File "SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 7/SL-paper2html
File size: 254.92 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Given \(f (x) = x^2 − 3x^{−1}, x \in {\mathbb{R}}, - 5 \leqslant x \leqslant 5, x \ne 0\),</span></p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A football is kicked from a point A (a, 0), 0 < a < 10 on the ground towards a goal to the right of A.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The ball follows a path that can be modelled by <strong>part</strong> of the graph</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(y = − 0.021x^2 + 1.245x − 6.01, x \in {\mathbb{R}}, y \geqslant 0\).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>x</em> is the horizontal distance of the ball from the origin</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>y</em> is the height above the ground</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Both <em>x</em> and <em>y</em> are measured in metres.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator or otherwise, write down the coordinates of any point where the graph of \(y = f (x)\) has zero gradient.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down all intervals in the given domain for which \(f (x)\) is increasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator or otherwise, find the value of <em>a</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{dy}}{{dx}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Use your answer to part (b) to calculate the horizontal distance the ball has travelled from A when its height is a maximum.</span></p>
<p><span>(ii) Find the maximum vertical height reached by the football.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a graph showing the path of the football from the point where it is kicked to the point where it hits the ground again. Use 1 cm to represent 5 m on the horizontal axis and 1 cm to represent 2 m on the vertical scale.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The goal posts are 35 m from <strong>the point where the ball is kicked</strong>.</span></p>
<p><span>At what height does the ball pass over the goal posts?</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f(x) = - {x^4} + a{x^2} + 5\), where \(a\) is a constant. Part of the graph of \(y = f(x)\) is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.47.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>It is known that at the point where \(x = 2\) the tangent to the graph of \(y = f(x)\) is horizontal.</p>
</div>
<div class="specification">
<p>There are two other points on the graph of \(y = f(x)\) at which the tangent is horizontal.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(y\)-intercept of the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f'(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(a = 8\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(x\)-coordinates of these two points;</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the intervals where the gradient of the graph of \(y = f(x)\) is positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the range of \(f(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of possible solutions to the equation \(f(x) = 5\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation \(f(x) = m\), where \(m \in \mathbb{R}\), has four solutions. Find the possible values of \(m\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A parcel is in the shape of a rectangular prism, as shown in the diagram. It has a length \(l\) cm, width \(w\) cm and height of \(20\) cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The total volume of the parcel is \(3000{\text{ c}}{{\text{m}}^3}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the volume of the parcel in terms of \(l\) and \(w\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(l = \frac{{150}}{w}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_4.png" alt><br></span></p>
<p><span>Show that the length of string, \(S\) cm, required to tie up the parcel can be written as</span></p>
<p><span>\[S = 40 + 4w + \frac{{300}}{w},{\text{ }}0 < w \leqslant 20.\]</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_1.png" alt><br></span></p>
<p><span>Draw the graph of \(S\) for \(0 < w \leqslant 20\) and \(0 < S \leqslant 500\), clearly showing the local minimum point. Use a scale of \(2\) cm to represent \(5\) units on the horizontal axis \(w\)<em> </em>(cm), and a scale of \(2\) cm to represent \(100\) units on the vertical axis \(S\) (cm).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29.png" alt><br></span></p>
<p><span>Find \(\frac{{{\text{d}}S}}{{{\text{d}}w}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_5.png" alt><br></span></p>
<p><span>Find the value of \(w\) for which \(S\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_3.png" alt><br></span></p>
<p><span>Write down the value, \(l\), of the parcel for which the length of string is a minimum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_2.png" alt><br></span></p>
<p><span>Find the minimum length of string required to tie up the parcel.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(g(x) = {x^3} + k{x^2} - 15x + 5\).</p>
</div>
<div class="specification">
<p>The tangent to the graph of \(y = g(x)\) at \(x = 2\) is parallel to the line \(y = 21x + 7\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(k = 6\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the graph of \(y = g(x)\) at \(x = 2\). Give your answer in the form \(y = mx + c\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) and the value of \(k\), to find the \(x\)-coordinates of the stationary points of the graph of \(y = g(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(g’( - 1)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence justify that \(g\) is decreasing at \(x = - 1\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(y\)-coordinate of the local minimum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = \frac{{96}}{{{x^2}}} + kx\), where \(k\) is a constant and \(x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Show that \(k = 3\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f'(2)\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find the equation of the normal to the graph of \(y = f(x)\) at the point where \(x = 2\).</p>
<p class="p1">Give your answer in the form \(ax + by + d = 0\) where \(a,{\text{ }}b,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1"><span class="s1">Sketch the graph of \(y = f(x)\)</span>, for \( - 5 \leqslant x \leqslant 10\) and \( - 10 \leqslant y \leqslant 100\)<span class="s1">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Write down the coordinates of the point where the graph of \(y = f(x)\) intersects the \(x\)-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">State the values of \(x\) for which \(f(x)\) is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A shipping container is to be made with six rectangular faces, as shown in the diagram.</span></p>
<p> </p>
<p> </p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The dimensions of the container are</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">length 2<em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">width <em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">height <em>y</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">All of the measurements are in metres. The total length of all twelve edges is 48 metres.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that <em>y</em> =12 − 3<em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume <em>V</em> m<sup>3</sup> of the container is given by</span></p>
<p><span><em>V</em> = 24<em>x</em><sup>2</sup> − 6<em>x</em><sup>3</sup></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \( \frac{{\text{d}V}}{{\text{d}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> for which <em>V</em> is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the maximum volume of the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length and height of the container for which the volume is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The shipping container is to be painted. One litre of paint covers an area of 15 m<sup>2</sup> .</span> <span>Paint comes in tins containing four litres.</span></p>
<p><span>Calculate the number of tins required to paint the shipping container.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the curve \(y = {x^3} + \frac{3}{2}{x^2} - 6x - 2\)</span> .</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the value of \(y\) when \(x\) is \(2\).</span></p>
<p><span>(ii) Write down the coordinates of the point where the curve intercepts the \(y\)-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the curve for \( - 4 \leqslant x \leqslant 3\) and \( - 10 \leqslant y \leqslant 10\). Indicate clearly the information found in (a).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \({L_1}\) be the tangent to the curve at \(x = 2\).</span></p>
<p><span>Let \({L_2}\) be a tangent to the curve, parallel to \({L_1}\).</span></p>
<p><span>(i) Show that the gradient of \({L_1}\) is \(12\).</span></p>
<p><span>(ii) Find the \(x\)-coordinate of the point at which \({L_2}\) and the curve meet.</span></p>
<p><span>(iii) Sketch and label \({L_1}\) and \({L_2}\) on the diagram drawn in (b).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} > 0\) for \(x < - 2\) and \(x > b\) where \(b\) is positive.</span></p>
<p><span>(i) Using your graphic display calculator, or otherwise, find the value of \(b\).</span></p>
<p><span>(ii) Describe the behaviour of the curve in the interval \( - 2 < x < b\) .</span></p>
<p><span>(iii) Write down the equation of the tangent to the curve at \(x = - 2\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f(x) = \frac{3}{4}{x^4} - {x^3} - 9{x^2} + 20\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f( - 2)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Using your answer to part (b), show that there is a second local minimum at \(x = 3\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Sketch the graph of the function \(f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 40 \leqslant y \leqslant 50\). Indicate on your</span></p>
<p><span>sketch the coordinates of the \(y\)-intercept.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x = - 2\).</span></p>
<p><span>Write down the coordinates of the local maximum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \(T\) be the tangent to the graph of the function \(f(x)\) at the point \((2, –12)\).</span></p>
<p><span>Find the gradient of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) passes through the point \((2, −12)\) and is perpendicular to \(T\).</span></p>
<p><span>\(L\) has equation \(x + by + c = 0\), where \(b\) and \(c \in \mathbb{Z}\).</span></p>
<p><span>Find</span></p>
<p><span>(i) the gradient of \(L\);</span></p>
<p><span>(ii) the value of \(b\) and the value of \(c\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A water container is made in the shape of a cylinder with internal height \(h\) cm and internal base radius \(r\) cm.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p class="p1">The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>
<div class="specification">
<p class="p1">The volume of the water container is \(0.5{\text{ }}{{\text{m}}^3}\).</p>
</div>
<div class="specification">
<p class="p1">The water container is designed so that the area to be coated is minimized.</p>
</div>
<div class="specification">
<p class="p1">One can of water-resistant material coats a surface area of \(2000{\text{ c}}{{\text{m}}^2}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a formula for \(A\), <span class="s1">the surface area to be coated.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Express this volume in \({\text{c}}{{\text{m}}^3}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down, in terms of \(r\) </span>and \(h\), an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2}\frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answer to part (e), find the value of \(r\) <span class="s1">which minimizes \(A\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the least number of cans of water-resistant material that will coat the area in <span class="s1">part (g).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = {x^3} + \frac{{48}}{x}{\text{, }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(y = f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 200 \leqslant y \leqslant 200\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the local maximum point on the graph of \(f\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<address><span>Find the range of \(f\) .</span></address>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to the graph of \(f\) at \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point on the graph of \(f\) at which the tangent is parallel to the tangent at \(x = 1\). </span></p>
<p><span>Find the \(x\)-coordinate of this point.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = 2<sup><em>x</em></sup> for \( - 2 \leqslant x \leqslant 3\). Indicate clearly where the curve intersects the <em>y</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the asymptote of the graph of <em>y</em> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same axes sketch the graph of <em>y</em> = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>. Indicate clearly where this curve intersects the <em>x</em> and <em>y</em> axes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, solve the equation 3 + 2<em>x</em> − <em>x</em><sup>2</sup> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the maximum value of the function <em>f</em> (<em>x</em>) = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use Differential Calculus to verify that your answer to (e) is correct.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The curve <em>y</em> = <em>px</em><sup>2</sup> + <em>qx</em> − 4 passes through the point (2, –10).</span></p>
<p><span>Use the above information to write down an equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Hence, find a second equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Solve the equations to find the value of <em>p</em> and of <em>q</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B, c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A dog food manufacturer has to cut production costs. She wishes to use as little aluminium as possible in the construction of cylindrical cans. In the following diagram, <em>h</em> represents the height of the can in cm and <em>x</em>, the radius of the base of the can in cm.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The volume of the dog food cans is 600 cm<sup>3</sup>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(h = \frac{{600}}{{\pi {x^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for the curved surface area of the can, in terms of <em>x</em>. Simplify your answer.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down an expression for <em>A</em>, the total surface area of the can, in terms of <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate <em>A</em> in terms of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> that makes <em>A</em> a minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the minimum total surface area of the dog food can.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A function is defined by \(f(x) = \frac{5}{{{x^2}}} + 3x + c,{\text{ }}x \ne 0,{\text{ }}c \in \mathbb{Z}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(f ′(x)\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the graph of <em>f</em>. The graph of <em>f</em> passes through the point P(1, 4).</span></p>
<p><span>Find the value of <em>c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a local minimum at the point Q.</span></p>
<p><span>Find the coordinates of Q.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a local minimum at the point Q.</span></p>
<p><span>Find the set of values of <em>x</em> for which the function is decreasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let<em> T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Show that the gradient of <em>T</em> is –7.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let<em> T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Find the equation of <em>T</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>T</em> intersects the graph again at R. Use your graphic display calculator to find the coordinates of R.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A function \(f\) is given by \(f(x) = (2x + 2)(5 - {x^2})\).</p>
</div>
<div class="specification">
<p>The graph of the function \(g(x) = {5^x} + 6x - 6\) intersects the graph of \(f\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <strong>exact </strong>value of each of the zeros of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Expand the expression for \(f(x)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(f’(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b)(ii) to find the values of \(x\) for which \(f\) is increasing.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Draw </strong>the graph of \(f\) for \( - 3 \leqslant x \leqslant 3\) and \( - 40 \leqslant y \leqslant 20\). Use a scale of 2 cm to represent 1 unit on the \(x\)-axis and 1 cm to represent 5 units on the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of the point of intersection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows an <strong>aerial</strong> view of a bicycle track. The track can be modelled by the quadratic function</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">\(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\), where \(x \geqslant 0,{\text{ }}y \geqslant 0\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(<em>x</em> , <em>y</em>) are the coordinates of a point <em>x</em> metres east and <em>y</em> metres north of O , where O is the origin (0, 0) . B is a point on the bicycle track with coordinates (100, 350) .<br></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The coordinates of point A are (75, 450). Determine whether point A is on the bicycle track. Give a reason for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the derivative of \(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the answer in part (b) to determine if A (75, 450) is the point furthest north on the track between O and B. Give a reason for your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the midpoint of the line segment OB.</span></p>
<p><span>(ii) Find the gradient of the line segment OB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Scott starts from a point C(0,150) . He hikes along a straight road towards the bicycle track, parallel to the line segment OB.</span></p>
<p><span>Find the equation of Scott’s road. Express your answer in the form \(ax + by = c\), where \(a, b {\text{ and }} c \in \mathbb{R}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the coordinates of the point where Scott first crosses the bicycle track.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A closed rectangular box has a height \(y{\text{ cm}}\) and width \(x{\text{ cm}}\). Its length is twice its width. It has a fixed outer surface area of \(300{\text{ c}}{{\text{m}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Factorise \(3{x^2} + 13x - 10\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(3{x^2} + 13x - 10 = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Find the equation of the axis of symmetry on the graph of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Calculate the minimum value of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(4{x^2} + 6xy = 300\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for \(y\) in terms of \(x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence show that the volume \(V\) of the box is given by \(V = 100x - \frac{4}{3}{x^3}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}V}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Hence find the value of \(x\) and of \(y\) required to make the volume of the box a maximum.</span></p>
<p><span>(ii) Calculate the maximum volume.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A lobster trap is made in the shape of half a cylinder. It is constructed from a steel frame with netting pulled tightly around it. The steel frame consists of a rectangular base, two semicircular ends and two further support rods, as shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.54.16.png" alt><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The semicircular ends each have radius \(r\) and the support rods each have length \(l\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(T\) be the total length of steel used in the frame of the lobster trap.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(T\) in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Write down an equation for the volume of the lobster trap in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Show that \(T = (2\pi + 4)r + \frac{6}{{\pi {r^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Find \(\frac{{{\text{d}}T}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Show that the value of \(r\) for which \(T\) is a minimum is \(0.719 {\text{ m}}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the value of \(l\) for which \(T\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the minimum value of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tepees were traditionally used by nomadic tribes who lived on the Great Plains of North America. They are cone-shaped dwellings and can be modelled as a cone, with vertex O, shown below. The cone has radius, \(r\), height, \(h\), and slant height, \(l\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.28.13.png" alt></p>
<p class="p1">A model tepee is displayed at a Great Plains exhibition. The curved surface area of this tepee is covered by a piece of canvas that is \(39.27{\text{ }}{{\text{m}}^2}\), and has the shape of a semicircle, as shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.29.53.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the slant height, \(l\), is \(5\) m, correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the circumference of the base of the cone.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the radius, \(r\), of the base.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Find the height, \(h\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Write down an expression for the height, \(h\), in terms of the radius, \(r\), of these cone-shaped tents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Show that the volume of the tent, \(V\), can be written as</p>
<p class="p1">\[V = 3.11\pi {r^2} - \frac{2}{3}\pi {r^3}.\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Find \(\frac{{{\text{d}}V}}{{{\text{d}}r}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Determine the exact value of \(r\) for which the volume is a maximum.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the maximum volume.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f(x)\) is defined by \(f(x) = 1.5x + 4 + \frac{6}{x}{\text{, }}x \ne 0\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the graph of the function at \(x = - 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your answer to part (c), decide whether the function \(f(x)\) is increasing or decreasing at \(x = - 1\). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of \(f(x)\) for \( - 10 \leqslant x \leqslant 10\) and \( - 20 \leqslant y \leqslant 20\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({{\text{P}}_1}\) is the local maximum point and \({{\text{P}}_2}\) is the local minimum point on the graph of \(f(x)\) .</span></p>
<p><span>Using your graphic display calculator, write down the coordinates of</span></p>
<p><span>(i) \({{\text{P}}_1}\) ;</span></p>
<p><span>(ii) \({{\text{P}}_2}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your sketch from (e), determine the range of the function \(f(x)\) for \( - 10 \leqslant x \leqslant 10\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The graph of the function \(f(x) = \frac{{14}}{x} + x - 6\), for 1 ≤ <em>x</em> ≤ 7 is given below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f (1)\). </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use your answer to part (b)</strong> to show that the <em>x</em>-coordinate of the local minimum point of the graph of \(f\) is 3.7 correct to 2 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the range of \(f\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of \(f\). The <em>x</em>-coordinates of A and B are 1 and 7 respectively.</span></p>
<p><span>Write down the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of f . The <em>x</em>-coordinates of A and B are 1 and 7 respectively.<br></span></p>
<p><span>Find the gradient of the straight line passing through A and B.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>M is the midpoint of the line segment AB.</span></p>
<p><span>Write down the coordinates of M.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em> is the tangent to the graph of the function \(y = f (x)\), at the point on the graph with the same <em>x</em>-coordinate as M.</span></p>
<p><span>Find the gradient of <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of <em>L</em>. Give your answer in the form \(y = mx + c\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows the graph of a line \(L\) passing through (1, 1) and (2 , 3) and the graph \(P\) of the function \(f (x) = x^2 − 3x − 4\)</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f (x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is parallel to the line <em>L</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is perpendicular to the line<em> L</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find</span></p>
<p><span>(i) the gradient of the tangent to <em>P</em> at the point with coordinates (2, − 6).</span></p>
<p><span>(ii) the equation of the tangent to <em>P</em> at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the equation of the axis of symmetry of <em>P</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the vertex of <em>P</em> and state the gradient of the curve at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a sketch of the function <em>f</em> (<em>x</em>) = 4<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> − 12<em>x</em> + 3.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the values of <em>x</em> where the graph of <em>f</em> (<em>x</em>) intersects the <em>x</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f </em>′(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the local maximum of <em>y</em> = <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.<br></span></p>
<p><span>Write down the coordinates of P.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.</span></span></p>
<p><span>Find the gradient of the curve at P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, <em>L</em>, is the tangent to the graph of <em>f</em> (<em>x</em>) at P.</span></p>
<p><span>Find the equation of <em>L</em> in the form <em>y</em> = <em>mx</em> +<em> c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Write down the gradient of the tangent at Q.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Calculate the <em>x</em>-coordinate of Q.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function <em>f </em>(<em>x</em>) = <em>x</em><sup>3 </sup><em>–</em> 3x– 24<em>x</em> + 30.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f</em> (0).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> = 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Use </span><em>f '</em><span>(</span><em>x</em><span>) to find the </span><em>x</em><span>-coordinate of M and of N.</span></p>
<p><span>(ii) Hence or otherwise write down the coordinates of M and of N.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>f</em> (<em>x</em>) for \( - 5 \leqslant x \leqslant 7\) and \( - 60 \leqslant y \leqslant 60\). Mark clearly M and N on your graph.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> are parallel, and they are tangents to the graph of <em>f</em> (<em>x</em>) at points A and B respectively. <em>L<sub>1</sub></em> has equation <em>y</em> = 21<em>x</em> + 111.</span></p>
<p><span>(i) Find the <em>x</em>-coordinate of A and of B.</span></p>
<p><span>(ii) Find the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows part of the graph of \(f(x) = {x^2} - 2x + \frac{9}{x}\) , where \(x \ne 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the equation of the vertical asymptote to the graph of \(y = f (x)\) ;</span></p>
<p><span>(ii) the solution to the equation \(f (x) = 0\) ;</span></p>
<p><span>(iii) the coordinates of the local minimum point.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) . </span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'(x)\) can be written as \(f'(x) = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to \(y = f (x)\) at the point \({\text{A}}(1{\text{, }}8)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\), passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Write down the gradient of \(L\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Find the equation of \(L\) . Give your answer in the form \(y = mx + c\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></span></p>
<p><span>\(L\) also intersects the graph of \(y = f (x)\) at points B and C . Write down the <strong><em>x</em>-coordinate</strong> of B and of C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(g(x) = bx - 3 + \frac{1}{{{x^2}}},{\text{ }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote of the graph of <em>y</em> = <em>g</em>(<em>x</em>) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>g</em>′(<em>x</em>) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line <em>T</em> is the tangent to the graph of <em>y</em> = <em>g</em>(<em>x</em>) at the point where <em>x</em> = 1. The gradient of <em>T</em> is 3.</span></p>
<p><span>Show that <em>b</em> = 5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line <em>T</em> is the tangent to the graph of <em>y</em> = <em>g</em>(<em>x</em>) at the point where <em>x</em> = 1. The gradient of <em>T</em> is 3.</span></span></p>
<p><span>Find the equation of <em>T</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator find the coordinates of the point where the graph of <em>y</em> = <em>g</em>(<em>x</em>) intersects the <em>x</em>-axis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Sketch the graph of <em>y</em> = <em>g</em>(<em>x</em>) for −2 ≤ <em>x</em> ≤ 5 and −15 ≤ <em>y</em> ≤ 25, indicating clearly your answer to part (e).</span></p>
<p><span>(ii) Draw the line <em>T</em> on your sketch.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator find the coordinates of the local minimum point of <em>y</em> = <em>g</em>(<em>x</em>) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the interval for which <em>g</em>(<em>x</em>) is increasing in the domain 0 < <em>x</em> < 5 .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia designs a wastepaper bin made in the shape of an <strong>open</strong> cylinder with a volume of \(8000{\text{ c}}{{\text{m}}^3}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia decides to make the radius, \(r\) , of the bin \(5{\text{ cm}}\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Merryn also designs a cylindrical wastepaper bin with a volume of \(8000{\text{ c}}{{\text{m}}^3}\). She decides to fix the radius of its base so that the <strong>total external surface area</strong> of the bin is minimized.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Let the radius of the base of Merryn’s wastepaper bin be \(r\) , and let its height be \(h\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span><br><span>(i) the area of the base of the wastepaper bin;</span><br><span>(ii) the height, \(h\) , of Nadia’s wastepaper bin;</span><br><span>(iii) the total <strong>external</strong> surface area of the wastepaper bin.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Nadia’s design is practical. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation in \(h\) and \(r\) , using the given volume of the bin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total external surface area, \(A\) , of the bin is \(A = \pi {r^2} + \frac{{16000}}{r}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Find the value of \(r\) that minimizes the total external surface area of the wastepaper bin.</span><br><span>(ii) Calculate the value of \(h\) corresponding to this value of \(r\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether Merryn’s design is an improvement upon Nadia’s. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = 0.5{x^2} - \frac{8}{x},{\text{ }}x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f( - 2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of \(f\) at \(x = - 2\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Write down the equation of \(T\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Sketch the graph of \(f\) for \( - 5 \leqslant x \leqslant 5\) and \( - 20 \leqslant y \leqslant 20\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let \(T\) be the tangent to the graph of \(f\) at \(x = - 2\).</p>
<p>Draw \(T\) on your sketch.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The tangent, \(T\), intersects the graph of \(f\) <span class="s1">at a second point, P.</span></p>
<p class="p2">Use your graphic display calculator to find the coordinates of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f:x \mapsto \frac{{kx}}{{{2^x}}}\).</span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The cost per person, in euros, when \(x\) people are invited to a party can be determined by the function </span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(C(x) = x + \frac{{100}}{x}\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that \(f(1) = 2\), show that \(k = 4\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the values of \(q\) and \(r\) for the following table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>As \(x\) increases from \( - 1\), the graph of \(y = f(x)\) reaches a maximum value and then decreases, behaving asymptotically.</span></p>
<p><span><span>Draw the graph of \(y = f(x)\) for \( - 1 \leqslant x \leqslant 8\). Use a scale of \({\text{1 cm}}\) to represent 1 unit on both axes. The position of the maximum, </span></span><span><span><span><span>\({\text{</span></span>M}}\), the</span> <span>\(y\)-intercept and the asymptotic behaviour should be clearly shown.</span></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, find the coordinates of \({\text{M}}\), the maximum point on the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the horizontal asymptote to the graph of \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Draw and label the line \( y = 1\) on your graph.</span></p>
<p><span>(ii) The equation \(f(x) = 1\) has two solutions. One of the solutions is \(x = 4\). Use your <strong>graph</strong> to find the other solution.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(C'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the cost per person is a minimum when \(10\) people are invited to the party.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the minimum cost per person.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer makes trash cans in the form of a cylinder with a hemispherical top. The trash can has a height of 70 cm. The base radius of both the cylinder and the hemispherical top is 20 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A designer is asked to produce a new trash can.</p>
<p>The new trash can will also be in the form of a cylinder with a hemispherical top.</p>
<p>This trash can will have a height of <em>H</em> cm and a base radius of <em>r</em> cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>There is a design constraint such that <em>H</em> + 2<em>r</em> = 110 cm.</p>
<p>The designer has to maximize the volume of the trash can.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the cylinder.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total volume of the trash can.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the <strong>cylinder</strong>, <em>h</em> , of the new trash can, in terms of <em>r</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <em>V</em> cm<sup>3</sup> , of the new trash can is given by</p>
<p>\(V = 110\pi {r^3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graphic display calculator, find the value of <em>r</em> which maximizes the value of <em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The designer claims that the new trash can has a capacity that is at least 40% greater than the capacity of the original trash can.</p>
<p>State whether the designer’s claim is correct. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the curve <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2, for −1 < <em>x</em> < 3</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the curve for −1 < <em>x</em> < 3 and −2 < <em>y</em> < 12.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A teacher asks her students to make some observations about the curve.</p>
<p>Three students responded.<br><strong>Nadia</strong> said <em>“The x-intercept of the curve is between −1 and zero”.</em><br><strong>Rick</strong> said <em>“The curve is decreasing when x < 1 ”.</em><br><strong>Paula</strong> said <em>“The gradient of the curve is less than zero between x = 1 and x = 2 ”.</em></p>
<p>State the name of the student who made an <strong>incorrect</strong> observation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em> when <em>x</em> = 1 .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{dy}}}}{{{\text{dx}}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the stationary points of the curve are at <em>x</em> = 1 and <em>x</em> = 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>y</em> = 2<em>x</em><sup>3</sup> − 9<em>x</em><sup>2</sup> + 12<em>x</em> + 2 = <em>k</em> has <strong>three</strong> solutions, find the possible values of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">When Geraldine travels to work she can travel either by car (<em>C</em>), bus (<em>B</em>) or train (<em>T</em>). She travels by car on one day in five. She uses the bus 50 % of the time. The probabilities of her being late (<em>L</em>) when travelling by car, bus or train are 0.05, 0.12 and 0.08 respectively.</span></p>
</div>
<div class="specification">
<p><em><span style="font-size: medium; font-family: times new roman,times;">It is <strong>not</strong> necessary to use graph paper for this question.</span></em></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Copy the tree diagram below and fill in all the probabilities, where <em>NL</em> represents not late, to represent this information.</span></p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine travels by bus and is late.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine is late.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Geraldine travelled by train, given that she is late.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the curve of the function \(f (x) = x^3 − 2x^2 + x − 3\) for values of \(x\) from −2 to 4, giving the intercepts with both axes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same diagram, sketch the line \(y = 7 − 2x\) and find the coordinates of the point of intersection of the line with the curve.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the gradient of the curve where \(x = 1.7\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hugo is given a rectangular piece of thin cardboard, \(16\,{\text{cm}}\) by \(10\,{\text{cm}}\). He decides to design a tray with it.</p>
<p>He removes from each corner the shaded squares of side \(x\,{\text{cm}}\), as shown in the following diagram.</p>
<p><img src="" alt></p>
<p>The remainder of the cardboard is folded up to form the tray as shown in the following diagram.</p>
<p><img src="" alt></p>
<p>Write down, <strong>in terms of</strong> \(x\) , the length and the width of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State whether \(x\) can have a value of \(5\). Give a reason for your answer.</p>
<p>(ii) Write down the interval for the possible values of \(x\) .</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, \(V\,{\text{c}}{{\text{m}}^3}\), of this tray is given by</p>
<p>\[V = 4{x^3} - 52{x^2} + 160x.\]</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{dV}}{{dx}}.\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Using your answer from part (d)</strong>, find the value of \(x\) that maximizes the volume of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of the tray.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(V = 4{x^3} - 51{x^2} + 160x\) , for the possible values of \(x\) found in part (b)(ii), and \(0 \leqslant V \leqslant 200\) . Clearly label the maximum point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A function, \(f\) , is given by</p>
<p>\[f(x) = 4 \times {2^{ - x}} + 1.5x - 5.\]</p>
<p>Calculate \(f(0)\)</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to solve \(f(x) = 0.\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of \(y = f(x)\) for \( - 2 \leqslant x \leqslant 6\) and \( - 4 \leqslant y \leqslant 10\) , showing the \(x\) and \(y\) intercepts. Use a scale of \(2\,{\text{cm}}\) to represent \(2\) units on both the horizontal axis, \(x\) , and the vertical axis, \(y\) .</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The function \(f\) is the derivative of a function \(g\) . It is known that \(g(1) = 3.\)</p>
<p>i) Calculate \(g'(1).\)</p>
<p>ii) Find the equation of the tangent to the graph of \(y = g(x)\) at \(x = 1.\) Give your answer in the form \(y = mx + c.\)</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\left( x \right) = \frac{{48}}{x} + k{x^2} - 58\), where <em>x</em> > 0 and <em>k</em> is a constant.</p>
<p>The graph of the function passes through the point with coordinates (4 , 2).</p>
</div>
<div class="specification">
<p>P is the minimum point of the graph of <em>f </em>(<em>x</em>).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your value of <em>k</em> , find <em>f</em> ′(<em>x</em>).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Use your answer</strong> to part (b) to show that the minimum value of <em>f</em>(<em>x</em>) is −22 .</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <strong>two</strong> values of<em> x</em> which satisfy<em> f </em>(<em>x</em>) = 0.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for 0 < <em>x</em> ≤ 6 and −30 ≤ <em>y</em> ≤ 60.<br>Clearly indicate the minimum point P and the <em>x</em>-intercepts on your graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A distress flare is fired into the air from a ship at sea. The height, \(h\) , in metres, of the flare above sea level is modelled by the quadratic function</p>
<p>\[h\,(t) = - 0.2{t^2} + 16t + 12\,,\,t \geqslant 0\,,\]</p>
<p>where \(t\) is the time, in seconds, and \(t = 0\,\) at the moment the flare was fired.</p>
<p>Write down the height from which the flare was fired.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the flare \(15\) seconds after it was fired.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The flare fell into the sea \(k\) seconds after it was fired.</p>
<p>Find the value of \(k\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(h'\,(t)\,.\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>i) Show that the flare reached its maximum height \(40\) seconds after being fired.</p>
<p>ii) Calculate the maximum height reached by the flare.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nearest coastguard can see the flare when its height is more than \(40\) metres above sea level.</p>
<p>Determine the total length of time the flare can be seen by the coastguard.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f(x) = 3x + \frac{{12}}{{{x^2}}},{\text{ }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f (x)\) with respect to \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f ′(x)\) when \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your answer to part (b) to decide whether the function, \(f\) , is increasing or decreasing at \(x = 1\). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(f ′(x) = 0\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the coordinates of P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the gradient of <em>T</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of <em>f</em> has a local minimum at point P. Let <em>T</em> be the tangent to the graph of <em>f</em> at P.</span></p>
<p><span>Write down the equation of <em>T</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function <em>f</em>, for −3 ≤ <em>x</em> ≤ 6 and −7 ≤ <em>y</em> ≤ 15. Indicate clearly the point P and any intercepts of the curve with the axes.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On your graph draw and label the tangent <em>T</em>.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>T</em> intersects the graph of <em>f</em> at a second point. Write down the<em> x</em>-coordinate of this point of intersection.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g, ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f(x) = - \frac{1}{3}{x^3} + \frac{5}{3}{x^2} - x - 3\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for −3 ≤ <em>x</em> </span><span><span>≤</span> 6 and −10 </span><span><span>≤</span> <em>y</em> </span><span><span>≤ </span>10 showing clearly the axes intercepts and local maximum and minimum points. Use a scale of 2 cm to represent 1 unit on the <em>x</em>-axis, and a scale of 1 cm to represent 1 unit on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>f</em> (−1).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the <em>y</em>-intercept of the graph of <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>f '</em>(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'( - 1) = - \frac{{16}}{3}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain what <em>f</em> <em>'</em>(−1) represents.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> is –1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the tangent to the graph of <em>f</em> (<em>x</em>) at <em>x</em> = −1 on your diagram for (a).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> > <em>a</em>.</span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>a</em> ;</span></p>
<p><span>(ii) <em>b</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> > <em>a</em>.</span></span></p>
<p><span>Describe the behaviour of <em>f</em> (<em>x</em>) for <em>a</em> < <em>x</em> < <em>b</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<br><hr><br>