, award at most <strong><em>(A1)(A1)(A0)</em></strong><em>.</em></span></p>
<p><span><em> </em></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 - \frac{{300}}{{{w^2}}} = 0\) <strong>OR</strong> \(\frac{{300}}{{{w^2}}} = 4\) <strong>OR</strong> \(\frac{{{\text{d}}S}}{{{\text{d}}w}} = 0\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their derivative to zero.</span></p>
<p> </p>
<p><span>\(w = 8.66{\text{ }}\left( {\sqrt {75} ,{\text{ 8.66025}} \ldots } \right)\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answer to part (e).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(17.3 \left( {\frac{{150}}{{\sqrt {75} }},{\text{ 17.3205}} \ldots } \right)\) <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answer to part (f).</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(40 + 4\sqrt {75} + \frac{{300}}{{\sqrt {75} }}\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of their answer to part (f) into the expression for \(S\).</span></p>
<p> </p>
<p><span>\( = 110{\text{ (cm) }}\left( {40 + 40\sqrt 3 ,{\text{ 109.282}} \ldots } \right)\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Do not accept \(109\).</span></p>
<p><span> Follow through from their answers to parts (f) and (g).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(g(x) = {x^3} + k{x^2} - 15x + 5\).</p>
</div>
<div class="specification">
<p>The tangent to the graph of \(y = g(x)\) at \(x = 2\) is parallel to the line \(y = 21x + 7\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(k = 6\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the graph of \(y = g(x)\) at \(x = 2\). Give your answer in the form \(y = mx + c\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) and the value of \(k\), to find the \(x\)-coordinates of the stationary points of the graph of \(y = g(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g’( - 1)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence justify that \(g\) is decreasing at \(x = - 1\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(y\)-coordinate of the local minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(3{x^2} + 2kx - 15\) <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for \(3{x^2}\), <strong><em>(A1) </em></strong>for \(2kx\) and <strong><em>(A1) </em></strong>for \( - 15\). Award at most <strong><em>(A1)(A1)(A0) </em></strong>if additional terms are seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(21 = 3{(2)^2} + 2k(2) - 15\) <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for equating their derivative to 21. Award <strong><em>(M1) </em></strong>for substituting 2 into their derivative. The second <strong><em>(M1) </em></strong>should only be awarded if correct working leads to the final answer of \(k = 6\).</p>
<p>Substituting in the known value, \(k = 6\), invalidates the process; award <strong><em>(M0)(M0)</em></strong>.</p>
<p> </p>
<p>\(k = 6\) <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g(2) = {(2)^3} + (6){(2)^2} - 15(2) + 5{\text{ }}( = 7)\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substituting 2 into \(g\).</p>
<p> </p>
<p>\(7 = 21(2) + c\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution of 21, 2 and their 7 into gradient intercept form.</p>
<p> </p>
<p><strong>OR</strong></p>
<p> </p>
<p>\(y - 7 = 21(x - 2)\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correct substitution of 21, 2 and their 7 into gradient point form.</p>
<p> </p>
<p>\(y = 21x - 35\) <strong><em>(A1)</em></strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3{x^2} + 12x - 15 = 0\) (or equivalent) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for equating their part (a) (with \(k = 6\) substituted) to zero.</p>
<p> </p>
<p>\(x = - 5,{\text{ }}x = 1\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3{( - 1)^2} + 12( - 1) - 15\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for substituting \( - 1\) into their derivative, with \(k = 6\) substituted. Follow through from part (a).</p>
<p> </p>
<p>\( = - 24\) <strong><em>(A1)</em>(ft)</strong> <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g’( - 1) < 0\) (therefore \(g\) is decreasing when \(x = - 1\)) <strong><em>(R1)</em></strong></p>
<p><strong><em>[1 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(g(1) = {(1)^3} + (6){(1)^2} - 15(1) + 5\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award <strong><em>(M1) </em></strong>for correctly substituting 6 and their 1 into \(g\).</p>
<p> </p>
<p>\( = - 3\) <strong><em>(A1)</em>(ft)</strong> <strong><em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Award, at most, (<strong><em>M1)(A0) </em></strong>or <strong><em>(G1) </em></strong>if answer is given as a coordinate pair. Follow through from part (c).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = \frac{{96}}{{{x^2}}} + kx\), where \(k\) is a constant and \(x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Show that \(k = 3\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f'(2)\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find the equation of the normal to the graph of \(y = f(x)\) at the point where \(x = 2\).</p>
<p class="p1">Give your answer in the form \(ax + by + d = 0\) where \(a,{\text{ }}b,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1"><span class="s1">Sketch the graph of \(y = f(x)\)</span>, for \( - 5 \leqslant x \leqslant 10\) and \( - 10 \leqslant y \leqslant 100\)<span class="s1">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Write down the coordinates of the point where the graph of \(y = f(x)\) intersects the \(x\)-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">State the values of \(x\) for which \(f(x)\) is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{ - 192}}{{{x^3}}} + k\) <span class="Apple-converted-space"> </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(-192\), <strong><em>(A1) </em></strong>for \({x^{ - 3}}\), <strong><em>(A1) </em></strong>for \(k\) (only).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at local minimum \(f'(x) = 0\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for seeing \(f'(x) = 0\) (may be implicit in their working).</p>
<p class="p2"> </p>
<p class="p1">\(\frac{{ - 192}}{{{4^3}}} + k = 0\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(k = 3\) <span class="Apple-converted-space"> </span><strong><em>(AG)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for substituting \(x = 4\) in their \(f'(x) = 0\), provided it leads to \(k = 3\)<em>. </em>The conclusion \(k = 3\) must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{96}}{{{2^2}}} + 3(2)\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for substituting \(x = 2\) and \(k = 3\) in \(f(x)\).</p>
<p class="p2"> </p>
<p class="p1">\( = 30\) <span class="Apple-converted-space"> </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{ - 192}}{{{2^3}}} + 3\) <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting \(x = 2\) and \(k = 3\) in their \(f'(x)\).</p>
<p> </p>
<p>\( = - 21\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y - 30 = \frac{1}{{21}}(x - 2)\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \(\frac{1}{{21}}\) seen, <strong><em>(M1) </em></strong>for the correct substitution of their point and their normal gradient in equation of a line.</p>
<p class="p1">Follow through from part (c) and part (d).</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">gradient of normal \( = \frac{1}{{21}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">\(30 = \frac{1}{{21}} \times 2 + c\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(c = 29\frac{{19}}{{21}}\)</p>
<p class="p1">\(y = \frac{1}{{21}}x + 29\frac{{19}}{{21}}\;\;\;(y = 0.0476x + 29.904)\)</p>
<p class="p1">\(x - 21y + 628 = 0\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Accept equivalent answers.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2015-12-21_om_09.26.22.png" alt> <span class="Apple-converted-space"> </span></span><strong><em>(A1)(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct window (at least one value, other than zero, labelled on each axis), the axes must also be labelled; <strong><em>(A1) </em></strong>for a smooth curve with the correct shape (graph should not touch \(y\)-axis and should not curve away from the \(y\)-axis), on the given domain; <strong><em>(A1) </em></strong>for axis intercept in approximately the correct position (nearer \(-5\)<span class="s2"> </span>than zero); <strong><em>(A1) </em></strong>for local minimum in approximately the correct position (first quadrant, nearer the \(y\)-axis than \(x = 10\)).</p>
<p class="p1">If there is no scale, award a maximum of <strong><em>(A0)(A1)(A0)(A1) </em></strong>– the final <strong><em>(A1) </em></strong>being awarded for the zero and local minimum in approximately correct positions relative to each other.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(( - 3.17,{\text{ }}0)\;\;\;\left( {( - 3.17480 \ldots ,{\text{ 0)}}} \right)\) <strong><em>(G1)(G1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>If parentheses are omitted award <strong><em>(G0)(G1)</em>(ft)</strong>.</p>
<p>Accept \(x = - 3.17,{\text{ }}y = 0\). Award <strong><em>(G1) </em></strong>for \(-3.17\) seen.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(0 < x \leqslant 4{\text{ or }}0 < x < 4\) <span class="Apple-converted-space"> </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct end points of interval, <strong><em>(A1) </em></strong>for correct notation (note: lower inequality must be strict).</p>
<p class="p1">Award a maximum of <strong><em>(A1)(A0) </em></strong>if \(y\) or \(f(x)\) used in place of \(x\).</p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Differentiation of terms including negative indices remains a testing process; it will continue to be tested. There was, however, a noticeable improvement in responses compared to previous years. The parameter k was problematic for a number of candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (b), the manipulation of the derivative to find the local minimum point caused difficulties for all but the most able; note that a GDC approach is not accepted in such questions and that candidates are expected to be able to apply the theory of the calculus as appropriate. Further, once a parameter is given, candidates are expected to use this value in subsequent parts.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (c) and (d) were accessible and all but the weakest candidates scored well.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (c) and (d) were accessible and all but the weakest candidates scored well.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (e) discriminated at the highest level; the gradient of the normal often was not used, the form of the answer not given correctly.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Curve sketching is a skill that most candidates find very difficult; axes must be labelled and some indication of the window must be present; care must be taken with the domain and the range; any asymptotic behaviour must be indicated. It was very rare to see sketches that attained full marks, yet this should be a skill that all can attain. There were many no attempts seen, yet some of these had correct answers to part (g).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Curve sketching is a skill that most candidates find very difficult; axes must be labelled and some indication of the window must be present; care must be taken with the domain and the range; any asymptotic behaviour must be indicated. It was very rare to see sketches that attained full marks, yet this should be a skill that all can attain. There were many no attempts seen, yet some of these had correct answers to part (g).</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (h) was not well attempted in the main; decreasing (and increasing) functions is a testing concept for the majority.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A shipping container is to be made with six rectangular faces, as shown in the diagram.</span></p>
<p> </p>
<p> </p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The dimensions of the container are</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">length 2<em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">width <em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">height <em>y</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">All of the measurements are in metres. The total length of all twelve edges is 48 metres.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that <em>y</em> =12 − 3<em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume <em>V</em> m<sup>3</sup> of the container is given by</span></p>
<p><span><em>V</em> = 24<em>x</em><sup>2</sup> − 6<em>x</em><sup>3</sup></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \( \frac{{\text{d}V}}{{\text{d}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> for which <em>V</em> is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the maximum volume of the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length and height of the container for which the volume is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The shipping container is to be painted. One litre of paint covers an area of 15 m<sup>2</sup> .</span> <span>Paint comes in tins containing four litres.</span></p>
<p><span>Calculate the number of tins required to paint the shipping container.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(4(2x) + 4y + 4x = 48\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up the equation.</span></p>
<p><br><span>\(12x + 4y = 48\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for simplifying (can be implied).</span></p>
<p><br><span>\(y = \frac{{48 - 12x}}{{4}}\)</span> <span> </span><span> <strong>OR</strong> \(3x + y =12\) <em><strong>(A1)</strong></em></span></p>
<p><span>\(y =12 - 3x\) <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The last line must be seen for the <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(V = 2x \times x \times (12 - 3x)\) <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into volume equation, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\(= 24x^2 - 6x^3\) <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The last line must be seen for the <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{\text{d}V}}{{\text{d}x}} = 48x - 18x^2\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(48x -18x^2 = 0\) <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for using their derivative, <em><strong>(M1)</strong></em> for equating their answer to part (c) to 0.</span></p>
<p><br><span><strong>OR</strong></span></p>
<p><span><em><strong>(M1)</strong></em> for sketch of \(V = 24x^2 - 6x^3\), <em><strong>(M1)</strong></em> for the maximum point indicated <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span><em><strong>(M1)</strong></em> for sketch of \(\frac{{\text{d}V}}{{\text{d}x}} = 48x - 18x^2\), <em><strong>(M1)</strong></em> for the positive root indicated <em><strong>(M1)(M1)</strong></em></span></p>
<p><span>\(2.67\left( {\frac{{24}}{9},{\text{ }}\frac{8}{3},{\text{ }}2.66666...} \right)\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their part (c).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(V = 24 \times {\left( {\frac{8}{3}} \right)^2} - 6 \times {\left( {\frac{8}{3}} \right)^3}\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of their value from part (d) into volume equation.</span></p>
<p><br><span>\(56.9({{\text{m}}^3})\left( {\frac{{512}}{9},{\text{ }}56.8888...} \right)\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (d).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{length} = \frac{{16}}{{3}}\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (d). Accept 5.34 from use of 2.67</span></p>
<p><br><span>\(\text{height} = 12 - 3 \times \left( {\frac{{8}}{{3}}} \right) = 4\) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution of their answer to part (d), <em><strong>(A1)</strong></em><strong>(ft)</strong> for answer. Accept 3.99 from use of 2.67.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{SA} = 2 \times \frac{{16}}{{3}} \times 4 + 2 \times \frac{{8}}{{3}} \times 4 + 2 \times \frac{{16}}{{3}} \times \frac{{8}}{{3}}\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\text{SA} = 4 \left( {\frac{{8}}{{3}}}\right)^2 + 6 \times \frac{{8}}{{3}} \times 4\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of their values from parts (d) and (f) into formula for surface area.</span></p>
<p><br><span>92.4 (m<sup>2</sup>) (92.4444...(m<sup>2</sup>)) <em><strong>(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept 92.5 (92.4622...) from use of 3 sf answers.</span></p>
<p><span><br>\(\text{Number of tins} = \frac{{92.4444...}}{{15 \times 4}}( = 1.54)\) <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for division of their surface area by 60.</span></p>
<p><br><span>2 tins required <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their answers to parts (d) and (f).</span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(a) This was very poorly done. Most candidates had no idea what they were supposed to </span><span style="font-size: medium; font-family: times new roman,times;">do here. Many tried to find values for <em>x</em>.</span></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(a) This was very poorly done. Most candidates had no idea what they were supposed to </span><span style="font-size: medium; font-family: times new roman,times;">do here. Many tried to find values for <em>x</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(b) Similar comment as for part (a) although more candidates made an attempt at finding </span><span style="font-size: medium; font-family: times new roman,times;">the Volume.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(c) This part was very well done.</span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(d) Not many correct answers seen. Many candidates graphed the wrong equation and </span><span style="font-size: medium; font-family: times new roman,times;">found 1.333 as their answer.</span></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(e) Some managed to gain follow through marks for this part.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(f) Again here follow through marks were gained by those who attempted it.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(g) Very few correct answers for the surface area were seen. Most candidates thought </span><span style="font-size: medium; font-family: times new roman,times;">that there were 4 equal faces 2 <em>xy</em> and 2 faces <em>xy</em>. Some managed to get follow</span> <span style="font-size: medium; font-family: times new roman,times;">through marks for the last part if they divided by 60.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the curve \(y = {x^3} + \frac{3}{2}{x^2} - 6x - 2\)</span> .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the value of \(y\) when \(x\) is \(2\).</span></p>
<p><span>(ii) Write down the coordinates of the point where the curve intercepts the \(y\)-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the curve for \( - 4 \leqslant x \leqslant 3\) and \( - 10 \leqslant y \leqslant 10\). Indicate clearly the information found in (a).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \({L_1}\) be the tangent to the curve at \(x = 2\).</span></p>
<p><span>Let \({L_2}\) be a tangent to the curve, parallel to \({L_1}\).</span></p>
<p><span>(i) Show that the gradient of \({L_1}\) is \(12\).</span></p>
<p><span>(ii) Find the \(x\)-coordinate of the point at which \({L_2}\) and the curve meet.</span></p>
<p><span>(iii) Sketch and label \({L_1}\) and \({L_2}\) on the diagram drawn in (b).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} > 0\) for \(x < - 2\) and \(x > b\) where \(b\) is positive.</span></p>
<p><span>(i) Using your graphic display calculator, or otherwise, find the value of \(b\).</span></p>
<p><span>(ii) Describe the behaviour of the curve in the interval \( - 2 < x < b\) .</span></p>
<p><span>(iii) Write down the equation of the tangent to the curve at \(x = - 2\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(y = 0\) <em><strong>(A1)</strong></em></span></p>
<p><span>(ii) \((0{\text{, }}{- 2})\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note: </strong>Award <em><strong>(A1)(A0)</strong></em> if brackets missing.</span></p>
<p><br><span><strong>OR</strong></span></p>
<p><span>\(x = 0{\text{, }}y = - 2\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note: </strong>If coordinates reversed award <strong><em>(A0)(A1)</em>(ft)</strong>. Two coordinates must be given.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span><span> <em><strong>(A4)</strong></em></span></p>
<p><span><strong>Notes: <em>(A1)</em></strong> for appropriate window. Some indication of scale on the \(x\)-axis must be present (for example ticks). Labels not required. <em><strong>(A1)</strong></em> for smooth curve and shape, <em><strong>(A1)</strong></em> for maximum and minimum in approximately correct position, <em><strong>(A1)</strong></em> for \(x\) and \(y\) intercepts found in (a) in approximately correct position.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 3{x^2} + 3x - 6\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong> Note: <em>(A1)</em></strong> for each correct term. Award <em><strong>(A1)(A1)(A0)</strong></em> at most if any other term is present.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(3 \times 4 + 3 \times 2 - 6 = 12\) <em><strong>(M1)(A1)(AG)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for using the derivative and substituting \(x = 2\) . <em><strong>(A1)</strong></em> for correct (and clear) substitution. The \(12\) must be seen.</span></p>
<p><br><span>(ii) Gradient of \({L_2}\) is \(12\) (can be implied) <em><strong>(A1)</strong></em></span></p>
<p><span>\(3{x^2} + 3x - 6 = 12\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(x = - 3\) <em><strong>(A1)(G2)</strong></em></span><br><br></p>
<p><span><strong>Note: <em>(M1)</em></strong> for equating the derivative to \(12\) or showing a sketch of the derivative together with a line at \(y = 12\) or a table of values showing the \(12\) in the derivative column.</span></p>
<p><br><span>(iii) <em><strong>(A1)</strong></em> for \({L_1}\) correctly drawn at approx the correct point <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>(A1)</strong></em> for \({L_2}\) correctly drawn at approx the correct point</span><span> <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>(A1)</strong></em> for 2 parallel lines</span><span> <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note: </strong>If lines are not labelled award at most <em><strong>(A1)(A1)(A0)</strong></em>. Do not accept 2 horizontal or 2 vertical parallel lines.</span></p>
<p><span><em><strong>[8 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(b = 1\) <em><strong>(G2)</strong></em></span></p>
<p><span>(ii) The curve is decreasing. <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note: </strong>Accept any valid description.</span></p>
<p><br><span>(iii) \(y = 8\) <em><strong>(A1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note: <em>(A1)</em></strong> for “\(y =\) a constant”, <em><strong>(A1)</strong></em> for \(8\).</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates managed to gain good marks in this question as they were able to answer the first three parts of the question. Good sketches were drawn with the required information shown on them. Very few candidates did not recognise the notation \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) but they showed that they knew how to differentiate as in (d)(i) they found the derivative to show that the gradient of \({L_1}\) was \(12\). Candidates found it difficult to find the other \(x\) for which the derivative was \(12\). However, some could draw both tangents without having found this value of \(x\) . In general, tangents were not well drawn. The last part question did act as a discriminating question. However, those candidates that had the function drawn either in their GDC or on paper recognised that at \(x = - 2\) there was a maximum and so wrote down the correct equation of the tangent at that point.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates managed to gain good marks in this question as they were able to answer the first three parts of the question. Good sketches were drawn with the required information shown on them. Very few candidates did not recognise the notation \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) but they showed that they knew how to differentiate as in (d)(i) they found the derivative to show that the gradient of \({L_1}\) was \(12\). Candidates found it difficult to find the other \(x\) for which the derivative was \(12\). However, some could draw both tangents without having found this value of \(x\) . In general, tangents were not well drawn. The last part question did act as a discriminating question. However, those candidates that had the function drawn either in their GDC or on paper recognised that at \(x = - 2\) there was a maximum and so wrote down the correct equation of the tangent at that point.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates managed to gain good marks in this question as they were able to answer the first three parts of the question. Good sketches were drawn with the required information shown on them. Very few candidates did not recognise the notation \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) but they showed that they knew how to differentiate as in (d)(i) they found the derivative to show that the gradient of \({L_1}\) was \(12\). Candidates found it difficult to find the other \(x\) for which the derivative was \(12\). However, some could draw both tangents without having found this value of \(x\) . In general, tangents were not well drawn. The last part question did act as a discriminating question. However, those candidates that had the function drawn either in their GDC or on paper recognised that at \(x = - 2\) there was a maximum and so wrote down the correct equation of the tangent at that point.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates managed to gain good marks in this question as they were able to answer the first three parts of the question. Good sketches were drawn with the required information shown on them. Very few candidates did not recognise the notation \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) but they showed that they knew how to differentiate as in (d)(i) they found the derivative to show that the gradient of \({L_1}\) was \(12\). Candidates found it difficult to find the other \(x\) for which the derivative was \(12\). However, some could draw both tangents without having found this value of \(x\) . In general, tangents were not well drawn. The last part question did act as a discriminating question. However, those candidates that had the function drawn either in their GDC or on paper recognised that at \(x = - 2\) there was a maximum and so wrote down the correct equation of the tangent at that point.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates managed to gain good marks in this question as they were able to answer the first three parts of the question. Good sketches were drawn with the required information shown on them. Very few candidates did not recognise the notation \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) but they showed that they knew how to differentiate as in (d)(i) they found the derivative to show that the gradient of \({L_1}\) was \(12\). Candidates found it difficult to find the other \(x\) for which the derivative was \(12\). However, some could draw both tangents without having found this value of \(x\) . In general, tangents were not well drawn. The last part question did act as a discriminating question. However, those candidates that had the function drawn either in their GDC or on paper recognised that at \(x = - 2\) there was a maximum and so wrote down the correct equation of the tangent at that point.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f(x) = \frac{3}{4}{x^4} - {x^3} - 9{x^2} + 20\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f( - 2)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Using your answer to part (b), show that there is a second local minimum at \(x = 3\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Sketch the graph of the function \(f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 40 \leqslant y \leqslant 50\). Indicate on your</span></p>
<p><span>sketch the coordinates of the \(y\)-intercept.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Write down the coordinates of the local maximum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \(T\) be the tangent to the graph of the function \(f(x)\) at the point \((2, –12)\).</span></p>
<p><span>Find the gradient of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) passes through the point \((2, −12)\) and is perpendicular to \(T\).</span></p>
<p><span>\(L\) has equation \(x + by + c = 0\), where \(b\) and \(c \in \mathbb{Z}\).</span></p>
<p><span>Find</span></p>
<p><span>(i) the gradient of \(L\);</span></p>
<p><span>(ii) the value of \(b\) and the value of \(c\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{3}{4}{( - 2)^4} - {( - 2)^3} - 9{( - 2)^2} + 20\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting \(x = - 2\) in the function.</span></p>
<p> </p>
<p><span>\(= 4\) <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>If the coordinates \(( - 2,{\text{ }}4)\) are given as the answer award, at most, <strong><em>(M1)(A0)</em></strong><em>. </em>If no working shown award <strong><em>(G1)</em></strong><em>.</em></span></p>
<p><span><em> </em>If \(x = - 2,{\text{ }}y = 4\) seen then award full marks.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3{x^3} - 3{x^2} - 18x\) <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct term, award at most <strong><em>(A1)(A1)(A0) </em></strong>if extra terms seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(3) = 3 \times {(3)^3} - 3 \times {(3)^2} - 18 \times 3\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution in their \(f'(x)\) of \(x = 3\).</span></p>
<p> </p>
<p><span>\( = 0\) <em><strong>(A1)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(3{x^3} - 3{x^2} - 18x = 0\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their \(f'(x)\) to zero.</span></p>
<p> </p>
<p><span>\(x = 3\) <strong><em>(A1)</em></strong></span></p>
<p><span>\(f'({x_1}) = 3 \times {({x_1})^3} - 3 \times {({x_1})^2} - 18 \times {x_1} < 0\) where \(0 < {x_1} < 3\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting a value of \({x_1}\) in the range \(0 < {x_1} < 3\) into their \(f'\) and showing it is negative (decreasing).</span></p>
<p> </p>
<p><span>\(f'({x_2}) = 3 \times {({x_2})^3} - 3 \times {({x_2})^2} - 18 \times {x_2} > 0\) where \({x_2} > 3\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting a value of \({x_2}\) in the range \({x_2} > 3\) into their \(f'\) and showing it is positive (increasing).</span></p>
<p><span><strong>OR</strong></span></p>
<p><span><em>With or without a sketch:</em></span></p>
<p><span>Showing \(f({x_1}) > f(3)\) where \({x_1} < 3\) and \({x_1}\) is close to 3. <strong><em>(M1)</em></strong></span></p>
<p><span>Showing \(f({x_2}) > f(3)\) where \({x_2} > 3\) and \({x_2}\) is close to 3. <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>If a sketch of \(f(x)\) is drawn <strong>in this part of the question and</strong> \(x = 3\) is identified as a stationary point on the curve, then</span></p>
<p><span> (i) award, at most, <strong><em>(M1)(A1)(M1)(M0) </em></strong>if the stationary point has been found;</span></p>
<p><span> (ii) award, at most, <strong><em>(M0)(A0)(M1)(M0) </em></strong>if the stationary point has not been previously found.</span></p>
<p> </p>
<p><span>Since the gradients go from negative (decreasing) through zero to positive (increasing) it is a local minimum <strong><em>(R1)(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Only award <strong><em>(R1) </em></strong>if the first two marks have been awarded <em>ie</em> \(f'(3)\) has been shown to be equal to \(0\).</span></p>
<p> </p>
<p><span><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="images/Schermafbeelding_2014-09-03_om_16.12.18.png" alt><span> <strong><em>(A1)(A1)(A1)(A1)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for labelled axes and indication of scale on both axes.</span></p>
<p><span> Award <strong><em>(A1) </em></strong>for smooth curve with correct shape.</span></p>
<p><span> Award <strong><em>(A1) </em></strong>for local minima in \({2^{{\text{nd}}}}\) and \({4^{{\text{th}}}}\) quadrants.</span></p>
<p><span> Award <strong><em>(A1) </em></strong>for <em>y </em>intercept \((0, 20)\) seen and labelled. Accept \(20\) on \(y\)<em>-</em>axis.</span></p>
<p><span> Do <strong>not </strong>award the third <strong><em>(A1) </em></strong>mark if there is a turning point on the \(x\)-axis.</span></p>
<p><span> If the derivative function is sketched then award, at most, <strong><em>(A1)(A0)(A0)(A0)</em></strong>.</span></p>
<p><span> For a smooth curve (with correct shape) there should be <strong>ONE </strong>continuous thin line, no part of which is straight and no (one to many) mappings of \(x\).</span></p>
<p> </p>
<p><span><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\((0, 20)\) <strong><em>(G1)(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>If parentheses are omitted award <strong><em>(G0)(G1)</em></strong>.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(x = 0,{\text{ }}y = 20\) <strong><em>(G1)(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>If the derivative function is sketched in part (d), award <strong><em>(G1)</em>(ft)<em>(G1)</em>(ft) </strong>for \((–1.12, 12.2)\).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(2) = 3{(2)^3} - 3{(2)^2} - 18(2)\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituting \(x = 2\) into their \(f'(x)\).</span></p>
<p> </p>
<p><span>\( = - 24\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) Gradient of perpendicular \( = \frac{1}{{24}}\) \((0.0417, 0.041666…)\) <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from part (f).</span></p>
<p> </p>
<p><span>(ii) \(y + 12 = \frac{1}{{24}}(x - 2)\) <strong><em>(M1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of \((2, –12)\), <strong><em>(M1) </em></strong>for correct substitution of their perpendicular gradient into equation of line.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\( - 12 = \frac{1}{{24}} \times 2 + d\) <strong><em>(M1)</em></strong></span></p>
<p><span>\(d = - \frac{{145}}{{12}}\)</span></p>
<p><span>\(y = \frac{1}{{24}}x - \frac{{145}}{{12}}\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of \((2, –12)\) and gradient into equation of a straight line, <strong><em>(M1) </em></strong>for correct substitution of the perpendicular gradient and correct substitution of \(d\)into equation of line.</span></p>
<p> </p>
<p><span>\(b = - 24,{\text{ }}c = - 290\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(G3)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from parts (f) and g(i).</span></p>
<p><span> To award <strong>(ft) </strong>marks, \(b\) and \(c\) must be integers.</span></p>
<p><span> Where candidate has used \(0.042\) from g(i), award <strong><em>(A1)</em>(ft) </strong>for \(–288\).</span></p>
<p> </p>
<p><span><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Surprisingly, a correct method for substituting the value of –2 into the given function led many candidates to a variety of incorrect answers. This suggests a poor handling of negative signs and/or poor use of the graphic display calculator. Many correct answers were seen in part (b) as candidates seemed to be well-drilled in the process of differentiation. Part (c), however, proved to be quite a discriminator. There were 5 marks for this part of the question and simply showing that \(x - 3\) is a turning point was not sufficient for all of these marks. Many simply scored only two marks by substituting \(x - 3\) into their answer to part (b). Once they had shown that there was a turning point at \(x - 3\), candidates were not expected to use the second derivative but to show that the function decreases for \(x < 3\) and increases for \(x > 3\). Part (d) required a sketch which could have either been done on lined paper or on graph paper. The majority of candidates obtained at least two marks here with the most common errors seen being incomplete labelled axes and curves which were far from being smooth. In part (e), many candidates identified the correct coordinates for the two marks available. But for many candidates, this is where responses stopped as, in part (f), connecting the gradient function found in part (b) to the given coordinates proved problematic and only a significant minority of candidates were able to arrive at the required answer of –24. Indeed, there were many NR (no responses) to this part and the final part of the question. As many candidates found part (f) difficult, even more candidates found getting beyond the gradient of <em>L</em> very difficult indeed. A minority of candidates wrote down the gradient of their perpendicular but then did not seem to know where to proceed from there. Substituting their gradient for <em>b</em> and the coordinates (2, –12) into the equation \(x + by + c = 0\) was a popular, but erroneous, method. It was a rare event indeed to see a script with a correct answer for this part of the question.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A water container is made in the shape of a cylinder with internal height \(h\) cm and internal base radius \(r\) cm.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p class="p1">The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>
<div class="specification">
<p class="p1">The volume of the water container is \(0.5{\text{ }}{{\text{m}}^3}\).</p>
</div>
<div class="specification">
<p class="p1">The water container is designed so that the area to be coated is minimized.</p>
</div>
<div class="specification">
<p class="p1">One can of water-resistant material coats a surface area of \(2000{\text{ c}}{{\text{m}}^2}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a formula for \(A\), <span class="s1">the surface area to be coated.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Express this volume in \({\text{c}}{{\text{m}}^3}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down, in terms of \(r\) </span>and \(h\), an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2}\frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answer to part (e), find the value of \(r\) <span class="s1">which minimizes \(A\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the least number of cans of water-resistant material that will coat the area in <span class="s1">part (g).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\((A = ){\text{ }}\pi {r^2} + 2\pi rh\) </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for either \(\pi {r^2}\) <strong>OR</strong> \(2\pi rh\) seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(500\,000\) </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Units <strong>not </strong>required.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(500\,000 = \pi {r^2}h\) </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for \(\pi {r^2}h\) equating to their part (b).</p>
<p class="p1"><span class="s1">Do not accept </span>unless \(V = \pi {r^2}h\) is explicitly defined as their part (b).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)\) </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \({\frac{{500\,000}}{{\pi {r^2}}}}\) seen.</p>
<p class="p1">Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> \({\frac{{500\,000}}{{\pi {r^2}}}}\) into a <strong>correct </strong>part (a).</p>
<p class="p1">Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to \(\pi rh = \frac{{500\,000}}{r}\) and substituting for \(\pi rh\) <span class="s1">in expression for \(A\).</span></p>
<p class="p3"> </p>
<p class="p4"><span class="Apple-converted-space">\(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\) </span><span class="s2"><strong><em>(AG)</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>The conclusion, \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\), must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p class="p4">Accept \({10^6}\) as equivalent to \({1\,000\,000}\).</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)\) </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \({\frac{{500\,000}}{{\pi {r^2}}}}\) seen.</p>
<p class="p1">Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> \({\frac{{500\,000}}{{\pi {r^2}}}}\) into a <strong>correct </strong>part (a).</p>
<p class="p1">Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to \(\pi rh = \frac{{500\,000}}{r}\) and substituting for \(\pi rh\) <span class="s1">in expression for \(A\).</span></p>
<p class="p3"> </p>
<p class="p4"><span class="Apple-converted-space">\(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\) </span><span class="s2"><strong><em>(AG)</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>The conclusion, \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\), must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p class="p4">Accept \({10^6}\) as equivalent to \({1\,000\,000}\).</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}\) </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for \(2\pi r\), <strong><em>(A1) </em></strong>for \(\frac{1}{{{r^2}}}\) or \({r^{ - 2}}\), <strong><em>(A1) </em></strong>for \( - {\text{1}}\,{\text{000}}\,{\text{000}}\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0\) </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\({r^3} = \frac{{1\,000\,000}}{{2\pi }}\) <strong>OR</strong> \(r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}\) </span><strong><em>(M1)</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for isolating \(r\).</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">sketch of derivative function <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">with its zero indicated <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\((r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )\) </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}\) </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )\) </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{27\,679.0 \ldots }}{{2000}}\) </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by <span class="s1">2000</span>.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 13.8395 \ldots \) </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Follow through from part (g).</p>
<p class="p2"> </p>
<p class="p1"><span class="s1">14 </span>(cans) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their \(13.8395 \ldots \) to the next integer.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = {x^3} + \frac{{48}}{x}{\text{, }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(y = f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 200 \leqslant y \leqslant 200\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the local maximum point on the graph of \(f\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<address><span>Find the range of \(f\) .</span></address>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to the graph of \(f\) at \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point on the graph of \(f\) at which the tangent is parallel to the tangent at \(x = 1\). </span></p>
<p><span>Find the \(x\)-coordinate of this point.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(f(2) = {2^3} + \frac{{48}}{2}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(= 32\) <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for labels and some indication of scale in an appropriate window</span><br><span><em><strong>(A1)</strong></em> for correct shape of the two unconnected and smooth branches</span><br><span><em><strong>(A1)</strong></em> for maximum and minimum in approximately correct positions</span><br><span><em><strong>(A1)</strong></em> for asymptotic behaviour at \(y\)-axis <em><strong>(A4)</strong></em></span></p>
<p><span><strong>Notes:</strong> Please be rigorous.</span><br><span>The axes need not be drawn with a ruler.</span><br><span>The branches must be smooth: a single continuous line that does not deviate from its proper direction.</span><br><span>The position of the maximum and minimum points must be symmetrical about the origin.</span><br><span>The \(y\)-axis must be an asymptote for both branches. Neither branch should touch the axis nor must the curve approach the</span><br><span>asymptote then deviate away later.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 3{x^2} - \frac{{48}}{{{x^2}}}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(3{x^2}\) , <em><strong>(A1)</strong></em> for \( - 48\) , <em><strong>(A1)</strong></em> for \({x^{ - 2}}\) . Award a maximum of <em><strong>(A1)(A1)(A0)</strong></em> if extra terms seen.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(2) = 3{(2)^2} - \frac{{48}}{{{{(2)}^2}}}\) <em><strong>(M1)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(x = 2\) into their derivative.</span></p>
<p> </p>
<p><span><span>\(= 0\)</span><span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></span></p>
<p><span><span><em><strong>[2 marks]<br></strong></em></span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(( - 2{\text{, }} - 32)\) or \(x = - 2\), \(y = - 32\) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(G0)(G0)</strong></em> for \(x = - 32\), \(y = - 2\) . Award at most <em><strong>(G0)(G1)</strong></em> if parentheses are omitted.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\{ y \geqslant 32\} \cup \{ y \leqslant - 32\} \) <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft)</strong> \(y \geqslant 32\) or \(y > 32\) seen, <strong><em>(A1)</em>(ft)</strong> for \(y \leqslant - 32\) or \(y < - 32\) , <em><strong>(A1)</strong></em> for weak (non-strict) inequalities used in both of the above.</span><br><span>Accept use of \(f\) in place of \(y\). Accept alternative interval notation.</span><br><span>Follow through from their (a) and (e).</span><br><span>If domain is given award <em><strong>(A0)(A0)(A0)</strong></em>.</span><br><span>Award <strong><em>(A0)(A1)</em>(ft)<em>(A1)</em>(ft)</strong> for \([ - 200{\text{, }} - 32]\) , \([32{\text{, }}200]\).</span><br><span>Award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong> for \(] - 200{\text{, }} - 32]\) , \([32{\text{, }}200[\).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(1) = - 45\) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for \(f'(1)\) seen or substitution of \(x = 1\) into their derivative. Follow through from their derivative if working is seen.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = - 1\) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative to their \( - 45\) or for seeing parallel lines on their graph in the approximately correct position.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve – the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the “window”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = 2<sup><em>x</em></sup> for \( - 2 \leqslant x \leqslant 3\). Indicate clearly where the curve intersects the <em>y</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the asymptote of the graph of <em>y</em> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same axes sketch the graph of <em>y</em> = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>. Indicate clearly where this curve intersects the <em>x</em> and <em>y</em> axes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, solve the equation 3 + 2<em>x</em> − <em>x</em><sup>2</sup> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the maximum value of the function <em>f</em> (<em>x</em>) = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use Differential Calculus to verify that your answer to (e) is correct.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The curve <em>y</em> = <em>px</em><sup>2</sup> + <em>qx</em> − 4 passes through the point (2, –10).</span></p>
<p><span>Use the above information to write down an equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Hence, find a second equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Solve the equations to find the value of <em>p</em> and of <em>q</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B, c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span> <em><strong>(A1)(A1)(A1)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct domain, <em><strong>(A1)</strong></em> for smooth curve,</span> <span><em><strong>(A1)</strong></em> for <em>y</em>-intercept clearly indicated.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>y</em> = 0 <strong><em>(A1)(A1)</em></strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>y</em> = constant, <em><strong>(A1)</strong></em> for 0.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for smooth parabola,</span></p>
<p><span><em><strong>(A1)</strong></em> for vertex (maximum) in correct quadrant.</span></p>
<p><span><em><strong>(A1)</strong></em> for all clearly indicated intercepts <em>x</em> = −1, <em>x</em> = 3 and <em>y</em> = 3.</span></p>
<p><span>The final mark is to be applied very strictly. <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> = −0.857 <em>x</em> = 1.77 <em><strong>(G1)(G1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award a maximum of <em><strong>(G1)</strong></em> if <em>x</em> and <em>y</em> coordinates are both given.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4 <em><strong>(G1)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(G0)</strong></em> for (1, 4).</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 2 - 2x\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span>Award at most <em><strong>(A1)(A0)</strong></em> if any extra terms seen.</span></p>
<p><br><span>\(2 - 2x = 0\) <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their gradient function to zero.</span></p>
<p><br><span>\(x = 1\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(f (1) = 3 + 2(1) - (1)^2 = 4\) <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> The final <em><strong>(A1)</strong></em> is for substitution of <em>x</em> = 1 into \(f (x)\) and subsequent correct </span><span>answer. Working must be seen for final <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span> </span></p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>2<sup>2</sup> × <em>p</em> + 2<em>q</em> − 4 = </span><span><span>−</span>10 <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the equation.</span></p>
<p><br><span>4<em>p</em> + 2<em>q</em> = </span><span><span>−</span>6 or 2<em>p</em> + <em>q</em> = </span><span><span>−</span>3 <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept equivalent simplified forms.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2px + q\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span>Award at most <em><strong>(A1)(A0)</strong></em> if any extra terms seen.<br></span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4<em>p </em>+<em> q</em> = 1 <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4<em>p</em> + 2<em>q</em> = −6<br></span></p>
<p><span>4<em>p</em> + <em>q</em> = 1 <em><strong>(M1)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sensible attempt to solve the equations.</span></p>
<p><span><br><em>p</em> = 2, <em>q</em> = </span><span><span>−</span>7 <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">B, c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The most common error was using the incorrect domain.</span></p>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Many had little idea of asymptotes. Others did not write their answer as an equation.</span></p>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The intercepts being inexact or unlabelled was the most frequent cause of loss of marks.</span></p>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Often, only one solution to the equation was given. Elsewhere, a lack of appreciation that the solutions were the <em>x</em> coordinates was a common mistake.</span></p>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The maximum is the<em> y</em> coordinate only; again a common misapprehension was the answer “(1, 4)”.</span></p>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">This was a major discriminator in the paper. Many candidates were unable to follow the analytic approach to finding a maximum point.</span></p>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</p>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A dog food manufacturer has to cut production costs. She wishes to use as little aluminium as possible in the construction of cylindrical cans. In the following diagram, <em>h</em> represents the height of the can in cm and <em>x</em>, the radius of the base of the can in cm.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The volume of the dog food cans is 600 cm<sup>3</sup>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(h = \frac{{600}}{{\pi {x^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for the curved surface area of the can, in terms of <em>x</em>. Simplify your answer.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down an expression for <em>A</em>, the total surface area of the can, in terms of <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate <em>A</em> in terms of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> that makes <em>A</em> a minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the minimum total surface area of the dog food can.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(600 = \pi x^2 h\) <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\(\frac{600}{\pi x^2} = h\) <em><strong>(AG)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substituted formula, <em><strong>(A1)</strong></em> for correct substitution. If answer given not shown award at most <em><strong>(M1)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(C = 2 \pi x \frac{600}{\pi x^2}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(C = \frac{1200}{x}\) (or 1200<em>x</em><sup>–1</sup>) <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in formula, <em><strong>(A1)</strong></em> for correct simplification.<br></span></p>
<p><span> </span></p>
<p><em><strong><span>[??? marks]</span></strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(A = 2 \pi x^2 + 1200x^{-1}\) <strong><em>(A1)(A1)</em>(ft)</strong></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for multiplying the area of the base by two, <strong><em>(A1)</em></strong> for adding on their answer to part (b) (i).</span></p>
<p><span>For both marks to be awarded answer must be in terms of<em> x</em>.</span></p>
<p> </p>
<p><span><em><strong>[??? marks]</strong></em></span></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}A}}{{{\text{d}}x}} = 4\pi x - \frac{{1200}}{{{x^2}}}\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(4 \pi x\), <em><strong>(A1)</strong></em> for \(-1200\), <em><strong>(A1)</strong></em> for \(x^{-2}\). Award at most <em><strong>(A2)</strong></em> if any extra term is written. Follow through from their part (b) (ii).</span></p>
<p><span> </span></p>
<p><em><strong><span>[??? marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 \pi x - \frac{1200}{x^2} = 0\) <em><strong>(M1)(M1)</strong></em></span></p>
<p><span>\(x^3 = \frac{1200}{4 \pi}\) (or equivalent)</span></p>
<p><span>\(x = 4.57\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for using their derivative, <em><strong>(M1)</strong></em> for setting the derivative to zero, <strong><em>(A1)</em>(ft)</strong> for answer.</span></p>
<p><span>Follow through from their derivative.</span></p>
<p><span>Last mark is lost if value of <em>x</em> is zero or negative.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(A = 2 \pi (4.57)^2 + 1200(4.57)^{-1}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(A = 394\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answers to parts (b) (ii) and (d).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, <em>A</em> were able to earn follow through marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, <em>A</em> were able to earn follow through marks.</span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, <em>A</em> were able to earn follow through marks.</span></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, A were able to earn follow through marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, A were able to earn follow through marks.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was the most difficult question for the candidates. It was clear that the vast majority of them had not had exposure to this style of question. Part (a) was well answered by most of the students. In part (b) the correct expression “in terms of <em>x</em> ” for the curve surface area was not frequently seen. In many cases the impression was that they did not know what “in terms of <em>x</em> ” meant as correct equivalent expressions were seen but where the <em>h</em> was also involved. Those candidates that made progress in the question, even with the wrong expression for the total area of the can, A were able to earn follow through marks.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A function is defined by \(f(x) = \frac{5}{{{x^2}}} + 3x + c,{\text{ }}x \ne 0,{\text{ }}c \in \mathbb{Z}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(f ′(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the graph of <em>f</em>. The graph of <em>f</em> passes through the point P(1, 4).</span></p>
<p><span>Find the value of <em>c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a local minimum at the point Q.</span></p>
<p><span>Find the coordinates of Q.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a local minimum at the point Q.</span></p>
<p><span>Find the set of values of <em>x</em> for which the function is decreasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let<em> T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Show that the gradient of <em>T</em> is –7.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let<em> T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Find the equation of <em>T</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>T</em> intersects the graph again at R. Use your graphic display calculator to find the coordinates of R.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = \frac{{ - 10}}{{{x^3}}} + 3\) <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for −10, <em><strong>(A1)</strong></em> for <em>x</em><sup>3</sup> (or </span><span> <em>x<sup>−</sup></em><sup>3</sup></span><span>), <em><strong>(A1)</strong></em> for 3, <em><strong>(A1)</strong></em> for no other constant term.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4 = 5 + 3 + <em>c</em> <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in <em>f</em> (<em>x</em>).</span></p>
<p><br><span><em>c</em> = −4 <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f '(x) = 0\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(0 = \frac{{ - 10}}{{{x^3}}} + 3\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>(1.49, 2.72) (accept <em>x</em> = 1.49 <em>y</em> = 2.72) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> If answer is given as (1.5, 2.7) award <em><strong>(A0)(AP)(A1)</strong></em>.</span></p>
<p><span>Award at most <em><strong>(M1)(A1)(A1)(A0)</strong></em> if parentheses not included. <strong>(ft)</strong></span> <span>from their (a).</span></p>
<p><span>If no working shown award <em><strong>(G2)(G0)</strong></em> if parentheses are not included.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>Award <em><strong>(M2)</strong></em> for sketch, <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong> for correct </span><span>coordinates. <strong>(ft)</strong> from their (b). <em><strong>(M2)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award at most <em><strong>(M2)(A1)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em> if parentheses not included.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0 < <em>x</em> < 1.49 <strong>OR </strong> 0 < <em>x </em>≤ 1.49 <strong><em>(A1)(A1)</em>(ft)<em>(A1)</em></strong></span></p>
<p><span><span><br> </span><strong>Notes:</strong> Award <strong><em>(A1)</em></strong> for 0, <strong><em>(A1)</em>(ft)</strong> for 1.49 and <strong><em>(A1)</em></strong> for correct inequality signs.</span></p>
<p><span><strong>(ft)</strong> from their <em>x</em> value in (c) (i).</span></p>
<p><span> </span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>For P(1, 4) \(f '(1) = - 10 + 3\) <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\(= -7\) <em><strong>(AG)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting \(x = 1\) into their \(f '(x)\). <em><strong>(A1)</strong></em> for \(-10 + 3\).</span></p>
<p><span>\(-7\) must be seen for <em><strong>(A1)</strong></em> to be awarded.<br></span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">d, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 = -7 \times 1 + c\) \(11 = c\) <strong><em>(A1)</em></strong></span></p>
<p><span>\(y = -7 x + 11\) <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Point of intersection is R(−0.5, 14.5) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for the <em>x</em> coordinate, <em><strong>(A1)</strong></em> for the <em>y</em> coordinate.</span></span></p>
<p><span><span>Allow <strong>(ft)</strong> from candidate’s (d)(ii) equation and their (b) even with</span> <span>no working seen.</span></span></p>
<p><span><span>Award <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em> if brackets not included and not previously penalised.</span></span></p>
<p><span><span> </span></span></p>
<p><em><strong><span><span>[2 marks]</span></span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A large number of candidates were not able to answer this question well because of the first</span> <span style="font-size: medium; font-family: times new roman,times;">term of the function’s negative index. Many candidates who did make an attempt lacked </span><span style="font-size: medium; font-family: times new roman,times;">understanding of the topic.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Most candidates could score 4 marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A large number of candidates were not able to answer this question well because of the first</span> <span style="font-size: medium; font-family: times new roman,times;">term of the function’s negative index. Many candidates who did make an attempt lacked </span><span style="font-size: medium; font-family: times new roman,times;">understanding of the topic.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">A good number of candidates correctly substituted into the original function.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A large number of candidates were not able to answer this question well because of the first</span> <span style="font-size: medium; font-family: times new roman,times;">term of the function’s negative index. Many candidates who did make an attempt lacked </span><span style="font-size: medium; font-family: times new roman,times;">understanding of the topic.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Very few managed to answer this part algebraically. Those candidates who were aware</span> <span style="font-size: medium; font-family: times new roman,times;">that they could read the values from their GDC gained some easy marks.</span></span></p>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A large number of candidates were not able to answer this question well because of the firstterm of the function’s negative index. Many candidates who did make an attempt lacked understanding of the topic.</span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">Proved to be difficult for many candidates as increasing/decreasing intervals were not well understood by many.</p>
<div class="question_part_label">c, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A large number of candidates were not able to answer this question well because of the first</span> <span style="font-size: medium; font-family: times new roman,times;">term of the function’s negative index. Many candidates who did make an attempt lacked </span><span style="font-size: medium; font-family: times new roman,times;">understanding of the topic.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">As this part was linked to part (a), candidates who could not find the correct derivative </span><span style="font-size: medium; font-family: times new roman,times;">could not show that the gradient of <em>T</em> was −7. Many candidates did not realize that they </span><span style="font-size: medium; font-family: times new roman,times;">had to substitute into the first derivative. For those who did, finding the equation of <em>T </em></span><span style="font-size: medium; font-family: times new roman,times;">was a simple task.</span></span></p>
<div class="question_part_label">d, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A large number of candidates were not able to answer this question well because of the firstterm of the function’s negative index. Many candidates who did make an attempt lacked understanding of the topic.</span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">As this part was linked to part (a), candidates who could not find the correct derivative could not show that the gradient of <em>T</em> was −7. Many candidates did not realize that they had to substitute into the first derivative. For those who did, finding the equation of <em>T </em>was a simple task.</span></p>
<div class="question_part_label">d, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A large number of candidates were not able to answer this question well because of the first</span> <span style="font-size: medium; font-family: times new roman,times;">term of the function’s negative index. Many candidates who did make an attempt lacked </span><span style="font-size: medium; font-family: times new roman,times;">understanding of the topic.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">For those who had part (d) (ii) correct, this allowed them to score easy marks. For the</span> <span style="font-size: medium; font-family: times new roman,times;">others, it proved a difficult task because their equation in (d) would not be a tangent.</span></span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A function \(f\) is given by \(f(x) = (2x + 2)(5 - {x^2})\).</p>
</div>
<div class="specification">
<p>The graph of the function \(g(x) = {5^x} + 6x - 6\) intersects the graph of \(f\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <strong>exact </strong>value of each of the zeros of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for \(f(x)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f’(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b)(ii) to find the values of \(x\) for which \(f\) is increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of \(f\) for \( - 3 \leqslant x \leqslant 3\) and \( - 40 \leqslant y \leqslant 20\). Use a scale of 2 cm to represent 1 unit on the \(x\)-axis and 1 cm to represent 5 units on the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\( - 1,{\text{ }}\sqrt 5 ,{\text{ }} - \sqrt 5 \) <strong><em>(A1)(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for –1 and each exact value seen. Award at most <strong><em>(A1)(A0)(A1) </em></strong>for use of 2.23606… instead of \(\sqrt 5 \).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(10x - 2{x^3} + 10 - 2{x^2}\) <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>The expansion may be seen in part (b)(ii).</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(10 - 6{x^2} - 4x\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Follow through from part (b)(i). Award <strong><em>(A1)</em>(ft) </strong>for each correct term. Award at most <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A0) </em></strong>if extra terms are seen.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(10 - 6{x^2} - 4x > 0\) <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for their \(f’(x) > 0\). Accept equality or weak inequality.</p>
<p> </p>
<p>\( - 1.67 < x < 1{\text{ }}\left( { - \frac{5}{3} < x < 1,{\text{ }} - 1.66666 \ldots < x < 1} \right)\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct endpoints, <strong><em>(A1)</em>(ft) </strong>for correct weak or strict inequalities. Follow through from part (b)(ii). Do not award any marks if there is no answer in part (b)(ii).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-14_om_06.23.51.png" alt="N17/5/MATSD/SP2/ENG/TZ0/05.d/M"> <strong><em>(A1)(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct scale; axes labelled and drawn with a ruler.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for their correct \(x\)-intercepts in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for correct minimum and maximum points in approximately correct location.</p>
<p>Award <strong><em>(A1) </em></strong>for a smooth continuous curve with approximate correct shape. The curve should be in the given domain.</p>
<p>Follow through from part (a) for the \(x\)-intercepts.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((1.49,{\text{ }}13.9){\text{ }}\left( {(1.48702 \ldots ,{\text{ }}13.8714 \ldots )} \right)\) <strong><em>(G1)</em>(ft)<em>(G1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(G1) </em></strong>for 1.49 and <strong><em>(G1) </em></strong>for 13.9 written as a coordinate pair. Award at most <strong><em>(G0)(G1) </em></strong>if parentheses are missing. Accept \(x = 1.49\) and \(y = 13.9\). Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows an <strong>aerial</strong> view of a bicycle track. The track can be modelled by the quadratic function</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">\(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\), where \(x \geqslant 0,{\text{ }}y \geqslant 0\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(<em>x</em> , <em>y</em>) are the coordinates of a point <em>x</em> metres east and <em>y</em> metres north of O , where O is the origin (0, 0) . B is a point on the bicycle track with coordinates (100, 350) .<br></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The coordinates of point A are (75, 450). Determine whether point A is on the bicycle track. Give a reason for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the derivative of \(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the answer in part (b) to determine if A (75, 450) is the point furthest north on the track between O and B. Give a reason for your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the midpoint of the line segment OB.</span></p>
<p><span>(ii) Find the gradient of the line segment OB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Scott starts from a point C(0,150) . He hikes along a straight road towards the bicycle track, parallel to the line segment OB.</span></p>
<p><span>Find the equation of Scott’s road. Express your answer in the form \(ax + by = c\), where \(a, b {\text{ and }} c \in \mathbb{R}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the coordinates of the point where Scott first crosses the bicycle track.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = - \frac{{{{75}^2}}}{{10}} + \frac{{27}}{2} \times 75\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for substitution of 75 in the formula of the function.</span></p>
<p><br><span>= 450 <em><strong>(A1)</strong></em></span></p>
<p><span>Yes, point A is on the bike track. <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Do not award the final <em><strong>(A1)</strong></em> if correct working is not seen.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{2x}}{{10}} + \frac{{27}}{2}\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}} = - 0.2x + 13.5} \right)\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for each correct term. If extra terms are seen award at most <em><strong>(A1)(A0)</strong></em>. Accept equivalent forms.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - \frac{{2x}}{{10}} + \frac{{27}}{2} = 0\) <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative from part (b) to zero.</span></p>
<p><br><span>\(x = 67.5\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Follow through from their derivative from part (b).</span></p>
<p><br><span>\( {\text{(Their) }} 67.5 \ne 75\) <em><strong>(R1)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for a comparison of their 67.5 with 75. Comparison may be implied</span> <span>(<em>eg</em> 67.5 is the <em>x</em>-coordinate of the furthest north point).</span></p>
<p><span><br><strong>OR</strong><br></span></p>
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = - \frac{{2 \times (75)}}{{10}} + \frac{{27}}{2}\) <em><strong>(M1)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of 75 into their derivative from part (b).</span></p>
<p><span><br>\(= -1.5\) <em><strong>(A1)</strong></em><strong>(ft)</strong><br></span></p>
<p><span><strong><br>Note: </strong>Follow through from their derivative from part (b).<strong><br></strong></span></p>
<p><span><strong> </strong></span></p>
<p><span>\({\text{(Their)}} -1.5 \ne 0\) <em><strong>(R1)</strong></em><br></span></p>
<p><span><strong><br>Note:</strong> Award <em><strong>(R1)</strong></em> for a comparison of their –1.5 with 0. Comparison may be implied (<em>eg</em> The gradient of the parabola at the furthest north point (vertex) is 0).<strong><br></strong></span></p>
<p><span><strong> </strong></span></p>
<p><span>Hence A is not the furthest north point. <em><strong>(A1)</strong></em><strong>(ft)</strong> <br></span></p>
<p><span><br><strong>Note:</strong> Do not award <em><strong>(R0)(A1)</strong></em><strong>(ft)</strong>. Follow through from their derivative from part (b).<br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) M(50,175) <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> If parentheses are omitted award <em><strong>(A0)</strong></em>. </span><span>Accept <em>x</em> = 50, <em>y</em> = 175.</span></p>
<p><br><span>(ii) \(\frac{{350 - 0}}{{100 - 0}}\)</span><span> </span><em><strong><span>(M1)</span></strong></em></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in gradient formula.</span></p>
<p><br><span>\( = 3.5\left( {\frac{{350}}{{100}},\frac{7}{2}} \right)\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from (d)(i) if midpoint is used to calculate gradient. Award <em><strong>(G1)(G0)</strong></em> for answer 3.5<em>x</em> without working.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = 3.5x + 150\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for using their gradient from part (d), <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct equation of line.</span><br><br></p>
<p><span>\(3.5x - y = -150\) <strong>or</strong> \(7x - 2y = -300\) (or equivalent) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for expressing their equation in the form \(ax + by = c\).</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(18.4, 214) (18.3772..., 214.320...) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Notes:</strong> Follow through from their equation in (e). Coordinates must be positive for follow through marks to be awarded. If parentheses are omitted and not already penalized in (d)(i) award at most <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong>. If coordinates of the two intersection points are given award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong>. Accept <em>x</em> = 18.4, <em>y</em> = 214.</span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A closed rectangular box has a height \(y{\text{ cm}}\) and width \(x{\text{ cm}}\). Its length is twice its width. It has a fixed outer surface area of \(300{\text{ c}}{{\text{m}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Factorise \(3{x^2} + 13x - 10\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(3{x^2} + 13x - 10 = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Find the equation of the axis of symmetry on the graph of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Calculate the minimum value of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(4{x^2} + 6xy = 300\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for \(y\) in terms of \(x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence show that the volume \(V\) of the box is given by \(V = 100x - \frac{4}{3}{x^3}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}V}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Hence find the value of \(x\) and of \(y\) required to make the volume of the box a maximum.</span></p>
<p><span>(ii) Calculate the maximum volume.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\((3x - 2)(x + 5)\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\((3x - 2)(x + 5) = 0\)</span></p>
<p><span>\(x = \frac{2}{3}\) or \(x = - 5\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = \frac{{ - 13}}{6}{\text{ }}( - 2.17)\) <em><strong>(A1)(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><br><span><strong>Note: <em>(A1)</em></strong> is for \(x = \), <em><strong>(A1)</strong></em> for value. <strong>(ft)</strong> if value is half way between roots in (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Minimum \(y = 3{\left( {\frac{{ - 13}}{6}} \right)^2} + 13\left( {\frac{{ - 13}}{6}} \right) - 10\) <em><strong>(M1)</strong></em></span><br><br><span><strong>Note: <em>(M1)</em></strong> for substituting their value of \(x\) from (c) into \(f(x)\) .</span></p>
<p><br><span>\( = - 24.1\) <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]<br></em></strong></span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Area}} = 2(2x)x + 2xy + 2(2x)y\) <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for using the correct surface area formula (which can</span> <span>be implied if numbers in the correct place). <em><strong>(A1)</strong></em> for using correct numbers.</span><br><br></p>
<p><span>\(300 = 4{x^2} + 6xy\) <em><strong>(AG)</strong></em></span></p>
<p><span><span><strong><br>Note: </strong>Final line must be seen or previous</span> <span><em><strong>(A1)</strong></em> mark is lost.</span></span></p>
<p><span><span><em><strong>[2 marks]</strong></em><br></span></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(6xy = 300 - 4{x^2}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(y = \frac{{300 - 4{x^2}}}{{6x}}\) <em>or</em> \(\frac{{150 - 2{x^2}}}{{3x}}\) <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Volume}} = x(2x)y\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(V = 2{x^2}\left( {\frac{{300 - 4{x^2}}}{{6x}}} \right)\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\( = 100x - \frac{4}{3}{x^3}\) <strong>(AG)</strong></span></p>
<p><br><span><strong>Note: </strong>Final line must be seen or previous <em><strong>(A1)</strong></em> mark is lost.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}V}}{{{\text{d}}x}} = 100 - \frac{{12{x^2}}}{3}\) or \(100 - 4{x^2}\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong> </strong></em><strong>Note: <em>(A1)</em></strong> for each term.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column</em></span></p>
<p><span>(i) For maximum \(\frac{{{\text{d}}V}}{{{\text{d}}x}} = 0\) or \(100 - 4{x^2} = 0\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(x = 5\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(y = \frac{{300 - 4{{(5)}^2}}}{{6(5)}}\) or \(\left( {\frac{{150 - 2{{(5)}^2}}}{{3(5)}}} \right)\) <em><strong>(M1)</strong></em></span></p>
<p><span>\( = \frac{{20}}{3}\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><strong>(UP)</strong></em> (ii) \(333\frac{1}{3}{\text{ c}}{{\text{m}}^3}{\text{ }}(333{\text{ c}}{{\text{m}}^3})\)</span></p>
<p><span><strong><br>Note: (ft)</strong> from their (e)(i) if working for volume is seen.</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates made a good attempt to factorise the expression.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many gained both marks here from a correct answer or ft from the previous part.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many used the formula correctly. Some forgot to put \(x = \)</span> .</p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates found this value from their GDC.</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A good attempt was made to show the correct surface area.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many could rearrange the equation correctly.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Although this was not a difficult question it probably looked complicated for the candidates and it was often left out.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Those who reached this length could usually manage the differentiation.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) Many found the correct value of \(x\) but not of \(y\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) This was well done and again the units were included in most scripts.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A lobster trap is made in the shape of half a cylinder. It is constructed from a steel frame with netting pulled tightly around it. The steel frame consists of a rectangular base, two semicircular ends and two further support rods, as shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.54.16.png" alt><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The semicircular ends each have radius \(r\) and the support rods each have length \(l\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(T\) be the total length of steel used in the frame of the lobster trap.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(T\) in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Write down an equation for the volume of the lobster trap in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Show that \(T = (2\pi + 4)r + \frac{6}{{\pi {r^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Find \(\frac{{{\text{d}}T}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Show that the value of \(r\) for which \(T\) is a minimum is \(0.719 {\text{ m}}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the value of \(l\) for which \(T\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the minimum value of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(2\pi r + 4r + 4l\) <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for \(2\pi r\) (“\(\pi \)” must be seen), <strong><em>(A1) </em></strong>for \(4r\), <strong><em>(A1) </em></strong>for \(4l\). Accept equivalent forms. Accept \(T = 2\pi r + 4r + 4l\). Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.75 = \frac{{\pi {r^2}l}}{2}\) <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for their formula equated to \(0.75\), <strong><em>(A1) </em></strong>for \(l\) substituted into volume of cylinder formula, <strong><em>(A1) </em></strong>for volume of cylinder formula divided by \(2\).</span></p>
<p><span>If “\(\pi \)” not seen in part (a) accept use of \(3.14\) or greater accuracy. Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(T = 2\pi r + 4r + 4\left( {\frac{{1.5}}{{\pi {r^2}}}} \right)\) <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></span></p>
<p><span>\( = (2\pi + 4)r + \frac{6}{{\pi {r^2}}}\) <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct rearrangement of their volume formula in part (b) seen, award <strong><em>(A1) </em></strong>for the correct substituted formula for \(T\)<em>. </em>The final line must be seen, with no incorrect working, for this second <strong><em>(A1) </em></strong>to be awarded.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}T}}{{{\text{d}}r}} = 2\pi + 4 - \frac{{12}}{{\pi {r^3}}}\) <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(2\pi + 4\), <strong><em>(A1)</em></strong> for \(\frac{{ - 12}}{\pi }\), <strong><em>(A1)</em></strong> for \({r^{ - 3}}\).</span></p>
<p><span> Accept 10.3 (10.2832…) for \(2\pi + 4\), accept \(–3.82\) \(–3.81971…\) for \(\frac{{ - 12}}{\pi }\). Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2\pi + 4 - \frac{{12}}{{\pi {r^3}}} = 0\) <strong>OR</strong> \(\frac{{{\text{d}}T}}{{{\text{d}}r}} = 0\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for setting their derivative equal to zero.</span></p>
<p> </p>
<p><span>\(r = 0.718843 \ldots \) <strong>OR</strong> \(\sqrt[3]{{0.371452 \ldots }}\) <strong>OR</strong> \(\sqrt[3]{{\frac{{12}}{{\pi (2\pi + 4)}}}}\) <strong>OR</strong> \(\sqrt[3]{{\frac{{3.81971}}{{10.2832 \ldots }}}}\) <strong><em>(A1)</em></strong></span></p>
<p><span>\(r = 0.719{\text{ (m)}}\) <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>The rounded and unrounded or formulaic answers must be seen for the final <strong><em>(A1) </em></strong>to be awarded. The use of \(3.14\) gives an unrounded answer of \(r = 0.719039 \ldots \).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.75 = \frac{{\pi \times {{(0.719)}^2}l}}{2}\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting \(0.719\) into their volume formula. Follow through from part (b).</span></p>
<p> </p>
<p><span>\(l = 0.924{\text{ (m)}}\) \((0.923599 \ldots )\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(T = (2\pi + 4) \times 0.719 + \frac{6}{{\pi {{(0.719)}^2}}}\) <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituting \(0.719\) in their expression for \(T\). Accept alternative methods, for example substitution of their \(l\) and \(0.719\) into their part (a) (for which the answer is \(11.08961024\)). Follow through from their answer to part (a).</span></p>
<p> </p>
<p><span>\( = 11.1{\text{ (m)}}\) \((11.0880 \ldots )\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tepees were traditionally used by nomadic tribes who lived on the Great Plains of North America. They are cone-shaped dwellings and can be modelled as a cone, with vertex O, shown below. The cone has radius, \(r\), height, \(h\), and slant height, \(l\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.28.13.png" alt></p>
<p class="p1">A model tepee is displayed at a Great Plains exhibition. The curved surface area of this tepee is covered by a piece of canvas that is \(39.27{\text{ }}{{\text{m}}^2}\), and has the shape of a semicircle, as shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.29.53.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the slant height, \(l\), is \(5\) m, correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the circumference of the base of the cone.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the radius, \(r\), of the base.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Find the height, \(h\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Write down an expression for the height, \(h\), in terms of the radius, \(r\), of these cone-shaped tents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Show that the volume of the tent, \(V\), can be written as</p>
<p class="p1">\[V = 3.11\pi {r^2} - \frac{2}{3}\pi {r^3}.\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Find \(\frac{{{\text{d}}V}}{{{\text{d}}r}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Determine the exact value of \(r\) for which the volume is a maximum.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the maximum volume.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\pi {l^2}}}{2} = 39.27\) <span class="Apple-converted-space"> </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for equating the formula for area of a semicircle to \(39.27\), award <strong><em>(A1) </em></strong>for correct substitution of \(l\) into the formula for area of a semicircle.</p>
<p class="p2"> </p>
<p class="p1">\(l = 5{\text{ (m)}}\) <span class="Apple-converted-space"> </span><strong><em>(AG)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(5 \times \pi \) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 15.7\;\;\;(15.7079...,{\text{ }}5\pi )\;{\text{(m)}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(2\pi r = 15.7079…\;\;\;\)<strong>OR</strong>\(\;\;\;5\pi r = 39.27\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1">\((r = ){\text{ 2.5 (m)}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Follow through from part (b)(i).</p>
<p class="p2"> </p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>\(({h^2} = ){\text{ }}{5^2} - {2.5^2}\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras’ theorem. Follow through from part (b)(ii).</p>
<p class="p2"> </p>
<p class="p1">\((h = ){\text{ 4.33 }}(4.33012 \ldots ){\text{ (m)}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(9.33 - 2 \times r\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(V = \frac{{\pi {r^2}}}{3} \times (9.33 - 2r)\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in the volume formula.</p>
<p class="p1"> </p>
<p class="p1">\(V = 3.11\pi {r^2} - \frac{2}{3}{\pi ^3}\) <span class="Apple-converted-space"> </span><strong><em>(AG)</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(6.22\pi r - 2\pi {r^2}\) <span class="Apple-converted-space"> </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for \(6.22\pi r\), <strong><em>(A1) </em></strong>for \( - 2\pi {r^2}\).</p>
<p class="p1">If extra terms present, award at most <strong><em>(A1)(A0)</em></strong><em>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(6.22\pi r - 2\pi {r^2} = 0\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for setting their derivative from part (e) to 0.</p>
<p class="p2"> </p>
<p class="p1">\(r = 3.11{\text{ (m)}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for identifying 3.11 as the answer.</p>
<p class="p1">Follow through from their answer to part (e).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\(\frac{1}{3}\pi {(3.11)^3}\;\;\;\)<strong>OR</strong>\(\;\;\;3.11\pi {(3.11)^2} - \frac{2}{3}\pi {(3.11)^3}\) <span class="Apple-converted-space"> </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution into the correct volume formula.</p>
<p class="p2"> </p>
<p class="p1">\(31.5{\text{ (}}{{\text{m}}^3}{\text{)}}{\text{(31.4999}} \ldots {\text{)}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their answer to part (f)(i).</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f(x)\) is defined by \(f(x) = 1.5x + 4 + \frac{6}{x}{\text{, }}x \ne 0\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the graph of the function at \(x = - 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your answer to part (c), decide whether the function \(f(x)\) is increasing or decreasing at \(x = - 1\). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of \(f(x)\) for \( - 10 \leqslant x \leqslant 10\) and \( - 20 \leqslant y \leqslant 20\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({{\text{P}}_1}\) is the local maximum point and \({{\text{P}}_2}\) is the local minimum point on the graph of \(f(x)\) .</span></p>
<p><span>Using your graphic display calculator, write down the coordinates of</span></p>
<p><span>(i) \({{\text{P}}_1}\) ;</span></p>
<p><span>(ii) \({{\text{P}}_2}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your sketch from (e), determine the range of the function \(f(x)\) for \( - 10 \leqslant x \leqslant 10\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = 0\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(x = {\text{constant}}\), <em><strong>(A1)</strong></em> for \(0\).</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 1.5 - \frac{6}{{{x^2}}}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(1.5\), <em><strong>(A1)</strong></em> for \( - 6\), <em><strong>(A1)</strong></em> for \({x^{ - 2}}\) . Award <em><strong>(A1)(A1)(A0)</strong></em> at most if any other term present.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1.5 - \frac{6}{{( - 1)}}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\( = - 4.5\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong>Note:</strong> Follow through from their derivative function.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Decreasing, the derivative (gradient or slope) is negative (at \(x = - 1\)) <strong><em>(A1)(R1)</em>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from their answer to part (c).</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span> <em><strong>(A4)</strong></em></span></span><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for labels and some indication of scales and an appropriate window.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for correct shape of the two unconnected, and smooth branches.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for the maximum and minimum points in the approximately correct positions.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for correct asymptotic behaviour at \(x = 0\) .</span></p>
<p> </p>
<p><span><strong>Notes:</strong> Please be rigorous.</span></p>
<p><span>The axes need not be drawn with a ruler.</span></p>
<p><span>The branches must be smooth and single continuous lines that do not deviate from their proper direction.</span></p>
<p><span>The max and min points must be symmetrical about point \((0{\text{, }}4)\) .</span></p>
<p><span>The \(y\)-axis must be an asymptote for <strong>both</strong> branches.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(( - 2{\text{, }} - 2)\) or \(x = - 2\), \(y = - 2\) <em><strong>(G1)(G1)</strong></em></span></p>
<p> </p>
<p><span>(ii) \((2{\text{, }}10)\) or \(x = 2\), \(y = 10\) <em><strong>(G1)(G1)</strong></em></span></p>
<p> </p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\{ - 2 \geqslant y\} \) or \(\{ y \geqslant 10\} \) <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> <strong><em>(A1)</em>(ft)</strong> for \(y > 10\) or \(y \geqslant 10\) . <strong><em>(A1)</em>(ft)</strong> for \(y < - 2\) or \(y \leqslant - 2\) . <em><strong>(A1)</strong></em> for weak (non-strict) inequalities used in <strong>both</strong> of the above. Follow through from their (e) and (f).</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part a) was either answered well or poorly. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates found the first term of the derivative in part b) correctly, but the rest of the terms were incorrect. </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The gradient in c) was for the most part correctly calculated, although some candidates substituted incorrectly in</span> <span style="font-family: times new roman,times; font-size: medium;">\(f(x)\) instead of in \(f'(x)\) .</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part d) had mixed responses. </span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Lack of labels of the axes, appropriate scale, window, incorrect maximum and minimum and incorrect asymptotic behaviour were the main problems with the sketches in e). </span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part f) was also either answered correctly or entirely incorrectly. Some candidates used the trace function on the GDC instead of the min and max functions, and thus acquired coordinates with unacceptable accuracy. Some were unclear that a point of local maximum may be positioned on the coordinate system “below” the point of local minimum, and exchanged the pairs of coordinates of those points in f(i) and f(ii). </span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few candidates were able to identify the range of the function in (g) irrespective of whether or not they had the sketches drawn correctly.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The graph of the function \(f(x) = \frac{{14}}{x} + x - 6\), for 1 ≤ <em>x</em> ≤ 7 is given below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f (1)\). </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use your answer to part (b)</strong> to show that the <em>x</em>-coordinate of the local minimum point of the graph of \(f\) is 3.7 correct to 2 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the range of \(f\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of \(f\). The <em>x</em>-coordinates of A and B are 1 and 7 respectively.</span></p>
<p><span>Write down the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of f . The <em>x</em>-coordinates of A and B are 1 and 7 respectively.<br></span></p>
<p><span>Find the gradient of the straight line passing through A and B.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>M is the midpoint of the line segment AB.</span></p>
<p><span>Write down the coordinates of M.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em> is the tangent to the graph of the function \(y = f (x)\), at the point on the graph with the same <em>x</em>-coordinate as M.</span></p>
<p><span>Find the gradient of <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of <em>L</em>. Give your answer in the form \(y = mx + c\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{14}}{{(1)}} + (1) - 6\) <em><strong>(M1)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting \(x = 1\) into \(f\).</span><br><br></p>
<p><span>\(= 9\) <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - \frac{{14}}{{{x^2}}} + 1\) <em><strong>(A3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(-14\), <em><strong>(A1)</strong></em> for \(\frac{{14}}{{{x^2}}}\) or for \(x^{-2}\), <em><strong>(A1)</strong></em> for \(1\). </span></p>
<p><span> Award at most <em><strong>(A2)</strong></em> if any extra terms are present.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - \frac{{14}}{{{x^2}}} + 1 = 0\) or \(f ' (x) = 0 \) <em><strong>(M1)</strong></em><br><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <strong>their</strong> derivative in part (b) to 0.<br><br></span></p>
<p><span>\(\frac{{14}}{{{x^2}}} = 1\)</span><span><span> or \({x^2} = 14\)</span> or equivalent <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct rearrangement of their equation.</span></p>
<p><span><br>\(x = 3.74165...(\sqrt {14})\) <em><strong>(A1)</strong></em><br></span></p>
<p><span>\(x = 3.7\) <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Notes:</strong> Both the unrounded and rounded answers must be seen to award the <em><strong>(A1)</strong></em>. This is a “show that” question; appeals to their GDC are not accepted –award a maximum of <em><strong>(M1)(M0)(A0)</strong></em>. </span></p>
<p><span>Specifically, </span><span><span>\( - \frac{{14}}{{{x^2}}} + 1 = 0\)</span> followed by \(x = 3.74165..., x = 3.7\) is awarded <em><strong>(M1)(M0)(A0)</strong></em>.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1.48 \leqslant y \leqslant 9\) <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p><span><em><strong><br><br></strong></em><strong>Note:</strong> Accept alternative notations, for example [1.48,9]. (\(x = \sqrt{14}\) leads to answer 1.48331...)</span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 1.48331…seen, accept 1.48378… from using the given answer \(x = 3.7\), <em><strong>(A1)</strong></em><strong>(ft)</strong> for their 9 from part (a) seen, <em><strong>(A1)</strong></em> for the correct notation for their interval (accept \( \leqslant y \leqslant \)</span><span> or \( \leqslant f \leqslant \)</span><span> ).<br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>3 <em><strong>(A1)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Do not accept a coordinate pair.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{3 - 9}}{{7 - 1}}\) <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into the gradient formula.</span></p>
<p><br><span>\(= -1\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answers to parts (a) and (e).</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(4, 6) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept \(x = 4\), \(y = 6\). Award at most <em><strong>(A1)(A0)</strong></em> if parentheses not seen. </span></p>
<p><span>If coordinates reversed award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong>. </span></p>
<p><span>Follow through from their answers to parts (a) and (e).</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - \frac{{14}}{{{4^2}}} + 1\) <em><strong>(M1)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into their gradient function. </span></p>
<p><span>Follow through from their answers to parts (b) and (g).<br></span></p>
<p><span><br>\( = \frac{1}{8}(0.125)\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em><br></span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y - 1.5 = \frac{1}{8}(x - 4)\) <em><strong>(M1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting their (4, 1.5) in any straight line formula, </span></p>
<p><span><em><strong>(</strong></em></span><em><strong>M1)</strong></em><span> for substituting their gradient in any straight line formula.</span></p>
<p><br><span>\(y = \frac{x}{8} + 4\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> The form of the line has been specified in the question.</span></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to evaluate the function and find the derivative for \(x + 6\) but the term with the negative index was problematic. The few candidates who equated their derivative to zero at the local minimum point progressed well and showed a thorough understanding of the differential calculus. Many did not attain full marks for the range of the function, either confusing this with the statistical concept of range or using the <em>y</em>-coordinate at B. Most were able to find the gradient and midpoint of the straight line passing through A and B. The final parts were also challenging for the majority: many had difficulty finding the gradient of the tangent L, instead using the slope formula for a straight line; the most common error in part (i) was to substitute in the coordinates of midpoint M rather than the point on the curve. Greater insight into the problem would have come from using the given sketch of the curve and annotating it; it seems that many candidates do not link the algebraic nature of the differential calculus with the curve in question.</span></p>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows the graph of a line \(L\) passing through (1, 1) and (2 , 3) and the graph \(P\) of the function \(f (x) = x^2 − 3x − 4\)</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f (x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is parallel to the line <em>L</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is perpendicular to the line<em> L</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find</span></p>
<p><span>(i) the gradient of the tangent to <em>P</em> at the point with coordinates (2, − 6).</span></p>
<p><span>(ii) the equation of the tangent to <em>P</em> at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the equation of the axis of symmetry of <em>P</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the vertex of <em>P</em> and state the gradient of the curve at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>for attempt at substituted</em> \(\frac{{ydistance}}{{xdistance}}\) <em><strong>(M1)</strong></em></span></p>
<p><span>gradient = 2 <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2x - 3\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>(A1)</strong> for</em> \(2x\) , <em><strong>(A1)</strong> for</em> \(-3\)</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>for their</em> \(2x - 3 =\) <em>their gradient and attempt to solve <strong>(M1)</strong></em></span></p>
<p><span>\(x = 2.5\) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(y = -5.25\) <em>(</em><strong>(ft)</strong><em> from their x value) <strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span>for seeing </span></em><span>\(\frac{{ - 1}}{{their(a)}}\) <em><strong>(M1)</strong></em></span></p>
<p><span><em>solving</em> \(2x – 3 = - \frac{1}{2}\) <em>(or their value) <strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 1.25 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em><br></span></p>
<p><span><em>y</em> = – 6.1875 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong><strong><br></strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(2 \times 2 - 3 = 1\) <em>(</em><strong>(ft)</strong> <em>from (b)) <strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii) \(y = mx + c\) <em>or equivalent method to find</em> \(c \Rightarrow -6 = 2 + c\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(y = x - 8\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = 1.5\) <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>for substituting their answer to part (f) into the equation of the parabola</em> (1.5, −6.25) <em>accept</em> <em>x</em> = 1.5, <em>y</em> = −6.25 <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span>gradient is zero <em>(accept</em> \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 0\)<em>) <strong>(A1)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were very well done. After that, only the stronger candidates were able to cope. The equation of the tangent at the point with coordinates (2, 6) was badly done but some candidates managed to find the equation of the tangent line from their GDC. The equation of the axis of symmetry was reasonably well done although many just wrote down 1.5 instead of <em>x</em> = 1.5.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some forgot to write down that the gradient at the vertex was 0.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a sketch of the function <em>f</em> (<em>x</em>) = 4<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> − 12<em>x</em> + 3.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the values of <em>x</em> where the graph of <em>f</em> (<em>x</em>) intersects the <em>x</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f </em>′(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the local maximum of <em>y</em> = <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.<br></span></p>
<p><span>Write down the coordinates of P.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.</span></span></p>
<p><span>Find the gradient of the curve at P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, <em>L</em>, is the tangent to the graph of <em>f</em> (<em>x</em>) at P.</span></p>
<p><span>Find the equation of <em>L</em> in the form <em>y</em> = <em>mx</em> +<em> c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Write down the gradient of the tangent at Q.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Calculate the <em>x</em>-coordinate of Q.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>–1.10, 0.218, 3.13 <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f </em><span>′</span>(<em>x</em>) = 12<em>x</em><sup>2</sup> – 18<em>x</em> – 12 <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong> </em>for each correct term and award maximum of<em><strong> (A1)(A1)</strong></em> if other terms seen.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><em>f </em>′(<em>x</em>)</span> = 0<em><strong> (M1)</strong></em></span><br><span><em>x</em> = –0.5, 2</span><br><span><em>x</em> = –0.5 <em><strong> (A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> If <em>x</em> = –0.5 not stated, can be inferred from working below.</span></p>
<p><br><span><em>y</em> = 4(–0.5)<sup>3</sup> – 9(–0.5)<sup>2 </sup>– 12(–0.5) + 3 <em><strong>(M1)</strong></em></span><br><span><em>y</em> = 6.25 <em><strong> (A1)(G3)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their value of <em>x</em> substituted into <em>f</em> (<em>x</em>).</span></p>
<p><span>Award <em><strong>(M1)(G2)</strong></em> if sketch shown as method. If coordinate pair given then award <em><strong>(M1)(A1)(M1)(A0)</strong></em>. If coordinate pair given with no working award <em><strong>(G2)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(0, 3) <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept <em>x</em> = 0,<em> y</em> = 3.</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f </em>′(0) = –12 <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for substituting <em>x</em> = 0 into their derivative.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Tangent: <em>y</em> = –12<em>x</em> + 3 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their gradient, <em><strong>(A1)</strong></em> for intercept = 3.</span></p>
<p><span>Award<em><strong> (A1)(A0)</strong></em> if <em>y</em> = not seen.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>–12 <strong> <em>(A1)</em>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Follow through from their part (e).</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>12<em>x</em><sup>2</sup> – 18<em>x </em></span><span><span>– 12 = </span></span><span><span><span>–12</span></span> <em><strong>(M1)</strong></em></span></p>
<p><span>12<em>x</em><sup>2</sup> </span><span><span>– </span>18<em>x</em> = 0 <em><strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 1.5, 0</span></p>
<p><span>At Q <em>x</em> = 1.5 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><em><strong><span> </span></strong></em></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)(G2)</strong></em> for 12<em>x</em><sup>2</sup> </span><span><span>– 18</span><em>x </em></span><span><span>– 12 = </span></span><span><span><span>–12</span></span> followed by </span><span><em>x</em> = 1.5.</span></p>
<p><span>Follow through from their part (g).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was either very well done – by the majority – or very poor and incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, though it is recognised that the differential calculus is one of the more problematic topics for the candidature.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was however disappointing to note the number of candidates who do not use the GDC to good effect; in part (a) for example, the zeros were not found accurately due to “trace” being used; this is not a suitable approach – there is a built-in zero finder which should be used. Much of the question was accessible via a GDC approach, a sketch was given that could have been verified on the GDC; this was lost on many.</span></p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function <em>f </em>(<em>x</em>) = <em>x</em><sup>3 </sup><em>–</em> 3x– 24<em>x</em> + 30.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f</em> (0).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> = 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Use </span><em>f '</em><span>(</span><em>x</em><span>) to find the </span><em>x</em><span>-coordinate of M and of N.</span></p>
<p><span>(ii) Hence or otherwise write down the coordinates of M and of N.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>f</em> (<em>x</em>) for \( - 5 \leqslant x \leqslant 7\) and \( - 60 \leqslant y \leqslant 60\). Mark clearly M and N on your graph.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> are parallel, and they are tangents to the graph of <em>f</em> (<em>x</em>) at points A and B respectively. <em>L<sub>1</sub></em> has equation <em>y</em> = 21<em>x</em> + 111.</span></p>
<p><span>(i) Find the <em>x</em>-coordinate of A and of B.</span></p>
<p><span>(ii) Find the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>30 <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> <em>'</em>(<em>x</em>) = 3<em>x</em><sup>2</sup> – 6<em>x</em> – 24 <em><strong>(A1)(A1)(A1)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each term. Award at most <em><strong>(A1)(A1)</strong></em> if extra terms present.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f '</em>(1) = –27 <em><strong>(M1)(A1)</strong></em><strong>(ft</strong><strong>)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting <em>x</em> = 1 into their derivative.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)<em> f '</em>(<em>x</em>) = 0</span></p>
<p><span>3<em>x</em><sup>2</sup> – 6<em>x</em> – 24 = 0 <em><strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 4; <em>x</em> = –2 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for either <em>f '</em>(<em>x</em>) = 0 or 3<em>x</em><sup>2</sup> </span><span>– 6<em>x</em> </span><span>– 24 = 0 seen. Follow through from their derivative. Do not award the two answer marks if derivative not used.</span></p>
<p><br><span>(ii) M(–2, 58) accept <em>x</em> = –2, <em>y</em> = 58 <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span>N(4, – 50) accept <em>x</em> = 4, <em>y</em> = –50 <strong><em>(A1)</em>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (d) (i).</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for window</span></p>
<p><span><em><strong>(A1)</strong></em> for a smooth curve with the correct shape</span></p>
<p><span><em><strong>(A1)</strong></em> for axes intercepts in approximately the correct positions</span></p>
<p><span><em><strong>(A1)</strong></em> for M and N marked on diagram and in approximately</span><br><span>correct position <em><strong>(A4)</strong></em><br><br></span></p>
<p><span><strong>Note:</strong> If window is not indicated award at most <em><strong>(A0)(A1)(A0)(A1)</strong></em><strong>(ft)</strong>.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 3<em>x</em><sup>2</sup> – 6<em>x </em></span><span><span>–</span> 24 = 21 <em><strong>(M1)</strong></em></span></p>
<p><span>3<em>x</em><sup>2 </sup></span><span><span>–</span> 6<em>x </em></span><span><span>–</span> 45 = 0 <em><strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 5; <em>x</em> = </span><span><span>–</span>3 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their derivative.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>Award <em><strong>(A1)</strong></em> for <em>L</em><sub>1</sub> drawn tangent to the graph of <em>f</em> on their </span><span>sketch in approximately the correct position (<em>x</em> = </span><span><span>–</span>3), </span><span><em><strong>(A1)</strong></em> for a second tangent parallel to their <em>L</em><sub>1</sub>, </span><span><em><strong>(A1)</strong></em> for <em>x</em> = –3, <em><strong>(A1)</strong></em> for <em>x</em> = 5 . </span><strong><em><span><span>(A1)</span></span></em><span><span>(ft)</span></span><em><span><span>(A1)</span></span></em><span><span><span>(ft)</span></span></span><em><span>(A1)(A1)</span></em></strong></p>
<p><br><span><strong>Note:</strong> If only <em>x</em> = </span><span>–3 is shown without working award </span><em><strong>(G2)</strong></em><strong>.</strong><span> </span><span>If both answers are shown irrespective of working</span><span>award <em><strong>(G3)</strong></em>.</span></p>
<p><br><span>(ii)<em> f</em> (5) = </span><span><span>–</span>40 <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for attempting to find the image of their <em>x</em> = 5. </span><span>Award <em><strong>(A1)</strong></em> only for (5, </span><span><span>–</span>40). </span><span>Follow through from their <em>x</em>-coordinate of B only if it has</span> <span><strong>been clearly identified</strong> in (f) (i).</span></p>
<p><span><em><strong>[6 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows part of the graph of \(f(x) = {x^2} - 2x + \frac{9}{x}\) , where \(x \ne 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the equation of the vertical asymptote to the graph of \(y = f (x)\) ;</span></p>
<p><span>(ii) the solution to the equation \(f (x) = 0\) ;</span></p>
<p><span>(iii) the coordinates of the local minimum point.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) . </span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'(x)\) can be written as \(f'(x) = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to \(y = f (x)\) at the point \({\text{A}}(1{\text{, }}8)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\), passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Write down the gradient of \(L\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Find the equation of \(L\) . Give your answer in the form \(y = mx + c\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></span></p>
<p><span>\(L\) also intersects the graph of \(y = f (x)\) at points B and C . Write down the <strong><em>x</em>-coordinate</strong> of B and of C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(x = 0\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(x = \) a constant, <em><strong>(A1)</strong></em> for the constant in their equation being \(0\).</span></p>
<p> </p>
<p><span>(ii) \( - 1.58\) (\( - 1.58454 \ldots \)) <em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept \( - 1.6\), do not accept \( - 2\) or \( - 1.59\).</span></p>
<p> </p>
<p><span>(iii) \((2.06{\text{, }}4.49)\) \((2.06020 \ldots {\text{, }}4.49253 \ldots )\) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award at most <em><strong>(G1)(G0)</strong></em> if brackets not used. Award <strong><em>(G0)(G1)</em>(ft)</strong> if coordinates are reversed.</span></p>
<p><span><strong>Note:</strong> Accept \(x = 2.06\), \(y = 4.49\) .</span></p>
<p><span><strong>Note:</strong> Accept \(2.1\), do not accept \(2.0\) or \(2\). Accept \(4.5\), do not accept \(5\) or \(4.50\).</span></p>
<p> </p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 2x - 2 - \frac{9}{{{x^2}}}\) <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(2x\), <em><strong>(A1)</strong></em> for \( - 2\), <em><strong>(A1)</strong></em> for \( - 9\), <em><strong>(A1)</strong></em> for \({x^{ - 2}}\) . Award a maximum of <em><strong>(A1)(A1)(A1)(A0)</strong></em> if there are extra terms present.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong></strong>\(f'(x) = \frac{{{x^2}(2x - 2)}}{{{x^2}}} - \frac{9}{{{x^2}}}\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for taking the correct common denominator.</span></p>
<p> </p>
<p><span>\( = \frac{{(2{x^3} - 2{x^2})}}{{{x^2}}} - \frac{9}{{{x^2}}}\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying brackets or equivalent.</span></p>
<p><span> </span></p>
<p><span>\( = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\) <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The final <em><strong>(M1)</strong></em> is not awarded if the given answer is not seen.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(1) = \frac{{2{{(1)}^3} - 2(1) - 9}}{{{{(1)}^2}}}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\( = - 9\) <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into <strong>given</strong> (or their correct) </span><span><span>\(f'(x)\)</span> . There is no follow through for use of their incorrect derivative.</span></span></p>
<p><em><strong><span><span>[2 marks]</span></span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{9}\) <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from part (d).</span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y - 8 = \frac{1}{9}(x - 1)\) <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution of their gradient from (e), <em><strong>(M1)</strong></em> for substitution of given point. Accept all forms of straight line.</span></p>
<p> </p>
<p><span>\(y = \frac{1}{9}x + \frac{{71}}{9}\) (\(y = 0.111111 \ldots x + 7.88888 \ldots \)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Award the final <strong><em>(A1)</em>(ft)</strong> for a correctly rearranged formula of <strong>their</strong> straight line in (f). Accept \(0.11x\), do not accept \(0.1x\). Accept \(7.9\), do not accept \(7.88\), do not accept \(7.8\).</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - 2.50\), \(3.61\) (\( - 2.49545 \ldots \), \(3.60656 \ldots \)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Follow through from their line \(L\) from part (f) even if no working shown. Award at most <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong> if their correct coordinate pairs given.</span></p>
<p><span><strong>Note:</strong> Accept \( - 2.5\), do not accept \( - 2.49\). Accept \(3.6\), do not accept \(3.60\).</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case<strong> very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(g(x) = bx - 3 + \frac{1}{{{x^2}}},{\text{ }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote of the graph of <em>y</em> = <em>g</em>(<em>x</em>) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>g</em>′(<em>x</em>) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line <em>T</em> is the tangent to the graph of <em>y</em> = <em>g</em>(<em>x</em>) at the point where <em>x</em> = 1. The gradient of <em>T</em> is 3.</span></p>
<p><span>Show that <em>b</em> = 5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line <em>T</em> is the tangent to the graph of <em>y</em> = <em>g</em>(<em>x</em>) at the point where <em>x</em> = 1. The gradient of <em>T</em> is 3.</span></span></p>
<p><span>Find the equation of <em>T</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator find the coordinates of the point where the graph of <em>y</em> = <em>g</em>(<em>x</em>) intersects the <em>x</em>-axis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Sketch the graph of <em>y</em> = <em>g</em>(<em>x</em>) for −2 ≤ <em>x</em> ≤ 5 and −15 ≤ <em>y</em> ≤ 25, indicating clearly your answer to part (e).</span></p>
<p><span>(ii) Draw the line <em>T</em> on your sketch.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator find the coordinates of the local minimum point of <em>y</em> = <em>g</em>(<em>x</em>) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the interval for which <em>g</em>(<em>x</em>) is increasing in the domain 0 < <em>x</em> < 5 .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> = 0 <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for <em>x</em>=constant, <em><strong>(A1)</strong></em> for 0. Award <em><strong>(A0)(A0)</strong></em> if answer is not an equation.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(b - \frac{2}{{{x^3}}}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>b</em>, <em><strong>(A1)</strong></em> for </span><span><span>−</span>2, <em><strong>(A1)</strong></em> for \(\frac{1}{{{x^3}}}\) (or <em>x</em><sup>−3</sup>). Award at most <em><strong>(A1)(A1)(A0)</strong></em> if extra terms seen.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3 = b - \frac{2}{{{{(1)}^3}}}\) <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting 1 into their gradient function, <em><strong>(M1)</strong></em> for equating their gradient function to 3.</span></p>
<p> </p>
<p><span><em>b</em> = 5 <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> Award at most <em><strong>(M1)(A0)</strong></em> if final line is not seen or <em>b</em> does not equal 5.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>g</em>(1) = 3 <strong>or</strong> (1, 3)<em> (seen or implied from the line below)</em> <em><strong>(A1)</strong></em></span></p>
<p><span>3 = 3 </span><span><span>× </span>1 + <em>c</em> <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their point (1, 3) and gradient 3 into equation <em>y</em> = <em>mx</em> + <em>c</em>. Follow through from their point of tangency.</span></p>
<p> </p>
<p><span><em>y</em> = </span><span>3<em>x</em> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><em><span>y </span></em><span><span>− </span>3 = 3(<em>x </em></span><span><span>− </span>1) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of gradient 3 and their point (1, 3) into <em>y </em></span><span><span>− </span><em>y</em><sub>1</sub> = <em>m</em>(<em>x </em></span><span><span>− </span><em>x</em><sub>1</sub>), <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct substitutions. Follow through from their point of tangency. Award at most <em><strong>(A1)(M1)(A0)</strong></em><strong>(ft)</strong> if further incorrect working seen.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(−0.439, 0) ((−0.438785..., 0)) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Notes:</strong> If no parentheses award at most <em><strong>(G1)(G0)</strong></em>. Accept <em>x</em> = 0.439, <em>y</em> = 0.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)</span></p>
<p><span><img src="" alt></span></p>
<p><span>Award <em><strong>(A1)</strong></em> for labels and some indication of scale in the stated window.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for correct general shape (curve must be smooth and must not cross the y-axis)</span></p>
<p><span>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for <em>x</em>-intercept consistent with their part (e).</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for local minimum in the first quadrant. <em><strong>(A1)(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p> </p>
<p><span>(ii) Tangent to curve drawn at approximately <em>x</em> = 1 <em><strong>(A1)(A1)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a line tangent to curve approximately at <em>x</em> = 1. Must be a straight line for the mark to be awarded. Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for line passing through the origin. Follow through from their answer to part (d).</span></p>
<p><em><strong><span>[6 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(0.737, 2.53) ((0.736806..., 2.52604...)) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Do not penalize for lack of parentheses if already penalized in (e). Accept<em> x</em> = 0.737, <em>y</em> = 2.53.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0.737 < </span><span><span><em>x</em> < </span>5 <strong>OR</strong> (0.737;5) <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for correct strict or weak inequalities with <em>x</em> seen if the interval is given as inequalities, <em><strong>(A1)</strong></em><strong>(ft)</strong> for 0.737 and 5 or their value from part (g).</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. The concept of vertical asymptote in part (a) seemed to be problematic for a great number of candidates. In many cases students showed partial understanding of the vertical asymptote but found it difficult to write a correct equation.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. The concept of vertical asymptote in part (a) seemed to be problematic for a great number of candidates. In many cases students showed partial understanding of the vertical asymptote but found it difficult to write a correct equation. Finding the derivative in part (b) proved problematic as well. It seems that the presence of the parameter <em>b</em> in the function may have contributed to this.</span></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. </span><span style="font-size: medium; font-family: times new roman,times;">In part (c) a great number of students substituted <em>b</em> = 5 in the equation of the function instead of substituting it in the equation of their derivative. </span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. </span><span style="font-size: medium; font-family: times new roman,times;">Very few students used the GDC to find the equation of the tangent at <em>x</em> = 1 in part (d). </span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. </span><span style="font-size: medium; font-family: times new roman,times;">Good use of the GDC was seen in part (e), although some students wrote the <em>x</em>-coordinates of the point of intersection and neglected to write the <em>y</em>-coordinate.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered.</span><span style="font-size: medium; font-family: times new roman,times;"> The sketch in part (f) was, for the most part, not well done. Often the axes labels were missing. Very few tangents to the curve at the correct point were seen. Often the intended tangent lines intersected the curve, which shows that candidates either did not know what a tangent is or did not make sense of the sketch.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered. </span><span style="font-size: medium; font-family: times new roman,times;">Good use of the GDC was shown in part (g) for finding the coordinates of the minimum point. </span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was moderately well answered.</span><span style="font-size: medium; font-family: times new roman,times;"> Few acceptable answers were given in part (h).</span></p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia designs a wastepaper bin made in the shape of an <strong>open</strong> cylinder with a volume of \(8000{\text{ c}}{{\text{m}}^3}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia decides to make the radius, \(r\) , of the bin \(5{\text{ cm}}\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Merryn also designs a cylindrical wastepaper bin with a volume of \(8000{\text{ c}}{{\text{m}}^3}\). She decides to fix the radius of its base so that the <strong>total external surface area</strong> of the bin is minimized.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Let the radius of the base of Merryn’s wastepaper bin be \(r\) , and let its height be \(h\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span><br><span>(i) the area of the base of the wastepaper bin;</span><br><span>(ii) the height, \(h\) , of Nadia’s wastepaper bin;</span><br><span>(iii) the total <strong>external</strong> surface area of the wastepaper bin.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Nadia’s design is practical. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation in \(h\) and \(r\) , using the given volume of the bin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total external surface area, \(A\) , of the bin is \(A = \pi {r^2} + \frac{{16000}}{r}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Find the value of \(r\) that minimizes the total external surface area of the wastepaper bin.</span><br><span>(ii) Calculate the value of \(h\) corresponding to this value of \(r\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether Merryn’s design is an improvement upon Nadia’s. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \({\text{Area}} = \pi {(5)^2}\) <em><strong>(M1)</strong></em></span><br><span>\( = 78.5{\text{ (c}}{{\text{m}}^2}{\text{)}}\) (\(78.5398 \ldots \)) <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept \(25\pi \) .</span></p>
<p><br><span>(ii) \(8000 = 78.5398 \ldots \times h\) <em><strong>(M1)</strong></em></span><br><span>\(h = 102{\text{ (cm)}}\) (\(101.859 \ldots \)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (a)(i).</span></p>
<p><br><span>(iii) \({\text{Area}} = \pi {(5)^2} + 2\pi (5)(101.859 \ldots )\) <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their substitution in curved surface area formula, <em><strong>(M1)</strong></em> for addition of their two areas.</span></p>
<p><br><span>\( = 3280{\text{ (c}}{{\text{m}}^2}{\text{)}}\) (\(3278.53 \ldots \)) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answers to parts (a)(i) and (ii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>No, it is too tall/narrow. <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(R1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their value for \(h\).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(8000 = \pi {r^2}h\) </span> <span><em><strong>(A1)</strong></em></span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(A = \pi {r^2} + 2\pi r\left( {\frac{{8000}}{{\pi {r^2}}}} \right)\) <em><strong>(A1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct rearrangement of <strong>their</strong> part (c), <em><strong>(M1)</strong></em> for substitution of <strong>their</strong> rearrangement into area formula.</span></p>
<p><br><span>\( = \pi {r^2} + \frac{{16000}}{r}\) <em><strong>(AG)</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 2\pi r - 16000{r^{ - 2}}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(2\pi r\) , <em><strong>(A1)</strong></em> for \( - 16000\) <em><strong>(A1)</strong></em> for \({r^{ - 2}}\) . If an extra term is present award at most <em><strong>(A1)(A1)(A0)</strong></em>.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0\) <em><strong>(M1)</strong></em></span><br><span>\(2\pi {r^3} - 16000 = 0\) <em><strong>(M1)</strong></em></span><br><span>\(r = 13.7{\text{ cm}}\) (\(13.6556 \ldots \)) <strong><em>(A1)</em>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Follow through from their part (e).</span></p>
<p><br><span>(ii) \(h = \frac{{8000}}{{\pi {{(13.65 \ldots )}^2}}}\) <em><strong>(M1)</strong></em></span><br><span>\( = 13.7{\text{ cm}}\) (\(13.6556 \ldots \)) <strong><em>(A1)</em>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Accept \(13.6\) if \(13.7\) used.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Yes or No, accompanied by a consistent and sensible reason. <em><strong>(A1)(R1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A0)(R0)</strong></em> if no reason is given.</span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = 0.5{x^2} - \frac{8}{x},{\text{ }}x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f( - 2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of \(f\) at \(x = - 2\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Write down the equation of \(T\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Sketch the graph of \(f\) for \( - 5 \leqslant x \leqslant 5\) and \( - 20 \leqslant y \leqslant 20\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Draw \(T\) on your sketch.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The tangent, \(T\), intersects the graph of \(f\) <span class="s1">at a second point, P.</span></p>
<p class="p2">Use your graphic display calculator to find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(0.5 \times {( - 2)^2} - \frac{8}{{ - 2}}\) <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of \(x = - 2\) into the formula of the function.</p>
<p> </p>
<p>\(6\) <strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(f'(x) = x + 8{x^{ - 2}}\) <span class="Apple-converted-space"> </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for \(x\), <strong><em>(A1) </em></strong>for \(8\), <strong><em>(A1) </em></strong>for \({x^{ - 2}}\) or \(\frac{1}{{{x^2}}}\) (each term must have correct sign). Award at most <strong><em>(A1)(A1)(A0) </em></strong>if there are additional terms present or further incorrect simplifications are seen.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(f'( - 2) = - 2 + 8{( - 2)^{ - 2}}\) <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for \(x = - 2\) substituted into their \(f'(x)\) from part (b).</p>
<p> </p>
<p>\( = 0\) <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from their derivative function.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = 6\;\;\;\)<strong>OR</strong>\(\;\;\;y = 0x + 6\;\;\;\)<strong>OR</strong>\(\;\;\;y - 6 = 0(x + 2)\) <span class="Apple-converted-space"> </span><strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their gradient from part (c), <strong><em>(A1)</em>(ft) </strong>for their answer from part (a). Answer must be an equation.</p>
<p class="p1">Award <strong><em>(A0)(A0) </em></strong>for \(x = 6\).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="" alt> <span class="Apple-converted-space"> </span><strong><em>(A1)(A1)(A1)(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for labels and some indication of scales in the stated window. The point \((-2,{\text{ }}6)\) correctly labelled, or an \(x\)-value and a \(y\)-value on their axes in approximately the correct position, are acceptable indication of scales.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for correct general shape (curve must be smooth and must not cross the \(y\)-axis).</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for \(x\)-intercept in approximately the correct position.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for local minimum in the second quadrant.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Tangent to graph drawn approximately at \(x = - 2\) <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for straight line tangent to curve at approximately \(x = - 2\), with approximately correct gradient. Tangent must be straight for the <strong><em>(A1)</em>(ft) </strong>to be awarded.</p>
<p>Award <strong><em>(A1)</em>(ft) </strong>for (extended) line passing through approximately their \(y\)-intercept from (d). Follow through from their gradient in part (c) and their equation in part (d).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\((4,{\text{ }}6)\;\;\;\)<strong>OR</strong>\(\;\;\;x = 4,{\text{ }}y = 6\) <span class="Apple-converted-space"> </span><strong><em>(G1)</em>(ft)<em>(G1)</em>(ft)</strong></p>
<p class="p1"><strong>Notes: </strong>Follow through from their tangent from part (d). If brackets are missing then award <strong><em>(G0)(G1)</em>(ft).</strong></p>
<p class="p1">If line intersects their graph at more than one point (apart from \(( - 2,{\text{ }}6)\)<span class="s1">)</span>, follow through from the first point of intersection (to the right of \( - 2\)).</p>
<p class="p1">Award <strong><em>(G0)(G0) </em></strong>for \(( - 2,{\text{ }}6)\).</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f:x \mapsto \frac{{kx}}{{{2^x}}}\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The cost per person, in euros, when \(x\) people are invited to a party can be determined by the function </span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(C(x) = x + \frac{{100}}{x}\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that \(f(1) = 2\), show that \(k = 4\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the values of \(q\) and \(r\) for the following table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>As \(x\) increases from \( - 1\), the graph of \(y = f(x)\) reaches a maximum value and then decreases, behaving asymptotically.</span></p>
<p><span><span>Draw the graph of \(y = f(x)\) for \( - 1 \leqslant x \leqslant 8\). Use a scale of \({\text{1 cm}}\) to represent 1 unit on both axes. The position of the maximum, </span></span><span><span><span><span>\({\text{</span></span>M}}\), the</span> <span>\(y\)-intercept and the asymptotic behaviour should be clearly shown.</span></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, find the coordinates of \({\text{M}}\), the maximum point on the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the horizontal asymptote to the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Draw and label the line \( y = 1\) on your graph.</span></p>
<p><span>(ii) The equation \(f(x) = 1\) has two solutions. One of the solutions is \(x = 4\). Use your <strong>graph</strong> to find the other solution.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(C'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the cost per person is a minimum when \(10\) people are invited to the party.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the minimum cost per person.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(f(1) = \frac{k}{{{2^1}}}\)</span> <em><strong>(M1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for substituting \(x = 1\) into the formula.</span></p>
<p><br><span>\(\frac{k}{2} = 2\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for equating to 2.</span></p>
<p><br><span>\(k = 4\) <em><strong>(AG)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(q = 2\), \(r = 0.125\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span> <em><strong>(A4)</strong></em></span></span></p>
<p><strong><span>Notes:</span></strong><span> <em><strong>(A1)</strong></em> for scales and labels.</span><br><span><em><strong>(A1)</strong></em> for accurate smooth curve passing through \((0, 0)\) drawn at least in the given domain.</span><br><span><em><strong>(A1)</strong></em> for asymptotic behaviour (curve must not go up or cross the \(x\)-axis).</span><br><span><em><strong>(A1)</strong></em> for indicating the position of the maximum point.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>\({\text{M}}\)</span> (\(1.44\), \(2.12\)) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><span><strong>Note: </strong>Brackets required, if missing award</span> <span><em><strong>(G1)(G0)</strong></em>. Accept \(x = 1.44\) and \(y = 2.12\).</span></span></p>
<p><span><span><em><strong>[2 marks]</strong></em><br></span></span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = 0\) <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for ‘\(y = \)’ provided the right hand side is a constant. <em><strong>(A1)</strong></em> for 0.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) See graph <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(A1)</em></strong> for correct line, <em><strong>(A1)</strong></em> for label.</span></p>
<p><br><span>(ii) \(x = 0.3\) <strong>(ft)</strong> from candidate’s graph. <em><strong>(A2)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes: </strong>Accept \( \pm 0.1\) from their <em>x</em>. For \(0.310\) award <em><strong>(G1)(G0)</strong></em>. For other answers taken from the GDC and not given correct to 3 significant figures award <em><strong>(G0)(AP)(G0)</strong></em> or <em><strong>(G1)(G0)</strong></em> if <em><strong>(AP)</strong></em> already applied.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(C'(x) = 1 - \frac{{100}}{{{x^2}}}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for 1, <em><strong>(A1)</strong></em> for \( - 100\) , <em><strong>(A1)</strong></em> for \({x^2}\) as denominator or \({{x^{ - 2}}}\) as numerator. Award a maximum of <em><strong>(A2)</strong></em> if an extra term is seen.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>For studying signs of the derivative at either side of \(x = 10\) <em><strong>(M1)</strong></em></span></p>
<p><span>For saying there is a change of sign of the derivative <em><strong>(M1)(AG)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>For putting \(x = 10\) into \(C'\) and getting zero <em><strong>(M1)</strong></em> </span></p>
<p><span>For clear sketch of the function or for mentioning that the function changes from decreasing to increasing at \(x = 10\) <em><strong>(M1)(AG)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>For solving \(C'(x) = 0\) and getting \(10\) <em><strong>(M1)</strong></em></span></p>
<p><span>For clear sketch of the function or for mentioning that the function changes from decreasing to increasing at \(x = 10\) <em><strong>(M1)(AG)</strong></em></span></p>
<p><span><span><strong>Note: </strong>For a sketch with a clear indication of the minimum or for a table with values of \(x\) at either side of \(x = 10\) award <em><strong>(M1)(M0)</strong></em>.</span></span></p>
<p><span><span><em><strong>[2 marks]</strong></em><br></span></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(C(10) = 10 + \frac{{100}}{{10}}\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(C(10) = 20\) <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were many well drawn graphs using correctly scaled and labelled axes with a good curve drawn. A number of students did not label the maximum point. Although many students showed in their graph the asymptotic behaviour of the curve, they did not know how to describe the asymptote. It was noticed that some students were tracing the curve to find the coordinates of the maximum instead of finding the maximum directly. The intersection between the line \(y = 1\) and the curve was not always read from their graph but from their GDC's graph.</span></p>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Finding the derivative was done at least partially correctly by most of the candidates. However, using it to find the minimum and to justify why it is a minimum was troublesome for the majority of the candidates. Even those who used a graph in their reasoning neglected to mention the change from decreasing to increasing or to supply a sign diagram. Many candidates recovered in the last part of the question when finding the minimum cost.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Finding the derivative was done at least partially correctly by most of the candidates. However, using it to find the minimum and to justify why it is a minimum was troublesome for the majority of the candidates. Even those who used a graph in their reasoning neglected to mention the change from decreasing to increasing or to supply a sign diagram. Many candidates recovered in the last part of the question when finding the minimum cost.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Finding the derivative was done at least partially correctly by most of the candidates. However, using it to find the minimum and to justify why it is a minimum was troublesome for the majority of the candidates. Even those who used a graph in their reasoning neglected to mention the change from decreasing to increasing or to supply a sign diagram. Many candidates recovered in the last part of the question when finding the minimum cost.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer makes trash cans in the form of a cylinder with a hemispherical top. The trash can has a height of 70 cm. The base radius of both the cylinder and the hemispherical top is 20 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A designer is asked to produce a new trash can.</p>
<p>The new trash can will also be in the form of a cylinder with a hemispherical top.</p>
<p>This trash can will have a height of <em>H</em> cm and a base radius of <em>r</em> cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>There is a design constraint such that <em>H</em> + 2<em>r</em> = 110 cm.</p>
<p>The designer has to maximize the volume of the trash can.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the cylinder.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total volume of the trash can.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the <strong>cylinder</strong>, <em>h</em> , of the new trash can, in terms of <em>r</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <em>V</em> cm<sup>3</sup> , of the new trash can is given by</p>
<p>\(V = 110\pi {r^3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graphic display calculator, find the value of <em>r</em> which maximizes the value of <em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The designer claims that the new trash can has a capacity that is at least 40% greater than the capacity of the original trash can.</p>
<p>State whether the designer’s claim is correct. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>50 (cm) <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\pi \times 50 \times {20^2} + \frac{1}{2} \times \frac{4}{3} \times \pi \times {20^3}\) <em><strong>(M1)(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted volume of cylinder, <em><strong>(M1)</strong></em> for correctly substituted volume of sphere formula, <em><strong>(M1)</strong></em> for halving the substituted volume of sphere formula. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> if there is no addition of the volumes.</p>
<p>\( = 79600\,\,\left( {{\text{c}}{{\text{m}}^3}} \right)\,\,\left( {79587.0 \ldots \left( {{\text{c}}{{\text{m}}^3}} \right)\,,\,\,\frac{{76000}}{3}\pi } \right)\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>h = H − r</em> (or equivalent) <em><strong>OR</strong></em> <em>H</em> = 110 − 2<em>r</em> <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for writing h in terms of <em>H</em> and <em>r</em> or for writing <em>H</em> in terms of <em>r</em>.</p>
<p>(<em>h</em> =) 110 <em>− </em>3<em>r <strong>(A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {V = } \right)\,\,\,\,\frac{2}{3}\pi {r^3} + \pi {r^2} \times \left( {110 - 3r} \right)\) <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for volume of hemisphere, <em><strong>(M1)</strong></em> for correct substitution of their h into the volume of a cylinder, <em><strong>(M1)</strong></em> for addition of two correctly substituted volumes leading to the given answer. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> for subsequent working that does not lead to the given answer. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> for substituting <em>H</em> = 110 − 2<em>r</em> as their <em>h</em>.</p>
<p>\(V = 110\pi {r^2} - \frac{7}{3}\pi {r^3}\) <em><strong>(AG)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(r =) 31.4 (cm) (31.4285… (cm)) <em><strong>(G2)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(\left( \pi \right)\left( {220r - 7{r^2}} \right) = 0\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting the correct derivative equal to zero.</p>
<p>(r =) 31.4 (cm) (31.4285… (cm)) <em><strong>(A1)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {V = } \right)\,\,\,\,110\pi {\left( {31.4285 \ldots } \right)^3} - \frac{7}{3}\pi {\left( {31.4285 \ldots } \right)^3}\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their 31.4285… into the given equation.</p>
<p>= 114000 (113781…) <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note: </strong>Follow through from part (e).</p>
<p>(increase in capacity =) \(\frac{{113.781 \ldots - 79587.0 \ldots }}{{79587.0 \ldots }} \times 100 = 43.0\,\,\left( {\text{% }} \right)\) <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for finding the correct percentage increase from their two volumes.</p>
<p><strong>OR</strong></p>
<p>1.4 × 79587.0… = 111421.81… <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for finding the capacity of a trash can 40% larger than the original.</p>
<p>Claim is correct <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from parts (b), (e) and within part (f). The final <strong><em>(R1)(A1)</em>(ft)</strong> can be awarded for their correct reason and conclusion. Do not award <strong><em>(R0)(A1)</em>(ft)</strong>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for −1 < <em>x</em> < 3</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 < <em>x</em> < 3 and −2 < <em>y</em> < 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x < 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em> when <em>x</em> = 1 .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{dy}}}}{{{\text{dx}}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the stationary points of the curve are at <em>x</em> = 1 and <em>x</em> = 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)(A1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window (condone a window which is slightly off) and axes labels. An indication of window is necessary. −1 to 3 on the <em>x</em>-axis and −2 to 12 on the <em>y</em>-axis and a graph in that window.<br><em><strong>(A1)</strong></em> for correct shape (curve having cubic shape and must be smooth).<br><em><strong>(A1)</strong></em> for both stationary points in the 1<sup>st</sup> quadrant with approximate correct position,<br><em><strong>(A1)</strong></em> for intercepts (negative <em>x</em>-intercept and positive <em>y</em> intercept) with approximate correct position.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Rick <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if extra names stated.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2(1)<sup>3</sup> − 9(1)<sup>2</sup> + 12(1) + 2 <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into equation.</p>
<p>= 7 <em><strong>(A1)(G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6<em>x</em><sup>2</sup> − 18<em>x</em> + 12 <strong><em>(A1)(A1)(A1)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for each correct term. Award at most <strong><em>(A1)(A1)(A0)</em></strong> if extra terms seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6<em>x</em><sup>2</sup> − 18<em>x</em> + 12 = 0 <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative to 0. If the derivative is not explicitly equated to 0, but a subsequent solving of their correct equation is seen, award <em><strong>(M1)</strong></em>.</p>
<p>6(<em>x </em> − 1)(<em>x</em> − 2) = 0 (or equivalent) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award (M1) for correct factorization. The final <em><strong>(M1)</strong></em> is awarded only if answers are clearly stated.</p>
<p>Award <em><strong>(M0)(M0)</strong></em> for substitution of 1 and of 2 in their derivative.</p>
<p><em>x =</em> 1, <em>x =</em> 2 <em><strong>(AG)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 < <em>k</em> < 7 <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for an inequality with 6, award <em><strong>(A1)</strong></em><strong>(ft)</strong> for an inequality with 7 from their part (c) provided it is greater than 6, <em><strong>(A1)</strong></em> for their correct strict inequalities. Accept ]6, 7[ or (6, 7).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">When Geraldine travels to work she can travel either by car (<em>C</em>), bus (<em>B</em>) or train (<em>T</em>). She travels by car on one day in five. She uses the bus 50 % of the time. The probabilities of her being late (<em>L</em>) when travelling by car, bus or train are 0.05, 0.12 and 0.08 respectively.</span></p>
</div>
<div class="specification">
<p><em><span style="font-size: medium; font-family: times new roman,times;">It is <strong>not</strong> necessary to use graph paper for this question.</span></em></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Copy the tree diagram below and fill in all the probabilities, where <em>NL</em> represents not late, to represent this information.</span></p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine travels by bus and is late.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine is late.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine travelled by train, given that she is late.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the curve of the function \(f (x) = x^3 − 2x^2 + x − 3\) for values of \(x\) from −2 to 4, giving the intercepts with both axes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same diagram, sketch the line \(y = 7 − 2x\) and find the coordinates of the point of intersection of the line with the curve.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the gradient of the curve where \(x = 1.7\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><em><span>Award <strong>(A1)</strong> for 0.5 at B, <strong>(A1)</strong> for 0.3 at T, then <strong>(A1)</strong> for each correct pair. Accept fractions or percentages. <strong>(A5)</strong></span></em></p>
<p><em><span><strong>[5 marks]<br></strong></span></em></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0.06 (<em>accept</em> \(0.5 \times 0.12\) <em>or</em> 6%) <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong><em>[1 mark]</em><br></strong></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>for a relevant two-factor product, either</em> \(C \times L\) <em>or</em> \(T \times L\) </span><span><em><strong>(M1)</strong></em></span></p>
<p><span> <em>for summing three two-factor products </em> <em><strong>(M1)</strong></em></span></p>
<p><span>\((0.2 \times 0.05 + 0.06 + 0.3 \times 0.08)\)</span></p>
<p><span>0.094 <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{0.3 \times 0.08}}{{0.094}}\) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><em>award <strong>(M1)</strong> for substituted conditional probability formula seen, </em></em></span><span><em><strong>(A1)</strong></em><strong>(ft) </strong></span><span><em><em>for correct substitution</em></em></span></p>
<p><span>= 0.255<em><em> <strong>(A1)</strong></em></em><strong>(ft)</strong><em><em><strong>(G2)</strong><br></em></em></span></p>
<p><span><em><em><strong>[3 marks]<br></strong></em></em></span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt> <em><strong><span>(G3)</span></strong></em></p>
<p><em><strong><span>[3 marks]<br></span></strong></em></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>line drawn with <strong>–ve</strong> gradient and <strong>+ve</strong> y-intercept</em> <strong><em>(G1)</em></strong></span></p>
<p><span>(2.45, 2.11) <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f ' (1.7) = 3(1.7)^2 - 4(1.7) + 1\) <em><strong>(M1)</strong></em><br></span></p>
<p><em><span>award <strong>(M1)</strong> for substituting in their</span></em><span> \(</span><span><span>f</span></span><span><span><span>' </span> </span> (x)\)</span></p>
<p><span>2.87 <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The curve sketching and straight line were well drawn but not all candidates indicated the intersection points with the axes. In finding the line / curve intersection some candidates did not use the intersection function on the GDC. Few candidates managed the last part. Many just chose two sets of coordinates and used the gradient formula.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The curve sketching and straight line were well drawn but not all candidates indicated the intersection points with the axes. In finding the line / curve intersection some candidates did not use the intersection function on the GDC. Few candidates managed the last part. Many just chose two sets of coordinates and used the gradient formula.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This should have been an easy first question but, even so, there were some candidates who were unable to fill in the tree diagram correctly let alone evaluate any probabilities. The majority of candidates were confident with answering parts (a), (b) and (c) but the conditional probability question was not well answered with few candidates managing to recognise that it was a conditional type.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The curve sketching and straight line were well drawn but not all candidates indicated the intersection points with the axes. In finding the line / curve intersection some candidates did not use the intersection function on the GDC. Few candidates managed the last part. Many just chose two sets of coordinates and used the gradient formula.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hugo is given a rectangular piece of thin cardboard, \(16\,{\text{cm}}\) by \(10\,{\text{cm}}\). He decides to design a tray with it.</p>
<p>He removes from each corner the shaded squares of side \(x\,{\text{cm}}\), as shown in the following diagram.</p>
<p><img src="" alt></p>
<p>The remainder of the cardboard is folded up to form the tray as shown in the following diagram.</p>
<p><img src="" alt></p>
<p>Write down, <strong>in terms of</strong> \(x\) , the length and the width of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State whether \(x\) can have a value of \(5\). Give a reason for your answer.</p>
<p>(ii) Write down the interval for the possible values of \(x\) .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, \(V\,{\text{c}}{{\text{m}}^3}\), of this tray is given by</p>
<p>\[V = 4{x^3} - 52{x^2} + 160x.\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{dV}}{{dx}}.\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Using your answer from part (d)</strong>, find the value of \(x\) that maximizes the volume of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(V = 4{x^3} - 51{x^2} + 160x\) , for the possible values of \(x\) found in part (b)(ii), and \(0 \leqslant V \leqslant 200\) . Clearly label the maximum point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(16 - 2x,\,\,10 - 2x\) <em><strong>(A1)(A1)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) no <em><strong>(A1)</strong></em></p>
<p>(when \(x\) is \(5\)) the width of the tray will be zero / there is no short edge to fold / \(10 - 2\,(5) = 0\) <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Do not award <em><strong>(R0)(A1)</strong></em>. Award the <em><strong>(R1)</strong></em> for reasonable explanation.</p>
<p> </p>
<p>(ii) \(0 < x < 5\) <em><strong>(A1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(0\) and \(5\) seen, <em><strong>(A1)</strong></em> for correct strict inequalities (accept alternative notation). Award <em><strong>(A1)(A0)</strong></em> for “between \(0\) and \(5\)” or “from \(0\) to \(5\)”.<br>Do not accept a list of integers.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(V = (16 - 2x)\,(10 - 2x)\,(x)\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution in volume of cuboid formula.</p>
<p>\( = 160x - 32{x^2} - 20{x^2} + 4{x^3}\) (or equivalent) <em><strong>(M1)</strong></em></p>
<p>\( = 160x - 52{x^2} + 4{x^3}\) <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for showing clearly the expansion and for simplifying the expression, and this <strong>must</strong> be seen to award second <em><strong>(M1)</strong></em>. The <em><strong>(AG)</strong></em> line must be seen for the final <em><strong>(M1)</strong></em> to be awarded.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(12{x^2} - 104x + 160\) (or equivalent) <em><strong>(A1)(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(12{x^2}\),<em><strong> (A1)</strong></em> for \( - 104x\) and <em><strong>(A1)</strong></em> for \( + 160\). If extra terms are seen award at most <em><strong>(A1)(A1)(A0)</strong></em>.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(12{x^2} - 104x + 160 = 0\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating <strong>their</strong> derivative to \(0\).</p>
<p>\(x = 2\) <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for a sketch of their derivative in part (d), <strong><em>(A1)</em>(ft)</strong> for reading the \(x\)-intercept from their graph.<br>Award <em><strong>(M0)(A0)</strong></em> for \(x = 2\) with no working seen.<br>Award at most <em><strong>(M1)(A0)</strong></em> if the answer is a pair of coordinates.<br>Award at most <em><strong>(M1)(A0)</strong></em> if the answer given is \(x = 2\) <strong>and </strong>\(x = \frac{{20}}{3}\)<br>Follow through from their derivative in part (d). Award <strong><em>(A1)</em>(ft)</strong> only if answer is positive and less than \(5\).</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(4{(2)^3} - 52{(2)^2} + 160(2)\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their answer to part (e) into volume formula.</p>
<p>\(144\,({\text{c}}{{\text{m}}^3})\) <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (d).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><strong><em>(A1)(A1)</em>(ft)<em>(A1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for correctly labelled axes and window for \(V\), <em>ie</em> \(0 \leqslant V \leqslant 200\).<br>Award <strong><em>(A1)</em>(ft)</strong> for the correct domain \((0 < x < 5)\). Follow through from part (b)(ii) if a different domain is shown on graph.<br>Award <strong><em>(A1)</em></strong> for smooth curve with correct shape.<br>Award <strong><em>(A1)</em>(ft)</strong> for <strong>their</strong> maximum point indicated (coordinates, cross or dot <em>etc</em>.) in approximately correct place.<br>Follow through from parts (e) and (f) only if the maximum on their graph is different from \((2,\,\,144)\).</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus<br>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus<br>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus</p>
<p>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus</p>
<p>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus</p>
<p>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus</p>
<p>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Differential calculus</p>
<p>In general, many candidates struggled in some parts. Most candidates who could state the dimensions of the box gave a reasonable justification of why \(x\) could not be \(5\). Very few candidates scored the two marks in part (d)(ii). Either their inequalities were not strict or their limits were incorrect or both. Some candidates stated the range of \(x\) as \(1,\,\,2,\,\,3,\,\,4\). The algebra in part (c) caused problems for a number of candidates. It seemed that there was a lack of understanding of what the question required. Some substituted \(x = 2\) in the volume formula. A few candidates wrote the product of the length, width, height, omitting the appropriate brackets. Part (d) was well answered by most candidates. However, its application in the following part was not as good in part (e). In part (e) some candidates left both solutions for \(x\), not appreciating the fact that one was outside the range. Others lost both marks as they did not show that they had used their derivative to part (d) as required by the question. Very few candidates scored full marks for the sketch in part (g). Not following the given instructions about the domain and range let most candidates down in this question.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A function, \(f\) , is given by</p>
<p>\[f(x) = 4 \times {2^{ - x}} + 1.5x - 5.\]</p>
<p>Calculate \(f(0)\)</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to solve \(f(x) = 0.\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) for \( - 2 \leqslant x \leqslant 6\) and \( - 4 \leqslant y \leqslant 10\) , showing the \(x\) and \(y\) intercepts. Use a scale of \(2\,{\text{cm}}\) to represent \(2\) units on both the horizontal axis, \(x\) , and the vertical axis, \(y\) .</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function \(f\) is the derivative of a function \(g\) . It is known that \(g(1) = 3.\)</p>
<p>i) Calculate \(g'(1).\)</p>
<p>ii) Find the equation of the tangent to the graph of \(y = g(x)\) at \(x = 1.\) Give your answer in the form \(y = mx + c.\)</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(4 \times {2^{ - 0}} + 1.5 \times 0 - 5\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(</strong><strong>M1)</strong></em> for substitution of \(0\) into the expression for \(f(x)\) .</p>
<p>\( = - 1\) <em><strong>(A1)(G2)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( - 0.538\,\,\,( - 0.537670...)\) and \(3\) <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award at most<strong><em> (A0)(A1)</em>(ft)</strong> if answer is given as pairs of coordinates.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><strong><em>(A1)(A1)(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for labels and some indication of scale in the correct given window.</p>
<p>Award <em><strong>(A1)</strong></em> for smooth curve with correct general shape with \(f( - 2) > f(6)\) and minimum to the right of the \(y\)-axis.</p>
<p>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct \(y\)-intercept (consistent with their part (a)).</p>
<p>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for approximately correct \(x\)-intercepts (consistent with their part (b), one zero between \( - 1\) and \(0\), the other between \(2.5\) and \(3.5\)).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i) \(g'(1) = f(1) = 4 \times {2^{ - 1}} + 1.5 - 5\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(1\) into \(f(x)\).</p>
<p>\( = - 1.5\) <em><strong>(A1)(G2)</strong></em></p>
<p> </p>
<p>ii) \(3 = - 1.5 \times 1 + c\) <strong>OR</strong> \((y - 3) = - 1.5\,(x - 1)\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of gradient and the point \((1,\,\,3)\) into the equation of a line. Follow through from (d)(i).</p>
<p>\(y = - 1.5x + 4.5\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 6: Functions and Calculus<br>Many candidates were able to calculate \(f(0)\) although some had a problem with \({2^0}\). Very few were able to find both roots in part (b), even when they represented correctly both zeros in their sketch. Many sketches were reasonably well drawn, presenting a smooth curve with correct points of intersection. Many lost a mark for not labelling their axes and the given scale was ignored by some, which was not penalized but often resulted in sketches which were difficult to read. The stronger candidates calculated \(g'(1)\) correctly, but very few represented the gradient of the function at \(x = 1\) correctly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 6: Functions and Calculus</p>
<p>Many candidates were able to calculate \(f(0)\) although some had a problem with \({2^0}\). Very few were able to find both roots in part (b), even when they represented correctly both zeros in their sketch. Many sketches were reasonably well drawn, presenting a smooth curve with correct points of intersection. Many lost a mark for not labelling their axes and the given scale was ignored by some, which was not penalized but often resulted in sketches which were difficult to read. The stronger candidates calculated \(g'(1)\) correctly, but very few represented the gradient of the function at \(x = 1\) correctly.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 6: Functions and Calculus Many candidates were able to calculate \(f(0)\) although some had a problem with \({2^0}\). Very few were able to find both roots in part (b), even when they represented correctly both zeros in their sketch. Many sketches were reasonably well drawn, presenting a smooth curve with correct points of intersection. Many lost a mark for not labelling their axes and the given scale was ignored by some, which was not penalized but often resulted in sketches which were difficult to read. The stronger candidates calculated \(g'(1)\) correctly, but very few represented the gradient of the function at \(x = 1\) correctly.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 6: Functions and Calculus</p>
<p>Many candidates were able to calculate \(f(0)\) although some had a problem with \({2^0}\). Very few were able to find both roots in part (b), even when they represented correctly both zeros in their sketch. Many sketches were reasonably well drawn, presenting a smooth curve with correct points of intersection. Many lost a mark for not labelling their axes and the given scale was ignored by some, which was not penalized but often resulted in sketches which were difficult to read. The stronger candidates calculated \(g'(1)\) correctly, but very few represented the gradient of the function at \(x = 1\) correctly.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58\), where <em>x</em> > 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>
<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your value of <em>k</em> , find <em>f</em> ′(<em>x</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use your answer</strong> to part (b) to show that the minimum value of <em>f</em>(<em>x</em>) is −22 .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <strong>two</strong> values of<em> x</em> which satisfy<em> f </em>(<em>x</em>) = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 < <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{48}}{4} + k \times {4^2} - 58 = 2\) <em><strong>(M1)</strong></em><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of <em>x</em> = 4 and <em>y</em> = 2 into the function.</p>
<p><em>k</em> = 3 <em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{ - 48}}{{{x^2}}} + 6x\) <strong><em>(A1)(A1)(A1)</em>(ft)<em> (G3)</em></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for −48 , (A1) for <em>x</em><sup>−2</sup>, <strong><em>(A1)</em>(ft)</strong> for their 6<em>x</em>. Follow through from part (a). Award at most <strong><em>(A1)(A1)(A0)</em></strong> if additional terms are seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{ - 48}}{{{x^2}}} + 6x = 0\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their part (b) to zero.</p>
<p><em>x</em> = 2 <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (b). Award (<em><strong>M1)(A1)</strong></em> for \(\frac{{ - 48}}{{{{\left( 2 \right)}^2}}} + 6\left( 2 \right) = 0\) seen.</p>
<p>Award <em><strong>(M0)(A0)</strong></em> for <em>x</em> = 2 seen either from a graphical method or without working.</p>
<p>\(\frac{{48}}{2} + 3 \times {2^2} - 58\,\,\,\left( { = - 22} \right)\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting their 2 into their function, but only if the final answer is −22. Substitution of the known result invalidates the process; award <em><strong>(M0)(A0)(M0)</strong></em>.</p>
<p>−22 <em><strong>(AG)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.861 (0.860548…), 3.90 (3.90307…) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a) but only if the answer is positive. Award at most <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em> if answers are given as coordinate pairs or if extra values are seen. The function <em>f </em>(<em>x</em>) only has two <em>x</em>-intercepts within the domain. Do not accept a negative <em>x</em>-intercept.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct window. Axes must be labelled.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for a smooth curve with correct shape and zeros in approximately correct positions relative to each other.<br><em><strong>(A1)</strong></em><strong>(ft)</strong> for point P indicated in approximately the correct position. Follow through from their <em>x</em>-coordinate in part (c). <em><strong>(A1)</strong></em><strong>(ft)</strong> for two <em>x</em>-intercepts identified on the graph and curve reflecting asymptotic properties.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A distress flare is fired into the air from a ship at sea. The height, \(h\) , in metres, of the flare above sea level is modelled by the quadratic function</p>
<p>\[h\,(t) = - 0.2{t^2} + 16t + 12\,,\,t \geqslant 0\,,\]</p>
<p>where \(t\) is the time, in seconds, and \(t = 0\,\) at the moment the flare was fired.</p>
<p>Write down the height from which the flare was fired.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the flare \(15\) seconds after it was fired.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The flare fell into the sea \(k\) seconds after it was fired.</p>
<p>Find the value of \(k\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(h'\,(t)\,.\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>i) Show that the flare reached its maximum height \(40\) seconds after being fired.</p>
<p>ii) Calculate the maximum height reached by the flare.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nearest coastguard can see the flare when its height is more than \(40\) metres above sea level.</p>
<p>Determine the total length of time the flare can be seen by the coastguard.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(12\,({\text{m}})\) <em><strong>(A1)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((h\,(15) = ) - 0.2 \times {15^2} + 16 \times 15 + 12\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(15\) in expression for \(h\).</p>
<p>\( = 207\,({\text{m}})\) <em><strong>(A1)(G2)</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h\,(k) = 0\) <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting \(h\) to zero.</p>
<p>\((k = )\,\,\,80.7\,({\text{s}})\,\,\,(80.7430)\) <strong><em>(A1)(G2)</em></strong></p>
<p><strong>Note:</strong> Award at most <strong><em>(M1)(A0)</em></strong> for an answer including \(K = - 0.743\) .<br> Award <strong><em>(A0)</em></strong> for an answer of \(80\) without working.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h'\,(t) = - 0.4t + 16\) <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \( - 0.4t\), (<em><strong>A1)</strong></em> for \(16\). Award at most <em><strong>(A1)(A0)</strong></em> if extra terms seen. Do not accept \(x\) for \(t\).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i) \( - 0.4t + 16 = 0\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting their derivative, from part (d), to zero, provided the correct conclusion is stated and consistent with their \(h'\,(t)\).</p>
<p><strong>OR</strong></p>
<p>\(t = \frac{{ - 16}}{{2 \times ( - 0.2)}}\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award (<em><strong>M1)</strong></em> for correct substitution into axis of symmetry formula, provided the correct conclusion is stated.</p>
<p>\(t = \,\,40\,({\text{s}})\) <em><strong>(AG)</strong></em></p>
<p> </p>
<p> </p>
<p>ii) \( - 0.2 \times {40^2} + 16 \times 40 + 12\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(40\) in expression for \(h\).</p>
<p>\( = 332\,({\text{m}})\) <em><strong>(A1)(G2)</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h\,(t) = 40\) <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting \(h\) to \(40\). Accept inequality sign.</p>
<p><strong>OR</strong></p>
<p><img src="" alt></p>
<p><em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct sketch. Indication of scale is not required.</p>
<p>\(78.2 - 1.17\,\,(78.2099...\,\, - 1.79005...)\) <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(1.79\) and \(78.2\) seen.</p>
<p>(total time \( = \)) \(76.4\,({\text{s}})\,\,\,(76.4198...)\) <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(G1)</strong></em> if the two endpoints are given as the final answer with no working.</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.<br>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\) instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of “trial and error” of integer values for \(t\). Some candidate seem to have a problem with the notation “\(h\,(t) = \,...\)”, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f(x) = 3x + \frac{{12}}{{{x^2}}},{\text{ }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f (x)\) with respect to \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f ′(x)\) when \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your answer to part (b) to decide whether the function, \(f\) , is increasing or decreasing at \(x = 1\). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(f ′(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the coordinates of P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the gradient of <em>T</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the equation of <em>T</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function <em>f</em>, for −3 ≤ <em>x</em> ≤ 6 and −7 ≤ <em>y</em> ≤ 15. Indicate clearly the point P and any intercepts of the curve with the axes.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On your graph draw and label the tangent <em>T</em>.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>T</em> intersects the graph of <em>f</em> at a second point. Write down the<em> x</em>-coordinate of this point of intersection.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g, ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(f' (x) = 3 - \frac{24}{x^3}\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><strong><em> </em></strong></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 3, <em><strong>(A1)</strong></em> for –24, <em><strong>(A1)</strong></em> for <em>x</em><sup>3</sup> (or <em>x</em><sup>−3</sup>). If extra terms present award at most <em><strong>(A1)(A1)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f '(1) = -21\) <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><strong><em> </em></strong></p>
<p><span><strong>Note: (ft)</strong> from their derivative only if working seen.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Derivative (gradient, slope) is negative. Decreasing. <em><strong>(R1)(A1)</strong></em><strong>(ft)</strong> </span></p>
<p><strong><em> </em></strong></p>
<p><span><strong>Note:</strong> Do not award <em><strong>(R0)(A1)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3 - \frac{{24}}{{{x^3}}} = 0\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(x^3 = 8\) <em><strong>(A1)</strong></em></span></p>
<p><span>\(x = 2\) <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(2, 9) (Accept <em>x</em> = 2, <em>y</em> = 9) <em><strong>(A1)(A1)(G2)</strong></em></span></p>
<p><span><strong>Notes: (ft)</strong> from their answer in (d).</span></p>
<p><span>Award <em><strong>(A1)(A0)</strong></em> if brackets not included and not previously</span> <span>penalized.</span></p>
<p><em><strong><span>[2 marks]<br></span></strong></em></p>
<div class="question_part_label">e, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0 <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">e, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>y</em> = 9 <strong><em>(A1)(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1)</em></strong> for<em> y</em> = constant, <strong><em>(A1)</em></strong> for 9.</span></p>
<p><span>Award <strong><em>(A1)</em>(ft)</strong> for their value of <em>y</em> in (e)(i).</span></p>
<p><span> </span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e, iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span> <em><strong>(A4)</strong></em></span></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for labels and some indication of scale in the stated window.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for correct general shape (curve must be smooth and must not cross the <em>y</em>-axis).</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for <em>x</em>-intercept seen in roughly the correct position.</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for minimum (P).</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Tangent drawn at P (line must be a tangent and horizontal). <em><strong>(A1)</strong></em></span></p>
<p><span>Tangent labeled <em>T</em>. <em><strong>(A1)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note: (ft)</strong> from their tangent equation only if tangent is drawn and answer is consistent with graph.</span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<p> </p>
<div class="question_part_label">g, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> = −1 <strong><em>(G1)</em>(ft)</strong></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">g, ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many students did not know the term “differentiate” and did not answer part (a).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">However, the derivative was seen in (b) when finding the gradient at <em>x</em> = 1. The negative index of the formula did cause problems for many when finding the derivative. The meaning of the derivative was not clear for a number of students.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (d) was handled well by some but many substituted <em>x</em> = 0 into <em>f</em> <em>'</em>(<em>x</em>).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">It was clear that most candidates neither knew that the tangent at a minimum is horizontal nor that its gradient is zero.</span></p>
<div class="question_part_label">e, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">It was clear that most candidates neither knew that the tangent at a minimum is horizontal nor that its gradient is zero.</span></p>
<div class="question_part_label">e, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">It was clear that most candidates neither knew that the tangent at a minimum is horizontal nor that its gradient is zero.</span></p>
<div class="question_part_label">e, iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There were good answers to the sketch though setting out axes and a scale seemed not to have had enough practise.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">Those who were able to sketch the function were often able to correctly place and label the tangent and also to find the second intersection point with the graph of the function.</span></span></p>
<div class="question_part_label">g, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Those who were able to sketch the function were often able to correctly place and label the tangent and also to find the second intersection point with the graph of the function.</span></p>
<div class="question_part_label">g, ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f(x) = - \frac{1}{3}{x^3} + \frac{5}{3}{x^2} - x - 3\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for −3 ≤ <em>x</em> </span><span><span>≤</span> 6 and −10 </span><span><span>≤</span> <em>y</em> </span><span><span>≤ </span>10 showing clearly the axes intercepts and local maximum and minimum points. Use a scale of 2 cm to represent 1 unit on the <em>x</em>-axis, and a scale of 1 cm to represent 1 unit on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>f</em> (−1).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the <em>y</em>-intercept of the graph of <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>f '</em>(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'( - 1) = - \frac{{16}}{3}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain what <em>f</em> <em>'</em>(−1) represents.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> is –1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the tangent to the graph of <em>f</em> (<em>x</em>) at <em>x</em> = −1 on your diagram for (a).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> > <em>a</em>.</span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>a</em> ;</span></p>
<p><span>(ii) <em>b</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> > <em>a</em>.</span></span></p>
<p><span>Describe the behaviour of <em>f</em> (<em>x</em>) for <em>a</em> < <em>x</em> < <em>b</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for indication of window and labels. <em><strong>(A1)</strong></em> for smooth curve that does not </span><span>enter the first quadrant, the curve must consist of one line only.</span></p>
<p><span><em><strong>(A1)</strong></em> for <em>x</em> and <em>y</em> intercepts in approximately correct positions (allow ±0.5).</span></p>
<p><span><em><strong>(A1)</strong></em> for local maximum and minimum in approximately correct position.</span> <span>(minimum should be 0 ≤ <em>x</em> ≤ 1 and –2 ≤ <em>y</em> ≤ –4 ), the <em>y</em>-coordinate of the </span><span>maximum should be 0 ± 0.5. <em><strong>(A4)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(-\frac{1}{3}(-1)^3 + \frac{5}{3}(-1)^2 - (-1) - 3 \) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of –1 into <em>f</em> (<em>x</em>)</span></p>
<p><br><span>= 0 <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(0, –3) <em><strong>(A1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span><em>x</em> = 0, <em>y</em> = –3 <em><strong>(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if brackets are omitted.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = - {x^2} + \frac{{10}}{3}x - 1\) <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award <em><strong>(A1)(A1)(A0)</strong></em> at most if there are extra terms.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'( - 1) = - {( - 1)^2} + \frac{{10}}{3}( - 1) - 1\) <em><strong>(M1)</strong></em></span></p>
<p><span>\(= -\frac{16}{3}\) <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of <em>x</em> = –1 into correct derivative only. The final answer must be seen.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> <em>'</em>(–1) gives the gradient of the tangent to the curve at the point with <em>x</em> = –1. <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “gradient (of curve)”, <em><strong>(A1)</strong></em> for “at the point with <em>x</em> = –1”. Accept “the instantaneous rate of change of <em>y</em>” or “the (first) derivative”.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = - \frac{16}{3} x + c\) <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for \(-\frac{16}{3}\) substituted in equation.</span><br><br></p>
<p><span>\(0 = - \frac{16}{3} \times (-1) + c \)</span></p>
<p><span>\(c = - \frac{16}{3}\)</span></p>
<p><span>\(y = - \frac{{16}}{3}x - \frac{{16}}{3}\)</span><span> <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept <em>y</em> = –5.33<em>x</em> – 5.33.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\((y - 0) = \frac{{-16}}{3}(x + 1)\) <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for</span> <span>\( - \frac{{16}}{3}\)</span><span> substituted in equation, <em><strong>(A1)</strong></em> for correct equation. Follow through from their answer to part (b). Accept <em>y </em></span><span><span>= –</span>5.33 (<em>x</em> +1). Accept equivalent equations.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em><strong>(A1)</strong></em><strong>(ft)</strong> for a tangent to their curve drawn.</span></p>
<p><span><em><strong>(A1)</strong></em><strong>(ft)</strong> for their tangent drawn at the point <em>x</em> = –1. <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their graph. The tangent must be a straight line otherwise award at most <em><strong>(A0)(A1)</strong></em>.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(a = \frac{1}{3}\)</span> <em><strong><span>(G1)</span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>(ii) \(b = 3\) <em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> If <em>a</em> and <em>b</em> are reversed award <em><strong>(A0)(A1)</strong></em>.</span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> (<em>x</em>) is increasing <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><em><strong></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">In part (b) the answer could have been checked using the table on the GDC.</span></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">In part (c) <strong>coordinates</strong> were required.</span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to part (d) were generally correct.</span></p>
<p> </p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The “show that” nature of part (e) meant that the final answer had to be stated.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The interpretive nature of part (f) was not understood by the majority.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p> </p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p> </p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (i) and (j) had many candidates floundering; there were few good responses to these parts.</span></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (i) and (j) had many candidates floundering; there were few good responses to these parts.</span></p>
<div class="question_part_label">j.</div>
</div>
<br><hr><br>