File "SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 5/SL-paper1html
File size: 724.2 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation of the straight line \({L_1}\) is \(y = 2x - 3.\)</p>
<p>Write down the \(y\)-intercept of \({L_1}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_1}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_2}\) is parallel to \({L_1}\) and passes through the point \((0,\,\,3)\) .</p>
<p>Write down the equation of \({L_2}\) .</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_3}\) is perpendicular to \({L_1}\) and passes through the point \(( - 2,\,\,6).\)</p>
<p>Write down the gradient of \({L_3}.\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \({L_3}\) . Give your answer in the form \(ax + by + d = 0\) , where \(a\) , \(b\) and \(d\) are integers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The equation of a line <em>L</em><sub>1</sub> is \(2x + 5y = &minus;4\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of the line <em>L</em><sub>1</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A second line <em>L</em><sub>2</sub> is perpendicular to <em>L</em><sub>1</sub>.</span></p>
<p><span>Write down the gradient of <em>L</em><sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The point (5, 3) is on <em>L</em><sub>2</sub>.</span></p>
<p><span>Determine the equation of <em>L</em><sub>2</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> intersect at point P.</span></p>
<p><span>Using your graphic display calculator or otherwise, find the coordinates of P.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Triangle \({\text{ABC}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> is such that \({\text{AC}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> is \(7{\text{ cm}}\), angle \({\text{ABC}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> is \({65^ \circ }\) and angle \({\text{ACB}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> is \({30^ \circ }\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the triangle writing in the side length and angles.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of \({\text{AB}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of triangle \({\text{ABC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The equation of the line \({R_1}\) is \(2x + y - 8 = 0\) . The line \({R_2}\) is perpendicular to \({R_1}\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of \({R_2}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The point of intersection of \({R_1}\) and \({R_2}\) is \((4{\text{, }}k)\) .</span><br><span>Find</span><br><span>(i)     the value of \(k\) ;</span><br><span>(ii)    the equation of \({R_2}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A type of candy is packaged in a right circular cone that has volume \({\text{100 c}}{{\text{m}}^{\text{3}}}\) and vertical height 8 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.14.55.png" alt="M17/5/MATSD/SP1/ENG/TZ1/09"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius, \(r\), of the circular base of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the slant height, \(l\), of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the curved surface area of the cone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The straight line, <em>L</em><sub>1</sub>, has equation <em>y</em> = &minus;2<em>x</em> + 5.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of <em>L</em><sub>1</sub> .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Line <em>L</em><sub>2</sub>, is perpendicular to line <em>L</em><sub>1</sub>, and passes through the point (4, 5) .</span></p>
<p><span>(i) Write down the gradient of <em>L</em><sub>2</sub> .</span></p>
<p><span>(ii) Find the equation of <em>L</em><sub>2</sub> .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Line <em>L</em><sub>2</sub>, is perpendicular to line <em>L</em><sub>1</sub>, and passes through the point (4, 5) .</span></span></p>
<p><span>Write down the coordinates of the point of intersection of <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A cylindrical container with a radius of 8 cm is placed on a flat surface. The container is filled with water to a height of 12 cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.17.11.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12"></p>
</div>

<div class="specification">
<p>A heavy ball with a radius of 2.9 cm is dropped into the container. As a result, the height of the water increases to \(h\) cm, as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_06.18.54.png" alt="M17/5/MATSD/SP1/ENG/TZ2/12.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of water in the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(h\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;"><em>P</em> (4, 1) and <em>Q</em> (0, &ndash;5) are points on the coordinate plane.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine the</span></p>
<p><span>(i) coordinates of <em>M</em>, the midpoint of <em>P</em> and <em>Q</em>.</span></p>
<p><span>(ii) gradient of the line drawn through <em>P</em> and <em>Q</em>.</span></p>
<p><span>(iii) gradient of the line drawn through <em>M</em>, perpendicular to <em>PQ</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The perpendicular line drawn through <em>M</em> meets the <em>y</em>-axis at <em>R</em> (0, <em>k</em>).</span></p>
<p><span>Find <em>k</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: 'times new roman', times; font-size: medium;">The area of a circle is equal to 8 cm<sup>2</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the radius of the circle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>This circle is the base of a <strong>solid</strong> cylinder of height 25 cm.</span></p>
<p><span>Write down the volume of the <strong>solid</strong> cylinder.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>This circle is the base of a <strong>solid</strong> cylinder of height 25 cm.</span></span></p>
<p><span>Find the <strong>total</strong> surface area of the <strong>solid</strong> cylinder.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Triangle \({\text{ABC}}\) is drawn such that angle </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\text{ABC}}\) </span>is \({90^ \circ }\), angle </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\text{ACB}}\) </span>is \({60^ \circ }\) and </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\text{AB}}\) </span>is \(7.3{\text{ cm}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Sketch a diagram to illustrate this information. Label the points \({\text{A, B, C}}\). Show the angles \({90^ \circ }\), \({60^ \circ }\) and the length \(7.3{\text{ cm}}\) on your diagram.</span></p>
<p><span>(ii) Find the length of \({\text{BC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Point </span><span><span><span>\({\text{D}}\)</span></span> is on the straight line </span><span><span><span>\({\text{AC}}\)</span></span> extended and is such that angle </span><span><span><span>\({\text{CDB}}\)</span></span> is \({20^ \circ }\).</span></p>
<p><span>(i) Show the point </span><span><span><span>\({\text{D}}\)</span></span> and the angle \({20^ \circ }\) on your diagram.</span></p>
<p><span>(ii) Find the size of angle </span><span><span><span>\({\text{CBD}}\)</span></span>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A and B are points on a straight line as shown on the graph below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the <em>y</em>-intercept of the line AB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of the line AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The acute angle between the line AB and the <em>x</em>-axis is <em>θ</em>.</span></p>
<p><span>Show <em>θ</em> on the diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The acute angle between the line AB and the <em>x</em>-axis is <em>θ</em></span></span><span><span>.</span></span></p>
<p><span>Calculate the size of <em>θ</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span>The following diagrams show six lines with equations of the form <em>y</em> =<em>mx</em> +<em>c</em>.</span></p>
<p><span><img src="" alt></span></p>
<p><span>In the table below there are four possible conditions for the pair of values <em>m</em> and <em>c</em>. Match each of the given conditions with one of the lines drawn above.</span></p>
<p><span><img src="" alt></span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A ladder is standing on horizontal ground and leaning against a vertical wall. The length of the ladder is \(4.5\) metres. The distance between the bottom of the ladder and the base of the wall is \(2.2\) metres.</p>
<p>Use the above information to sketch a labelled diagram showing the ground, the ladder and the wall.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance between the top of the ladder and the base of the wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>obtuse</strong> angle made by the ladder with the ground.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The quadrilateral ABCD has AB = 10 cm, AD = 12 cm and CD = 7 cm.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The size of angle ABC is 100&deg; and the size of angle ACB is 50&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of AC in centimetres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of angle ADC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The straight line, <em>L</em><sub>1</sub>, has equation \(2y &minus; 3x =11\). The point A has coordinates (6, 0).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason why <em>L</em><sub>1</sub> <strong>does not</strong> pass through A.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of <em>L</em><sub>1</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em><sub>2</sub> is a line perpendicular to <em>L</em><sub>1</sub>. The equation of <em>L</em><sub>2</sub> is \(y = mx + c\).</span></p>
<p><span>Write down the value of <em>m</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>L</em><sub>2</sub> <strong>does</strong> pass through A.</span></p>
<p><span>Find the value of <em>c</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The diagram shows a triangle \({\rm{ABC}}\). The size of angle \({\rm{C\hat AB}}\) is \(55^\circ\) and the length of \({\rm{AM}}\)&nbsp;is \(10\) m, where \({\rm{M}}\)&nbsp;is the midpoint of \({\rm{AB}}\). Triangle \({\rm{CMB}}\)&nbsp;is isosceles with \({\text{CM}} = {\text{MB}}\)<span class="s1">.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_14.30.17.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the length of \({\rm{MB}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the size of angle \({\rm{C\hat MB}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the length of \({\rm{CB}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The coordinates of point A are (&minus;4, <em>p</em>) and the coordinates of point B are (2, &minus;3) .</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The mid-point of the line segment AB, has coordinates (<em>q</em>, 1) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of</span></p>
<p><span>(i) <em>q</em> ;</span></p>
<p><span>(ii) <em>p</em> .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows a wheelchair ramp, \({\text{A}}\), designed to descend from a height of \(80{\text{ cm}}\).</span></p>
<div style="text-align: center;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.39.20.png" alt></div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the diagram above to calculate the gradient of the ramp.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient for a <strong>safe </strong>descending wheelchair ramp is \( - \frac{1}{{12}}\).</span></p>
<p><span>Using your answer to part (a), comment on why wheelchair ramp \({\text{A}}\) is <strong>not safe</strong>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of a second wheelchair ramp, B, is \(2x + 24y - 1920 = 0\).</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.42.07.png" alt><br></span></p>
<p><span>(i)     Determine whether wheelchair ramp \({\text{B}}\) is safe or not. Justify your answer.</span></p>
<p><span>(ii)     Find the horizontal distance of wheelchair ramp \({\text{B}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In the diagram, \({\text{B}}\hat {\text{A}}{\text{C}} = {90^ \circ }\) . The length of the three sides are \(x{\text{ cm}}\), \((x + 7){\text{ cm}}\) and \((x + 8){\text{ cm}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down and <strong>simplify</strong> a quadratic equation in \(x\) which links the three sides of the triangle.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the quadratic equation found in part (a).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of the perimeter of the triangle.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The diagram shows the straight line \({L_1}\), which intersects the \(x\)-axis</span>&nbsp;at \({\text{A}}(6,{\text{ }}0)\) <span class="s1">and the \(y\)-ax</span>is at \({\text{B}}(0,{\text{ }}2)\) <span class="s1">.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2015-12-18_om_17.19.23.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the coordinates of <span class="s1">M</span>, the midpoint of line segment <span class="s1">AB</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the gradient of \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The line \({L_2}\) is parallel to \({L_1}\) </span>and passes through the point \((3,{\text{ }}2)\)<span class="s1">.</span></p>
<p class="p2">Find the equation of \({L_2}\). Give your answer in the form \(y = mx + c\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A straight line, \({L_1}\) , has equation \(x + 4y + 34 = 0\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of \({L_1}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of line \({L_2}\) is \(y = mx\) . \({L_2}\) is perpendicular to \({L_1}\) . </span></p>
<p><span>Find the value of \(m\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of line \({L_2}\) is \(y = mx\) . \({L_2}\) is perpendicular to \({L_1}\) . </span></p>
<p><span>Find the coordinates of the point of intersection of the lines \({L_1}\) and \({L_2}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The equation of line \({L_1}\) is \(y = 2.5x + k\). Point \({\text{A}}\) \(\,(3,\, - 2)\) lies on \({L_1}\).</p>
<p>Find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and intersects \({L_1}\) at point \({\text{A}}\).</p>
<p>Write down the gradient of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \({L_2}\). Give your answer in the form \(y = mx + c\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write your answer to part (c) in the form \(ax + by + d = 0\)  where \(a\), \(b\) and \(d \in \mathbb{Z}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The straight line, <em>L</em><sub>1</sub>, has equation \(y = - \frac{1}{2}x - 2\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the <em>y</em> intercept of <em>L</em><sub>1</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of <em>L</em><sub>1</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line <em>L</em><sub>2</sub> is perpendicular to <em>L</em><sub>1</sub> and passes through the point (3, 7).</span></p>
<p><span>Write down the gradient of the line <em>L</em><sub>2</sub>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line <em>L</em><sub>2</sub> is perpendicular to <em>L</em><sub>1</sub> and passes through the point (3, 7).</span></p>
<p><span>Find the equation of <em>L</em><sub>2</sub>. Give your answer in the form <em>ax</em> + <em>by</em> + <em>d</em> = 0 where \(a,{\text{ }}b,{\text{ }}d \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A hotel has a rectangular swimming pool. Its length is \(x\)&nbsp;metres, its width is \(y\)&nbsp;metres and its perimeter is \(44\) metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down an equation for \(x\) and \(y\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The area of the swimming pool is \({\text{112}}{{\text{m}}^2}\).</p>
<p class="p1">Write down a second equation for \(x\) and \(y\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to find the value of \(x\) and the value of \(y\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">An Olympic sized swimming pool is \(50\) m long and \(25\) m wide.</p>
<p class="p1">Determine the area of the hotel swimming pool as a percentage of the area of an Olympic sized swimming pool.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A cuboid has the following dimensions: length = 8.7 cm, width = 5.6 cm and height = 3.4 cm.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the <strong>exact</strong> value of the volume of the cuboid, in cm<sup>3</sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write your answer to part (a) correct to</span></p>
<p><span>(i) one decimal place;</span></p>
<p><span>(ii) three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write your answer to <strong>part (b)(ii)</strong> in the form \(a \times 10^k\), where \(1 \leqslant a &lt; 10 , k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The coordinates of the vertices of a triangle ABC are A (4, 3), B (7, &ndash;3) and C (0.5, <em>p</em>).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of the line AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that the line AC is perpendicular to the line AB</span></p>
<p><span>write down the gradient of the line AC.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that the line AC is perpendicular to the line AB</span></p>
<p><span>find the value of <em>p</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b, ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The coordinates of point A are \((6,{\text{ }} - 7)\) and the coordinates of point B are \(( - 6,{\text{ }}2)\). Point M is the midpoint of AB.</p>
</div>

<div class="specification">
<p>\({L_1}\) is the line through A and B.</p>
</div>

<div class="specification">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and passes through M.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in the form \(y = mx + c\), the equation of \({L_2}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A satellite travels around the Earth in a circular orbit \(500\) kilometres above the Earth&rsquo;s surface. The radius of the Earth is taken as \(6400\) kilometres.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the radius of the satellite’s orbit.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance travelled by the satellite in one orbit of the Earth. Give your answer correct to the nearest km.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down your answer to (b) in the form \(a \times {10^k}\) , where \(1 \leqslant a &lt; 10{\text{, }}k \in \mathbb{Z}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Chocolates in the shape of spheres are sold in boxes of 20.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Each chocolate has a radius of 1 cm.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of 1 chocolate.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the volume of 20 chocolates.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The diagram shows the chocolate box from above. The 20 chocolates fit perfectly in the box with each chocolate touching the ones around it or the sides of the box.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.27.38.png" alt><br></span></p>
<p><span>Calculate the volume of the box.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The diagram shows the chocolate box from above. The 20 chocolates fit perfectly in the box with each chocolate touching the ones around it or the sides of the box.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.27.38_1.png" alt><br></span></p>
<p><span>Calculate the volume of empty space in the box.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In the diagram, triangle ABC is isosceles. AB = AC and angle ACB is 32&deg;. The length of side AC is <em>x</em> cm.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle CBA.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle CAB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The area of triangle ABC is 360 cm<sup>2</sup>. Calculate the length of side AC. Express your answer in <strong>millimetres</strong>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A triangular postage stamp, ABC, is shown in the diagram below, such that \({\text{AB}} = 5{\text{ cm}},{\rm{ B\hat AC}} = 34^\circ ,{\rm{ A\hat BC}} = 26^\circ \) and \({\rm{A\hat CB}} = 120^\circ \).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.34.31.png" alt="M17/5/MATSD/SP1/ENG/TZ1/13"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of BC.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of the postage stamp.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The equation of the line \({L_1}\) is \(2x + y = 10\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>the gradient of \({L_1}\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the \(y\)-intercept of \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The line \({L_2}\) is parallel to \({L_1}\) </span>and passes through the point \({\text{P}}(0,{\text{ }}3)\)<span class="s1">.</span></p>
<p class="p2">Write down the equation of \({L_2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The line \({L_2}\) is parallel to \({L_1}\) </span>and passes through the point \({\text{P}}(0,{\text{ }}3)\)<span class="s1">.</span></p>
<p class="p1">Find the \(x\)-coordinate of the point where \({L_2}\) crosses the \(x\)-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A right pyramid has apex \({\text{V}}\) and rectangular base \({\text{ABCD}}\), with \({\text{AB}} = 8{\text{ cm}}\), \({\text{BC}} = 6{\text{ cm}}\) and \({\text{VA}} = 13{\text{ cm}}\). The vertical height of the pyramid is \({\text{VM}}\)<span class="s1">.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_06.32.41.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate \({\text{VM}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the volume of the pyramid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The straight line, <em>L</em>, has equation \(2y - 27x - 9 = 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sarah wishes to draw the tangent to \(f (x) = x^4\) parallel to <em>L</em>.</span></p>
<p><span>Write down \(f ′(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the <em>x</em> coordinate of the point at which the tangent must be drawn.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(f (x)\) at this point.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c, ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The length of one side of a rectangle is 2 cm longer than its width.</span></p>
<p><span>If the smaller side is <em>x</em> cm, find the perimeter of the rectangle in terms of <em>x</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The length of one side of a rectangle is 2 cm longer than its width.</span></p>
<p><span>The perimeter of a square is equal to the perimeter of the rectangle in part (a).</span></p>
<p><span>Determine the length of each side of the square in terms of <em>x</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The length of one side of a rectangle is 2 cm longer than its width.</span></p>
<p><span>The perimeter of a square is equal to the perimeter of the rectangle in part (a).</span></p>
<p><span>The sum of the areas of the rectangle and the square is \(2x^2 + 4x +1\) (cm<sup>2</sup>).</span></p>
<p><span>(i) Given that this sum is 49 cm<sup>2</sup>, find <em>x</em>.</span></p>
<p><span>(ii) Find the area of the square.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two fixed points, A and B, are 40&thinsp;m apart on horizontal ground. Two straight ropes, AP and BP, are attached to the same point, P, on the base of a hot air balloon which is vertically above the line AB. The length of BP is 30&thinsp;m and angle BAP is 48&deg;.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Angle APB is acute.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram, draw and label with an <em>x</em> the angle of depression of B from P.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of angle APB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the size of the angle of depression of B from P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The base of a prism is a <strong>regular hexagon</strong>. The centre of the hexagon is O and the length of OA is 15 cm.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle AOB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the triangle AOB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The height of the prism is 20 cm.</span></p>
<p><span>Find the volume of the prism.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A line joins the points A(2, 1) and B(4, 5).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let M be the midpoint of the line segment AB.</span></p>
<p><span>Write down the coordinates of M.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let M be the midpoint of the line segment AB.</span></p>
<p><span>Find the equation of the line perpendicular to AB and passing through M.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>In this question, give all answers to two decimal places.</strong></p>
<p>Karl invests 1000 US dollars (USD) in an account that pays a nominal annual interest of 3.5%, <strong>compounded quarterly</strong>. He leaves the money in the account for 5 years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of money he has in the account after 5 years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amount of <strong>interest</strong> he earned after 5 years.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Karl decides to donate this <strong>interest</strong> to a charity in France. The charity receives 170 euros (EUR). The exchange rate is 1 USD = <em>t</em> EUR.</p>
<p>Calculate the value of <em>t</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A rectangle is 2680 cm long and 1970 cm wide.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the perimeter of the rectangle, giving your answer in the form \(a \times {10^k}\), where \(1 \leqslant a \leqslant 10\) and \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the rectangle, giving your answer correct to the nearest thousand square centimetres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A store sells bread and milk. On Tuesday, 8 loaves of bread and 5 litres of milk were sold for $21.40. On Thursday, 6 loaves of bread and 9 litres of milk were sold for $23.40. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If \(b =\) the price of a loaf of bread and \(m =\) the price of one litre of milk, Tuesday&rsquo;s sales can be written</span> <span style="font-size: medium; font-family: times new roman,times;">as \(8b + 5m = 21.40\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using simplest terms, write an equation in <em>b</em> and <em>m</em> for Thursday’s sales.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>b</em> and <em>m</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a sketch, in the space provided, to show how the prices can be found graphically.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The straight line \(L\) passes through the points \({\text{A}}( - 1{\text{, 4}})\) and \({\text{B}}(5{\text{, }}8)\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of \(L\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of \(L\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) also passes through the point \({\text{P}}(8{\text{, }}y)\) . Find the value of \(y\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The length of a square garden is (<em>x</em> + 1) m. In one of the corners a square of 1 m length is used only for grass. The rest of the garden is only for planting roses and is shaded in the diagram below.</span></p>
<p>&nbsp;</p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The area of the shaded region is <em>A</em> .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for <em>A</em> in terms of <em>x</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> given that <em>A</em> = 109.25 m<sup>2</sup>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The owner of the garden puts a fence around the shaded region. Find the length of this fence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A rectangular cuboid has the following dimensions.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">Length&nbsp;&nbsp;&nbsp;&nbsp; 0.80 metres&nbsp;&nbsp;&nbsp;&nbsp; (AD)</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">Width&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0.50 metres&nbsp;&nbsp;&nbsp;&nbsp; (DG)</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">Height&nbsp;&nbsp;&nbsp;&nbsp; 1.80 metres&nbsp;&nbsp;&nbsp;&nbsp; (DC)</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AG.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AF.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of the angle between AF and AG.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a triangle ABC in which AC = 17 cm. M is the midpoint of AC.</span><br><span style="font-family: times new roman,times; font-size: medium;">Triangle ABM is equilateral.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle MCB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.1.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down </span><span>the length of BM in cm.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle BMC.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of BC in cm.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Tom stands at the top, T , of a vertical cliff \(150{\text{ m}}\) high and sees a fishing boat, F , and a ship, S . B represents a point at the bottom of the cliff directly below T . The angle of depression of the ship is \({40^ \circ }\) and the angle of depression of the fishing boat is \({55^ \circ }\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate, SB, the distance between the ship and the bottom of the cliff.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate, SF, the distance between the ship and the fishing boat. Give your answer correct to the nearest metre.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Line \(L\) intersects the \(x\)-axis at point A and the \(y\)-axis at point B, as shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.18.01.png" alt="M17/5/MATSD/SP1/ENG/TZ2/04"></p>
<p>The length of line segment OB is three times the length of line segment OA, where O is the origin.</p>
</div>

<div class="specification">
<p>Point \({\text{(2, 6)}}\) lies on \(L\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of \(L\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of \(L\) in the form \(y = mx + c\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(x\)-coordinate of point A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In triangle ABC, BC = 8 m, angle ACB = 110&deg;, angle CAB = 40&deg;, and angle ABC = 30&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of AC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of triangle ABC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Assume the Earth is a perfect sphere with radius <span class="s1">6371 km</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the volume of the Earth in \({\text{k}}{{\text{m}}^3}\)<span class="s1">. Give your answer in the form \(a \times {10^k}\)</span>, where \(1 \leqslant a &lt; 10\) <span class="s1">and \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The volume of the Moon is \(2.1958 \times {10^{10}}\;{\text{k}}{{\text{m}}^3}\)<span class="s1">.</span></p>
<p class="p2">Calculate how many times greater in volume the Earth is compared to the Moon.</p>
<p class="p2">Give your answer correct to the nearest <strong>integer</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">In triangle \({\text{ABC}}\), \({\text{AC}} = 20 {\text{ cm}}\), \({\text{BC}} = 12 {\text { cm}}\) and \({\rm{A\hat BC}} = 90^\circ\)<span style="font: 16.0px 'Times New Roman';">.</span></span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font: normal normal normal 16px/normal 'Times New Roman'; font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-03_om_05.19.59.png" alt><span class="Apple-style-span" style="display: inline; float: none;">&nbsp;&nbsp; &nbsp; <strong><em>diagram not to scale</em></strong></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of \({\text{AB}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({\text{D}}\) is the point on \({\text{AB}}\) such that \(\tan ({\rm{D\hat CB}}) = 0.6\).</span></p>
<p><span>Find the length of \({\text{DB}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>\({\text{D}}\)</span> is the point on \({\text{AB}}\) such that \(\tan ({\rm{D\hat CB}}) = 0.6\).</span></p>
<p><span>Find the area of triangle \({\text{ADC}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">AC </span>is a vertical communications tower with its base at <span class="s1">C</span>.</p>
<p class="p1">The tower has an observation deck, <span class="s1">D</span>, three quarters of the way to the top of the tower, <span class="s1">A</span>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_10.32.25.png" alt="N16/5/MATSD/SP1/ENG/TZ0/11"></p>
<p class="p1">From a point <span class="s1">B</span>, on horizontal ground <span class="s1">250 m </span>from <span class="s1">C</span>, the angle of elevation of <span class="s1">D </span>is <span class="s1">48&deg;</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Calculate </span><span class="s2">CD</span>, the height of the observation deck above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the angle of depression from <span class="s1">A </span><span class="s2">to </span><span class="s1">B</span><span class="s2">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tuti has the following polygons to classify: rectangle (R), rhombus (H), isosceles triangle (I), regular pentagon (P), and scalene triangle (T).</p>
<p class="p1">In the Venn diagram below, set \(A\)&nbsp;consists of the polygons that have at least one pair of parallel sides, and set \(B\)&nbsp;consists of the polygons that have at least one pair of equal sides.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-03_om_08.19.15.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the Venn diagram by placing the letter corresponding to each polygon in the appropriate region. For example, R has already been placed, and represents the rectangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State which polygons from Tuti’s list are elements of</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(A \cap B\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\((A \cup B)'\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">On a map three schools A, B and C are situated as shown in the diagram.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">Schools A and B are 625 metres apart.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">Angle ABC = 102&deg; and BC = 986 metres.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the distance between A and C.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of angle BAC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">An observatory is built in the shape of a cylinder with a hemispherical roof on the top as shown in the diagram. The height of the cylinder is 12 m and its radius is 15 m.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the observatory.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The hemispherical roof is to be painted. </span></p>
<p><span>Calculate the area that is to be painted.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of the line \(y = 3x + 4\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line which is perpendicular to the line \(y = 3x + 4\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the line which is perpendicular to \(y = 3x + 4\) and which passes through the point \((6{\text{, }}7)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of the point of intersection of these two lines.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A room is in the shape of a cuboid. Its floor measures \(7.2\) m by \(9.6\) m and its height is \(3.5\) m.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AG.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle that AG makes with the floor.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(f(x) = {x^4}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(f'(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Point \({\text{P}}(2,6)\) lies on the graph of \(f\).</span></p>
<p><span>Find the gradient of the tangent to the graph of \(y = f(x)\) at \({\text{P}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Point \({\text{P}}(2,16)\) lies on the graph of \(f\).</span></p>
<p><span>Find the equation of the normal to the graph at \({\text{P}}\). Give your answer in the form \(ax + by + d = 0\), where \(a\), \(b\) and \(d\) are integers.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Emily&rsquo;s kite ABCD is hanging in a tree. The plane ABCDE is vertical.</p>
<p>Emily stands at point E at some distance from the tree, such that EAD is a straight line and angle BED = 7&deg;. Emily knows BD = 1.2 metres and angle BDA = 53&deg;, as shown in the diagram</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.18.28.png" alt="N17/5/MATSD/SP1/ENG/TZ0/10"></p>
</div>

<div class="specification">
<p>T is a point at the base of the tree. ET is a horizontal line. The angle of elevation of A from E is 41&deg;.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of EB.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the angle of elevation of B from E.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the vertical height of B above the ground.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A cuboid has a rectangular base of width \(x\)<span class="s1"><em>&nbsp;</em>cm </span>and length <span class="s1">2\(x\)&nbsp;cm </span>. The height of the cuboid is \(h\)&nbsp;<span class="s1">cm </span>. The total length of the edges of the cuboid is \(72\)<span class="s1">&nbsp;cm</span>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_08.27.58.png" alt></p>
<p class="p1">The volume, \(V\), of the cuboid can be expressed as \(V = a{x^2} - 6{x^3}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(x\) that makes the volume a maximum.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows triangle ABC in which angle BAC \( = 30^\circ \), BC \( = 6.7\) cm and AC \( = 13.4\) cm.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Nadia makes an accurate drawing of triangle ABC. She measures angle BAC and finds it to be 29°.</span></p>
<p><span>Calculate the percentage error in Nadia’s measurement of angle BAC.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider \(f:x \mapsto {x^2} - 4\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f ′(x)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let <em>L</em> be the line with equation <em>y</em> = 3<em>x</em> + 2.</span></p>
<p><span>Write down the gradient of a line parallel to <em>L</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Let <em>L</em> be the line with equation <em>y</em> = 3<em>x</em> + 2.</span></p>
<p><span>Let P be a point on the curve of <em>f</em>. At P, the tangent to the curve is parallel to <em>L</em>. Find the coordinates of P.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The number of apartments in a housing development has been increasing by a constant amount every year.</p>
<p class="p1">At the end of the first year the number of apartments was 150, and at the end of the sixth year the number of apartments was 600.</p>
<p class="p1">The number of apartments, \(y\), can be determined by the equation \(y = mt + n\), where \(t\)<em>&nbsp;</em>is the time, in years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(m\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what \(m\) represents <strong>in this context</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(n\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what \(n\) represents <strong>in this context</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In the following diagram, <span class="s1">ABCD </span>is the square base of a right pyramid with vertex <span class="s1">V</span>. The centre of the base is <span class="s1">O</span>. The diagonal of the base, <span class="s1">AC</span>, is <span class="s1">8 cm </span>long. The sloping edges are 10 cm <span class="s2">long.</span></p>
<p class="p1" style="text-align: center;"><span class="s2"><img src="images/Schermafbeelding_2015-12-20_om_17.33.52.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the length of \({\text{AO}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the size of the angle that the sloping edge \({\text{VA}}\)<span class="s1"> </span>makes with the base of the pyramid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence, or otherwise, find the area of the triangle \({\text{CAV}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The surface of a red carpet is shown below. The dimensions of the carpet are in metres.</span></p>
<div style="text-align: center;"><img src="images/Schermafbeelding_2014-09-02_om_14.31.51.png" alt></div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for the area, \(A\), in \({{\text{m}}^2}\), of the carpet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The area of the carpet is \({\text{10 }}{{\text{m}}^2}\).</span></p>
<p><span>Calculate the value of \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The area of the carpet is \({\text{10 }}{{\text{m}}^2}\).</span></p>
<p><span>Hence, write down the value of the length and of the width of the carpet, in metres.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">\(75\) metal spherical cannon balls, each of diameter \(10{\text{ cm}}\), were excavated from a Napoleonic War battlefield.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total volume of all \(75\) metal cannon balls excavated.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cannon balls are to be melted down to form a sculpture in the shape of a cone. The base radius of the cone is \(20{\text{ cm}}\).</span></p>
<p><span>Calculate the height of the cone, assuming that no metal is wasted.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A balloon in the shape of a sphere is filled with helium until the radius is <span class="s1">6 cm</span>.</p>
</div>

<div class="specification">
<p class="p1">The volume of the balloon is increased by <span class="s1">40%</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the volume of the balloon.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the radius of the balloon following this increase.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">G&uuml;nter is at Berlin Tegel Airport watching the planes take off. He observes a plane that is at an angle of elevation of \(20^\circ\) from where he is standing at point \({\text{G}}\). The plane is at a height of 350 metres. This information is shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.52.24.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the horizontal distance, \({\text{GH}}\), of the plane from Günter. <strong>Give your answer to the nearest metre.</strong></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The plane took off from a point \({\text{T}}\), which is \(250\) metres from where Günter is standing, as shown in the following diagram.</span></p>
<div>
<br><img src="images/Schermafbeelding_2014-09-02_om_14.54.36.png" alt>
</div>
<div>
<p><span>Using your answer from part (a), calculate the angle \({\text{ATH}}\), the takeoff angle of the plane.</span></p>
</div>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A child&rsquo;s toy consists of a hemisphere with a right circular cone on top. The height of the cone is \(12{\text{ cm}}\) and the radius of its base is \(5{\text{ cm}}\) . The toy is painted red.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length, \(l\), of the slant height of the cone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area that is painted red.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows the line PQ, whose equation is <em>x</em> + 2<em>y</em> = 12. The line intercepts the axes at P and Q respectively.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the coordinates of P and of Q.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A second line with equation <em>x</em> − <em>y</em> = 3 intersects the line PQ at the point A. Find the coordinates of A.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The mid-point, M, of the line joining A(<em>s</em> , 8) to B(&minus;2, <em>t</em>) has coordinates M(2, 3).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the values of <em>s</em> and <em>t</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the straight line perpendicular to AB, passing through the point M.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows points A(2, 8), B(14, 4) and C(4, 2). M is the midpoint of AC.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of M.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the gradient of the line AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the line parallel to AB that passes through M.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Line <em>L</em> is given by the equation 3<em>y</em> + 2<em>x</em> = 9 and point P has coordinates (6 , &ndash;5).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain why point P is not on the line <em>L</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of line <em>L</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the gradient of a line perpendicular to line <em>L</em>.</span></p>
<p><span>(ii) Find the equation of the line perpendicular to <em>L</em> and passing through point P.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A lampshade, in the shape of a cone, has a wireframe consisting of a circular ring and four straight pieces of equal length, attached to the ring at points A, B, C and D.</p>
<p>The ring has its centre at point O and its radius is 20 centimetres. The straight pieces meet at point V, which is vertically above O, and the angle they make with the base of the lampshade is 60&deg;.</p>
<p>This information is shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.16.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the length of one of the straight pieces in the wireframe.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total length of wire needed to construct this wireframe. Give your answer in centimetres correct to the nearest millimetre.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A building company has many rectangular construction sites, of varying widths, along a road.</p>
<p class="p1">The area, \(A\), of each site is given by the function</p>
<p class="p1">\[A(x) = x(200 - x)\]</p>
<p class="p1">where \(x\) is the <strong>width </strong>of the site in metres and \(20 \leqslant x \leqslant 180\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Site <span class="s1">S </span>has a width of \(20\)<span class="s1"> m</span>. Write down the area of <span class="s1">S</span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Site <span class="s1">T </span>has the same area as site <span class="s1">S</span>, but a different width. Find the width of <span class="s1">T</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When the width of the construction site is \(b\) metres, the site has a maximum area.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the value of \(b\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Write down the maximum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The range of \(A(x)\) is \(m \leqslant A(x) \leqslant n\).</p>
<p class="p1">Hence write down the value of \(m\) and of \(n\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The distance \(d\) </span>from a point \({\text{P}}(x,{\text{ }}y)\) to the point \({\text{A}}(1,{\text{ }} - 2)\) <span class="s1">is given by \(d = \sqrt {{{(x - 1)}^2} + {{(y + 2)}^2}} \)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the distance from \({\text{P}}(100,{\text{ }}200)\) to \({\text{A}}\)<span class="s1">. Give your answer correct to two decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down your answer to <strong>part (a) </strong>correct to three significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down your answer to <strong>part (b) </strong>in the form \(a \times {10^k}\), where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The diagram shows the points M(<em>a</em>, 18) and B(24, 10) . The straight line BM intersects the <em>y</em>-axis at A(0, 26). M is the midpoint of the line segment AB.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-20_om_13.24.23.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(a\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the line AB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether triangle OAM is a right-angled triangle. Justify your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The equation of line \({L_1}\) is \(y =&nbsp; - \frac{2}{3}x - 2\).</p>
</div>

<div class="specification">
<p>Point P lies on \({L_1}\) and has \(x\)-coordinate \( - 6\).</p>
</div>

<div class="specification">
<p>The line \({L_2}\) is perpendicular to \({L_1}\) and intersects \({L_1}\) when \(x =&nbsp; - 6\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the gradient of \({L_1}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the \(y\)-coordinate of P.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of \({L_2}\). Give your answer in the form \(ax + by + d = 0\), where \(a\), \(b\) and \(d\) are integers.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A child&rsquo;s wooden toy consists of a hemisphere, of radius 9 cm , attached to a cone with the same base radius. O is the centre of the base of the cone and V is vertically above O.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Angle OVB is \({27.9^ \circ }\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><strong><em><span style="font-family: 'times new roman', times; font-size: medium;">Diagram not to scale.</span></em></strong></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-20_om_08.21.27.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate OV, the height of the cone.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of wood used to make the toy.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A shipping container is a cuboid with dimensions \({\text{16 m}}\), \({\text{1}}\frac{{\text{3}}}{{\text{4}}}{\text{ m}}\) and \({\text{2}}\frac{{\text{2}}}{{\text{3}}}{\text{ m}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the <strong>exact</strong> volume of the container. Give your answer as a fraction.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Jim estimates the dimensions of the container as 15 m, 2 m and 3 m and uses these to estimate the volume of the container.</span></p>
<p><span>Calculate the percentage error in Jim’s estimated volume of the container.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A race track is made up of a rectangular shape \(750{\text{ m}}\) by \(500{\text{ m}}\) with semi-circles at each end as shown in the diagram.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Michael drives around the track once at an average speed of \(140{\text{ km}}{{\text{h}}^{ - 1}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance that Michael travels.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Calculate how long Michael takes in</span> <span><strong>seconds</strong>.</span></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows the straight lines \({L_1}\) and \({L_2}\) . The equation of \({L_2}\) is \(y = x\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find</span><br><span>(i)     the gradient of \({L_1}\) ;</span><br><span>(ii)    the equation of \({L_1}\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the shaded triangle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows quadrilateral ABCD in which AB = 13 m , AD = 6 m and DC = 10 m. Angle ADC =120&deg; and angle ABC = 40&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a television show there is a transparent box completely filled with identical cubes. Participants have to estimate the number of cubes in the box. The box is 50 cm wide, 100 cm long and 40 cm tall.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of the box.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Joaquin estimates the volume of one cube to be 500 cm<sup>3</sup>. He uses this value to estimate the number of cubes in the box.</span></p>
<p><span>Find Joaquin’s estimated number of cubes in the box.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The actual number of cubes in the box is 350.</span></p>
<p><span>Find the percentage error in Joaquin’s estimated number of cubes in the box.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The equation of a curve is given as \(y = 2x^{2} - 5x + 4\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\)</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the line <em>L</em> is \(6x + 2y = -1\).</span></p>
<p><span>Find the <em>x</em>-coordinate of the point on the curve \(y = 2x^2 - 5x + 4\) where the tangent is parallel to <em>L</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The volume of a sphere is \(V{\text{&nbsp; =&nbsp; }}\sqrt {\frac{{{S^3}}}{{36\pi }}} \), where \(S\) is its surface area.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The surface area of a sphere is 500 cm<sup>2</sup> .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Calculate the volume of the sphere. Give your answer correct to <strong>two decimal</strong></span> <span><strong>places</strong>.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down your answer to (a) correct to the nearest integer.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down your answer to (b) in the form \(a \times {10^n}\), where \(1 \leqslant a &lt; 10\) and \(n \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The four points A(&minus;6, &minus;11) , B(&minus;2, 7) , C(4, 9) and D(6, 3) define the vertices of a kite.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-02_om_19.53.36.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the distance between points \({\text{B}}\) and \({\text{D}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The distance between points \({\text{A}}\) and \({\text{C}}\) is \(\sqrt {500} \).</p>
<p class="p1">Calculate the area of the kite \({\text{ABCD}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below represents a rectangular flag with dimensions 150 cm by 92 cm. The flag is divided into three regions A, B and C.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total area of the flag.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of <em>y</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The areas of regions A, B, and C are equal.</span></p>
<p><span>Write down the area of region A.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your answers to <strong>parts (b) and (c)</strong>, find the value of <em>x</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In the diagram, \({\text{AD}} = 4{\text{ m}}\), \({\text{AB}} = 9{\text{ m}}\), \({\text{BC}} = 10{\text{ m}}\), \({\text{B}}\hat {\text{D}}{\text{A}} = {90^ \circ }\) and \({\text{D}}\hat {\text{B}}{\text{C}} = {100^ \circ }\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the size of \({\text{A}}\hat {\text{B}}{\text{C}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows a right triangular prism, ABCDEF, in which the face ABCD is a square.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">AF = 8 cm, BF = 9.5 cm, and angle BAF is 90&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AB .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>M is the midpoint of EF .</span></p>
<p><span>Calculate the length of BM .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>M is the midpoint of EF .</span></span></p>
<p><span>Find the size of the angle between BM and the face ADEF .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Tennis balls are sold in cylindrical tubes that contain four balls. The radius of each tennis ball is 3.15 cm and the radius of the tube is 3.2 cm. The length of the tube is 26 cm.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of one tennis ball.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the empty space in the tube when four tennis balls have been placed in it.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the statement<em> p</em>:</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&ldquo;If a quadrilateral is a square then the four sides of the quadrilateral are equal&rdquo;.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the inverse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the converse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether the converse of statement <em>p</em> is always true. Give an example to justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a pyramid \({\text{VABCD}}\) which has a square base of length \(10{\text{ cm}}\) and edges of length \(13{\text{ cm}}\). \({\text{M}}\) is the midpoint of the side \({\text{BC}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of \({\text{VM}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the vertical height of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The average radius of the orbit of the Earth around the Sun is 150 million kilometres.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.06.16_1.png" alt></span></p>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The average radius of the orbit of the Earth around the Sun is 150 million kilometres.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.06.16.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down this radius, in kilometres, in the form \(a \times {10^k}\), where \(1 \leqslant a &lt; 10,{\text{ }}k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The Earth travels around the Sun in one orbit. It takes one year for the Earth to complete one orbit.</span></p>
<p><span>Calculate the distance, in kilometres, the Earth travels around the Sun in one orbit, assuming that the orbit is a circle.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Today is Anna’s 17th birthday.</span></p>
<p><span>Calculate the total distance that Anna has travelled around the Sun, since she was born.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When Bermuda \({\text{(B)}}\), Puerto Rico \({\text{(P)}}\), and Miami \({\text{(M)}}\) are joined on a map using straight lines, a triangle is formed. This triangle is known as the Bermuda triangle.</p>
<p>According to the map, the distance \({\text{MB}}\) is \(1650\,{\text{km}}\), the distance \({\text{MP}}\) is \(1500\,{\text{km}}\) and angle \({\text{BMP}}\) is \(57^\circ \).</p>
<p><img src="" alt></p>
<p>Calculate the distance from Bermuda to Puerto Rico, \({\text{BP}}\).</p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the Bermuda triangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assume that the Earth is a sphere with a radius, \(r\) , of \(6.38 \times {10^3}\,{\text{km}}\) .</p>
<p><img src="" alt></p>
<p>i)     Calculate the surface area of the Earth in \({\text{k}}{{\text{m}}^2}\).</p>
<p>ii)    Write down your answer to part (a)(i) in the form \(a \times {10^k}\) , where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\) .</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The surface area of the Earth that is covered by water is approximately \(3.61 \times {10^8}{\text{k}}{{\text{m}}^2}\) .</p>
<p>Calculate the percentage of the surface area of the Earth that is covered by water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The right pyramid shown in the diagram has a square base with sides of length 40 cm. The height of the pyramid is also 40 cm.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of OB.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of angle OBP.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A snack container has a cylindrical shape. The diameter of the base is \(7.84\,{\text{cm}}\). The height of the container is \(23.4\,{\text{cm}}\). This is shown in the following diagram.</p>
<p><img src="" alt></p>
<p>Write down the radius, in \({\text{cm}}\), of the base of the container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the base of the container.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dan is going to paint the curved surface and the base of the snack container.</p>
<p>Calculate the area to be painted.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the functions&nbsp;\(f\left( x \right) = {x^4} - 2\) and&nbsp;\(g\left( x \right) = {x^3} - 4{x^2} + 2x + 6\)</p>
<p>The functions intersect at points P and Q. Part of the graph of&nbsp;\(y = f\left( x \right)\)&nbsp;and part of the graph of&nbsp;\(y = g\left( x \right)\)&nbsp;are shown on the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of <em>f</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>x</em>-coordinate of P and the <em>x</em>-coordinate of Q.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the values of <em>x</em> for which \(f\left( x \right) &gt; g\left( x \right)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Jos&eacute; stands 1.38 kilometres from a vertical cliff.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express this distance in metres.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>José estimates the angle between the horizontal and the top of the cliff as 28.3° and uses it to find the height of the cliff.</span></p>
<p><span><img src="" alt></span></p>
<p><span><span>Find the height of the cliff according to José’s calculation.<strong> Express your answer in metres, to the nearest whole metre.</strong></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>José estimates the angle between the horizontal and the top of the cliff as 28.3° and uses it to find the height of the cliff.</span></p>
<p><span><img src="" alt></span></p>
<p><span>The actual height of the cliff is 718 metres. Calculate the percentage error made by José when calculating the height of the cliff.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Fabi&aacute;n stands on top of a building, <span class="s1">T</span>, which is on a horizontal street.</p>
<p class="p1">He observes a car, <span class="s1">C</span>, on the street, at an angle of depression of <span class="s1">30&deg;</span>. The base of the building is at <span class="s1">B</span>. The height of the building is <span class="s1">80 </span>metres.</p>
<p class="p1">The following diagram indicates the positions of <span class="s1">T</span>, <span class="s1">B </span>and <span class="s1">C.</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_09.20.36.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show, in the appropriate place on the diagram, <strong>the values </strong>of</p>
<p class="p1">(i)     the height of the building;</p>
<p class="p1">(ii)     the angle of depression.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the distance, <span class="s1">BC</span>, from the base of the building to the car.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Fabián estimates that the distance from the base of the building to the car is <span class="s1">150 </span>metres. Calculate the percentage error of Fabián’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a rectangular based right pyramid VABCD in which \({\text{AD}} = 20{\text{ cm}}\), \({\text{DC}} = 15{\text{ cm}}\) and the height of the pyramid, \({\text{VN}} = 30{\text{ cm}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span><br><span>(i)     the length of AC;</span><br><span>(ii)    the length of VC.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle between VC and the base ABCD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A park in the form of a triangle, ABC, is shown in the following diagram. AB is 79&thinsp;km and BC is 62&thinsp;km. Angle A\(\mathop {\text{B}}\limits^ \wedge&nbsp; \)C is 52&deg;.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of side AC in km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of the park.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Julio is making a wooden pencil case in the shape of a large pencil. The pencil case consists of a cylinder attached to a cone, as shown.</p>
<p>The cylinder has a radius of <em>r</em> cm and a height of 12 cm.</p>
<p>The cone has a base radius of <em>r</em> cm and a height of 10 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the slant height of the cone <strong>in terms of <em>r</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The total external surface area of the pencil case rounded to 3 significant figures is 570 cm<sup>2</sup>.</p>
<p>Using your graphic display calculator, calculate the value of <em>r</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm.<br>A smaller right circular cone has a height of 12 cm and a slant height of 15 cm, and is removed from the top of the larger cone, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the radius of the base of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the cone which has been removed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the curved surface area of the remaining solid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Temi’s sailing boat has a sail in the shape of a right-angled triangle, \({\text{ABC}}{\text{.}}\,\,\,{\text{BC}} = \,\,5.45{\text{m}}\),<br>angle \({\text{CAB}} = {76^{\text{o}}}\) and angle \({\text{ABC}} = {90^{\text{o}}}\).</p>
<p>Calculate \({\text{AC}}\), the height of Temi’s sail.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><img src="" alt></p>
<p>William also has a sailing boat with a sail in the shape of a right-angled triangle, \({\text{TRS}}\).<br>\({\text{RS}}\,\,{\text{ = }}\,\,{\text{2}}{\text{.80m}}\). The area of William’s sail is \({\text{10}}{\text{.7}}\,{{\text{m}}^2}\).</p>
<p>Calculate \({\text{RT}}\), the height of William’s sail.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>FreshWave brand tuna is sold in cans that are in the shape of a cuboid with length \(8\,{\text{cm}}\), width \({\text{5}}\,{\text{cm}}\) and height \({\text{3}}{\text{.5}}\,{\text{cm}}\). HappyFin brand tuna is sold in cans that are cylindrical with diameter \({\text{7}}\,{\text{cm}}\) and height \({\text{4}}\,{\text{cm}}\).</p>
<p><img src="" alt></p>
<p>Find the volume, in \({\text{c}}{{\text{m}}^3}\), of a can of</p>
<p>i)    FreshWave tuna;</p>
<p>ii)   HappyFin tuna.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The price of tuna per \({\text{c}}{{\text{m}}^3}\) is the same for each brand. A can of FreshWave tuna costs \(90\) cents.</p>
<p>Calculate the price, in cents, of a can of HappyFin tuna.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The planet Earth takes one year to revolve around the Sun. Assume that a year is 365 days and the path of the Earth around the Sun is the circumference of a circle of radius \(150000000{\text{ km}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance travelled by the Earth in <strong>one day</strong>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give your answer to part (a) in the form \(a \times {10^k}\) where \(1 \leqslant a \leqslant 10\) and \(k \in \mathbb{Z}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>