File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 5/SL-paper2html
File size: 1.15 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A lobster trap is made in the shape of half a cylinder. It is constructed from a steel frame with netting pulled tightly around it. The steel frame consists of a rectangular base, two semicircular ends and two further support rods, as shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.54.16.png" alt><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The semicircular ends each have radius \(r\) and the support rods each have length \(l\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(T\) be the total length of steel used in the frame of the lobster trap.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(T\) in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Write down an equation for the volume of the lobster trap in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Show that \(T = (2\pi  + 4)r + \frac{6}{{\pi {r^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Find \(\frac{{{\text{d}}T}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Show that the value of \(r\) for which \(T\) is a minimum is \(0.719 {\text{ m}}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the value of \(l\) for which \(T\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the minimum value of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Abdallah owns a plot of land, near the river Nile, in the form of a quadrilateral ABCD.</p>
<p>The lengths of the sides are \({\text{AB}} = {\text{40 m, BC}} = {\text{115 m, CD}} = {\text{60 m, AD}} = {\text{84 m}}\) and angle \({\rm{B\hat AD}} = 90^\circ \).</p>
<p>This information is shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.24.18.png" alt="N17/5/MATSD/SP2/ENG/TZ0/03"></p>
</div>

<div class="specification">
<p>The formula that the ancient Egyptians used to estimate the area of a quadrilateral ABCD is</p>
<p style="text-align: center;">\({\text{area}} = \frac{{({\text{AB}} + {\text{CD}})({\text{AD}} + {\text{BC}})}}{4}\).</p>
<p>Abdallah uses this formula to estimate the area of his plot of land.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{BD}} = 93{\text{ m}}\) correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate angle \({\rm{B\hat CD}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Abdallah’s estimate for the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in Abdallah’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows two triangles, OBC and OBA, on a set of axes. Point C lies on the \(y\)-axis, and O is the origin.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_16.03.31.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The equation of the line BC is \(y = 4\).</p>
<p class="p1">Write down the coordinates of point C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \(x\)-coordinate of point B is \(a\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the coordinates of point B;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Write down the gradient of the line OB.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Point A lies on the \(x\)-axis and the line AB is perpendicular to line OB.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the gradient of line AB.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that the equation of the line AB is \(4y + ax - {a^2} - 16 = 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The area of triangle AOB is <strong>three times</strong> the area of triangle OBC.</p>
<p class="p1">Find an expression, <strong>in terms of <em>a</em></strong>, for</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>the area of triangle OBC;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the <em>x</em>-coordinate of point A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The base of an electric iron can be modelled as a pentagon ABCDE, where:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{BCDE is a rectangle with sides of length }}(x + 3){\text{ cm and }}(x + 5){\text{ cm;}}} \\ {{\text{ABE is an isosceles triangle, with AB}} = {\text{AE and a height of }}x{\text{ cm;}}} \\ {{\text{the area of ABCDE is 222 c}}{{\text{m}}^{\text{2}}}{\text{.}}} \end{array}\]</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.05.55.png" alt="M17/5/MATSD/SP2/ENG/TZ1/02"></p>
</div>

<div class="specification">
<p>Insulation tape is wrapped around the perimeter of the base of the iron, ABCDE.</p>
</div>

<div class="specification">
<p>F is the point on AB such that \({\text{BF}} = {\text{8 cm}}\). A heating element in the iron runs in a straight line, from C to F.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an <strong>equation </strong>for the area of ABCDE using the above information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the equation in part (a)(i) simplifies to \(3{x^2} + 19x - 414 = 0\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of CD.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that angle \({\rm{B\hat AE}} = 67.4^\circ \), correct to one decimal place.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the perimeter of ABCDE.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of CF.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows the graph of a line \(L\) passing through (1, 1) and (2 , 3) and the graph \(P\) of the function \(f (x) = x^2 &minus; 3x &minus; 4\)</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate \(f (x)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is parallel to the line <em>L</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point where the tangent to <em>P</em> is perpendicular to the line<em> L</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find</span></p>
<p><span>(i) the gradient of the tangent to <em>P</em> at the point with coordinates (2, − 6).</span></p>
<p><span>(ii) the equation of the tangent to <em>P</em> at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the equation of the axis of symmetry of <em>P</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the vertex of <em>P</em> and state the gradient of the curve at this point.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A manufacturer has a contract to make \(2600\) solid blocks of wood. Each block is in the shape of a right triangular prism, \({\text{ABCDEF}}\), as shown in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{AB}} = 30{\text{ cm}},{\text{ BC}} = 24{\text{ cm}},{\text{ CD}} = 25{\text{ cm}}\) and angle \({\rm{A\hat BC}} = 35^\circ {\text{ }}\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_12.17.46.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of \({\text{AC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of triangle \({\text{ABC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Assuming that no wood is wasted, show that the volume of wood required to make all \(2600\) blocks is \({\text{13}}\,{\text{400}}\,{\text{000 c}}{{\text{m}}^3}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write \({\text{13}}\,{\text{400}}\,{\text{000}}\) in the form \(a \times {10^k}\) where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total surface area of one block is \({\text{2190 c}}{{\text{m}}^2}\), correct to three significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The blocks are to be painted. One litre of paint will cover \(22{\text{ }}{{\text{m}}^2}\).</span></p>
<p><span>Calculate the number of litres required to paint all \(2600\) blocks.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the curve \(y = {x^3} + \frac{3}{2}{x^2} - 6x - 2\)</span> .</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Write down the value of \(y\) when \(x\) is \(2\).</span></p>
<p><span>(ii)    Write down the coordinates of the point where the curve intercepts the \(y\)-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the curve for \( - 4 \leqslant x \leqslant 3\) and \( - 10 \leqslant y \leqslant 10\). Indicate clearly the information found in (a).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \({L_1}\) be the tangent to the curve at \(x = 2\).</span></p>
<p><span>Let \({L_2}\) be a tangent to the curve, parallel to \({L_1}\).</span></p>
<p><span>(i)     Show that the gradient of \({L_1}\) is \(12\).</span></p>
<p><span>(ii)    Find the \(x\)-coordinate of the point at which \({L_2}\) and the curve meet.</span></p>
<p><span>(iii)   Sketch and label \({L_1}\) and \({L_2}\) on the diagram drawn in (b).</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that \(\frac{{{\text{d}}y}}{{{\text{d}}x}} &gt; 0\) for \(x &lt; - 2\) and \(x &gt; b\) where \(b\) is positive.</span></p>
<p><span>(i)     Using your graphic display calculator, or otherwise, find the value of \(b\).</span></p>
<p><span>(ii)    Describe the behaviour of the curve in the interval \( - 2 &lt; x &lt; b\) .</span></p>
<p><span>(iii)   Write down the equation of the tangent to the curve at \(x = - 2\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a sketch of the function <em>f</em> (<em>x</em>) = 4<em>x</em><sup>3</sup> &minus; 9<em>x</em><sup>2</sup> &minus; 12<em>x</em> + 3.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the values of <em>x</em> where the graph of <em>f</em> (<em>x</em>) intersects the <em>x</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f </em>′(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the local maximum of <em>y</em> = <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.<br></span></p>
<p><span>Write down the coordinates of P.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Let P be the point where the graph of <em>f</em> (<em>x</em>) intersects the <em>y</em> axis.</span></span></p>
<p><span>Find the gradient of the curve at P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, <em>L</em>, is the tangent to the graph of <em>f</em> (<em>x</em>) at P.</span></p>
<p><span>Find the equation of <em>L</em> in the form <em>y</em> = <em>mx</em> +<em> c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Write down the gradient of the tangent at Q.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point, Q, on the curve at which the tangent to <em>f</em> (<em>x</em>) is parallel to <em>L</em>.</span></p>
<p><span>Calculate the <em>x</em>-coordinate of Q.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A farmer owns a plot of land in the shape of a quadrilateral <span class="s1">ABCD</span>.</p>
<p class="p1">\({\text{AB}} = 105{\text{ m, BC}} = 95{\text{ m, CD}} = 40{\text{ m, DA}} = 70{\text{ m}}\) and angle \({\text{DCB}} = 90^\circ \).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.23.38.png" alt="N16/5/MATSD/SP2/ENG/TZ0/05"></p>
<p class="p1">The farmer wants to divide the land into two equal areas. He builds a fence in a straight line from point <span class="s1">B </span>to point <span class="s1">P </span>on <span class="s1">AD</span>, so that the area of <span class="s1">PAB </span>is equal to the area of <span class="s1">PBCD</span>.</p>
<p class="p1">Calculate</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the length of <span class="s1">BD</span><span class="s2">;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the size of angle <span class="s1">DAB</span><span class="s2">;</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the area of triangle <span class="s1">ABD</span><span class="s2">;</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the area of quadrilateral <span class="s1">ABCD</span><span class="s2">;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the length of <span class="s1">AP</span><span class="s2">;</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">the length of the fence, <span class="s1">BP</span><span class="s2">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A farmer has a triangular field, ABC, as shown in the diagram.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">AB = 35 m, BC = 80 m and B&Acirc;C = 105&deg;, and D is the midpoint of BC.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of BĈA.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AD.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The farmer wants to build a fence around ABD.</span></p>
<p><span>Calculate the total length of the fence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The farmer wants to build a fence around ABD.</span></p>
<p><span>The farmer pays 802.50 USD for the fence. Find the cost per metre.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Calculate the area of the triangle ABD.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A layer of earth 3 cm thick is removed from ABD. Find the volume removed in cubic metres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The quadrilateral ABCD represents a park, where \({\text{AB}} = 120{\text{ m}}\), \({\text{AD}} = 95{\text{ m}}\) and \({\text{DC}} = 100{\text{ m}}\). Angle DAB is 70&deg; and angle DCB is 110&deg;. This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.35.40.png" alt="M17/5/MATSD/SP2/ENG/TZ2/04"></p>
<p>A straight path through the park joins the points B and D.</p>
</div>

<div class="specification">
<p>A new path, CE, is to be built such that E is the point on BD closest to C.</p>
</div>

<div class="specification">
<p>The section of the park represented by triangle DCE will be used for a charity race. A track will be marked along the sides of this section.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the path BD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that angle DBC is 48.7°, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the park.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of the path CE.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total length of the track.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A boat race takes place around a triangular course, \({\text{ABC}}\), with \({\text{AB}} = 700{\text{ m}}\), \({\text{BC}} = 900{\text{ m}}\)<span class="s1">&nbsp;</span>and angle \({\text{ABC}} = 110^\circ \). The race starts and finishes at point \({\text{A}}\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-21_om_07.47.08.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the total length of the course.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is estimated that the fastest boat in the race can travel at an average speed of \(1.5\;{\text{m}}\,{{\text{s}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p2">Calculate an estimate of the winning time of the race. Give your answer to the nearest minute.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is estimated that the fastest boat in the race can travel at an average speed of \(1.5\;{\text{m}}\,{{\text{s}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p1">Find the size of angle \({\text{ACB}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">To comply with safety regulations, the area inside the triangular course must be kept clear of other boats, and the shortest distance from \({\text{B}}\)<span class="s1"> </span>to \({\text{AC}}\)<span class="s1"> </span>must be greater than \(375\)<span class="s1"> </span>metres.</p>
<p class="p1">Calculate the area that must be kept clear of boats.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">To comply with safety regulations, the area inside the triangular course must be kept clear of other boats, and the shortest distance from \({\text{B}}\)<span class="s1"> </span>to \({\text{AC}}\)<span class="s1"> </span>must be greater than \(375\)<span class="s1"> </span>metres.</p>
<p class="p1">Determine, giving a reason, whether the course complies with the safety regulations.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The race is filmed from a helicopter, \({\text{H}}\), which is flying vertically above point \({\text{A}}\).</p>
<p class="p1">The angle of elevation of \({\text{H}}\)<span class="s1"> </span>from \({\text{B}}\)<span class="s1"> </span>is \(15^\circ\).</p>
<p class="p1">Calculate the vertical height, \({\text{AH}}\), of the helicopter above \({\text{A}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The race is filmed from a helicopter, \({\text{H}}\), which is flying vertically above point \({\text{A}}\).</p>
<p class="p1">The angle of elevation of \({\text{H}}\)<span class="s1"> </span>from \({\text{B}}\)<span class="s1"> </span>is \(15^\circ\).</p>
<p class="p1">Calculate the maximum possible distance from the helicopter to a boat on the course.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A greenhouse ABCDPQ is constructed on a rectangular concrete base ABCD and is made of glass. Its shape is a right prism, with cross section, ABQ, an isosceles triangle. The length of BC is 50 m, the length of AB is 10 m and the size of angle QBA is 35&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle AQB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AQ.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of CQ is 50.37 m, correct to 4 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of the angle AQC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total area of the glass needed to construct</span></p>
<p><span>(i) the two rectangular faces of the greenhouse;</span></p>
<p><span>(ii) the two triangular faces of the greenhouse.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cost of one square metre of glass used to construct the greenhouse is 4.80 USD.</span></p>
<p><span>Calculate the cost of glass to make the greenhouse. Give your answer correct to the nearest 100 USD.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A tent is in the shape of a triangular right prism as shown in the diagram below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The tent has a rectangular base PQRS .</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">PTS and QVR are isosceles triangles such that PT = TS and QV = VR .</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">PS is 3.2 m , SR is 4.7 m and the angle TSP is 35&deg;.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of side ST is 1.95 m, correct to 3 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of the triangle PTS.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the area of the rectangle STVR.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the <strong>total</strong> surface area of the tent, including the base.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the tent.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A pole is placed from V to M, the midpoint of PS.</span></p>
<p><span>Find in metres,</span></p>
<p><span>(i) the height of the tent, TM;</span></p>
<p><span>(ii) the length of the pole, VM.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle between VM and the base of the tent.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A playground, when viewed from above, is shaped like a quadrilateral, \({\text{ABCD}}\), where \({\text{AB}} = 21.8\,{\text{m}}\) and \({\text{CD}} = 11\,{\text{m}}\) . Three of the internal angles have been measured and angle \({\text{ABC}} = 47^\circ \) , angle \({\text{ACB}} = 63^\circ \) and angle \({\text{CAD}} = 30^\circ \) . This information is represented in the following diagram.</p>
<p><img src="" alt></p>
<p>Calculate the distance \({\text{AC}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate angle \({\text{ADC}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a tree at \({\text{C}}\), perpendicular to the ground. The angle of elevation to the top of the tree from \({\text{D}}\) is \(35^\circ \).</p>
<p>Calculate the height of the tree.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chavi estimates that the height of the tree is \(6\,{\text{m}}\).</p>
<p>Calculate the percentage error in Chavi’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chavi is celebrating her birthday with her friends on the playground. Her mother brings a \(2\,\,{\text{litre}}\) bottle of orange juice to share among them. She also brings <strong>cone-shaped</strong> paper cups.</p>
<p>Each cup has a vertical height of \(10\,{\text{cm}}\) and the top of the cup has a diameter of \(6\,{\text{cm}}\).</p>
<p>Calculate the volume of one paper cup.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum number of cups that can be completely filled with the \(2\,\,{\text{litre}}\) bottle of orange juice.</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows an office tower of total height 126 metres. It consists of a square based pyramid VABCD on top of a cuboid ABCDPQRS.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">V is directly above the centre of the base of the office tower.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The length of the sloping edge VC is 22.5 metres and the angle that VC makes with the base ABCD (angle VCA) is 53.1&deg;.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the length of VA in metres.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the triangle VCA showing clearly the length of VC and the size of angle VCA.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the height of the pyramid is 18.0 metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC in metres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of BC is 19.1 metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the tower.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>To calculate the cost of air conditioning, engineers must estimate the weight of air in the tower. They estimate that 90 % of the volume of the tower is occupied by air and they know that 1 m<sup>3</sup> of air weighs 1.2 kg.</span></p>
<p><span>Calculate the weight of air in the tower.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram represents a small, triangular field, ABC , with \({\text{BC}} = 25{\text{ m}}\) , \({\text{angle BAC}} = {55^ \circ }\) and \({\text{angle ACB}} = {75^ \circ }\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle ABC.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of the field ABC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>N is the point on AB such that CN is perpendicular to AB. M is the midpoint of CN. </span></p>
<p><span>Calculate the length of NM.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A goat is attached to one end of a rope of length 7 m. The other end of the rope is attached to the point M.</span></p>
<p><span>Decide whether the goat can reach point P, the midpoint of CB. Justify your answer.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The points A (</span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">&minus;</span>4, 1), B (0, 9) and C (4, 2) are plotted on the diagram below. The diagram also shows the lines AB,<em> L</em><sub>1</sub> and <em>L</em><sub>2</sub>.</span></p>
<p>&nbsp;</p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em><sub>1</sub> passes through C and is parallel to AB.</span></p>
<p><span>Write down the <em>y</em>-intercept of <em>L</em><sub>1</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em><sub>2</sub> passes through A and is perpendicular to AB.</span></p>
<p><span>Write down the equation of <em>L</em><sub>2</sub>. Give your answer in the form <strong><em>ax</em> + <em>by</em> + <em>d</em> = 0</strong> where <em>a</em>, <em>b</em> and <em>d</em> \( \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the point D, the intersection of <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a point R on <em>L</em><sub>1</sub> such that ABRD is a rectangle.</span></p>
<p><span>Write down the coordinates of R.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance between A and D is \(\sqrt {45} \).</span></p>
<p><span>(i) Find the distance between D and R .</span></p>
<p><span>(ii) Find the area of the triangle BDR .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the functions \(f(x) = \frac{{2x + 3}}{{x + 4}}\) and \(g(x) = x + 0.5\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(f(x)\), for \( - 10 \leqslant x \leqslant 10\) . Indicating clearly the axis intercepts and any asymptotes.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same diagram as part (a) sketch the graph of \(g(x) = x + 0.5\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphical display calculator write down the coordinates of <strong>one</strong> of the points of intersection on the graphs of \(f\) and \(g\), <strong>giving your answer correct to five decimal places</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of the line \(g(x) = x + 0.5\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) passes through the point with coordinates \(( - 2{\text{, }} - 3)\) and is perpendicular to the line \(g(x)\) . Find the equation of \(L\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Great Pyramid of Giza in Egypt is a right pyramid with a square base. The pyramid is made of solid stone. The sides of the base are \(230\,{\text{m}}\) long. The diagram below represents this pyramid, labelled \({\text{VABCD}}\).</p>
<p>\({\text{V}}\) is the vertex of the pyramid. \({\text{O}}\) is the centre of the base, \({\text{ABCD}}\) . \({\text{M}}\) is the midpoint of \({\text{AB}}\). Angle \({\text{ABV}} = 58.3^\circ \) .</p>
<p><img src="" alt></p>
<p>Show that the length of \({\text{VM}}\) is \(186\) metres, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the height of the pyramid, \({\text{VO}}\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the pyramid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (c) in the form \(a \times {10^k}\)  where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ahmad is a tour guide at the Great Pyramid of Giza. He claims that the amount of stone used to build the pyramid could build a wall \(5\) metres high and \(1\) metre wide stretching from Paris to Amsterdam, which are \(430\,{\text{km}}\) apart.</p>
<p>Determine whether Ahmad’s claim is correct. Give a reason.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ahmad and his friends like to sit in the pyramid’s shadow, \({\text{ABW}}\), to cool down.<br>At mid-afternoon, \({\text{BW}} = 160\,{\text{m}}\)  and angle \({\text{ABW}} = 15^\circ .\)</p>
<p><img src="" alt></p>
<p>i)     Calculate the length of \({\text{AW}}\) at mid-afternoon.</p>
<p>ii)    Calculate the area of the shadow, \({\text{ABW}}\), at mid-afternoon.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows triangle ABC in which \({\text{AB}} = 28{\text{ cm}}\), \({\text{BC}} = 13{\text{ cm}}\), \({\text{BD}} = 12{\text{ cm}}\) and \({\text{AD}} = 20{\text{ cm}}\).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of angle ADB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of triangle ADB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of angle BCD.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the triangle ABC is not right angled.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">An office block, ABCPQR, is built in the shape of a triangular prism with its &ldquo;footprint&rdquo;, ABC, on horizontal ground. \({\text{AB}} = 70{\text{ m}}\), \({\text{BC}} = 50{\text{ m}}\) and \({\text{AC}} = 30{\text{ m}}\). The vertical height of the office block is \(120{\text{ m}}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of the building’s footprint, ABC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the office block.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>To stabilize the structure, a steel beam must be made that runs from point C to point Q.</span></p>
<p><span>Calculate the length of CQ.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle CQ makes with BC.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In the diagram below A, B and C represent three villages and the line segments AB, BC and CA represent the roads joining them. The lengths of AC and CB are 10 km and 8 km respectively and the size of the angle between them is 150&deg;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of the road AB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of the angle CAB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Village D is halfway between A and B. A new road perpendicular to AB and passing through D is built. Let T be the point where this road cuts AC. This information is shown in the diagram below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the distance from A to D.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the distance from D to T is 2.06 km correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A bus starts and ends its journey at A taking the route AD to DT to TA.</span></p>
<p><span>Find the total distance for this journey.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The average speed of the bus while it is moving on the road is 70 km h<sup>–1</sup>. The bus stops for <strong>5 minutes</strong> at each of D and T .</span></p>
<p><span>Estimate the time taken by the bus to complete its journey. Give your answer correct to the nearest minute.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Farmer Brown has built a new barn, on horizontal ground, on his farm. The barn has a cuboid base and a triangular prism roof, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The cuboid has a width of 10 m, a length of 16 m and a height of 5 m.<br>The roof has two sloping faces and two vertical and identical sides, ADE and GLF.<br>The face DEFL slopes at an angle of 15&deg; to the horizontal and ED = 7 m .</p>
</div>

<div class="specification">
<p>The roof was built using metal supports. Each support is made from <strong>five</strong> lengths of metal AE, ED, AD, EM and MN, and the design is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">ED = 7 m , AD = 10 m and angle ADE = 15&deg; .<br>M is the midpoint of AD.<br>N is the point on ED such that MN is at right angles to ED.</p>
</div>

<div class="specification">
<p>Farmer Brown believes that N is the midpoint of ED.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle EAD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> volume of the barn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of MN.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of AE.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Farmer Brown is incorrect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> length of metal required for one support.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A parcel is in the shape of a rectangular prism, as shown in the diagram. It has a length \(l\) cm, width \(w\) cm and height of \(20\) cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The total volume of the parcel is \(3000{\text{ c}}{{\text{m}}^3}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the volume of the parcel in terms of \(l\) and \(w\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(l = \frac{{150}}{w}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_2.png" alt><br></span></p>
<p><span>Show that the length of string, \(S\) cm, required to tie up the parcel can be written as</span></p>
<p><span>\[S = 40 + 4w + \frac{{300}}{w},{\text{ }}0 &lt; w \leqslant 20.\]</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_4.png" alt><br></span></p>
<p><span>Draw the graph of \(S\) for \(0 &lt; w \leqslant 20\) and \(0 &lt; S \leqslant 500\), clearly showing the local minimum point. Use a scale of \(2\) cm to represent \(5\) units on the horizontal axis \(w\)<em> </em>(cm), and a scale of \(2\) cm to represent \(100\) units on the vertical axis \(S\) (cm).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_5.png" alt><br></span></p>
<p><span>Find \(\frac{{{\text{d}}S}}{{{\text{d}}w}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_3.png" alt><br></span></p>
<p><span>Find the value of \(w\) for which \(S\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29.png" alt><br></span></p>
<p><span>Write down the value, \(l\), of the parcel for which the length of string is a minimum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_1.png" alt><br></span></p>
<p><span>Find the minimum length of string required to tie up the parcel.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">ABC is a triangular field on horizontal ground. The lengths of AB and AC are 70 m and 50 m respectively. The size of angle BCA is 78&deg;.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.52.16.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of angle \(ABC\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the triangular field.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({\text{M}}\) is the midpoint of \({\text{AC}}\).</span></p>
<p><span>Find the length of \({\text{BM}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A vertical mobile phone mast, \({\text{TB}}\), is built next to the field with its base at \({\text{B}}\). The angle of elevation of \({\text{T}}\) from \({\text{M}}\) is \(63.4^\circ \). \({\text{N}}\) is the midpoint of the mast.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-21_om_08.02.34.png" alt></span></p>
<p> </p>
<p><span>Calculate the angle of elevation of \({\text{N}}\) from \({\text{M}}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A water container is made in the shape of a cylinder with internal height \(h\) cm and internal base radius \(r\) cm.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p class="p1">The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p class="p1">The volume of the water container is \(0.5{\text{ }}{{\text{m}}^3}\).</p>
</div>

<div class="specification">
<p class="p1">The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p class="p1">One can of water-resistant material coats a surface area of \(2000{\text{ c}}{{\text{m}}^2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a formula for \(A\), <span class="s1">the surface area to be coated.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Express this volume in \({\text{c}}{{\text{m}}^3}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down, in terms of \(r\) </span>and \(h\), an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2}\frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answer to part (e), find the value of \(r\) <span class="s1">which minimizes \(A\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the least number of cans of water-resistant material that will coat the area in <span class="s1">part (g).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The line \({L_1}\) has equation \(2y - x - 7 = 0\) and is shown on the diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.59.34.png" alt="N16/5/MATSD/SP2/ENG/TZ0/03"></p>
<p class="p1" style="text-align: left;">The point <span class="s1">A </span>has coordinates \((1,{\text{ }}4)\).</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">C </span>has coordinates \((5,{\text{ }}12)\). <span class="s1">M </span>is the midpoint of <span class="s1">AC</span>.</p>
</div>

<div class="specification">
<p class="p1">The straight line, \({L_2}\), is perpendicular to <span class="s1">AC </span>and passes through <span class="s1">M</span>.</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">D </span>is the intersection of \({L_1}\) and \({L_2}\).</p>
</div>

<div class="specification">
<p class="p1">The length of <span class="s1">MD </span>is \(\frac{{\sqrt {45} }}{2}\).</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">B </span>is such that <span class="s1">ABCD </span>is a rhombus.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that </span><span class="s2">A </span>lies on \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of <span class="s1">M</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the length of <span class="s1">AC</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the equation of \({L_2}\) <span class="s1">is \(2y + x - 19 = 0\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of <span class="s1">D</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down the length of </span><span class="s2">MD </span>correct to five significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of <span class="s1">ABCD</span><span class="s2">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Jenny has a circular cylinder with a lid. The cylinder has height 39 <strong>cm</strong> and diameter 65 <strong>mm</strong>.</span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">An old tower (BT) leans at 10&deg; away from the vertical (represented by line TG).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The base of the tower is at B so that \({\text{M}}\hat {\rm B}{\text{T}} = 100^\circ \).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Leonardo stands at L on flat ground 120 m away from B in the direction of the lean.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">He measures the angle between the ground and the top of the tower T to be \({\text{B}}\hat {\rm L}{\text{T}} = 26.5^\circ \).</span></p>
<p>&nbsp;</p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the cylinder<strong> in cm<sup>3</sup></strong>. Give your answer correct to <strong>two</strong> decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder is used for storing tennis balls. Each ball has a <strong>radius</strong> of 3.25 cm.</span></p>
<p><span>Calculate how many balls Jenny can fit in the cylinder if it is filled to the top.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Jenny fills the cylinder with the number of balls found in part (b) and puts the lid on. Calculate the volume of air inside the cylinder in the spaces between the tennis balls.</span></p>
<p><span>(ii) Convert your answer to (c) (i) into cubic metres.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Find the value of angle \({\text{B}}\hat {\rm T}{\text{L}}\).</span></p>
<p><span>(ii) Use triangle BTL to calculate the sloping distance BT from the base,</span> <span>B to the top, T of the tower.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the vertical height TG of the top of the tower.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Leonardo now walks to point M, a distance 200 m from B on the opposite side of the tower. Calculate the distance from M to the top of the tower at T.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The graph of the function \(f(x) = \frac{{14}}{x} + x - 6\), for 1 &le; <em>x</em> &le; 7 is given below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f (1)\). </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use your answer to part (b)</strong> to show that the <em>x</em>-coordinate of the local minimum point of the graph of \(f\) is 3.7 correct to 2 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the range of \(f\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of \(f\). The <em>x</em>-coordinates of A and B are 1 and 7 respectively.</span></p>
<p><span>Write down the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Points A and B lie on the graph of f . The <em>x</em>-coordinates of A and B are 1 and 7 respectively.<br></span></p>
<p><span>Find the gradient of the straight line passing through A and B.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>M is the midpoint of the line segment AB.</span></p>
<p><span>Write down the coordinates of M.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em> is the tangent to the graph of the function \(y = f (x)\), at the point on the graph with the same <em>x</em>-coordinate as M.</span></p>
<p><span>Find the gradient of <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of <em>L</em>. Give your answer in the form \(y = mx + c\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">On the coordinate axes below, \({\text{D}}\) is a point on the \(y\)-axis and \({\text{E}}\) is a point on the \(x\)-axis. \({\text{O}}\) is the origin. The equation of the line \({\text{DE}}\) is \(y + \frac{1}{2}x = 4\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of point \({\text{E}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({\text{C}}\) is a point on the line </span><span><span>\({\text{DE}}\)</span>. </span><span><span>\({\text{B}}\)</span> is a point on the \(x\)-axis such that </span><span><span>\({\text{BC}}\)</span> is parallel to the \(y\)-axis. The \(x\)-coordinate of </span><span><span>\({\text{C}}\)</span> is \(t\).</span></p>
<p><span>Show that the \(y\)-coordinate of </span><span><span>\({\text{C}}\)</span> is \(4 - \frac{1}{2}t\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>\({\text{OBCD}}\) </span>is a trapezium. The \(y\)-coordinate of point </span><span><span>\({\text{D}}\)</span> is \(4\).<br></span></p>
<p><span>Show that the area of </span><span><span><span>\({\text{OBCD}}\) </span></span>is \(4t - \frac{1}{4}{t^2}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The area of </span><span><span><span>\({\text{OBCD}}\) </span></span>is \(9.75\) square units. Write down a quadratic equation that expresses this information.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Using your graphic display calculator, or otherwise, find the two solutions to the quadratic equation written in part (d).</span></p>
<p><span>(ii) Hence find the correct value for \(t\). Give a reason for your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A dog food manufacturer has to cut production costs. She wishes to use as little aluminium as possible in the construction of cylindrical cans. In the following diagram, <em>h</em> represents the height of the can in cm and <em>x</em>, the radius of the base of the can in cm.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The volume of the dog food cans is 600 cm<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(h = \frac{{600}}{{\pi {x^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for the curved surface area of the can, in terms of <em>x</em>. Simplify your answer.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down an expression for <em>A</em>, the total surface area of the can, in terms of <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Differentiate <em>A</em> in terms of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> that makes <em>A</em> a minimum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the minimum total surface area of the dog food can.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A solid metal <strong>cylinder</strong> has a base radius of 4 cm and a height of 8 cm.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the base of the cylinder.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume of the metal used in the cylinder is 402 cm<sup>3</sup>, given correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the cylinder.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the height, OC, of the cone.</span></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the size of angle BCO.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the slant height, CB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the total surface area of the cone.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A restaurant serves desserts in glasses in the shape of a cone and in the shape of a hemisphere. The diameter of a cone shaped glass is 7.2 cm and the height of the cone is 11.8 cm as shown.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.40.46.png" alt="N17/5/MATSD/SP2/ENG/TZ0/06"></p>
</div>

<div class="specification">
<p>The volume of a hemisphere shaped glass is \(225{\text{ c}}{{\text{m}}^3}\).</p>
</div>

<div class="specification">
<p>The restaurant offers two types of dessert.</p>
<p>The <strong>regular dessert </strong>is a hemisphere shaped glass completely filled with chocolate mousse. The cost, to the restaurant, of the chocolate mousse for one regular dessert is $1.89.</p>
</div>

<div class="specification">
<p>The <strong>special dessert </strong>is a cone shaped glass filled with two ingredients. It is first filled with orange paste to half of its height and then with chocolate mousse for the remaining volume.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.44.32.png" alt="N17/5/MATSD/SP2/ENG/TZ0/06.d.e.f"></p>
</div>

<div class="specification">
<p>The cost, to the restaurant, of \(100{\text{ c}}{{\text{m}}^3}\) of orange paste is $7.42.</p>
</div>

<div class="specification">
<p>A chef at the restaurant prepares 50 desserts; \(x\) regular desserts and \(y\) special desserts. The cost of the ingredients for the 50 desserts is $111.44.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume of a cone shaped glass is \(160{\text{ c}}{{\text{m}}^3}\), correct to 3 significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius, \(r\), of a hemisphere shaped glass.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost of \(100{\text{ c}}{{\text{m}}^3}\) of chocolate mousse.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that there is \(20{\text{ c}}{{\text{m}}^3}\) of orange paste in each special dessert.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total cost of the ingredients of one special dessert.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tepees were traditionally used by nomadic tribes who lived on the Great Plains of North America. They are cone-shaped dwellings and can be modelled as a cone, with vertex O, shown below. The cone has radius, \(r\), height, \(h\), and slant height, \(l\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.28.13.png" alt></p>
<p class="p1">A model tepee is displayed at a Great Plains exhibition. The curved surface area of this tepee is covered by a piece of canvas that is \(39.27{\text{ }}{{\text{m}}^2}\), and has the shape of a semicircle, as shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.29.53.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the slant height, \(l\), is \(5\) m, correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the circumference of the base of the cone.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the radius, \(r\), of the base.</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Find the height, \(h\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Write down an expression for the height, \(h\), in terms of the radius, \(r\), of these cone-shaped tents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Show that the volume of the tent, \(V\), can be written as</p>
<p class="p1">\[V = 3.11\pi {r^2} - \frac{2}{3}\pi {r^3}.\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Find \(\frac{{{\text{d}}V}}{{{\text{d}}r}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Determine the exact value of \(r\) for which the volume is a maximum.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the maximum volume.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows a perfume bottle made up of a cylinder and a cone.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_07.37.58.png" alt></p>
<p class="p1">The radius of both the cylinder and the base of the cone is <span class="s1">3 cm</span>.</p>
<p class="p1">The height of the cylinder is <span class="s1">4.5 cm</span>.</p>
<p class="p1">The slant height of the cone is <span class="s1">4 cm</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)     Show that the vertical height of the cone is \(2.65\)<span class="s1"> cm </span>correct to three significant figures.</p>
<p class="p1">(ii)     Calculate the volume of the perfume bottle.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The bottle contains \({\text{125 c}}{{\text{m}}^{\text{3}}}\) </span>of perfume. The bottle is <strong>not </strong>full and all of the perfume is in the cylinder part.</p>
<p class="p1">Find the height of the perfume in the bottle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi makes some crafts with perfume bottles, like the one above, once they are empty. Temi wants to know the surface area of one perfume bottle.</p>
<p class="p1">Find the <strong>total </strong>surface area of the perfume bottle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi covers the perfume bottles with a paint that costs 3 South African rand (ZAR) per millilitre. One millilitre of this paint covers an area of \({\text{7 c}}{{\text{m}}^{\text{2}}}\).</p>
<p class="p2"><span class="s1">Calculate the cost, in ZAR</span>, of painting the perfume bottle. <strong>Give your answer correct to two decimal places</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi sells her perfume bottles in a craft fair for <span class="s1">325 ZAR </span>each. Dominique from France buys one and wants to know how much she has spent, in euros <span class="s1">(EUR)</span>. The exchange rate is 1 EUR = 13.03 ZAR<span class="s2">.</span></p>
<p class="p1">Find the price, in <span class="s1">EUR</span>, that Dominique paid for the perfume bottle. <strong>Give your answer </strong><strong>correct to two decimal places</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A closed rectangular box has a height \(y{\text{ cm}}\) and width \(x{\text{ cm}}\). Its length is twice its width. It has a fixed outer surface area of \(300{\text{ c}}{{\text{m}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Factorise \(3{x^2} + 13x - 10\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(3{x^2} + 13x - 10 = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Find the equation of the axis of symmetry on the graph of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Calculate the minimum value of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(4{x^2} + 6xy = 300\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for \(y\) in terms of \(x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence show that the volume \(V\) of the box is given by \(V = 100x - \frac{4}{3}{x^3}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}V}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Hence find the value of \(x\) and of \(y\) required to make the volume of the box a maximum.</span></p>
<p><span>(ii)    Calculate the maximum volume.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p>A pan, in which to cook a pizza, is in the shape of a cylinder. The pan has a diameter of 35 cm and a height of 0.5 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.14.51.png" alt="M17/5/MATSD/SP2/ENG/TZ1/04"></p>
</div>

<div class="specification">
<p>A chef had enough pizza dough to exactly fill the pan. The dough was in the shape of a sphere.</p>
</div>

<div class="specification">
<p>The pizza was cooked in a hot oven. Once taken out of the oven, the pizza was placed in a dining room.</p>
<p>The temperature, \(P\), of the pizza, in degrees Celsius, &deg;C, can be modelled by</p>
<p>\[P(t) = a{(2.06)^{ - t}} + 19,{\text{ }}t \geqslant 0\]</p>
<p>where \(a\) is a constant and \(t\) is the time, in minutes, since the pizza was taken out of the oven.</p>
<p>When the pizza was taken out of the oven its temperature was 230 &deg;C.</p>
</div>

<div class="specification">
<p>The pizza can be eaten once its temperature drops to 45 &deg;C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this pan.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius of the sphere in cm, correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature that the pizza will be 5 minutes after it is taken out of the oven.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to the nearest second, the time since the pizza was taken out of the oven until it can be eaten.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of this model, state what the value of 19 represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Amir needs to construct an isosceles triangle \({\text{ABC}}\)</span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"> whose area is \(100{\text{ cm}}^2\). The equal sides, </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\text{AB}}\) </span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">and </span></span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\text{BC}}\)</span></span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">, are \(20{\text{ cm}}\) long.</span></span></span></span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Sylvia is making a square-based pyramid. Each triangle has a base of length \(12{\text{ cm}}\) and a height of \(10{\text{ cm}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Angle </span><span><span>\({\text{ABC}}\) </span>is acute. Show that the angle </span><span><span>\({\text{ABC}}\) </span>is \({30^ \circ }\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of </span><span><span>\({\text{AC}}\)</span>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the <strong>height</strong> of the pyramid is \(8{\text{ cm}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({\text{M}}\) is the midpoint of the base of one of the triangles and </span><span><span>\({\text{O}}\)</span> is the apex of the pyramid. </span></p>
<p><span>Find the angle that the line </span><span><span>\({\text{MO}}\)</span> makes with the base of the pyramid.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Daniel wants to make a rectangular prism with the same volume as that of Sylvia’s pyramid. The base of his prism is to be a square of side \(10{\text{ cm}}\). Calculate the height of the prism.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The quadrilateral ABCD shown below represents a sandbox. AB and BC have the same length. AD is \(9{\text{ m}}\) long and CD is \(4.2{\text{ m}}\) long. Angles ADC and ABC are \({95^ \circ }\) and \({130^ \circ }\) respectively.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of AC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Write down the size of angle BCA.</span></p>
<p><span>(ii)    Calculate the length of AB.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the area of the sandbox is \(31.1{\text{ }}{{\text{m}}^2}\) correct to 3 s.f.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The sandbox is a prism. Its edges are \(40{\text{ cm}}\) high. The sand occupies one third of the volume of the sandbox. Calculate the volume of sand in the sandbox.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the function \(f(x) = \frac{3}{4}{x^4} - {x^3} - 9{x^2} + 20\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f( - 2)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x =  - 2\).</span></p>
<p><span>Using your answer to part (b), show that there is a second local minimum at \(x = 3\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x =  - 2\).</span></p>
<p><span>Sketch the graph of the function \(f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 40 \leqslant y \leqslant 50\). Indicate on your</span></p>
<p><span>sketch the coordinates of the \(y\)-intercept.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of the function \(f(x)\) has a local minimum at the point where \(x =  - 2\).</span></p>
<p><span>Write down the coordinates of the local maximum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let \(T\) be the tangent to the graph of the function \(f(x)\) at the point \((2, –12)\).</span></p>
<p><span>Find the gradient of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) passes through the point \((2, −12)\) and is perpendicular to \(T\).</span></p>
<p><span>\(L\) has equation \(x + by + c = 0\), where \(b\) and \(c \in \mathbb{Z}\).</span></p>
<p><span>Find</span></p>
<p><span>(i)     the gradient of \(L\);</span></p>
<p><span>(ii)     the value of \(b\) and the value of \(c\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">ABCDV is a solid glass pyramid. The base of the pyramid is a square of side 3.2 cm. The vertical height is 2.8 cm. The vertex V is directly above the centre O of the base.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The glass weighs 9.3 grams per cm<sup>3</sup>. Calculate the weight of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of the sloping edge VC of the pyramid is 3.6 cm.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle at the vertex, \({\text{B}}{\operatorname {\hat V}}{\text{C}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total surface area of the pyramid.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A surveyor has to calculate the area of a triangular piece of land, DCE.</p>
<p class="p1">The lengths of CE and DE cannot be directly measured because they go through a swamp.</p>
<p class="p1">AB, DE, BD and AE are straight paths. Paths AE and DB intersect at point C.</p>
<p class="p1">The length of AB is 15 km, BC is 10 km, AC is 12 km, and DC is 9 km.</p>
<p class="p1">The following diagram shows the surveyor&rsquo;s information.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_11.57.28.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the size of angle \({\rm{ACB}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that the size of angle \({\rm{DCE}}\) is \(85.5^\circ\), correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The surveyor measures the size of angle \({\text{CDE}}\) to be twice that of angle \({\text{DEC}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Using angle \({\text{DCE}} = 85.5^\circ \), <span class="s1">find </span>the size of angle \({\text{DEC}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the length of \({\text{DE}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the area of triangle \({\text{DEC}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A cross-country running course consists of a beach section and a forest section. Competitors run from \({\text{A}}\) to \({\text{B}}\), then from \({\text{B}}\) to \({\text{C}}\) and from \({\text{C}}\) back to \({\text{A}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The running course from&nbsp;\({\text{A}}\)&nbsp;to&nbsp;\({\text{B}}\)&nbsp;is along the beach, while the course from&nbsp;\({\text{B}}\), through&nbsp;\({\text{C}}\)&nbsp;and&nbsp;back to&nbsp;\({\text{A}}\),&nbsp;is through&nbsp;the forest.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The course is shown on the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_11.39.47.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Angle&nbsp;\({\text{ABC}}\)&nbsp;is \(110^\circ\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">It takes Sarah \(5\) minutes and \(20\) seconds to run from&nbsp;\({\text{A}}\)&nbsp;to&nbsp;\({\text{B}}\)&nbsp;at a speed of \(3.8{\text{ m}}{{\text{s}}^{ -&nbsp;1}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using ‘<em>distance </em>= <em>speed </em>\( \times \) <em>time</em>’, show that the distance from \({\text{A}}\) to \({\text{B}}\) is \(1220\) metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the speed, in \({\text{m}}{{\text{s}}^{ - 1}}\), that Sarah runs from \({\text{B}}\) to \({\text{C}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span><span><span>Calculate the distance, in metres, from </span></span><span><span>\({\mathbf{C}}\)</span></span><span><span> </span></span><strong><span><span>to </span></span></strong><span><span>\({\mathbf{A}}\).</span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the total distance, in metres, of the cross-country running course.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\)</span><span> is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Find the size of angle \({\text{BCA}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\)</span><span> is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the area of the cross-country course bounded by the lines \({\text{AB}}\), \({\text{BC}}\) and \({\text{CA}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A lobster trap is made in the shape of half a cylinder. It is constructed from a steel frame with netting pulled tightly around it. The steel frame consists of a rectangular base, two semicircular ends and two further support rods, as shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.54.16.png" alt><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The semicircular ends each have radius \(r\) and the support rods each have length \(l\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(T\) be the total length of steel used in the frame of the lobster trap.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(T\) in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The volume of the lobster trap is \({\text{0.75 }}{{\text{m}}^3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Write down an equation for the volume of the lobster trap in terms of <em>r</em>, <em>l </em>and &pi;.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The volume of the lobster trap is \({\text{0.75 }}{{\text{m}}^3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \(T = (2\pi&nbsp; + 4)r + \frac{6}{{\pi {r^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The volume of the lobster trap is \({\text{0.75 }}{{\text{m}}^3}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Find \(\frac{{{\text{d}}T}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that the value of <em>r </em>for which <em>T </em>is a minimum is 0.719 m, correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the value of <em>l </em>for which <em>T </em>is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Calculate the minimum value of <em>T</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The front view of the edge of a water tank is drawn on a set of axes shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The edge is modelled by \(y = a{x^2} + c\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_11.23.28.png" alt><br></span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">Point \({\text{P}}\) has coordinates \((-3,&nbsp;1.8)\), point \({\text{O}}\) has coordinates \((0,&nbsp;0)\) and point \({\text{Q}}\) has coordinates \((3,&nbsp;1.8)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(c\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \(a\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down the equation of the quadratic function which models the edge of the water tank.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_1.png" alt></span></p>
<p><span>Calculate the value of <em>y </em>when \(x = 2.4{\text{ m}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_3.png" alt></span></p>
<p><span>State what the value of \(x\) and the value of \(y\) represent for this water tank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_2.png" alt></span></p>
<p><span>Find the value of \(x\) when the height of water in the tank is \(0.9\) m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45.png" alt></span></p>
<p> </p>
<p><span>The water tank has a length of 5 m.</span></p>
<p> </p>
<p><span>When the water tank is filled to a height of \(0.9\) m, the front cross-sectional area of the water is \({\text{2.55 }}{{\text{m}}^2}\).</span></p>
<p><span>(i)     Calculate the volume of water in the tank.</span></p>
<p><span>The total volume of the tank is \({\text{36 }}{{\text{m}}^3}\).</span></p>
<p><span>(ii)     Calculate the percentage of water in the tank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = \frac{{96}}{{{x^2}}} + kx\), where \(k\) is a constant and \(x \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Show that \(k = 3\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f'(2)\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find the equation of the normal to the graph of \(y = f(x)\) at the point where \(x = 2\).</p>
<p class="p1">Give your answer in the form \(ax + by + d = 0\) where \(a,{\text{ }}b,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1"><span class="s1">Sketch the graph of \(y = f(x)\)</span>, for \( - 5 \leqslant x \leqslant 10\) and \( - 10 \leqslant y \leqslant 100\)<span class="s1">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Write down the coordinates of the point where the graph of \(y = f(x)\) intersects the \(x\)-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">State the values of \(x\) for which \(f(x)\) is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows a square based right pyramid. ABCD is a square of side 10 cm. VX is the perpendicular height of 8 cm. M is the midpoint of BC.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a mountain region there appears to be a relationship between the number of trees growing in the region and the depth of snow in winter. A set of 10 areas was chosen, and in each area the number of trees was counted and the depth of snow measured. The results are given in the table below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A path goes around a forest so that it forms the three sides of a triangle. The lengths of two sides are 550 m and 290 m. These two sides meet at an angle of 115&deg;. A diagram is shown below.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the length of XM.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the standard deviation of the number of trees.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of VM.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle between VM and ABCD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of the third side of the triangle. Give your answer correct to the nearest 10 m.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area enclosed by the path that goes around the forest.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Inside the forest a second path forms the three sides of another triangle named ABC. Angle BAC is 53°, AC is 180 m and BC is 230 m.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B, c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = {x^3} + \frac{{48}}{x}{\text{, }}x \ne 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(y = f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 200 \leqslant y \leqslant 200\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the local maximum point on the graph of \(f\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<address><span>Find the range of \(f\) .</span></address>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to the graph of \(f\) at \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point on the graph of \(f\) at which the tangent is parallel to the tangent at \(x = 1\). </span></p>
<p><span>Find the \(x\)-coordinate of this point.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A shipping container is to be made with six rectangular faces, as shown in the diagram.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The dimensions of the container are</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">length 2<em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">width <em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">height <em>y</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">All of the measurements are in metres. The total length of all twelve edges is 48 metres.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that <em>y</em> =12 − 3<em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume <em>V</em> m<sup>3</sup> of the container is given by</span></p>
<p><span><em>V</em> = 24<em>x</em><sup>2</sup> − 6<em>x</em><sup>3</sup></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \( \frac{{\text{d}V}}{{\text{d}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> for which <em>V</em> is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the maximum volume of the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length and height of the container for which the volume is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The shipping container is to be painted. One litre of paint covers an area of 15 m<sup>2</sup> .</span> <span>Paint comes in tins containing four litres.</span></p>
<p><span>Calculate the number of tins required to paint the shipping container.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows triangle ABC. Point C has coordinates (4, 7) and the equation of the line AB is <em>x</em> + 2<em>y</em> = 8.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of </span><span>A</span><span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of B.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the distance between A and B is 8.94 correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>N lies on the line AB. The line CN is perpendicular to the line AB.</span></p>
<p><span>Find </span><span>the gradient of CN</span><span>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>N lies on the line AB. The line CN is perpendicular to the line AB.</span></p>
<p><span>Find the equation of CN.</span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>N lies on the line AB. The line CN is perpendicular to the line AB.</span></p>
<p><span>Calculate the coordinates of N.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that AC = 5 and BC = 8.06.</span></p>
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that AC = 5 and BC = 8.06.</span></p>
<p><span>Calculate the area of triangle ACB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer makes trash cans in the form of a cylinder with a hemispherical top. The trash can has a height of 70 cm. The base radius of both the cylinder and the hemispherical top is 20 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A designer is asked to produce a new trash can.</p>
<p>The new trash can will also be in the form of a cylinder with a hemispherical top.</p>
<p>This trash can will have a height of <em>H</em> cm and a base radius of <em>r</em> cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>There is a design constraint such that <em>H</em> + 2<em>r</em> = 110 cm.</p>
<p>The designer has to maximize the volume of the trash can.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the cylinder.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total volume of the trash can.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the <strong>cylinder</strong>, <em>h</em> , of the new trash can, in terms of <em>r</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <em>V</em> cm<sup>3</sup> , of the new trash can is given by</p>
<p>\(V = 110\pi {r^3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graphic display calculator, find the value of <em>r</em> which maximizes the value of <em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The designer claims that the new trash can has a capacity that is at least 40% greater than the capacity of the original trash can.</p>
<p>State whether the designer’s claim is correct. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The vertices of quadrilateral ABCD as shown in the diagram are A (3, 1), B (0, 2), C (&ndash;2, 1) and D (&ndash;1, &ndash;1).</span></p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of line CD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that line AD is perpendicular to line CD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of line CD. Give your answer in the form \(ax + by = c\) where \(a,{\text{ }}b,{\text{ }}c \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Lines AB and CD intersect at point E. The equation of line AB is \(x + 3y = 6\).</span></p>
<p><span>Find the coordinates of E.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Lines AB and CD intersect at point E. The equation of line AB is \(x + 3y = 6\).</span></span></p>
<p><span>Find the distance between A and D.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance between D and E is \(\sqrt{20}\).</span></p>
<p><span>Find the area of triangle ADE.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A chocolate bar has the shape of a triangular right prism ABCDEF as shown in the diagram. The ends are equilateral triangles of side 6 cm and the length of the chocolate bar is 23 cm.</span></p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle BAF.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence or otherwise find the area of the triangular end of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that 1 cm<sup>3</sup> of this chocolate weighs 1.5 g. Calculate the weight of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A different chocolate bar made with the same mixture also has the shape of a triangular prism. The ends are triangles with sides of length 4 cm, 6 cm and 7 cm.</span></p>
<p><span>Show that the size of the angle between the sides of 6 cm and 4 cm is 86.4° correct to 3 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The weight of this chocolate bar is 500 g. Find its length.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia designs a wastepaper bin made in the shape of an <strong>open</strong> cylinder with a volume of \(8000{\text{ c}}{{\text{m}}^3}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia decides to make the radius, \(r\) , of the bin \(5{\text{ cm}}\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Merryn also designs a cylindrical wastepaper bin with a volume of \(8000{\text{ c}}{{\text{m}}^3}\). She decides to fix the radius of its base so that the <strong>total external surface area</strong> of the bin is minimized.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Let the radius of the base of Merryn&rsquo;s wastepaper bin be \(r\) , and let its height be \(h\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span><br><span>(i)     the area of the base of the wastepaper bin;</span><br><span>(ii)    the height, \(h\) , of Nadia’s wastepaper bin;</span><br><span>(iii)   the total <strong>external</strong> surface area of the wastepaper bin.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Nadia’s design is practical. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation in \(h\) and \(r\) , using the given volume of the bin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total external surface area, \(A\) , of the bin is \(A = \pi {r^2} + \frac{{16000}}{r}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Find the value of \(r\) that minimizes the total external surface area of the wastepaper bin.</span><br><span>(ii)    Calculate the value of \(h\) corresponding to this value of \(r\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether Merryn’s design is an improvement upon Nadia’s. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Pauline owns a piece of land ABCD in the shape of a quadrilateral. The length of BC is \(190{\text{ m}}\) , the length of CD is </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(120{\text{ m}}\)</span> , the length of AD is </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(70{\text{ m}}\)</span> , the size of angle BCD is \({75^ \circ }\) and the size of angle BAD is \({115^ \circ }\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Pauline decides to sell the triangular portion of land ABD . She first builds a straight fence from B to D .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of the fence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The fence costs \(17\) USD per metre to build. </span></p>
<p><span>Calculate the cost of building the fence. Give your answer correct to the </span><span>nearest USD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the size of angle ABD is \({18.8^ \circ }\) , correct to three significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of triangle ABD .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>She sells the land for \(120\) USD per square metre. </span></p>
<p><span>Calculate the value of the land that Pauline sells. Give your answer correct </span><span>to the nearest USD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Pauline invests \(300 000\) USD from the sale of the land in a bank that pays compound interest compounded annually. </span></p>
<p><span>Find the interest rate that the bank pays so that the investment will double in value in 15 years.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows part of the graph of \(f(x) = {x^2} - 2x + \frac{9}{x}\) , where \(x \ne 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the equation of the vertical asymptote to the graph of \(y = f (x)\) ;</span></p>
<p><span>(ii)    the solution to the equation \(f (x) = 0\) ;</span></p>
<p><span>(iii)   the coordinates of the local minimum point.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find  \(f'(x)\) . </span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'(x)\) can be written as \(f'(x) = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to \(y = f (x)\) at the point \({\text{A}}(1{\text{, }}8)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\), passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Write down the gradient of \(L\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Find the equation of \(L\) . Give your answer in the form \(y = mx + c\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></span></p>
<p><span>\(L\) also intersects the graph of \(y = f (x)\) at points B and C . Write down the <strong><em>x</em>-coordinate</strong> of B and of C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows an <strong>aerial</strong> view of a bicycle track. The track can be modelled by the quadratic function</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">\(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\), where \(x \geqslant 0,{\text{ }}y \geqslant 0\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(<em>x</em> , <em>y</em>) are the coordinates of a point <em>x</em> metres east and <em>y</em> metres north of O , where O is the origin (0, 0) . B is a point on the bicycle track with coordinates (100, 350) .<br></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The coordinates of point A are (75, 450). Determine whether point A is on the bicycle track. Give a reason for your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the derivative of \(y = \frac{{ - {x^2}}}{{10}} + \frac{{27}}{2}x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the answer in part (b) to determine if A (75, 450) is the point furthest north on the track between O and B. Give a reason for your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the midpoint of the line segment OB.</span></p>
<p><span>(ii) Find the gradient of the line segment OB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Scott starts from a point C(0,150) . He hikes along a straight road towards the bicycle track, parallel to the line segment OB.</span></p>
<p><span>Find the equation of Scott’s road. Express your answer in the form \(ax + by = c\), where \(a, b {\text{ and }} c \in \mathbb{R}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the coordinates of the point where Scott first crosses the bicycle track.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A gardener has to pave a rectangular area 15.4 metres long and 5.5 metres wide using rectangular bricks. The bricks are 22 cm long and 11 cm wide.</span></p>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The gardener decides to have a triangular lawn ABC, instead of paving, in the middle of the rectangular area, as shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="onbekend.html" alt="onbekend.png"></span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The distance AB is 4 metres, AC is 6 metres and angle BAC is 40&deg;.</span></p>
</div>

<div class="specification">
<div style="color: #3f3f3f; font: normal normal normal 14px/1.5em 'Lucida Grande', Helvetica, Arial, sans-serif; padding-top: 40px; padding-right: 10px !important; padding-bottom: 10px !important; padding-left: 10px !important; background-image: url('body-bg.html'); background-attachment: initial; background-origin: initial; background-clip: initial; background-color: #f7f7f7; height: 94% !important; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none; background-position: 50% 0%; background-repeat: no-repeat repeat; margin: 0px;">
<p style="margin-top: 0px; margin-right: 0px; margin-bottom: 10px; margin-left: 0px; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"><span style="font-family: times new roman,times; font-size: medium;">In another garden, twelve of the same rectangular bricks are to be used to make an edge around a small garden bed as shown in the diagrams below. FH is the length of a brick and C is the centre of the garden bed. M and N are the midpoints of the long edges of the bricks on opposite sides of the garden bed.</span></p>
<p style="margin-top: 0px; margin-right: 0px; margin-bottom: 10px; margin-left: 0px; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"><span style="font-family: times new roman,times; font-size: medium;"><img style="border-style: initial; border-color: initial; max-width: 100%; vertical-align: middle; border-width: 0px;" src="" alt></span></p>
</div>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The garden bed has an area of 5419 cm<sup>2</sup>. It is covered with soil to a depth of 2.5 cm.</span></p>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">It is estimated that 1 kilogram of soil occupies 514 cm<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total area to be paved. Give your answer in cm<sup>2</sup>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the area of each brick.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find how many bricks are required to pave the total area.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of BC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down the perimeter of the triangular lawn.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of the lawn.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage of the rectangular area which is to be lawn.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the angle FCH.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance MN from one side of the garden bed to the other, passing through C.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of soil used.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of kilograms of soil required for this garden bed.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Mal is shopping for a school trip. He buys \(50\) tins of beans and \(20\) packets of cereal. The total cost is \(260\) Australian dollars (\({\text{AUD}}\)).</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The triangular faces of a square based pyramid, \({\text{ABCDE}}\), are all inclined at \({70^ \circ }\) to the base. The edges of the base \({\text{ABCD}}\) are all \(10{\text{ cm}}\) and \({\text{M}}\) is the centre. \({\text{G}}\) is the mid-point of \({\text{CD}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation showing this information, taking \(b\) to be the cost of one tin of beans and \(c\) to be the cost of one packet of cereal in \({\text{AUD}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Stephen thinks that Mal has not bought enough so he buys \(12\) more tins of beans and \(6\) more packets of cereal. He pays \(66{\text{ AUD}}\).</span></p>
<p><span>Write down another equation to represent this information.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Stephen thinks that Mal has not bought enough so he buys \(12\) more tins of beans and \(6\) more packets of cereal. He pays \(66{\text{ AUD}}\).</span></span></p>
<p><span>Find the cost of one tin of beans.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Sketch the graphs of the two equations from parts (a) and (b).</span></p>
<p><span>(ii)    Write down the coordinates of the point of intersection of the two graphs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using the letters on the diagram draw a triangle showing the position of a \({70^ \circ }\) angle.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the height of the pyramid is \(13.7{\text{ cm}}\), to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span></p>
<p><span>(i)     the length of \({\text{EG}}\);</span></p>
<p><span>(ii)    the size of angle \({\text{DEC}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The Great Pyramid of Cheops in Egypt is a square based pyramid. The base of the pyramid is a square of side length 230.4 m and the vertical height is 146.5 m. The Great Pyramid is represented in the diagram below as ABCDV . The vertex V is directly above the centre O of the base. M is the midpoint of BC.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the length of OM .</span></p>
<p><span>(ii) Find the length of VM .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of triangle VBC .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the angle between the line VM and the base of the pyramid is 52° correct to 2 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Ahmed is at point P , a distance <em>x</em> metres from M on horizontal ground, as shown in the following diagram. The size of angle VPM is 27° . Q is a point on MP .</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the size of angle VMP .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Ahmed is at point P , a distance <em>x</em> metres from M on horizontal ground, as shown in the following diagram. The size of angle VPM is 27° . Q is a point on MP .</span></p>
<p><span><img src="" alt></span></p>
<p><span>Using your value of VM from part (a)(ii), find the value of <em>x</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Ahmed is at point P , a distance <em>x</em> metres from M on horizontal ground, as shown in the following diagram. The size of angle VPM is 27° . Q is a point on MP .</span></p>
<p><span><img src="" alt></span></p>
<p><span>Ahmed walks 50 m from P to Q.</span></p>
<p><span>Find the length of QV, the distance from Ahmed to the vertex of the pyramid.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a Ferris wheel that moves with constant speed and completes a rotation every 40 seconds. The wheel has a radius of \(12\) m and its lowest point is \(2\) m above the ground.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Initially, a seat C is vertically below the centre of the wheel, O. It then rotates in an anticlockwise (counterclockwise) direction.</span></p>
<p><span>Write down</span></p>
<p><span>(i)     the height of O above the ground;</span></p>
<p><span>(ii)    the maximum height above the ground reached by C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In a revolution, C reaches points A and B , which are at the same height above the ground as the centre of the wheel. Write down the number of seconds taken for C to first reach A and then B .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The sketch below shows the graph of the function, \(h(t)\) , for the height above ground of C, where \(h\) is measured in metres and \(t\) is the time in seconds, \(0 \leqslant t \leqslant 40\) .</span></p>
<p><span><img src="" alt></span></p>
<p><span><strong>Copy</strong> the sketch and show the results of part (a) and part (b) on your diagram. Label the points clearly with their coordinates.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A contractor is building a house. He first marks out three points A , B and C on the ground such that AB = 5 m , AC = 7 m and angle BAC = 112&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of BC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span>Find the size of angle DBC .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p><img src="images/3c.png" alt> </p>
<p><span>Find the area of the quadrilateral ABDC.</span></p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span> </span></p>
<p><span>The contractor digs up and removes the soil under the quadrilateral ABDC to a depth of 50 cm for the foundation of the house.</span></p>
<p><span>Find the volume of the soil removed. Give your answer in <strong>m<sup>3</sup></strong> .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span> </span></p>
<p><span>The contractor digs up and removes the soil under the quadrilateral ABDC to a depth of 50 cm for the foundation of the house.</span></p>
<p><span>To transport the soil removed, the contractor uses cylindrical drums with a diameter of 30 cm and a height of 40 cm.</span> </p>
<p><span>(i) Find the volume of a drum. Give your answer in <strong>m<sup>3</sup> </strong>.</span></p>
<p><span>(ii) Find the minimum number of drums required to transport the soil removed.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Francesca is a chef in a restaurant. She cooks eight chickens and records their masses and cooking times. The mass <em>m</em> of each chicken, in kg, and its cooking time <em>t</em>, in minutes, are shown in the following table.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the relationship between the mass of a chicken and its cooking time. Use 2 cm to represent 0.5 kg on the horizontal axis and 1 cm to represent 10 minutes on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data</span></p>
<p><span>(i) the mean mass, \(\bar m\) ;</span></p>
<p><span>(ii) the mean cooking time, </span><span><span>\(\bar t\)</span> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Label the point \({\text{M}}(\bar m,\bar t)\) on the scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on the scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your line of best fit, estimate the cooking time, in minutes, for a 1.7 kg chicken.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the Pearson’s product–moment correlation coefficient, <em>r</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your value for <em>r</em> , comment on the correlation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cooking time of an additional 2.0 kg chicken is recorded. If the mass and cooking time of this chicken is included in the data, the correlation is weak.</span></p>
<p><span>(i) Explain how the cooking time of this additional chicken might differ from that of the other eight chickens.</span></p>
<p><span>(ii) Explain how a new line of best fit might differ from that drawn in part (d).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The Tower of Pisa is well known worldwide for how it leans.</p>
<p>Giovanni visits the Tower and wants to investigate how much it is leaning. He draws a diagram&nbsp;showing a non-right triangle, ABC.</p>
<p>On Giovanni&rsquo;s diagram the length of AB is 56 m, the length of BC is 37 m, and angle ACB is 60&deg;.&nbsp;AX is the perpendicular height from A to BC.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Giovanni&rsquo;s tourist guidebook says that the actual horizontal displacement of the Tower,&nbsp;BX, is 3.9 metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni’s diagram to show that angle ABC, the angle at which the Tower is leaning relative to the<br>horizontal, is 85° to the nearest degree.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to calculate the length of AX.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to find the length of BX, the horizontal displacement of the Tower.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error on Giovanni’s diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giovanni adds a point D to his diagram, such that BD = 45 m, and another triangle is formed.</p>
<p><img src=""></p>
<p>Find the angle of elevation of A from D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>