File "SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 7/SL-paper1html
File size: 118.73 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A function is represented by the equation</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\[f(x) = a{x^2} + \frac{4}{x} - 3\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The function \(f (x)\) has a local maximum at the point where \(x = −1\).</span></p>
<p><span>Find the value of <em>a</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f(x)\) is such that \(f'(x) < 0\) for \(1 < x < 4\). At the point \({\text{P}}(4{\text{, }}2)\) on the graph of \(f(x)\) the gradient is zero.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the tangent to the graph of \(f(x)\) at \({\text{P}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether \(f(4)\) is greater than, equal to or less than \(f(2)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that \(f(x)\) is increasing for \(4 \leqslant x < 7\), what can you say about the point </span><span><span><span>\({\text{P}}\)</span></span>?</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function \(f\left( x \right) = \frac{{{x^4}}}{4}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>f'</em>(<em>x</em>)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the graph of <em>f</em> at \(x = - \frac{1}{2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>x</em>-coordinate of the point at which the <strong>normal</strong> to the graph of <em>f</em> has gradient \({ - \frac{1}{8}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the curve \(y = {x^2}\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The point \({\text{P}}(3{\text{, }}9)\) lies on the curve \(y = {x^2}\) . Find the gradient of the tangent to the curve at P .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The point \({\text{P}}(3{\text{, }}9)\) lies on the curve \(y = {x^2}\) . Find the equation of the normal to the curve at P . Give your answer in the form \(y = mx + c\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The equation of a curve is given as \(y = 2x^{2} - 5x + 4\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the line <em>L</em> is \(6x + 2y = -1\).</span></p>
<p><span>Find the <em>x</em>-coordinate of the point on the curve \(y = 2x^2 - 5x + 4\) where the tangent is parallel to <em>L</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f (x) = ax^3 − 3x + 5\), where \(a \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ' (x) \). </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(f ′(0)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The function has a local maximum at <em>x</em> = −2.</span></p>
<p><span>Calculate the value of <em>a</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Let \(f (x) = 2x^2 + x - 6\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \(f'( - 3)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \(x\) for which \(f'(x) = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The coordinates of point A are \((6,{\text{ }} - 7)\) and the coordinates of point B are \(( - 6,{\text{ }}2)\). Point M is the midpoint of AB.</p>
</div>
<div class="specification">
<p>\({L_1}\) is the line through A and B.</p>
</div>
<div class="specification">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and passes through M.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in the form \(y = mx + c\), the equation of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows part of the graph of a function \(y = f(x)\). The graph passes through point \({\text{A}}(1,{\text{ }}3)\).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.22.37.png" alt="M17/5/MATSD/SP1/ENG/TZ2/13"></p>
</div>
<div class="specification">
<p>The tangent to the graph of \(y = f(x)\) at A has equation \(y = - 2x + 5\). Let \(N\) be the normal to the graph of \(y = f(x)\) at A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(f(1)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \(N\). Give your answer in the form \(ax + by + d = 0\) where \(a\), \(b\), \(d \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line \(N\) on the diagram above.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the graph of the function \(y = f(x)\) defined below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Write down <strong>all</strong> the labelled points on the curve</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>that are local maximum points;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>where the function attains its least value;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>where the function attains its greatest value;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>where the gradient of the tangent to the curve is positive;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>where \(f(x) > 0\) and \(f'(x) < 0\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = \frac{1}{2}{x^3} - 2{x^2} + 3\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f''(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the curve of \(f\) at the point \((1{\text{, }}1.5)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A cuboid has a rectangular base of width \(x\)<span class="s1"><em> </em>cm </span>and length <span class="s1">2\(x\) cm </span>. The height of the cuboid is \(h\) <span class="s1">cm </span>. The total length of the edges of the cuboid is \(72\)<span class="s1"> cm</span>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_08.27.58.png" alt></p>
<p class="p1">The volume, \(V\), of the cuboid can be expressed as \(V = a{x^2} - 6{x^3}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(x\) that makes the volume a maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The point A has coordinates (4 , −8) and the point B has coordinates (−2 , 4).</p>
</div>
<div class="specification">
<p>The point D has coordinates (−3 , 1).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of C, the midpoint of line segment AB.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of the line DC.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the line DC. Write your answer in the form <em>ax</em> + <em>by</em> + <em>d</em> = 0 where <em>a</em> , <em>b</em> and <em>d</em> are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A sketch of the function \(f(x) = 5{x^3} - 3{x^5} + 1\) is shown for \( - 1.5 \leqslant x \leqslant 1.5\) and \( - 6 \leqslant y \leqslant 6\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(f'(x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the graph of \(y = f(x)\) at \((1{\text{, }}3)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the second point where this tangent intersects the graph of \(y = f(x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A quadratic function \(f\) is given by \(f(x) = a{x^2} + bx + c\). The points \((0,{\text{ }}5)\) and \(( - 4,{\text{ }}5)\) lie on the graph of \(y = f(x)\).</p>
</div>
<div class="specification">
<p>The \(y\)-coordinate of the minimum of the graph is 3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the axis of symmetry of the graph of \(y = f(x)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(c\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(a\) and of \(b\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the curve \(y = {x^2} + \frac{a}{x} - 1,{\text{ }}x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The gradient of the tangent to the curve is \( - 14\) when \(x = 1\).</p>
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation of line \({L_1}\) is \(y = 2.5x + k\). Point \({\text{A}}\) \(\,(3,\, - 2)\) lies on \({L_1}\).</p>
<p>Find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and intersects \({L_1}\) at point \({\text{A}}\).</p>
<p>Write down the gradient of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \({L_2}\). Give your answer in the form \(y = mx + c\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write your answer to part (c) in the form \(ax + by + d = 0\) where \(a\), \(b\) and \(d \in \mathbb{Z}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A small manufacturing company makes and sells \(x\) machines each month. The monthly cost \(C\) , in dollars, of making \(x\) machines is given by</span><br><span style="font-family: times new roman,times; font-size: medium;">\[C(x) = 2600 + 0.4{x^2}{\text{.}}\]</span><span style="font-family: times new roman,times; font-size: medium;">The monthly income \(I\) , in dollars, obtained by selling \(x\) machines is given by</span><br><span style="font-family: times new roman,times; font-size: medium;">\[I(x) = 150x - 0.6{x^2}{\text{.}}\]</span><span style="font-family: times new roman,times; font-size: medium;">\(P(x)\) is the monthly profit obtained by selling \(x\) machines.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(P(x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of machines that should be made and sold each month to maximize \(P(x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Use your answer to part (b) to find the selling price of</span> <span><strong>each machine</strong> in order to maximize \(P(x)\) .</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The equation of line \({L_1}\) is \(y = - \frac{2}{3}x - 2\).</p>
</div>
<div class="specification">
<p>Point P lies on \({L_1}\) and has \(x\)-coordinate \( - 6\).</p>
</div>
<div class="specification">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and intersects \({L_1}\) when \(x = - 6\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_1}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(y\)-coordinate of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of \({L_2}\). Give your answer in the form \(ax + by + d = 0\), where \(a\), \(b\) and \(d\) are integers.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Expand the expression \(x(2{x^3} - 1)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f(x) = x(2{x^3} - 1)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the \(x\)-coordinate of the local minimum of the curve \(y = f(x)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function \(f(x) = a{x^2} + c\).</p>
<p>Find \(f'(x)\)</p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Point \({\text{A}}( - 2,\,5)\) lies on the graph of \(y = f(x)\) . The gradient of the tangent to this graph at \({\text{A}}\) is \( - 6\) .</p>
<p>Find the value of \(a\) .</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(c\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Maria owns a cheese factory. The amount of cheese, in kilograms, Maria sells in one week, \(Q\), is given by</p>
<p style="text-align: center;">\(Q = 882 - 45p\),</p>
<p>where \(p\) is the price of a kilogram of cheese in euros (EUR).</p>
</div>
<div class="specification">
<p>Maria earns \((p - 6.80){\text{ EUR}}\) for each kilogram of cheese sold.</p>
</div>
<div class="specification">
<p>To calculate her weekly profit \(W\), in EUR, Maria multiplies the amount of cheese she sells by the amount she earns per kilogram.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down how many kilograms of cheese Maria sells in one week if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how much Maria earns in one week, from selling cheese, if the price of a kilogram of cheese is 8 EUR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for \(W\) in terms of \(p\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the price, \(p\), that will give Maria the highest weekly profit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the curve \(y = {x^3} + kx\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The curve has a local minimum at the point where \(x = 2\).</span></p>
<p><span>Find the value of \(k\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The curve has a local minimum at the point where \(x = 2\).</span></p>
<p><span>Find the value of \(y\) at this local minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><em>f</em> (<em>x</em>) = 5<em>x</em><sup>3</sup> − 4<em>x</em><sup>2</sup> + <em>x</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>f</em>'(<em>x</em>). </span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find using your answer to part (a) the <em>x</em>-coordinate of</span></p>
<p><span>(i) the local maximum point;</span></p>
<p><span>(ii) the local minimum point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation of the straight line \({L_1}\) is \(y = 2x - 3.\)</p>
<p>Write down the \(y\)-intercept of \({L_1}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_1}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_2}\) is parallel to \({L_1}\) and passes through the point \((0,\,\,3)\) .</p>
<p>Write down the equation of \({L_2}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_3}\) is perpendicular to \({L_1}\) and passes through the point \(( - 2,\,\,6).\)</p>
<p>Write down the gradient of \({L_3}.\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \({L_3}\) . Give your answer in the form \(ax + by + d = 0\) , where \(a\) , \(b\) and \(d\) are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A company sells fruit juices in cylindrical cans, each of which has a volume of \(340\,{\text{c}}{{\text{m}}^3}\). The surface area of a can is \(A\,{\text{c}}{{\text{m}}^2}\) and is given by the formula</p>
<p>\(A = 2\pi {r^2} + \frac{{680}}{r}\) ,</p>
<p>where \(r\) is the radius of the can, in \({\text{cm}}\).</p>
<p>To reduce the cost of a can, its surface area must be minimized.</p>
<p>Find \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of \(r\) that minimizes the surface area of a can.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = 2{x^3} - 5{x^2} + 3x + 1\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(f'(2)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the curve of \(y = f(x)\) at the point \((2{\text{, }}3)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The equation of a curve is \(y = \frac{1}{2}{x^4} - \frac{3}{2}{x^2} + 7\).</p>
</div>
<div class="specification">
<p class="p1">The gradient of the tangent to the curve at a point <span class="s1">P </span>is \( - 10\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of <span class="s1">P</span><span class="s2">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table given below describes the behaviour of <em>f</em> ′(<em>x</em>), the derivative function of <em>f</em> (<em>x</em>), in the domain −4 < <em>x</em> < 2.</span></p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether<em> f</em> (0) is greater than, less than or equal to <em>f</em> (−2). Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The point P(−2, 3) lies on the graph of <em>f</em> (<em>x</em>).</span></p>
<p><span>Write down the equation of the tangent to the graph of <em>f</em> (<em>x</em>) at the point P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The point P(−2, 3) lies on the graph of <em>f</em> (<em>x</em>).</span></span></p>
<p><span>From the information given about <em>f</em> ′(<em>x</em>), state whether the point (−2, 3) is a maximum, a minimum or neither. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The straight line, <em>L</em>, has equation \(2y - 27x - 9 = 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sarah wishes to draw the tangent to \(f (x) = x^4\) parallel to <em>L</em>.</span></p>
<p><span>Write down \(f ′(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the <em>x</em> coordinate of the point at which the tangent must be drawn.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(f (x)\) at this point.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c, ii.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the graph of the function \(f(x) = {x^3} + 2{x^2} - 5\).</span></p>
<div style="text-align: center;"><br><img src="images/Schermafbeelding_2014-09-02_om_15.08.15.png" alt></div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Label the local maximum as \({\text{A}}\) on the graph.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Label the local minimum as B on the graph.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the interval where \(f'(x) < 0\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the tangent to the curve at \(x = 1\) on the graph.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the tangent at \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A curve is described by the function \(f (x) = 3x - \frac{2}{{x^2}}\), \(x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ' (x) \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve at point A is 35.</span></p>
<p><span>Find the <em>x</em>-coordinate of point A.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">\[f(x) = \frac{1}{3}{x^3} + 2{x^2} - 12x + 3\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interval of \(x\) for which \(f(x)\) is decreasing.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = {x^4}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(f'(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Point \({\text{P}}(2,6)\) lies on the graph of \(f\).</span></p>
<p><span>Find the gradient of the tangent to the graph of \(y = f(x)\) at \({\text{P}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Point \({\text{P}}(2,16)\) lies on the graph of \(f\).</span></p>
<p><span>Find the equation of the normal to the graph at \({\text{P}}\). Give your answer in the form \(ax + by + d = 0\), where \(a\), \(b\) and \(d\) are integers.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider \(f:x \mapsto {x^2} - 4\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let <em>L</em> be the line with equation <em>y</em> = 3<em>x</em> + 2.</span></p>
<p><span>Write down the gradient of a line parallel to <em>L</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let <em>L</em> be the line with equation <em>y</em> = 3<em>x</em> + 2.</span></p>
<p><span>Let P be a point on the curve of <em>f</em>. At P, the tangent to the curve is parallel to <em>L</em>. Find the coordinates of P.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A function \(f\) is given by \(f(x) = 4{x^3} + \frac{3}{{{x^2}}} - 3,{\text{ }}x \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the derivative of \(f\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the point on the graph of \(f\) at which the gradient of the tangent is equal to 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The figure below shows the graphs of functions \(f_1 (x) = x\) and \(f_2 (x) = 5 - x^2\).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Differentiate \(f_1 (x) \) with respect to <em>x</em>.</span></p>
<p><span>(ii) Differentiate \(f_2 (x) \) with respect to <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the value of <em>x</em> for which the gradient of the two graphs is the same.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the tangent to the <strong>curved</strong> graph for this value of <em>x</em> on the figure, showing clearly the property in part (b).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A function is given as \(f(x) = 2{x^3} - 5x + \frac{4}{x} + 3,{\text{ }} - 5 \leqslant x \leqslant 10,{\text{ }}x \ne 0\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the derivative of the function.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the coordinates of the local minimum point of \(f(x)\) in the given domain.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the function \(f(x) = {x^3} - 3{x^2} + 2x + 2\) . Part of the graph of \(f\) is shown below.</p>
<p><img src="" alt></p>
<p>Find \(f'(x)\) .</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There are two points at which the gradient of the graph of \(f\) is \(11\). Find the \(x\)-coordinates of these points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The figure shows the graphs of the functions \(f(x) = \frac{1}{4}{x^2} - 2\) and \(g(x) = x\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f(x)\) with respect to \(x\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(g(x)\) with respect to \(x\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the value of \(x\) for which the gradients of the two graphs are the same.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the tangent to the parabola at the point with the value of \(x\) found in part (c).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory produces shirts. The cost, <em>C</em>, in Fijian dollars (FJD), of producing<em> x</em> shirts can be modelled by</p>
<p style="text-align: center;"><em>C</em>(<em>x</em>) = (<em>x</em> − 75)<sup>2</sup> + 100.</p>
</div>
<div class="specification">
<p>The cost of production should not exceed 500 FJD. To do this the factory needs to produce at least 55 shirts and at most <em>s</em> shirts.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of producing 70 shirts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>s</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of shirts produced when the cost of production is lowest.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>