File "markSceme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 3/markSceme-SL-paper1html
File size: 1.33 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following propositions.</span></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">p </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Students stay up late.</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">q </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Students fall asleep in class.</span></em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in symbolic form.</span></p>
<p><em><span>If students do not stay up late then they will not fall asleep in class.</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down a reason why the statement \(\neg ( p \vee \neg q)\) is not a contradiction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\neg p \Rightarrow \neg q\)     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for any 2 correct symbols seen in a statement, <em><strong>(A1)</strong></em> for all 3 correct symbols in correct order.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C3)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct column. 4<sup>th</sup> column is follow through from 3<sup>rd</sup>, 5<sup>th</sup> column is follow through from 4<sup>th</sup>.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Not all of last column is F     <em><strong>(R1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(R1)</strong></em><strong>(ft)</strong> if final column does not lead to a contradiction.</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the statement <em>\(p \Rightarrow q\)</em>.</p>
<p class="p1" style="text-align: center;">If I break my arm, then it will hurt.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words, the inverse of <em>\(p \Rightarrow q\)</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-03_om_07.18.13.png" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether the converse and the inverse of an implication are logically equivalent.</p>
<p class="p1">Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">If I do not break my arm, then it will not hurt <span class="Apple-converted-space">    </span><strong><em>(A1)(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<p class="p2"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for “if… then…”</p>
<p class="p1">For Spanish candidates, <strong>only </strong>accept “Si” and “entonces”.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for “not break my arm” and “not hurt” in correct order.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2015-12-03_om_07.19.15.png" alt></p>
<p class="p1"><strong><em><span class="Apple-converted-space">     </span>(A1)(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for each correct column.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">logically equivalent <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">last two columns of the truth table are identical <span class="Apple-converted-space">    </span><strong><em>(R1)</em>(ft) <span class="Apple-converted-space">    </span><em>(C2)</em></strong></p>
<p class="p2"><strong>Notes: </strong>Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong>.</p>
<p class="p1">Follow through from the last two columns of the table in part (a).</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">For events <em>A</em> and <em>B</em>, the probabilities are \({\text{P}}(A) = \frac{4}{13}\) and \({\text{P}}(B) = \frac{5}{13}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If events <em>A</em> and <em>B</em> are mutually exclusive, write down the value of \({\text{P}} (A\cap B)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If events <em>A</em> and <em>B</em> are independent, find the value of \({\text{P}} (A\cap B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If \({\text{P}} (A \cup B) = \frac{7}{13}\), find the value of \({\text{P}} (A \cap B)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\({\rm{P}}(A \cap B) = 0\)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span> \({\rm{P}}(A \cap B) = {\rm{P}}(A) \times {\rm{P}}(B)\)</span></span></p>
<p><span>\( = \frac{4}{{13}} \times \frac{5}{{13}}\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for product of two fractions, decimals or percentages.</span></p>
<p><br><span><span>\({\rm{P}}(A \cap B) = \frac{{20}}{{169}} (= 0.118)\) </span></span>    <span><em><strong>(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{7}{{13}} = \frac{4}{{13}} + \frac{5}{{13}} - {\rm{P}}(A \cap B)\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for \(\frac{4}{{13}} + \frac{5}{{13}}\) seen, <em><strong>(M1)</strong></em> for subtraction of \(\frac{7}{{13}}\) shown.</span></p>
<p><strong><span>OR</span></strong></p>
<p><span>Award <em><strong>(M1)</strong></em> for Venn diagram with 2 intersecting circles, </span><span><em><strong>(A1)</strong></em> for correct probabilities in diagram.</span></p>
<p><br><span>\({\rm{P}}(A \cap B) = \frac{2}{{13}}( = 0.154)\)</span><span>   </span><span>  <em><strong>(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question proved to be difficult with many candidates unaware of the significance of mutually exclusive events in probability. A significant number gave the answer to (b) as the answer to (a).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question proved to be difficult with many candidates unaware of the significance of mutually exclusive events in probability. A significant number gave the answer to (b) as the answer to (a).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question proved to be difficult with many candidates unaware of the significance of mutually exclusive events in probability.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part proved to be difficult for some but most of the candidates who used the formula were able to achieve full marks. Very few candidates used Venn diagrams to answer this question.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The universal set <em>U</em> is the set of integers from 1 to 20 inclusive.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> and <em>B</em> are subsets of <em>U</em> where:</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> is the set of even numbers between 7 and 17.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>B</em> is the set of multiples of 3.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span><em>A</em>,</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span><em>B</em>,</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span>\(A \cup B\) ,</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span>\(A \cap B'\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>A</em> = 8, 10, 12, 14, 16     <em><strong>(A1)</strong></em>     <strong><em>(C1)</em></strong></span></p>
<p><span><strong><em>[1 mark]<br></em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>B</em> = 3, 6, 9, 12, 15, 18     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(A \cup B\) = 3, 6, 8, 9,10,12,14,15,16,18     <em><strong>(A2)</strong></em><strong>(ft)</strong></span></p>
<p><em><span>Award <strong>(A1)</strong> only if a single element is missing or a single extra</span> <span>element is present, <strong>(A0)</strong> otherwise.     <strong>(C2)</strong></span></em></p>
<p><em><span><strong>[2 marks]<br></strong></span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(B'\) = 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(A \cap B'\) = 8, 10, 14, 16     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were well done although some candidates added 1 as a multiple of 3.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (a) and (b) were well done although some candidates added 1 as a multiple of 3.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Part (c) was reasonably well attempted although some candidates found the intersection instead of the union.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Part (d) was successfully completed by those candidates who managed to find the complement of B correctly. If they had not shown the set containing the complement of B in the working they could not be awarded the method mark.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Dune Canyon High School organizes its <strong>school year </strong>into three trimesters: fall/autumn (\(F\)), winter (\(W\)) and spring (\(S\)). The school offers a variety of sporting activities during and outside the school year.</p>
<p>The activities offered by the school are summarized in the following Venn diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.56.10.png" alt="M17/5/MATSD/SP1/ENG/TZ1/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of sporting activities offered by the school during its <strong>school year</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether rock-climbing is offered by the school in the fall/autumn trimester.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements of the set \(F \cap W’\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down \(n(W \cap S)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of \(F\), \(W\) and \(S\), an expression for the set which contains only archery, baseball, kayaking and surfing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>15     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>no     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept “it is only offered in Winter and Spring”.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>volleyball, golf, cycling     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Responses must list all three sports for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>4     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((F \cup W \cup S)’\)\(\,\,\,\)<strong>OR</strong>\(\,\,\,\)\(F’ \cap W' \cap S’\) (or equivalent)     <strong><em>(A2)</em></strong>     <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \(p\) and \(q\) represent the propositions</span></p>
<p style="text-align: left; margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(p\): food may be taken into the cinema</span></p>
<p style="text-align: left; margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(q\): drinks may be taken into the cinema</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below for the symbolic statement \(\neg (p \vee q)\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the meaning of the symbolic statement \(\neg (p \vee q)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in symbolic form the compound statement:</span></p>
<p><span>“no food and no drinks may be taken into the cinema”.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em><strong>(ft)     <em>(C2)</em></strong></span></span></p>
<p><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for each correct column.<strong><br></strong></span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>It is not true that food or drinks may be taken into the cinema.</span></p>
<p><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for “it is not true”. <em><strong>(A1)</strong></em> for “food or drinks”.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>Neither food nor drinks may be taken into the cinema.</span></p>
<p><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for “neither”. <em><strong>(A1)</strong></em> for “nor”.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>No food and no drinks may be taken into the cinema.</span></p>
<p><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for “no food”, “no drinks”. <em><strong>(A1)</strong></em> for “and”.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>No food or drink may be brought into the cinema.     <em><strong>(A2)     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for “no”, <em><strong>(A1)</strong></em> for “food or drink”. Do not penalize for use of plural/singular.</span></p>
<p><span><strong><br>Note:</strong> the following answers are incorrect:</span><br><span>No food and drink may be brought into the cinema. Award <em><strong>(A1) (A0)</strong></em></span><br><span>Food and drink may not be brought into the cinema. Award <em><strong>(A1) (A0)</strong></em></span><br><span>No food or no drink may be brought into the cinema. Award <em><strong>(A1) (A0)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\neg p \wedge \neg q\)</span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for both negations, <em><strong>(A1)</strong></em> for conjunction.</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\neg (p \vee q)\)     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for negation, <em><strong>(A1)</strong></em> for \(p \vee q\) in parentheses.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) was generally answered well.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(b) lack of precision in language led to many errors.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(a) was generally answered well.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(b) lack of precision in language led to many errors.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the three propositions <em>p</em>, <em>q </em>and <em>r</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;&nbsp; &nbsp; p</em>: <em>The food is well cooked</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;&nbsp; &nbsp; q</em>: <em>The drinks are chilled</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;&nbsp; &nbsp; r</em>: <em>Dinner is spoilt</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in words.</span></p>
<p><span>\[(p \wedge q) \Rightarrow \neg r\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_07.32.41.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong>If </strong>the food is well cooked <strong>and </strong>the drinks are chilled <strong>then </strong>dinner is <strong>not spoilt</strong>.     <strong><em>(A1)(A1)(A1)     (C3)</em></strong></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <strong><em>(A1) </em></strong>for “If…then” (then must be seen), <strong><em>(A1) </em></strong>for the two correct propositions connected with “and”, <strong><em>(A1) </em></strong>for “not spoilt”.</span></p>
<p><span>     Only award the final <strong><em>(A1) </em></strong>if correct statements are given in the correct order.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_07.34.40.png" alt><span>     <strong><em>(A1)(A1)(A1)</em>(ft)     <em>(C3)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for each correct column.</span></p>
<p><span>     The final column must follow through from the previous two columns.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the following propositions:</p>
<p>\(p:\) The lesson is cancelled</p>
<p>\(q:\) The teacher is absent</p>
<p>\(r:\) The students are in the library.</p>
<p>Write, in words, the compound proposition \(q \Rightarrow (p \wedge r).\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Hence</strong>, justify why \(q \Rightarrow \neg r\)  is not a tautology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>if the teacher is absent then the lesson is cancelled and the students are in the library        <em><strong>(A1)(A1)(A1)   (C3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If…then.<br>For Spanish candidates, only accept “Si” and “entonces”.<br>For French candidates, only accept “Si” and “alors”.<br>For all three languages these words are from the subject guide.<br>Award <em><strong>(A1)</strong></em> for “and”,<br>Award <em><strong>(A1)</strong></em> for correct propositions in correct order.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>   (C2)</strong></em></p>
<p>Note: Award <em><strong>(A1)</strong></em> for \(\neg r\) column correct and <em><strong>(A1)</strong></em> for \(q \Rightarrow \neg r\) column correct.<br>Award <strong><em>(A0)(A1)</em>(ft)</strong> for a \(q \Rightarrow \neg r\) column that correctly follows from an incorrect \(\neg r\) column.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>not all of the entries are true (or equivalent)        <em><strong>(R1)    (C1)</strong></em></p>
<p><strong>Note: </strong>Accept “One entry is false”.</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Logic.<br>All candidates recognized that to fill in a truth table the answer is either true or false. However, given that there are truth tables in the formula booklet it was surprising that some candidates made mistakes when negating a given column of the truth table. Most candidates recognized that in a tautology the column is always true with a small minority confusing tautology and contradiction. Candidates were able to write a compound proposition in words.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Logic.<br>All candidates recognized that to fill in a truth table the answer is either true or false. However, given that there are truth tables in the formula booklet it was surprising that some candidates made mistakes when negating a given column of the truth table. Most candidates recognized that in a tautology the column is always true with a small minority confusing tautology and contradiction. Candidates were able to write a compound proposition in words.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Logic.<br>All candidates recognized that to fill in a truth table the answer is either true or false. However, given that there are truth tables in the formula booklet it was surprising that some candidates made mistakes when negating a given column of the truth table. Most candidates recognized that in a tautology the column is always true with a small minority confusing tautology and contradiction. Candidates were able to write a compound proposition in words.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">You may choose from three courses on a lunchtime menu at a restaurant.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>s</em>: you choose a salad,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>m</em>: you choose a meat dish (main course),</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>d</em>: you choose a dessert.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">You choose a <strong>two</strong> course meal which <strong>must</strong> include a main course and either a salad or a dessert, but not both.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the sentence above using logic symbols.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words \(s \Rightarrow \neg d\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(m \wedge (s \underline{\vee}  d)\)     <em><strong>(A2)</strong></em></span></p>
<p><span><em><strong>(A1)</strong> for</em> \(m \wedge \)</span></p>
<p><span><em><strong>(A1)</strong> for</em> \((s\underline{ \vee } d)\)</span></p>
<p><em><strong>(</strong><span><strong>A1)(A0)</strong> if brackets are missing</span></em>.</p>
<p><strong><span>OR</span></strong></p>
<p><span>\((m \wedge s) \underline{\vee} (m \wedge d)\)     <em><strong>(A2)</strong></em></span></p>
<p><em><span><strong>(A1)</strong> for both brackets correct, <strong>(A1)</strong> for disjunctive “or” <strong>(A1)(A0)</strong> if brackets are missing.     <strong>(C2)</strong></span></em></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If you choose a salad then you do not choose a dessert.     <em><strong>(A2)</strong></em></span></p>
<p><em><span><strong>(A1)</strong> for “if …then…”</span> <span><strong>(A1)</strong> for salad and no dessert in the correct order.</span></em></p>
<p><strong><span>OR</span></strong></p>
<p><span>If you choose a salad you do not choose a dessert.     <em><strong>(A2)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em><span><strong>(A1)</strong> for each correct column     <strong>(A1)(A1)(ft)</strong>     </span></em><em><span><strong>(C2)</strong></span></em></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(a) This caused problems for many candidates. They seem to expect to include the implication symbol somewhere.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(b) Most candidates managed to write this correctly.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(c) Not all candidates could complete the truth table correctly. Many managed the first column but then made mistakes in the last column.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"> A group of 33 people was asked about the passports they have. 21 have Australian passports, 15 have British passports and 3 have neither</span>.</p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A group of 33 people was asked about the passports they have. 21 have Australian passports, 15 have British passports and 3 have neither.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number that have both Australian and British passports.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, set <em>A</em> represents the people in the group with Australian passports and set <em>B</em> those with British passports.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>q</em> ;</span></p>
<p><span>(ii) <em>p</em> and of <em>r</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, set <em>A</em> represents the people in the group with Australian passports and set <em>B</em> those with British passports.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find \(n(A \cup B')\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(21 + 15 + 3 - 33\) or equivalent     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct use of all four numbers.</span></p>
<p> </p>
<p><span>\( = 6\)     <em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) <em>q</em> = 6     <em><strong>(A1)</strong></em><strong>(</strong><strong>ft)</strong></span></p>
<p> </p>
<p><span>(ii) <em>p</em> =15, <em>r</em> = 9     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (a).</span></p>
<p> </p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>15 + 6 + 3     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their figures seen in a correct calculation:</span></p>
<p><span>15 + 6 + 3 or 21 + 3 or 33 − 9</span></p>
<p><span> </span></p>
<p><span>= 24    <em> <strong>(A1)</strong></em><strong>(</strong><strong>ft)</strong><em><strong>     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from parts (a) and (b) or from values shown on Venn diagram.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Much good work was seen in parts (a) and (b). However, there was much confusion in candidates&rsquo; responses to part (c) as many could not determine the required answer where a union was involved with a complement. The result was that either candidates simply ignored \(n[(A \cup B)']\) and evaluated \(n(A) = 21\) or ignored \(n[(A \cap B)]\) and evaluated \(n(B') = 18\). Irrespective of ability, the modal mark for this question was four with very few candidates achieving more than this mark.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Much good work was seen in parts (a) and (b). However, there was much confusion in candidates&rsquo; responses to part (c) as many could not determine the required answer where a union was involved with a complement. The result was that either candidates simply ignored \(n[(A \cup B)']\) and evaluated \(n(A) = 21\) or ignored \(n[(A \cap B)]\) and evaluated \(n(B') = 18\). Irrespective of ability, the modal mark for this question was four with very few candidates achieving more than this mark.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Much good work was seen in parts (a) and (b). However, there was much confusion in candidates&rsquo; responses to part (c) as many could not determine the required answer where a union was involved with a complement. The result was that either candidates simply ignored \(n[(A \cup B)']\) and evaluated \(n(A) = 21\) or ignored \(n[(A \cap B)]\) and evaluated \(n(B') = 18\). Irrespective of ability, the modal mark for this question was four with very few candidates achieving more than this mark.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Police in a town are investigating the theft of mobile phones one evening from three caf&eacute;s, &ldquo;Alan&rsquo;s Diner&rdquo;, &ldquo;Sarah&rsquo;s Snackbar&rdquo; and &ldquo;Pete&rsquo;s Eats&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">They interviewed two suspects, Matthew and Anna, about that evening.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Matthew said:</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&ldquo;I visited Pete&rsquo;s Eats and visited Alan&rsquo;s Diner and I did not visit Sarah&rsquo;s Snackbar.&rdquo;</span></p>
<p style="text-align: left;"><span style="font-family: times new roman,times; font-size: medium;">Let \(p\) , \(q\) and \(r\) be the statements:</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(p\) : I visited Alan&rsquo;s Diner</span><br><span style="font-family: times new roman,times; font-size: medium;">\(q\) : I visited Sarah&rsquo;s Snackbar</span><br><span style="font-family: times new roman,times; font-size: medium;">\(r\) : I visited Pete&rsquo;s Eats</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down Matthew’s statement in symbolic logic form.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>What Anna said was lost by the police, but in symbolic form it was</span></p>
<p><span>\[(q \vee r) \Rightarrow \neg p\]</span></p>
<p><span>Write down, in words, what Anna said.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(r \wedge p \wedge \neg q\)     <em><strong>(A1)(A1)(A1)     (C3)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for two conjunctions, <em><strong>(A1)</strong></em> for negation seen on \(q\), <em><strong>(A1)</strong></em> for correct compound statement.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If I visited (either) Sarah’s Snackbar <strong>or</strong> Pete’s Eats (then) I did not visit Alan’s Diner.     <em><strong>(A1)(A1)(A1)     (C3)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If\( \ldots \) (then), <em><strong>(A1)</strong></em> for Sarah’s Snackbar <strong>or</strong> Pete’s Eats, <em><strong>(A1)</strong></em> for did not visit Alan’s Diner.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The logic question was clearly difficult for many students. Part a was very poorly done with the majority of students not recognising that two conjunctions were required. Although candidates performed better on part b, many omitted the 'if, (then)'. One of the most common</span> <span style="font-family: times new roman,times; font-size: medium;">errors in part b was to translate the disjunction as 'and' rather than 'or'.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The logic question was clearly difficult for many students. Part a was very poorly done with the majority of students not recognising that two conjunctions were required. Although candidates performed better on part b, many omitted the 'if, (then)'. One of the most common</span> <span style="font-family: times new roman,times; font-size: medium;">errors in part b was to translate the disjunction as 'and' rather than 'or'.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p style="padding-left: 210px;"><em>p</em> : the baby cries<br><em>q</em> : the baby is happy<br><em>r</em> : the baby wants to play</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in words, \(\left( {q \wedge r} \right) \Rightarrow \neg p\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether \(\left( {q \wedge r} \right) \Rightarrow \neg p\) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>if the baby is happy and wants to play then the baby does not cry     <em><strong>(A1)(A1)(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “If… then…”; <em><strong>(A1)</strong></em> for “the baby is happy and wants to play”, <em><strong>(A1)</strong></em> for “the baby does not cry”. Crying must be negated.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">    <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct column.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Neither     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>   (C1)</strong></em></p>
<p><strong>Note:</strong> Follow through from the last column in their part (b).</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the statements</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em> : The numbers <em>x</em> and <em>y</em> are both even.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>q</em> : The sum of <em>x</em> and <em>y</em> is an even number.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the statement <em>p </em>\(\Rightarrow\) <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the inverse of the statement <em>p </em>\(\Rightarrow\) <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the inverse of the statement<em> p</em> \( \Rightarrow \) <em>q</em> is always true. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If (both) the numbers <em>x</em> and <em>y</em> are even (then) the sum of <em>x</em> and <em>y</em> is an even number.     <em><strong>(A1)(A1)     </strong></em><em><strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If…(then), <em><strong>(A1)</strong></em> for the correct statements in the correct order.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If (both) the numbers <em>x</em> and <em>y</em> are not even (then) the sum of <em>x</em> and <em>y</em> is not an even number.     <em><strong>(A1)(A1)     </strong></em><em><strong>(C2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for If…(then), <em><strong>(A1)</strong></em> for the correct not <em>p</em>, and not <em>q</em> in the correct order. Accept the word odd for the phrase “not even”.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>The inverse of a statement is not (necessarily) true, because two odd (not even) numbers, always have an even sum.     <em><strong>(A1)(R1)</strong></em><strong>(ft)</strong>    <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)(R1)</strong></em> if a specific counter example given instead of a reason stated in general terms, <em>e.g.</em> the inverse is not true because, 5 and 7 have an even sum. Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from their statement in part (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Although a few candidates did not seem to understand the meaning of the \(\Rightarrow\) symbol, many scored a minimum of two marks on the first two parts of the question. Indeed, many correct statements were seen in part (a). Many candidates however confused converse with inverse in part (b) resulting in the incorrect statement "<em>if the sum of x and y are both even then the numbers x and y are both even</em>" appearing on many scripts earning <em><strong>(M1)(A0)</strong></em>. Despite this incorrect compound statement, many candidates recovered with correct reasoning in part (c) from their correct (or incorrect) statement in part (b). Candidate's responses to part (c) of the question should have been given in the context of the question set and those that simply inferred their answer from truth tables only, earned no marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Although a few candidates did not seem to understand the meaning of the \(\Rightarrow\) symbol, many scored a minimum of two marks on the first two parts of the question. Indeed, many correct statements were seen in part (a). Many candidates however confused converse with inverse in part (b) resulting in the incorrect statement "<em>if the sum of x and y are both even then the numbers x and y are both even</em>" appearing on many scripts earning <em><strong>(M1)(A0)</strong></em>. Despite this incorrect compound statement, many candidates recovered with correct reasoning in part (c) from their correct (or incorrect) statement in part (b). Candidate's responses to part (c) of the question should have been given in the context of the question set and those that simply inferred their answer from truth tables only, earned no marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Although a few candidates did not seem to understand the meaning of the \(\Rightarrow\) symbol, many scored a minimum of two marks on the first two parts of the question. Indeed, many correct statements were seen in part (a). Many candidates however confused converse with inverse in part (b) resulting in the incorrect statement "<em>if the sum of x and y are both even then the numbers x and y are both even</em>" appearing on many scripts earning <em><strong>(M1)(A0)</strong></em>. Despite this incorrect compound statement, many candidates recovered with correct reasoning in part (c) from their correct (or incorrect) statement in part (b). Candidate's responses to part (c) of the question should have been given in the context of the question set and those that simply inferred their answer from truth tables only, earned no marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions <em>p</em> and <em>q</em>:</span></p>
<p><em><span>p: x is a number less than 10.</span></em></p>
<p><span><em><span><span>q: x2 is a number greater than 100.</span></span></em></span></p>
<p><span><span>Write in words the compound proposition \(\neg  p \vee  q\).</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using part (a), determine whether \(\neg p \vee q\) is true or false, for the case where \(x\) is a number less than 10 and \(x^2\) is a number greater than 100.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down a value of \(x\) for which \(\neg p \vee q\) is false.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     </span></span></p>
<p><span><em><strong>(A1)</strong></em> for third column and <em><strong>(A1)</strong></em><strong>(ft)</strong> for fourth column     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x\) is greater than or equal to (not less than) 10 or \(x^2\) is greater than 100.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “greater than or equal to (not less than) 10”, <em><strong>(A1)</strong></em> for “or </span><span><span>\(x^2\)</span> is greater than 100”.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>True     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (a).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Any value of \(x\) such that \( - 10 \leqslant x &lt; 10\).     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (a).</span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was provocative in the G2 and the comments indicate that candidates found the wording confusing. Candidates were able to write in words the compound proposition \(\neg p \vee q\) and following from their truth table the candidates could state if this was true or false.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was provocative in the G2 and the comments indicate that candidates found the wording confusing. Candidates were able to write in words the compound proposition \(\neg p \vee q\) and following from their truth table the candidates could state if this was true or false. In part (c) many candidates either stated the correct answer &ldquo;true&rdquo; or stated an answer consistent with their truth table and received follow-through marks. Candidates had difficulty writing down a value of \(x\) for which \(\neg p \vee q\) is false.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was provocative in the G2 and the comments indicate that candidates found the wording confusing. Candidates were able to write in words the compound proposition \(\neg p \vee q\) and following from their truth table the candidates could state if this was true or false. In part (c) many candidates either stated the correct answer &ldquo;true&rdquo; or stated an answer consistent with their truth table and received follow-through marks. Candidates had difficulty writing down a value of \(x\) for which \(\neg p \vee q\]) is false.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was provocative in the G2 and the comments indicate that candidates found the wording confusing. Candidates were able to write in words the compound proposition \(\neg p \vee q\) and following from their truth table the candidates could state if this was true or false.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">&nbsp; &nbsp; &nbsp;\(p:x\) is a multiple of \(12\)</p>
<p class="p1">&nbsp; &nbsp; &nbsp;\(q:x\) is a multiple of \(6\)<span class="s1">.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words \(\neg p\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in symbolic form the compound statement</p>
<p class="p2"><span class="s1">\(r:\) If \(x\) </span>is a multiple of \(12\)<span class="s1">, then \(x\) </span>is a multiple of \(6\)<span class="s1">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the compound statement</p>
<p class="p2"><span class="s1">\(s:\) If \(x\) </span>is a multiple of \(6\)<span class="s1">, then \(x\) </span>is a multiple of \(12\)<span class="s1">.</span></p>
<p class="p1">Identify whether \(s:\) is the inverse, the converse or the contrapositive of \(r\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the compound statement</p>
<p class="p2"><span class="s1">\(s:\) If \(x\) </span>is a multiple of \(6\)<span class="s1">, then \(x\) </span>is a multiple of \(12\)<span class="s1">.</span></p>
<p class="p1">Determine the validity of \(s\). Justify your decision.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(x\) is not a multiple of \(12\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>(A1) <span class="Apple-converted-space">    </span>(C1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(p \Rightarrow q\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)(C2)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for \( \Rightarrow \), <strong><em>(A1) </em></strong>for \(p\) and \(q\) in the correct order.</p>
<p class="p1">Accept \(q \Leftarrow p\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Converse     <strong><em>(A1) (C1) </em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">not valid <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1">for example \(18\)<span class="s1"> </span>is a multiple of \(6\)<span class="s1"> </span>and not a multiple of \(12\)<span class="s1"> <span class="Apple-converted-space">    </span></span><strong><em>(R1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Do not award <strong><em>(A1)(R0)</em></strong>. Any multiple of <span class="s1">6 </span>that is not a multiple of \(12\)<span class="s1"> </span>can be accepted as a counterexample.</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the statement<em> p</em>:</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&ldquo;If a quadrilateral is a square then the four sides of the quadrilateral are equal&rdquo;.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the inverse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the converse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether the converse of statement <em>p</em> is always true. Give an example to justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If a quadrilateral is not a square (then) the four sides of the quadrilateral are not equal.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “if…(then)”, <em><strong>(A1)</strong></em> for the correct phrases in the correct order.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If the four sides of the quadrilateral are equal (then) the quadrilateral is a square.     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “if…(then)”, <em><strong>(A1)</strong></em><strong>(ft)</strong> for the correct phrases in the correct order.</span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Follow through in (b) if the inverse and converse in (a) and (b) are correct and reversed.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>The converse is not always true, for example a rhombus (diamond) is a quadrilateral with four equal sides, but it is not a square.     <em><strong>(A1)(R1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">There was confusion among some students about which was the inverse and converse of the given statement.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">There was confusion among some students about which was the inverse and converse of the given statement.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">There was confusion among some students about which was the inverse and converse of the given statement. Part (c) was poorly done with very few students able to provide an example that shows that the converse is not always true.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The truth table below shows the truth-values for the proposition</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q \Rightarrow \neg {\text{ }}p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } \neg q\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain the distinction between the compound propositions, \(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q\) and \(p \vee q\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Fill in the four missing truth-values on the table.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the proposition \(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q \Rightarrow \neg p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } \neg q\) is a tautology, a contradiction or neither.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>Both are 'p or q', the first is 'but not both'     <em><strong>(A1)</strong></em></span></p>
<p><em><span>Note: Award mark for clear understanding if wording is poor.     <strong>(C1)</strong></span></em></p>
<p><em><span><strong>[1 mark]</strong></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)(A1)</strong></em></span></span></p>
<p><span><em>Note: Follow through is for final column.</em>     <em><strong>(C4)</strong></em></span></p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Tautology.     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">a) The majority of candidates were able to explain the difference between inclusive and</span> <span style="font-size: medium; font-family: times new roman,times;">exclusive correctly but many used &ldquo;and&rdquo; and &ldquo;or&rdquo; to distinguish between the two.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">b) Less than half were able to find the truth value of the two disjunctions in the table</span> <span style="font-size: medium; font-family: times new roman,times;">correctly. Most candidates did gain some marks but a number of them left at least </span><span style="font-size: medium; font-family: times new roman,times;">one cell blank even though it was a 50% chance of getting the correct value.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">c) Most candidates answered this part correctly with many receiving follow through</span> <span style="font-size: medium; font-family: times new roman,times;">for &ldquo;neither&rdquo; from an incorrect table.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the propositions <em>p</em> and <em>q</em>.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em>:<em> I take swimming lessons</em></span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>q</em>:<em> I can swim 50 metres</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in symbolic form.</span></p>
<p><em><span>“I cannot swim 50 metres and I take swimming lessons.”</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in words.</span></p>
<p><span>\(q \Rightarrow \neg q \)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for each correct column. Follow through in 4<sup>th</sup> column from their 3<sup>rd</sup> column.</span></p>
<p><br><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\neg q \wedge p\)     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(\neg q\) and <em>p</em> in any order, <em><strong>(A1)</strong></em> for \(\wedge\).</span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If I can swim 50 metres (then) I do not take swimming lessons.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If… (then), <em><strong>(A1)</strong></em> for correct propositions in the correct order.</span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by most of the candidates who could complete the truth table, write the proposition in symbolic form and write the given proposition in words, although the '<em>If </em>' was sometimes omitted. Where marks were lost on Question 2, it was generally in the second column of the truth table.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by most of the candidates who could complete the truth table, write the proposition in symbolic form and write the given proposition in words, although the '<em>If </em>' was sometimes omitted. Where marks were lost on Question 2, it was generally in the second column of the truth table.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by most of the candidates who could complete the truth table, write the proposition in symbolic form and write the given proposition in words, although the '<em>If </em>' was sometimes omitted. Where marks were lost on Question 2, it was generally in the second column of the truth table.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the universal set \(U = \{ x \in \mathbb{N}|3 &lt; x &lt; 13\} \), and the subsets \(A = \{ {\text{multiples of 3}}\} \) and \(B = \{ 4,{\text{ }}6,{\text{ }}12\} \).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following set.</span></p>
<p><span><em>A</em></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following set.</span></p>
<p><span>\(A \cap B'\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down one element of \((A \cup B)'\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One of the statements in the table below is false. Indicate with an <strong>X</strong> which statement is false. Give a reason for your answer.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>6, 9, 12    <em><strong> (A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>9   <strong><em>  (A1)</em>(ft)<em>     (C1)</em></strong></p>
<p><span><br> </span><strong>Note:</strong> Follow through from their part (a)(i).</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>any element from {5, 7, 8, 10, 11}    <em><strong> (A1)(A1)</strong></em><strong>(ft)</strong><em><strong>     (C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for finding </span><span>\((A \cup B)\), follow through from their <em>A</em>.</span></p>
<p><span>Award full marks if all correct elements of </span><span><span>\((A \cup B)'\)</span> are listed.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span>\(15 \notin U\)    <em><strong> (R1)(A1)     (C2)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Accept correct reason in words.</span></p>
<p><span>If the reason is incorrect, both marks are lost.</span></p>
<p><span>Do not award <em><strong>(R0)(A1)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was not well answered by the majority of the candidates. Many did not identify the universal set correctly and so took 3 to be a member of this set. This affected their answers in a)(i) and a)(ii).</span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The question was not well answered by the majority of the candidates. Many did not identify the universal set correctly and so took 3 to be a member of this set. This affected their answers in a)(i) and a)(ii).</span></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Not many students answered (b) correctly. Some listed all correct elements of the given set instead of just one, which shows that they did not read the question carefully.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Although many candidates could indicate which statement in the table in c) was false, often they were unable either to identify or articulate a correct reason for it.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the two propositions <em>p</em> and <em>q</em>.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em>: The sun is shining&nbsp;&nbsp;&nbsp;&nbsp; <em>q</em>: I will go swimming</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound proposition</span></p>
<p><span>\(p \Rightarrow q\) ;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound proposition</span></p>
<p><span>\(\neg p \vee q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The truth table for these compound propositions is given below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Complete the column for \( \neg p\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The truth table for these compound propositions is given below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>State the relationship between the compound propositions \(p \Rightarrow q\) and \(\neg p \vee q\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If the sun is shining then I will go swimming.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “if…then” and <em><strong>(A1)</strong></em> for correct order.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Either the sun is not shining or I will go swimming.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for both correct statements and <em><strong>(A1)</strong></em> for “either” “…or”.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></span></p>
<p><span><span><em><strong>[1 mark]</strong></em></span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>They are (logically) equivalent.     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Do not accept any other answers.</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The most common error was poor use of the &ldquo;If...then&rdquo; connective.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Confusion between &ldquo;and&rdquo; and &ldquo;or&rdquo; was rare, however, the use of implication in this part was a little too common.</span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Precise, correct terminology was expected in this part.</span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Two propositions \(p\) and \(q\) are defined as follows</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(p\): Eva is on a diet</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(q\): Eva is losing weight.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the following statement <strong>in words</strong>.</span></p>
<p><span>\[q \Rightarrow p\]</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the contrapositive statement of \(q \Rightarrow p\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether your statement in part (a) is logically equivalent to your statement in part (b). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If Eva is losing weight then Eva is on a diet     <strong><em>(A1)(A1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for If… then…</span></p>
<p><span>     For Spanish candidates, <strong>only </strong>accept “Si” and “entonces”.</span></p>
<p><span>     For French candidates, <strong>only </strong>accept “Si” and “alors”.</span></p>
<p><span><em>     For all 3 languages these words are from the subject guide.</em></span></p>
<p><span>     Award <strong><em>(A1) </em></strong>for correct propositions in correct order.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If Eva is not on a diet then she is not losing weight     <strong><em>(A1)(A1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for “not on a diet” and “not losing weight” seen, <strong><em>(A1) </em></strong>for complete correct answer.</span></p>
<p><span>     No follow through from part (a).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>The statements are logically equivalent     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span>The contrapositive is always logically equivalent to the original statement     <strong><em>(R1)</em>(ft)</strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>A correct truth table showing the equivalence     <strong><em>(R1)</em>(ft)     <em>(C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answers to part (a) and part (b).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aleph has an unbiased cubical (six faced) die on which are written the numbers</p>
<p class="p1"><span class="s1">1 </span>, <span class="s1">2 </span>, <span class="s1">3 </span>, <span class="s1">4 </span>, <span class="s1">5 </span>and <span class="s1">6</span>.</p>
<p class="p1">Beth has an unbiased tetrahedral (four faced) die on which are written the numbers</p>
<p class="p1"><span class="s1">2 </span>, <span class="s1">3 </span>, <span class="s1">5 </span>and <span class="s1">7</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the Venn diagram with the numbers written on Aleph’s die (\(A\)) and Beth’s die (\(B\))<span class="s1">.</span></p>
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_06.18.17.png" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(n(B \cap A')\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aleph and Beth are each going to roll their die once only. Shin says the probability that each die will show the same number is \(\frac{1}{8}\).</p>
<p class="p2">Determine whether Shin is correct. Give a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_06.22.44.png" alt> <span class="Apple-converted-space">    </span></span><strong><em>(A1)(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for <span class="s2">2</span>, <span class="s2">3</span>, <span class="s2">5 </span>in intersection, <strong><em>(A1) </em></strong>for <span class="s2">1</span>, <span class="s2">4</span>, <span class="s2">6</span>, <span class="s2">7 </span>correctly placed.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">\(1\) <span class="Apple-converted-space">    </span></span><strong><em>(M1)(A1)</em>(ft) <span class="Apple-converted-space">    </span><em>(C2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1)(A0) </em></strong>for listing the elements of their set \(B \cap A'\);shading the correct region on diagram; or an answer of \(1/7\)<span class="s1"> </span>with a correct Venn diagram. Follow through from part (a).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Correct, from \((2,{\text{ }}2){\text{ }}(3,{\text{ }}3)\) and \((5,{\text{ }}5)\) on sample space</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">Correct, from a labelled tree diagram</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">Correct, from a sample space diagram</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">Correct, from \(3 \times \frac{1}{4} \times \frac{1}{6}\;\;\;\)(or equivalent) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(R1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Do not award <strong><em>(A1)</em>(ft)<em>(R0)</em></strong><em>. </em>Award <strong><em>(R1) </em></strong>for a consistent reason with their part (a). Follow through from part (a).</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The Venn diagram in part (a) was successfully completed by the majority of candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many identified correctly the set B&nbsp;&cap; A&prime; , but listed the element instead of writing the number of elements in the set.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (c) the majority stated that Shin was incorrect giving probabilities of 3/8 (3/6 &times; 3/4) or 3/7 as being the correct probability. The few candidates using a sample space diagram usually answered correctly, tree diagrams were hardly used. Many candidates did not realize that it was not enough for each to roll one of the three numbers in the intersection, but that they needed to roll the same number. Probabilities of joined events seemed to be too difficult for the majority.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following Venn diagrams. Each diagram is shaded differently.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_14.02.25.png" alt></p>
<p class="p1">In the following table there are six sets. Each of these sets corresponds to the shaded region of one of the Venn diagrams. In the correct space, write the number of the diagram that corresponds to that set.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_14.02.45.png" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><span class="Apple-converted-space"><img src="images/Schermafbeelding_2015-12-20_om_14.04.51.png" alt>     </span><strong><em>(A6)(C6)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct entry.</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The probability that it snows today is 0.2. If it does snow today, the probability that it will snow tomorrow is 0.6. If it does not snow today, the probability that it will not snow tomorrow is 0.9.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using the information given, complete the following tree diagram.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_08.12.00.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the probability that it will snow tomorrow.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_08.13.34.png" alt><span>     <strong><em>(A1)(A1)(A1)     (C3)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct pair of probabilities.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.2 \times 0.6 + 0.8 \times 0.1\)     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for two correct products of probabilities taken from their diagram, <strong><em>(M1) </em></strong>for the addition of their products.</span></p>
<p> </p>
<p><span>\( = 0.2{\text{ }}\left( {\frac{1}{5},{\text{ 20% }}} \right)\)     <strong><em>(A1)</em>(ft)     <em>(C3)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Accept any equivalent correct fraction.</span></p>
<p><span>     Follow through from their tree diagram.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium;"><span style="font-family: times new roman,times;">Consider two propositions <em>p</em></span> <span style="font-family: times new roman,times;">and</span> <span style="font-family: times new roman,times;"><em>q</em></span>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether the compound proposition</span><br><span>\[\left( {{\text{ }}p \Rightarrow \neg q} \right) \Leftrightarrow \left( {\neg p \Rightarrow q} \right)\]</span><br><span>is a tautology. State the reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt>     </span><span><em><strong><span>(A1)(A1)</span></strong></em><strong><span>(ft)</span></strong></span><span><em><strong><span>(A1)(A1)</span></strong></em><strong><span>(ft)</span></strong><em><strong><span>     (C4)</span></strong></em></span></p>
<p><br><span><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct column (second column <strong>(ft)</strong> from</span> <span>first, fourth <strong>(ft)</strong> from third). Follow through from second column</span> <span>to fourth column for a consistent mistake in implication.</span></span></p>
<p><span><span> </span></span></p>
<p><em><strong><span><span>[4 marks]</span></span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Since second and fourth columns are not identical   <strong>  <em>(R1)</em>(ft)</strong></span><br><span>\( \Rightarrow \) Not a tautology   <em><strong>  (A1)</strong></em><strong>(ft)</strong><em><strong>     (C2)</strong></em></span><br><br><span><strong>Note: <em>(R0)(A1)</em></strong> may <strong>not</strong> be awarded.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium;"><span style="font-family: times new roman,times;">The truth table was well done by the majority of candidates but significantly fewer could give</span> <span style="font-family: times new roman,times;">the correct reason for whether the compound proposition was a tautology, so many lost 2</span> <span style="font-family: times new roman,times;">marks in this part of the question.</span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The truth table was well done by the majority of candidates but significantly fewer could give the correct reason for whether the compound proposition was a tautology, so many lost 2 marks in this part of the question.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Alan&rsquo;s laundry basket contains two green, three red and seven black socks. He selects one sock from the laundry basket at random.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that the sock is red.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Alan returns the sock to the laundry basket and selects two socks at random.</span></p>
<p><span>Find the probability that the first sock he selects is green and the second sock is black.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Alan returns the socks to the laundry basket and again selects two socks at random.</span></p>
<p><span>Find the probability that he selects two socks of the same colour.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{3}{{12}}\left( {\frac{1}{4},0.25,25\% } \right)\)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\left( {\frac{2}{{12}}} \right) \times \left( {\frac{7}{{11}}} \right)\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct product.</span></p>
<p><br><span>\( = \frac{{14}}{{132}}\left( {\frac{7}{{66}},0.10606...,10.6\% } \right)\)     <em><strong>(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\left( {\frac{2}{{12}} \times \frac{1}{{11}}} \right) + \left( {\frac{3}{{12}} \times \frac{2}{{11}}} \right) + \left( {\frac{7}{{12}} \times \frac{6}{{11}}} \right)\)     <em><strong>(M1)(M1)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for addition of their 3 products, <em><strong>(M1)</strong></em> for 3 correct products.</span></p>
<p><br><span>\( = \frac{{50}}{{132}}\left( {\frac{25}{{66}},0.37878...,37.9\% } \right)\)     <em><strong>(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(U\) is the set of <strong>positive </strong>integers less than or equal to \(10\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(A\), \(B\)&nbsp;and \(C\)&nbsp;are subsets of \(U\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(A = \left\{ {{\text{even integers}}} \right\}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(B = \left\{ {{\text{multiples of }}3} \right\}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(C = \left\{ {6,{\text{ }}7,{\text{ }}8,{\text{ }}9} \right\}\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(A\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(B\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the Venn diagram with <strong>all </strong>the elements of \(U\).</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_17.36.22.png" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(2, 4, 6, 8, 10\)     <strong><em>(A1)     (C1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Do not penalize the use of \(\left\{ {{\text{   }}} \right\}\).</span></p>
<p><span> </span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3, 6, 9\)     <strong><em>(A1)     (C1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Do not penalize the use of \(\left\{ {{\text{   }}} \right\}\).</span></p>
<p><span>     Follow through from part (a) only if their \({\text{U}}\) is listed.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>    <br><img src="images/venny.jpg" alt width="500" height="316"> <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)     <em>(C4)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for the correct placement of \(6\).</span></p>
<p><span>     Award <strong><em>(A1)</em>(ft) </strong>for the correct placement of \(8\) and \(9\) and the empty region.</span></p>
<p><span>     Award <strong><em>(A1)</em>(ft) </strong>for the correct placement of \(2\), \(4\), \(3\), \(7\), and \(10\).</span></p>
<p><span>     Award <strong><em>(A1)</em>(ft) </strong>for the correct placement of \(1\) and \(5\).</span></p>
<p><span>     If an element is in more than one region, award <strong><em>(A0) </em></strong>for that element.</span></p>
<p><span>     Follow through from their answers to parts (a) and (b).</span></p>
<p> </p>
<p><span><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was done well by most candidates. The most frequent error was to omit the placement of 1 and 5 or to include 0 in the set of even integers.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was done well by most candidates. The most frequent error was to omit the placement of 1 and 5 or to include 0 in the set of even integers.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was done well by most candidates. The most frequent error was to omit the placement of 1 and 5 or to include 0 in the set of even integers.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey was carried out at an international airport. A number of travellers were interviewed and asked for their flight destinations. The results are shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One traveller is to be chosen at random from all those interviewed. </span></p>
<p><span>Find the probability that this traveller was going to Africa.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One female traveller is to be chosen at random from all those interviewed. </span></p>
<p><span>Find the probability that this female traveller was going to Asia.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One traveller is to be chosen at random from those <strong>not</strong> going to America.</span></p>
<p><span>Find the probability that the chosen traveller is female.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{108}}{{250}}{\text{ }}\left( {\frac{{54}}{{125}}{\text{, }}0.432{\text{, }}43.2\% } \right)\)     <em><strong>(A1)(A1)    </strong> <strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{25}}{{106}}{\text{ }}\left( {0.236{\text{, }}23.6\% } \right)\)     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{71}}{{170}}{\text{ }}\left( {0.418{\text{, }}41.8\% } \right)\)     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A reasonably well attempted question with parts (a) and (c) proving to provide many correct answers. A correct answer for part (b) however proved to be a little more elusive as, despite a correct numerator of \(25\) seen on many scripts, the total sample space was not reduced and a denominator of \(250\) lost the final mark in this part of the question. On a minority of scripts candidates simply wrote down decimal answers. Where these were correct, both marks for each part were earned. However, incorrect answers earned no marks &ndash; candidates would be well advised to at least write down the fraction answer first so that any part marks can be awarded. A case in question here was a predominance of incorrect answers of \(0.10\) or \(10\% \) for part (b). This, on its own earns no marks whereas \(25/250\) earned A1, A0.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A reasonably well attempted question with parts (a) and (c) proving to provide many correct answers. A correct answer for part (b) however proved to be a little more elusive as, despite a correct numerator of \(25\) seen on many scripts, the total sample space was not reduced and a denominator of \(250\) lost the final mark in this part of the question. On a minority of scripts candidates simply wrote down decimal answers. Where these were correct, both marks for each part were earned. However, incorrect answers earned no marks &ndash; candidates would be well advised to at least write down the fraction answer first so that any part marks can be awarded. A case in question here was a predominance of incorrect answers of \(0.10\) or \(10\% \) for part (b). This, on its own earns no marks whereas \(25/250\) earned A1, A0.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A reasonably well attempted question with parts (a) and (c) proving to provide many correct answers. A correct answer for part (b) however proved to be a little more elusive as, despite a correct numerator of \(25\) seen on many scripts, the total sample space was not reduced and a denominator of \(250\) lost the final mark in this part of the question. On a minority of scripts candidates simply wrote down decimal answers. Where these were correct, both marks for each part were earned. However, incorrect answers earned no marks &ndash; candidates would be well advised to at least write down the fraction answer first so that any part marks can be awarded. A case in question here was a predominance of incorrect answers of \(0.10\) or \(10\% \) for part (b). This, on its own earns no marks whereas \(25/250\) earned A1, A0.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A fair six-sided die has the numbers 1, 2, 3, 4, 5, 6 written on its faces. A fair four-sided die has the numbers 1, 2, 3, and 4 written on its faces. The two dice are rolled.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The following diagram shows the possible outcomes.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the two dice show the same number.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the difference between the two numbers shown on the dice is 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the number shown on the four-sided die is greater than the number shown on the six-sided die, given that the difference between the two numbers is 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{4}{{24}}\)   \(\left( {\frac{1}{6},0.167,16.7{\text{ }}\% } \right)\)     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{7}}{{24}}\)   \((0.292,29.2{\text{ }}\% )\)</span>     <span><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> from the denominator used in (a).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{3}}{{7}}\)   \((0.429,42.9{\text{ }}\% )\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator <em><strong>(A1)</strong></em><strong>(ft)</strong> for denominator, <strong>(ft)</strong> from their numerator in (b).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram caused some difficulty for some candidates, however the majority of candidates were successful.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram caused some difficulty for some candidates, however the majority of candidates were successful in (a).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The term &ldquo;difference&rdquo; was well understood by the candidature.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram caused some difficulty for some candidates, however the majority of candidates were successful in (a).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions</span></p>
<p><span><span>     </span><em><span>p</span></em><span>:</span><em><span> Cristina understands logic</span></em></span></p>
<p><span>     </span><em><span>q</span></em><span>:</span><em><span> Cristina will do well on the logic test.</span></em></p>
<p><span>Write down the following compound proposition in symbolic form.</span></p>
<p><em><span>“If Cristina understands logic then she will do well on the logic test”</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the contrapositive of the proposition given in part (b).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>    <em><strong> (A1)(A1)     (C2)</strong></em></span></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for ¬<em>q</em> , <em><strong>(A1)</strong></em> for last column.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(p \Rightarrow q\)     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for </span><span><span>\(\Rightarrow\) </span> , <em><strong>(A1)</strong></em> for <em>p</em> and <em>q</em> in the correct order.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If Cristina does not do well on the logic test then she does not understand logic.     <em><strong>(A1)(A1)</strong></em>    <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If…(then), must be an implication, <em><strong>(A1)</strong></em> for the correct propositions in the correct order.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered with most candidates able to complete the truth table correctly in part a) and write the correct compound proposition in symbolic form in part b). A significant number of candidates could not write the correct contrapositive, although most were awarded one mark for writing an implication.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered with most candidates able to complete the truth table correctly in part a) and write the correct compound proposition in symbolic form in part b). A significant number of candidates could not write the correct contrapositive, although most were awarded one mark for writing an implication.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered with most candidates able to complete the truth table correctly in part a) and write the correct compound proposition in symbolic form in part b). A significant number of candidates could not write the correct contrapositive, although most were awarded one mark for writing an implication.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In a particular school, students must choose at least one of three optional subjects: art, psychology or history.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following propositions</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><em>a: I choose art,</em></span><br><span style="font-family: times new roman,times; font-size: medium;"><em>p: I choose psychology,</em></span><br><span style="font-family: times new roman,times; font-size: medium;"><em>h: I choose history.</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write, in words, the compound proposition</span><br><span>\[\neg h \Rightarrow (p \vee a)\].</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table for \(\neg a \Rightarrow p\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether \(\neg a \Rightarrow p\) is a tautology, a contradiction or neither. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If I do not choose history then I choose either psychology or I choose art     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for ‘if… (then)…’</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for ‘not choose history.’</span></p>
<p><span>Award <em><strong>(A1)</strong></em> for ‘choose (either) psychology or art (or both).’</span></p>
<p><span>If the order of the statements is wrong award at most <em><strong>(A1)(A1)(A0)</strong></em>.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>    </span><span> <em><strong>(A1)     (C1)</strong></em></span></span></p>
<p><span><span><em><strong>[1 mark]<br></strong></em></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Neither, because not all the entries in the last column are the same.     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(R1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Do not award <em><strong>(R0)(A1)</strong></em>. Follow through from their answer to part (b). Reasoning must be consistent with their answer to part (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many correct answers were seen in part (a) with only a minority of candidates misinterpreting the symbol \( \vee \) as 'and'. Some candidates left out the word 'if' and consequently lost the first mark. <br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (b) was not done as well as expected indicating that some work needs to be done by centres on the truth table for the logic symbol \( \Rightarrow \) . <br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many correct answers of 'neither' were seen in part (c) but the justification was sometimes lacking definitive reasoning. Without sufficient reasoning, the answer mark was not awarded.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Two propositions are defined as follows:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(p:\) <em>Quadrilateral ABCD has two diagonals that are equal in length.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp; &nbsp; \(q:\) <em>Quadrilateral ABCD is a rectangle.</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the following in symbolic form.</span></p>
<p><span><em>“A rectangle always has two diagonals that are equal in length.”</em></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in symbolic form the converse of the statement in (a).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine, <strong>without </strong>using a truth table, whether the statements in (a) and (b) are logically equivalent.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the name of the statement that is logically equivalent to the converse.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(q \Rightarrow p\)     <strong><em>(A1)(A1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award the first <strong><em>(A1) </em></strong>for seeing the implication sign, the second <strong><em>(A1) </em></strong>is for a correct answer only. Not using the implication earns <strong>no </strong>marks.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(p \Rightarrow q\)     <strong><em>(A1)</em>(ft)     <em>(C1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>where the propositions in the implication in part (a) are exchanged.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Not equivalent; a kite or an isosceles trapezium (for example) can have diagonals that are equal in length.     <strong><em>(A1)(R1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Accept a valid sketch as reasoning.</span></p>
<p><span>     If the reason given is that <em>a square has diagonals of equal length, but is not a rectangle</em>, then award <strong><em>(R1)(A0)</em></strong>.</span></p>
<p><span>     Do not award <strong><em>(A1)(R0)</em></strong>.</span></p>
<p><span>     Do not accept solutions based on truth tables.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Inverse     <strong><em>(A1)     (C1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Do not accept symbolic notation.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p>\[\begin{array}{*{20}{l}} {p{\text{: The car is under warranty}}} \\ {q{\text{: The car is less than 2 years old}}} \\ {r{\text{ : The car has been driven more than 20}}\,{\text{000 km}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words \((q \vee \neg r) \Rightarrow p\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the truth table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_06.43.42.png" alt="N17/5/MATSD/SP1/ENG/TZ0/04.b"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the statement \(\neg p \Rightarrow \neg (q \vee \neg r)\) is the inverse, the converse or the contrapositive of the statement in part (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>if the car is less than 2 years old or the car has not been driven more than \(20\,000{\text{ km}}\), then the car is under warranty     <strong><em>(A1)(A1)(A1)     (C3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for if …, then …, <strong><em>(A1) </em></strong>for “or”, <strong><em>(A1) </em></strong>for correct statements in correct order. Accept “If the car has not been driven more than \(20\,000{\text{ km}}\) or the car is less than 2 years old, then the car is under warranty”. Accept logical equivalent wording for each proposition, <em>eg </em>“less than \(20\,000{\text{ km}}\)”.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-13_om_06.56.17.png" alt="N17/5/MATSD/SP1/ENG/TZ0/04.b/M">     <strong><em>(A1)(A1)</em>(ft)     <em>(C2)</em></strong></p>
<p> </p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for \(q \vee \neg r\) column correct and <strong><em>(A1)</em>(ft) </strong>for \((q \vee \neg r) \Rightarrow p\) column correct. Follow through from their \(q \vee \neg r\) column.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>contrapositive     <strong><em>(A1)     (C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following Venn diagram shows the relationship between the sets of numbers</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[\mathbb{N},{\text{ }}\mathbb{Z}{\text{, }}\mathbb{Q}{\text{ and }}\mathbb{R}{\text{.}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The number &ndash;3 belongs to the set of \(\mathbb{Z}{\text{, }}\mathbb{Q}\) and \(\mathbb{R}\),&nbsp; but not \(\mathbb{N}\), and is placed in the appropriate position on the Venn diagram as an example.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.14.57.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the following numbers in the appropriate place in the Venn diagram.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>4</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\frac{1}{3}\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\pi \)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(0.38\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\sqrt 5 \)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(-0.25\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00_3.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00_4.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00_1.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p><span> </span></p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p><span> </span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00_5.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><br><img src="images/Schermafbeelding_2014-09-02_om_14.19.00_2.png" alt>     <strong><em>(A1)(A1)(A1)(A1)(A1)(A1)     (C6)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each number correctly placed.</span></p>
<p><span>     Award <strong><em>(A0) </em></strong>for any entry in more than one region.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following logic propositions:</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(p:{\text{ Sean is at school}}\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(q:{\text{ Sean is playing a game on his computer}}{\text{.}}\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words, \(p \underline { \vee } q\)</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words, the converse of \(p \Rightarrow \neg q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table for \(p \Rightarrow \neg q\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>Either Sean is at school or Sean is playing a game on his computer but not both.     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for ‘either ... or but not both’ <em><strong>(A1)</strong></em> for correct statements. ‘Either’ can be omitted.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If Sean is not playing a game on his computer then Sean is at school.     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for ‘If ... then’ <em><strong>(A1)</strong></em> for correct propositions in the correct order.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <strong><em>(A1)(A1)</em>(ft)     <em>(C2)</em></strong></span></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for each correct column.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The common error in part (a) was not to include &ldquo;but not both&rdquo; and for (b), to give the inverse rather than the converse. The first column in the table (not \(q\)) was well done but a number of candidates answered the implication incorrectly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The common error in part (a) was not to include &ldquo;but not both&rdquo; and for (b), to give the inverse rather than the converse. The first column in the table (not \(q\)) was well done but a number of candidates answered the implication incorrectly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The common error in part (a) was not to include &ldquo;but not both&rdquo; and for (b), to give the inverse rather than the converse. The first column in the table (not \(q\)) was well done but a number of candidates answered the implication incorrectly.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following logic propositions:</span></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">p </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Yuiko is studying French.</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">q </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Yuiko is studying Chinese.</span></em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the following compound propositions in symbolic form.</span></p>
<p><span>(i) Yuiko is studying French but not Chinese.</span></p>
<p><span>(ii) Yuiko is studying French or Chinese, but not both.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the <strong>inverse</strong> of the following compound proposition.</span></p>
<p><em><span>If Yuiko is studying Chinese, then she is not studying French.</span></em></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(p \wedge \neg q\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for conjunction, <em><strong>(A1)</strong></em> for negation of <em>q</em>.</span></p>
<p><br><span>(ii) \(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q\) <strong>OR</strong> \((p \vee q)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } (p \wedge q)\)     <em><strong>(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If Yuiko is not studying Chinese, (then) she is studying French.     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for “if … (then)” seen, award <em><strong>(A1)</strong></em> for “not studying</span> <span>Chinese” seen, <em><strong>(A1)</strong></em> for correct propositions in correct order.</span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Some candidates found the phrase &ldquo;Yuiko is studying French but not Chinese&rdquo; confusing as they did </span><span style="font-family: times new roman,times; font-size: medium;">not realize in this context the word &ldquo;but&rdquo; means &ldquo;and&rdquo;. Alternative but correct logic notation was </span><span style="font-family: times new roman,times; font-size: medium;">accepted.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A class consists of students studying Spanish or French or both. Fifteen students study Spanish and twelve study French.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that a student studies French given that she studies Spanish is \(\frac{{7}}{{15}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a Venn diagram in the space below to illustrate this information.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student studies Spanish given that she studies one language only.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for a labeled Venn diagram with appropriate sets.</span></p>
<p><span><em><strong>(A1)</strong></em> for 7, <em><strong>(A1)</strong></em> for 8 and 5.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P (Spanish / one language only)}} = \frac{{\frac{8}{{20}}}}{{\frac{8}{{20}} + \frac{5}{{20}}}}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted conditional probability formula, <em><strong>(A1)</strong></em> for correct substitution. Follow through from their Venn diagram.</span></p>
<p><br><span>\( = \frac{8}{{13}}(0.615,{\text{ }}61.5\% )\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong><span>OR</span></strong></span></p>
<p><span>\({\text{P}}{\text{ (Spanish / one language only)}} = \frac{8}{{8 + 5}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for their correct numerator, <em><strong>(M1)</strong></em> for correct recognition of regions. Follow through from their Venn diagram.</span></p>
<p><br><span>\( = \frac{8}{{13}}(0.615,{\text{ }}61.5\% )\)     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Part (a) was done well.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Very few were able to answer (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following logic propositions.&nbsp;</p>
<p class="p1" style="padding-left: 60px;">&nbsp; &nbsp; &nbsp;\(p\): Sandi gets up before eight o&rsquo;clock</p>
<p class="p1" style="padding-left: 60px;">&nbsp; &nbsp; &nbsp;\(q\): Sandi goes for a run</p>
<p class="p1" style="padding-left: 60px;">&nbsp; &nbsp; &nbsp;\(r\): Sandi goes for a swim</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words the compound proposition</p>
<p class="p1"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-06_om_13.42.11.png" alt="N16/5/MATSD/SP1/ENG/TZ0/05.b"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">On a morning when Sandi does </span><strong>not </strong>get up before eight o’clock, use your truth table to determine whether \(p \Rightarrow (q{\text{ }}\underline  \vee  {\text{ }}r)\) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">If Sandi gets up before eight o’clock then Sandi (either) goes for a run or goes for a swim, but not both. <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)(A1) <span class="Apple-converted-space">    </span>(C3)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for If …… then ……, <strong><em>(A1) </em></strong>for all propositions in the correct order, <strong><em>(A1) </em></strong>for “… or … but not both” (do not accept “either” as a replacement for “but not both”).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-03-06_om_13.50.12.png" alt="N16/5/MATSD/SP1/ENG/TZ0/05.b/M">     <strong><em>(A1)(A1)</em>(ft)     <em>(C2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for correct \((q{\text{ }}\underline  \vee  {\text{ }}r)\) column, and <strong><em>(A1)</em>(ft) </strong>for <span>their</span> correct \(p \Rightarrow (q{\text{ }}\underline  \vee  {\text{ }}r)\) column. Follow through from their \((q{\text{ }}\underline  \vee  {\text{ }}r)\) column.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">tautology <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft) <span class="Apple-converted-space">    </span><em>(C1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Follow through from part (b).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Peter either walks or cycles to work. The probability that he walks is <span class="s1">0.25</span>. If Peter walks to work, the probability that he is late is <span class="s1">0.1</span>. If he cycles to work, the probability that he is late is <span class="s1">0.05</span>. The tree diagram for this information is shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_07.11.52.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On a day chosen at random, Peter walked to work.</p>
<p class="p1">Write down the probability that he was on time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For a different day, also chosen at random,</p>
<p class="p1">find the probability that Peter cycled to work and was late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For a different day, also chosen at random,</p>
<p class="p1">find the probability that, given Peter was late, he cycled to work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(0.9\) <span class="Apple-converted-space">    </span><strong><em>(A1) <span class="Apple-converted-space">    </span>(C1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(0.75 \times 0.05\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 0.0375\;\;\;\left( {\frac{3}{{80}},{\text{ 3,75% }}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{0.75 \times 0.05}}{{0.75 \times 0.05 + 0.25 \times 0.1}}\) <span class="Apple-converted-space">    </span><strong><em>(M1)(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their correct numerator, <strong><em>(M1) </em></strong>for their correct denominator, <em>ie</em>, \(\left( {\frac{{{\text{their (b)}}}}{{{\text{their (b)}} + 0.25 \times 0.1}}} \right)\).</p>
<p class="p1">Do not award <strong><em>(M1) </em></strong>for <em>their </em>\(0.0375\) or \(0.0625\) if not a correct part of a fraction.</p>
<p class="p2"> </p>
<p class="p1">\( = 0.6\;\;\;\left( {\frac{3}{5},{\text{ }}60\% } \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft) <span class="Apple-converted-space">    </span><em>(C3)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from part (b).</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Surprisingly, in part (a) the majority of candidates answered incorrectly. The usual answer was 0.225, resulting from 0.25 &times; 0.9; the probability that Peter walks and arrives on time.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (b) the answers were mostly correct as the candidates repeated the same procedure, which was correct for this part.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The conditional probability in part (c) was too much for most. In some cases a correct numerator or denominator was found. More candidates could have received method marks if working had been shown.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A bag contains 7 red discs and 4 blue discs. Ju Shen chooses a disc at random from the bag and removes it. Ram&oacute;n then chooses a disc from those left in the bag.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that</span></p>
<p><span>(i) Ju Shen chooses a red disc from the bag;</span></p>
<p><span>(ii) Ramón chooses a blue disc from the bag, given that Ju Shen has chosen a red disc;</span></p>
<p><span>(iii) Ju Shen chooses a red disc and Ramón chooses a blue disc from the bag.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Ju Shen and Ramón choose different coloured discs from the bag.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(\frac{7}{{11}}\) (\(0.636\), \(63.6\% \))     (\(0.636363 \ldots \))     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii) \(\frac{4}{{10}}\) \(\left( {\frac{2}{5}{\text{, }}0.4{\text{, }}40\% } \right)\)     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span> </span></p>
<p><span>(iii) \(\frac{{28}}{{110}}\) \(\left( {\frac{{14}}{{55}}{\text{, }}0.255{\text{, }}25.5\% } \right)\)     \(0.254545 \ldots \)     <strong><em>(A1)</em>(ft)     <em>(C1)</em> <br></strong></span></p>
<p><span><strong>Note:</strong> Follow through from the product of their answers to parts (a) (i) and (ii).</span></p>
<p><span> </span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{28}}{{110}} + \left( {\frac{4}{{11}} \times \frac{7}{{10}}} \right)\)     <strong>OR</strong>     \(2 \times \frac{{28}}{{110}}\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for using their \(\frac{{28}}{{110}}\) as part of a combined probability expression. <em><strong>(M1)</strong></em> for either adding \({\frac{4}{{11}} \times \frac{7}{{10}}}\) <strong>or</strong> for multiplying by 2.</span></p>
<p><span> </span></p>
<p><span>\( = \frac{{56}}{{110}}\) \(\left( {\frac{{28}}{{55}}{\text{, }}0.509{\text{, }}50.9\% } \right)\)</span><span> (\(0.509090 \ldots \))     <strong><em>(A1)</em>(ft)     <em>(C3)</em></strong></span></p>
<p><span><strong>Note:</strong> Follow through applies from their answer to part (a) (iii) and only when their answer is between 0 and 1.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The vast majority of candidates were able to pick up the first two marks by confidently identifying the <em>number of favourable outcomes/total number of outcomes</em>. Difficulties arose however when combining events and only the more able candidates were able to progress successfully with the remainder of the question. As usual in this type of question, there was an abundance of incorrect answers greater than 1 given.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The vast majority of candidates were able to pick up the first two marks by confidently identifying the number of favourable outcomes/total number of outcomes. Difficulties arose however when combining events and only the more able candidates were able to progress successfully with the remainder of the question. As usual in this type of question, there was an abundance of incorrect answers greater than 1 given.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Home Shine factory produces light bulbs, 7% of which are found to be defective.</p>
</div>

<div class="specification">
<p>Francesco buys two light bulbs produced by Home Shine.</p>
</div>

<div class="specification">
<p>The Bright Light factory also produces light bulbs. The probability that a light bulb produced by Bright Light is not defective is \(a\).</p>
<p>Deborah buys three light bulbs produced by Bright Light.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a light bulb produced by Home Shine is not defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both light bulbs are not defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of Francesco’s light bulbs is defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of \(a\), for the probability that at least one of Deborah’s three light bulbs is defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>0.93 (93%)     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.93 \times 0.93\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for squaring their answer to part (a).</p>
<p> </p>
<p>0.865 (0.8649; 86.5%)     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Follow through from part (a).</p>
<p>Accept \(0.86{\text{ }}\left( {{\text{unless it follows }}\frac{{93}}{{100}} \times \frac{{92}}{{99}}} \right)\).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(1 - 0.8649\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their answer to part (b)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(0.07 \times 0.07 + 2 \times (0.07 \times 0.93)\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (a).</p>
<p> </p>
<p>0.135 (0.1351; 13.5%)     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(1 - {a^3}\)     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept \(3{a^2}(1 - a) + 3a{(1 - a)^2} + {(1 - a)^3}\) or equivalent.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In a research project on the relation between the gender of 150 science students at college and their degree subject, the following set of data is collected.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>is either male or studies Chemistry.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>studies Physics, given that the student is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\( = \frac{{91}}{{150}}(0.607,{\text{ }}60.6\,\% ,{\text{ }}60.7\,\% )\)    <em><strong> (A1)(A1)     (C2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong> </em>for denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( = \frac{{111}}{{150}}\left( {\frac{{37}}{{50}},{\text{ }}0.74,{\text{ }}74\,\% } \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their numerator in (a) +20 provided the final answer is not greater than 1.<em><strong> (A1)</strong></em> for denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{16}}{{91}}(0.176,{\text{ }}17.6\,\% )\)    <em><strong> (A1)(A1)</strong></em><strong>(ft)</strong><em><strong>     (C2)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Award<em><strong> (A1)</strong></em> for numerator and<strong><em> (A1)</em>(ft)</strong> for denominator. Follow through from their numerator in (a) provided answer is not </span><span>greater than 1.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered with many candidates gaining 4 marks there. The conditional probability in part (c) proved to be more challenging. Nearly all candidates attempted this question showing that time was not a factor in this paper. Many candidates gave their answers as incorrectly rounded decimals, which incurred an accuracy penalty and prevented them from gaining the maximum marks.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered with many candidates gaining 4 marks there. The conditional probability in part (c) proved to be more challenging. Nearly all candidates attempted this question showing that time was not a factor in this paper. Many candidates gave their answers as incorrectly rounded decimals, which incurred an accuracy penalty and prevented them from gaining the maximum marks.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered with many candidates gaining 4 marks there. The conditional probability in part (c) proved to be more challenging. Nearly all candidates attempted this question showing that time was not a factor in this paper. Many candidates gave their answers as incorrectly rounded decimals, which incurred an accuracy penalty and prevented them from gaining the maximum marks.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table shown below.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the compound proposition \((p \vee (p \wedge q)) \Rightarrow p\) is a contradiction, a tautology or neither.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the following propositions.</span></p>
<p><span>     </span><em><span>p: Feng finishes his homework</span></em></p>
<p><span>     </span><em><span>q: Feng goes to the football match</span></em></p>
<p><span>Write in symbolic form the following proposition.</span></p>
<p><em><span>If Feng does not go to the football match then Feng finishes his homework.</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>  <em><strong>   (A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>      (C3)</strong></em></span></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award<em><strong> (A1)</strong> </em>for each correct column.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>tautology    <em><strong> (A1)</strong></em><strong>(ft)  </strong><em><strong>   (C1)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Follow through from their last column.</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\neg q \Rightarrow p\)     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award<em><strong> (A1)</strong> </em>for \(\neg q\) and <em>p</em> in correct order,<em><strong> (A1)</strong></em> for \( \Rightarrow \) sign.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The truth table was very well answered and where the table was incorrect a follow through mark could be given for part (b) for a correct answer resulting from their final column. Some candidates appeared unsure of the concept of a tautology.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The truth table was very well answered and where the table was incorrect a follow through mark could be given for part (b) for a correct answer resulting from their final column. Some candidates appeared unsure of the concept of a tautology.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Nearly all candidates could write the proposition in part (c) in symbolic form.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The Venn diagram shows the numbers of pupils in a school according to whether they study the sciences Physics (\(P\)), Chemistry (\(C\)), Biology (\(B\)).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of pupils that study Chemistry only.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Write down the number of pupils that study</span> <span><strong>exactly</strong> two sciences.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of pupils that do not study Physics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(n[(P \cup B) \cap C]\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(9\)     <em><strong>(A1)     </strong><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(12\)     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(8 + 3 + 9 + 6\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = 26\)     <em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(20\) seen if answer is incorrect.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(5 + 2 + 3\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = 10\)     <em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(29\) or \(19\) seen if answer is incorrect.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well attempted by the majority. The major error was the omission of the &ldquo;\(6\)&rdquo; in the candidates&rsquo; calculations. Perhaps better positioning would have helped in this regard.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well attempted by the majority. The major error was the omission of the &ldquo;\(6\)&rdquo; in the candidates&rsquo; calculations. Perhaps better positioning would have helped in this regard.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well attempted by the majority. The major error was the omission of the &ldquo;\(6\)&rdquo; in the candidates&rsquo; calculations. Perhaps better positioning would have helped in this regard.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well attempted by the majority. The major error was the omission of the &ldquo;\(6\)&rdquo; in the candidates&rsquo; calculations. Perhaps better positioning would have helped in this regard.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following logic statements.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em>p: Carlos is playing the guitar</em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em>q: Carlos is studying for his IB exams</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound statement \(\neg p \wedge q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following statement in symbolic form.</span></p>
<p><span><em>“Either Carlos is playing the guitar or he is studying for his IB exams but not both.”</em></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the <strong>converse</strong> of the following statement in <strong>symbolic form</strong>.</span></p>
<p><em><span>“If Carlos is playing the guitar then he is not studying for his IB exams.”</span></em></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>Carlos is not playing the guitar and he is studying for his IB exams.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “and”, <em><strong>(A1)</strong></em> for correct statements.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q\)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\neg q \Rightarrow p\)     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p><span><strong>Notes: </strong> Award <em><strong>(A1)</strong></em> for implication, <em><strong>(A1)</strong></em> for the \(\neg q\), <em><strong>(A1)</strong></em> for both \(\neg q\) and \(p\) in the correct order. If correct converse seen in words only award <em><strong>(A1)(A1)(A0)</strong></em>. Accept \(p \Leftarrow \neg q\). Accept \( - q\) for \(\neg q\).</span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;">In part (a) occasionally <em>&lsquo;if&hellip;then&hellip;&rsquo;</em> was not seen but generally this was well done. </span> </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;">Part (b) was also well done despite the dearth of previous testing of the <em>exclusive or</em> statement. </span> </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times;"><span style="font-size: medium;">Finding the converse of a statement in part (c) proved to be difficult for a significant number of candidates and incorrect answers of the form \(q \Rightarrow \neg p \) were more frequently seen than the correct answer. Such incorrect </span><span style="font-size: medium;">answers lost two marks.</span> </span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the Canadian city of Ottawa:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{97%&nbsp; of the population speak English,}}} \\ {{\text{38%&nbsp; of the population speak French,}}} \\ {{\text{36%&nbsp; of the population speak both English and French.}}} \end{array}\]</p>
</div>

<div class="specification">
<p>The total population of Ottawa is \(985\,000\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of the population of Ottawa that speak English but not French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of people in Ottawa that speak both English and French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (b) in the form \(a \times {10^k}\) where \(1 \leqslant a &lt; 10\) and <em>k </em>\( \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(97 - 36\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for subtracting 36 from 97.</p>
<p> </p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-15_om_12.54.01.png" alt="M17/5/MATSD/SP1/ENG/TZ1/02.a/M"></p>
<p><strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for 61 <strong>and </strong>36 seen in the correct places in the Venn diagram.</p>
<p> </p>
<p>\( = 61{\text{ }}(\% )\)     <strong><em>(A1)</em></strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Accept 61.0 (%).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{36}}{{100}} \times 985\,000\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for multiplying 0.36 (or equivalent) by \(985\,000\).</p>
<p> </p>
<p>\( = 355\,000{\text{ }}(354\,600)\)     <strong><em>(A1)</em></strong>     <strong><em>(C2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3.55 \times {10^5}{\text{ }}(3.546 \times {10^5})\)     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong><em>     </em><strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)(ft) </em></strong>for 3.55 (3.546) <strong>must </strong>match part (b), and <strong><em>(A1)(ft)</em></strong> \( \times {10^5}\).</p>
<p>Award <strong><em>(A0)(A0) </em></strong>for answers of the type: \(35.5 \times {10^4}\). Follow through from part (b).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosewood College has 120 students. The students can join the sports club (\(S\)) and the music club (\(M\)).</p>
<p>For a student chosen at random from these 120, the probability that they joined both clubs is \(\frac{1}{4}\) and the probability that they joined the music club is\(\frac{1}{3}\).</p>
<p>There are 20 students that did not join either club.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram for these students.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_08.15.35.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the students who joined the sports club is chosen at random. Find the probability that this student joined both clubs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the events \(S\) and \(M\) are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-02-13_om_08.19.04.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a/M">     <strong><em>(A1)(A1)     (C2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for 30 in correct area, <strong><em>(A1) </em></strong>for 60 and 10 in the correct areas.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{30}}{{90}}{\text{ }}\left( {\frac{1}{3},{\text{ }}0.333333 \ldots ,{\text{ }}33.3333 \ldots \% } \right)\)     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)     <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct numerator of 30, <strong><em>(A1)</em>(ft) </strong>for correct denominator of 90. Follow through from their Venn diagram.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{P}}(S) \times {\text{P}}(M) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}\)     <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(R1) </em></strong>for multiplying their by \(\frac{1}{3}\).</p>
<p> </p>
<p>therefore the events are independent \(\left( {{\text{as P}}(S \cap M) = \frac{1}{4}} \right)\)     <strong><em>(A1)</em>(ft)     <em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(R1)(A1)</em>(ft) </strong>for an answer which is consistent with their Venn diagram.</p>
<p>Do not award <strong><em>(R0)(A1)</em>(ft)</strong>.</p>
<p>Do not award final <strong><em>(A1) </em></strong>if \({\text{P}}(S) \times {\text{P}}(M)\) is not calculated. Follow through from part (a).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the propositions</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp; &nbsp; &nbsp;</em>\(p\): <em>I have a bowl of soup.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em>&nbsp;&nbsp; &nbsp;</em>&nbsp;\(q\): <em>I have an ice cream.</em></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the compound proposition \(\neg p \Rightarrow q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_17.49.25.png" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in symbolic form, the converse of \(\neg p \Rightarrow q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If I do not have a bowl of soup then I have an ice cream.     <strong><em>(A1)(A1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for If… then…</span></p>
<p><span>     Award <strong><em>(A1) </em></strong>for correct statements in correct order.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="images/Schermafbeelding_2014-09-02_om_17.52.20.png" alt><span>     <strong><em>(A1)(A1)</em>(ft)     <em>(C2)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from third column to fourth column.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(q \Rightarrow \neg p\)     <strong><em>(A1)(A1)     (C2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for \( \Rightarrow \).</span></p>
<p><span>     Award <strong><em>(A1) </em></strong>for \(q\) and \(\neg p\) in correct order.</span></p>
<p><span>     Accept \(\neg p \Leftarrow q\).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to write the compound proposition in words, however many were not able to write the converse in symbolic form. While they were able to fill in the third column of the truth table, many were unable to complete the fourth column correctly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to write the compound proposition in words, however many were not able to write the converse in symbolic form. While they were able to fill in the third column of the truth table, many were unable to complete the fourth column correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Most candidates were able to write the compound proposition in words, however many were not able to write the converse in symbolic form. While they were able to fill in the third column of the truth table, many were unable to complete the fourth column correctly.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p>\[\begin{array}{*{20}{l}} {p{\text{: I completed the task}}} \\ {q{\text{: I was paid}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words \(\neg q\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in symbolic form the compound statement:</p>
<p>If I was paid then I completed the task.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_13.11.00.png" alt="M17/5/MATSD/SP1/ENG/TZ1/03.c.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the statements \(p \vee \neg q\) and \(q \Rightarrow p\) are logically equivalent. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>I was not paid     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(q \Rightarrow p\)     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-15_om_13.13.40.png" alt="M17/5/MATSD/SP1/ENG/TZ1/03.c.i/M">     <strong><em>(A1)(A1)</em></strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for each correct column.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>yes     <strong><em>(A1)</em>(ft)</strong></p>
<p>as the last two columns of the truth table are the same     <strong><em>(R1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award <strong><em>(A1)(R0)</em></strong><em>. </em>Follow through from part (c)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \({\text{P}}(A) = 0.5\), \({\text{P}}(B) = 0.6\) and \({\text{P}}(A \cup B) = 0.8\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \({\text{P}}(A \cap B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \({\text{P}}(A|B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether <em>A</em> and <em>B</em> are independent events. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.8 = 0.5 + 0.6 - {\text{P}}(A \cap B)\)   <em><strong>  (M1)</strong></em></span><br><span>\({\text{P}}(A \cap B) = 0.3\)   <em><strong>  (A1)     (C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for correct substitution,<em><strong> (A1)</strong></em> for correct answer.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P}}(A|B) = \frac{{0.3}}{{0.6}}\)    </span><em><strong><span> (M1)</span></strong></em></p>
<p><span>= 0.5    <em><strong> (A1)</strong></em><strong>(ft) </strong><em><strong>    (C2)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award<em><strong> (M1)</strong></em> for correct substitution in conditional probability</span> <span>formula. Follow through from their answer to part (a), provided </span><span>probability is not greater than one.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P}}(A \cap B) = {\text{P}}(A) \times {\text{P}}(B)\) or 0.3 = 0.5 × 0.6   <em><strong>  (R1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>\({\text{P}}(A|B) = {\text{P}}(A)\)    <em><strong> (R1)</strong></em></span></p>
<p><span>they are independent. (Yes)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>     (C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Follow through from their answers to parts (a) or (b).</span></p>
<p><span>Do not award <em><strong>(R0)(A1)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered but very few candidates could provide a reason for the independence of <em>A</em> and <em>B</em>. A number of candidates confused independent and mutually exclusive events.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered but very few candidates could provide a reason for the independence of <em>A</em> and <em>B</em>. A number of candidates confused independent and mutually exclusive events.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well answered but very few candidates could provide a reason for the independence of <em>A</em> and <em>B</em>. A number of candidates confused independent and mutually exclusive events.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two friends, Sensen and Cruz, are conducting an investigation on probability.</p>
<p>Sensen has a fair six-sided die with faces numbered \(1,\,\,2,\,\,2,\,\,4,\,\,4\) and \(4\). Cruz has a fair disc with one red side and one blue side.</p>
<p>The die and the disc are thrown at the same time.</p>
<p>Find the probability that the number shown on the die is \(1\) <strong>and</strong> the colour shown on the disc is blue;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the number shown on the die is \(1\) <strong>or</strong> the colour shown on the disc is blue;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the number shown on the die is even given that the colour shown on the disc is red.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{2} \times \frac{1}{6}\)        <em><strong>(M1)</strong></em></p>
<p>\(\frac{1}{{12}}\,\,(0.0833,\,\,8.33\,\% ,\,\,0.08333...)\)        <em><strong>(A1)    (C2)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{2} + \left( {\frac{1}{2} \times \frac{1}{6}} \right)\)        <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(\frac{1}{6} + \frac{1}{2} - \frac{1}{{12}}\,\)        <em><strong>(M1)</strong></em></p>
<p>\(\frac{7}{{12}}\,\,(0.583,\,\,58.3\,\% ,\,\,0.58333...)\)        <em><strong>(A1)     (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)(A0)</strong></em> for a <strong>correct</strong> attempt at a possibility/sample space diagram or tree diagram or \(\frac{1}{6} + \left( {\frac{5}{6} \times \frac{1}{2}} \right)\), leading to an incorrect answer.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{3} + \frac{1}{2}\)        <em><strong>(M1)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(\frac{{\frac{5}{6} \times \frac{1}{2}}}{{\frac{1}{2}}}\)        <em><strong>(M1)</strong></em></p>
<p>\(\frac{5}{6}\,\,(0.833,\,\,83.3\,\% ,\,\,0.83333...)\)        <em><strong>(A1)     (C2)</strong></em></p>
<p><strong>Notes:</strong> Award <em><strong>(M1)(A0)</strong></em> for a <strong>correct</strong> attempt at a possibility/sample space diagram or tree diagram, leading to an incorrect answer.</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Probability.<br>Some candidates confused the probability of both events occurring with the probability that one or the other occurs. Many candidates were unable to find the conditional probability. Candidates should not answer a probability question with an answer that exceeds one. Only the very best candidates did very well on this question; many found this to be one of the most challenging questions in the paper.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Probability.<br>Some candidates confused the probability of both events occurring with the probability that one or the other occurs. Many candidates were unable to find the conditional probability. Candidates should not answer a probability question with an answer that exceeds one. Only the very best candidates did very well on this question; many found this to be one of the most challenging questions in the paper.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Probability.<br>Some candidates confused the probability of both events occurring with the probability that one or the other occurs. Many candidates were unable to find the conditional probability. Candidates should not answer a probability question with an answer that exceeds one. Only the very best candidates did very well on this question; many found this to be one of the most challenging questions in the paper.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the propositions \(r\), \(p\) and \(q\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_13.45.17.png" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether the compound proposition \(\neg \left( {(r \wedge p) \vee \neg q)} \right) \Leftrightarrow \neg (r \wedge p) \wedge q\) <span class="s1">is a tautology, a contradiction or neither.</span></p>
<p class="p2">Give a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space"><img src="images/Schermafbeelding_2015-12-20_om_13.51.08.png" alt>    </span><strong><em>(A1)(A1)</em>(ft)(<em>A1)</em>(ft)<em>(A1) <span class="Apple-converted-space">    </span>(C4)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for each correct column.</p>
<p class="p1">For the “\({(r \wedge p) \vee \neg q}\)” follow through from the “\(r \wedge p\)” column.</p>
<p class="p1">For the “\(\neg \left( {(r \wedge p) \vee \neg q)} \right)\)” column, follow through from the preceding column.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">tautology <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">columns \(\neg \left( {(r \wedge p) \vee \neg q)} \right)\) and \(\neg (r \wedge p) \wedge q\) are identical <span class="Apple-converted-space">    </span><strong><em>(R1)(C2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Do not award <strong><em>(R0)(A1)</em>(ft)</strong>. Follow through from their table in part (a).</p>
<p class="p1">Award the <strong><em>(R1) </em></strong>for an additional column representing \(\neg \left( {(r \wedge p) \vee \neg q)} \right) \Leftrightarrow \neg (r \wedge p) \wedge q\) that is consistent with their table.</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the following statements</p>
<p>\(z\,:\,x\) is an integer<br>\(q\,:\,x\) is a rational number<br>\(r\,:\,x\) is a real number.</p>
<p>i)    Write down, in words, \(\neg q\).</p>
<p>ii)   Write down a value for \(x\) such that the statement \(\neg q\) is true.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the following argument in symbolic form:<br>“If \(x\) is a real number and \(x\) is not a rational number, then \(x\) is not an integer”.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phoebe states that the argument in part (b) can be shown to be valid, without the need of a truth table.</p>
<p>Justify Phoebe’s statement.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i)    \(x\) is not a rational number        <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept “\(x\) is an irrational number”.</p>
<p> </p>
<p>ii)   any non-rational number (for example: \(\pi ,\,\sqrt 2 \), …)       <em><strong>(A1) (C2)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((r \wedge \neg q) \Rightarrow \neg z\)       <em><strong>(A1)(A1)(A1) (C3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “\( \Rightarrow \)” seen, <em><strong>(A1)</strong></em> for “\(\neg z\)” as the consequent and <em><strong>(A1)</strong></em> for “\((r \wedge \neg q)\)” or “\((\neg q \wedge r)\)” as the antecedent (the parentheses are required).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all integers are rational numbers (and therefore \(x\) cannot be an integer if it is not a rational number)       <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Accept equivalent expressions.</p>
<p><strong>OR</strong></p>
<p>if \(x\) is an integer, then \(x\) is a rational number, therefore if \(x\) is not a rational number, then \(x\) is not an integer (contrapositive)   <strong><em>(R1) (C1)</em></strong></p>
<p><strong>Note: </strong>Accept “If \(x\) is not in \(\mathbb{Q}\), then \(x\) is not in \(\mathbb{Z}\)” with a Venn diagram showing \(\mathbb{R}\), \(\mathbb{Q}\) and \(\mathbb{Z}\) correctly.</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 5 Logic<br>In part (a), the majority of candidates were able to state the negation, but surprisingly many were unable to give an example of a non-rational number.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (b), a common error was the lack of parentheses in the antecedent. A further error was the use of the &ldquo;intersection&rdquo; symbol rather than that for conjunction; care must be taken in this regard.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (c) proved problematic for all but the best candidates.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Ramzi travels to work each day, either by bus or by train. The probability that he travels by bus is \(\frac{3}{5}\). If he travels by bus, the probability that he buys a magazine is \(\frac{2}{3}\). If he travels by train, the probability that he buys a magazine is \(\frac{3}{4}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-03_om_06.15.58.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Ramzi buys a magazine when he travels to work.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><span><img src="images/Schermafbeelding_2014-09-03_om_06.19.12.png" alt><span>     </span></span><span><strong><em>(A1)(A1)(A1)     (C3)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for each correct pair of branches.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{3}{5} \times \frac{2}{3} + \frac{2}{5} \times \frac{3}{4}\)     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for two consistent products from tree diagram, <strong><em>(M1) </em></strong>for addition of their products.</span></p>
<p><span>     Follow through from their tree diagram provided all probabilities are between \(0\) and \(1\).</span></p>
<p> </p>
<p><span>\(\frac{7}{{10}}{\text{ }}\left( {{\text{0.7, 70% , }}\frac{{42}}{{60}}} \right)\)     <strong><em>(A1)</em>(ft)     <em>(C3)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates showed that they were able to place probabilities in the correct position on the tree diagram and many went on to find the correct probability, gaining full marks for this question. Some candidates did not recognize that addition of two products was required. A mistake that was seen too frequently on candidate scripts was giving probabilities, in part (b), that were greater than 1.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 18.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Candidates showed that they were able to place probabilities in the correct position on the tree diagram and many went on to find the correct probability, gaining full marks for this question. Some candidates did not recognize that addition of two products was required. A mistake that was seen too frequently on candidate scripts was giving probabilities, in part (b), that were greater than 1.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;"><em>B</em> and <em>C</em> are subsets of a universal set <em>U</em> such that</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(U = \left\{ {x:x \in \mathbb{Z},0 \leqslant x &lt; 10} \right\},{\text{ }}B = \left\{ {{\text{prime numbers}} &lt; 10} \right\},{\text{ }}C = \left\{ {x:x \in \mathbb{Z},1 &lt; x \leqslant 6} \right\}.\)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the members of sets</span></p>
<p><span>(i) \(B\)</span></p>
<p><span>(ii) \(C \cap B\)</span></p>
<p><span>(iii) \(B \cup C′\)</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions:</span></p>
<p><span><em>p</em> : <em>x</em> is a prime number less than 10.</span></p>
<p><span><em>q</em> : <em>x</em> is a positive integer between 1 and 7.</span></p>
<p><span>Write down, in words, the contrapositive of the statement, “If <em>x</em> is a prime number less than 10, then <em>x</em> is a positive integer between 1 and 7.”</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(B = 2, 3, 5, 7\)     <em><strong>(A1)</strong></em></span></p>
<p><em><span>Brackets not required<br><br></span></em></p>
<p><span>(ii) \(C \cap B = 2, 3, 5\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><em><span>Follow through only from incorrect B<br><br></span></em></p>
<p><span>(iii) \(C' = 0, 1, 7, 8, 9\)     </span><span><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(B \cup C' = 0, 1, 2, 3, 5, 7, 8, 9\)     </span><span><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em>Note: Award <strong>(A1)</strong> for correct </em>\(C'\)<em> seen. The first <strong>(A1)(ft)</strong> in (iii)</em></span><em> <span>can be awarded only if C was listed incorrectly and a mark was</span> </em><span><em>lost as a result in (a)(ii). If C was not listed and </em>\(C'\)<em> is wrong, the </em></span><em><span>first mark is lost. The second mark can <strong>(ft)</strong> within part (iii) as  well</span> <span>as from (i).     <strong>(C4)</strong></span></em></p>
<p> </p>
<p><em><span><strong>[4 marks]</strong></span></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>“If <em>x</em> is not a positive integer between 1 and 7, then <em>x</em> is not a prime number less than 10.”     <em><strong>(A1)(A1)</strong></em></span></p>
<p><em><span>Award <strong>(A1)</strong> for <strong>both</strong> (not) statements, <strong>(A1)</strong> for correct order.     <strong>(C2)</strong></span></em></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">a) Many candidates included 1 as a prime number for set \(B\). Most candidates were able to list the intersection of \(B\) and \(C\) correctly with many receiving a follow through for their incorrect \(B\). Very few candidates were able to list \(B \cup C '\) correctly with many listing the intersection. It was disappointing that only a few candidates listed \(C'\) separately &ndash; those that did often received a mark for this working.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">b) The majority of candidates were able to write down the contrapositive correctly but many gave the inverse or the converse instead.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tuti has the following polygons to classify: rectangle (R), rhombus (H), isosceles triangle (I), regular pentagon (P), and scalene triangle (T).</p>
<p class="p1">In the Venn diagram below, set \(A\)&nbsp;consists of the polygons that have at least one pair of parallel sides, and set \(B\)&nbsp;consists of the polygons that have at least one pair of equal sides.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-03_om_08.19.15.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the Venn diagram by placing the letter corresponding to each polygon in the appropriate region. For example, R has already been placed, and represents the rectangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State which polygons from Tuti’s list are elements of</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(A \cap B\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\((A \cup B)'\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2015-12-03_om_08.21.19.png" alt>     <strong><em>(A3)     (C3)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A3) </em></strong>if all four letters placed correctly,</p>
<p class="p1"><strong><em>(A2) </em></strong>if three letters are placed correctly,</p>
<p class="p1"><strong><em>(A1) </em></strong>if two letters are placed correctly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Rhombus and rectangle <strong>OR </strong>H and R <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Scalene triangle <strong>OR </strong>T <span class="Apple-converted-space">    </span><strong><em>(A2)</em>(ft) <span class="Apple-converted-space">    </span><em>(C3)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for a list R, H, I, P seen (identifying the union).</p>
<p class="p1">Follow through from their part (a).</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following statements about the quadrilateral ABCD</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(q:\) ABCD has four equal sides&nbsp;&nbsp;&nbsp;&nbsp; \(s:\) ABCD is a square</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express in words the statement, \(s \Rightarrow q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words, the inverse of the statement, \(s \Rightarrow q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine the validity of the argument in (b). Give a reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If ABCD is a square, then ABCD has four equal sides.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for if… then, <em><strong>(A1)</strong></em> for propositions in the correct order.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If ABCD is not a square, then ABCD does not have four equal sides.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for if… then, <em><strong>(A1)</strong></em> for propositions in the correct order.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Not a valid argument. ABCD may have 4 equal sides but will not <strong>necessarily</strong> be a square. (It may be a rhombus)     <em><strong>(A1)(R1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(R1)</strong></em> for correct reasoning, award <em><strong>(A1)</strong></em> for a consistent conclusion with their answer in part (b). </span></p>
<p><span>It is therefore possible that <em><strong>(R1)(A0)</strong></em> may be awarded, but <em><strong>(R0)(A1)</strong></em> can never be awarded.</span></p>
<p> </p>
<p><span><strong>Note:</strong> Simple examples of determining the validity of an argument without the use of a truth table may be tested.</span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey was carried out in a group of 200 people. They were asked whether they smoke or not. The collected information was organized in the following table.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">One person from this group is chosen at random.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that this person is a smoker.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that this person is male given that they are a smoker.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that this person is a smoker or is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{90}}{{200}}(0.45,{\text{ }}45{\text{ }}\% )\)     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{60}}{{90}}(0.\bar 6,{\text{ }}0.667,{\text{ }}66.\bar 6{\text{ }}\% ,{\text{ }}66.6 \ldots {\text{ }}\% ,{\text{ }}66.7{\text{ }}\% )\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)    </strong><em><strong> (C2)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for numerator, <strong><em>(A1)</em>(ft)</strong> for denominator, follow through from their numerator in part (a). Last mark is lost if answer is not a probability.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{90}}{{200}} + \frac{{100}}{{200}} - \frac{{60}}{{200}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the combined events formula. Follow through from their answer to part (a).</span></p>
<p> </p>
<p><span>\( = \frac{{130}}{{200}}(0.65,{\text{ }}65{\text{ }}\% )\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><strong><span>OR</span></strong></p>
<p><span><span>\(\frac{{60}}{{200}} + \frac{{40}}{{200}} + \frac{{30}}{{200}}\)     </span><em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for adding the correct fractions.</span></p>
<p> </p>
<p><span><span>\( = \frac{{130}}{{200}}(0.65,{\text{ }}65{\text{ }}\% )\)     </span><em><strong>(A1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>\(1 - \frac{{70}}{{200}}\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtraction of correct fraction from 1.</span></p>
<p> </p>
<p><span><span><span><span><span>\( = \frac{{130}}{{200}}(0.65,{\text{ }}65{\text{ }}\% )\)</span></span>     </span></span><em><strong>(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was generally well answered by many of the candidates. Many found the conditional probability in part b) easier compared to previous sessions, since they were able to write it down directly from the table. A number of candidates found the final part difficult with a significant number unable to use the combined events probability formula correctly.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was generally well answered by many of the candidates. Many found the conditional probability in part b) easier compared to previous sessions, since they were able to write it down directly from the table. A number of candidates found the final part difficult with a significant number unable to use the combined events probability formula correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was generally well answered by many of the candidates. Many found the conditional probability in part b) easier compared to previous sessions, since they were able to write it down directly from the table. A number of candidates found the final part difficult with a significant number unable to use the combined events probability formula correctly.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">On a work day, the probability that Mr Van Winkel wakes up early is \(\frac{4}{5}\).</p>
<p class="p1">If he wakes up early, the probability that he is on time for work is \(p\).</p>
<p class="p1">If he wakes up late, the probability that he is on time for work is \(\frac{1}{4}\).</p>
</div>

<div class="specification">
<p class="p1">The probability that Mr Van Winkel arrives on time for work is \(\frac{3}{5}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the tree diagram below.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-07_om_06.20.32.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(p\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-03-07_om_06.24.40.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a/M">     <strong><em>(A1)(A1)     (C2)</em></strong></p>
<p class="p3"> </p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for each correct pair of probabilities.</p>
<p class="p3"> </p>
<p class="p2"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">\(\frac{4}{5}p + \frac{1}{5} \times \frac{1}{4} = \frac{3}{5}\) <span class="Apple-converted-space">    </span></span><strong><em>(A1)</em>(ft)<em>(M1)(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for two correct products from part (a), <strong><em>(M1) </em></strong>for adding their products, <strong><em>(M1) </em></strong>for equating the sum of any two probabilities to \(\frac{3}{5}\).</p>
<p class="p1"> </p>
<p class="p1"><span class="Apple-converted-space">\((p = ){\text{ }}\frac{{11}}{{16}}{\text{ }}(0.688,{\text{ }}0.6875)\)    </span><strong><em>(A1)</em>(ft) <span class="Apple-converted-space">    </span><em>(C4)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award the final <strong><em>(A1)</em>(ft) </strong>only if \(0 \leqslant p \leqslant 1\). Follow through from part (a).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following Venn diagram shows the sets \(A\), \(B\), \(C\) and \(U\).</p>
<p class="p1">\(x\) is an element of \(U\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.16.47.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In the table indicate whether the given statements are True or False.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-06_om_12.54.23.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a"></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the Venn diagram, shade the region \(A \cap (B \cup C)'\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2017-03-06_om_12.57.08.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a/M">     </span><strong><em>(A1)(A1)(A1)(A1)(A1)     (C5)</em></strong></p>
<p class="p1"><em><strong>[5 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2017-03-06_om_13.00.17.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.b/M">     <strong><em>(A1)     (C1)</em></strong></p>
<p class="p2"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sara regularly flies from Geneva to London. She takes either a direct flight or a non-directflight that goes via Amsterdam.</p>
<p>If she takes a direct flight, the probability that her baggage does not arrive in London is 0.01.<br>If she takes a non-direct flight the probability that her baggage arrives in London is 0.95.</p>
<p>The probability that she takes a non-direct flight is 0.2.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.08.43.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Sara’s baggage arrives in London.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-15_om_14.22.22.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07.a/M">     <strong><em>(A1)(A1)(A1)     (C3)</em></strong></p>
<p> </p>
<p> </p>
<p>Note:     Award <strong><em>(A1) </em></strong>for each correct pair of probabilities.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.8 \times 0.99 + 0.2 \times 0.95\)     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1)</em>(ft) </strong>for two correct products of probabilities taken from their diagram, <strong><em>(M1) </em></strong>for the addition of their products.</p>
<p> </p>
<p>\( = 0.982{\text{ }}\left( {98.2\% ,{\text{ }}\frac{{491}}{{500}}} \right)\)     <strong><em>(A1)</em>(ft)</strong><em>     </em><strong><em>(C3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (a).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The IB grades attained by a group of students are listed as follows.</p>
<p class="p1">\[{\text{6}}\;\;\;{\text{4}}\;\;\;{\text{5}}\;\;\;{\text{3}}\;\;\;{\text{7}}\;\;\;{\text{3}}\;\;\;{\text{5}}\;\;\;{\text{4}}\;\;\;{\text{2}}\;\;\;{\text{5}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the median grade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the probability that a student chosen at random from the group scored at least a grade \(4\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(2\;\;\;3\;\;\;3\;\;\;4\;\;\;4\;\;\;5\;\;\;5\;\;\;5\;\;\;6\;\;\;7\) <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p3"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct ordered set.</p>
<p class="p2"> </p>
<p class="p3">\(({\text{Median}} = ){\text{ }}4.5\) <span class="Apple-converted-space">    </span><strong><em>(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(5 - 3\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for correct quartiles seen.</p>
<p class="p2"> </p>
<p class="p1">\( = 2\) <span class="Apple-converted-space">    </span><strong><em>(A1) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{7}{{10}}\;\;\;(0.7,{\text{ }}70\% )\) <span class="Apple-converted-space">    </span><strong><em>(A2) <span class="Apple-converted-space">    </span>(C2)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Part (a) was generally well done although some candidates seemed to be confused between the mean and median.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (b) it was not unusual to see an upper quartile of 5.5 (resulting from (5+6)/2).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A significant number of candidates had difficulty with &ldquo;at least four&rdquo; in part (c), answering 2/10 which resulted from calculating the probability of a grade equal to 4 and not at least 4.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A <strong>weighted</strong> die has 2 red faces, 3 green faces and 1 black face. When the die is thrown,</span> <span style="font-size: medium; font-family: times new roman,times;">the black face is three times as likely to appear on top as one of the other five faces. </span><span style="font-size: medium; font-family: times new roman,times;">The other five faces have equal probability of appearing on top.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The following table gives the probabilities.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of</span></p>
<p><span>(i)     <em>m</em>;</span></p>
<p><span>(ii)     <em>n</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The die is thrown once.</span></p>
<p><span>Given that the face on top is not red, find the probability that it is black.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The die is now thrown twice.</span></p>
<p><span>Calculate the probability that black appears on top both times.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     <em>m</em> = 1    <em><strong>(A1)</strong></em></span></p>
<p><span>(ii)     <em>n</em> = 3<strong>     </strong><em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong> for \(m = \frac{1}{8}, n = \frac{3}{8}\).</span></p>
<p><span>   Award <em><strong>(A0)(A1)</strong></em><strong>(ft</strong><strong>)</strong> for <em>m</em> = 3, <em>n</em> = 1.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\rm{P}}(B/R') = \frac{{\frac{3}{8}}}{{\frac{6}{8}}} = \frac{3}{6}\left( {\frac{1}{2},50\% ,0.5} \right)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted conditional probability formula or for 6 seen as part of denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\rm{P}}(B,B) = \frac{3}{8} \times \frac{3}{8} = \frac{9}{{64}}(0.141)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for product of two correct fractions, decimals or percentages.</span></p>
<p><span><strong>(ft)</strong> from their answer to part (a) (ii).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The answers 1/8 and 3/8 were provided by many rather than 1 and 3. The conditional probability question was correctly answered more often when the formula was used. A common incorrect answer to part (c) was 3/8 &times; 2/7.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The answers 1/8 and 3/8 were provided by many rather than 1 and 3. The conditional probability question was correctly answered more often when the formula was used. A common incorrect answer to part (c) was 3/8 &times; 2/7.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The answers 1/8 and 3/8 were provided by many rather than 1 and 3. The conditional probability question was correctly answered more often when the formula was used. A common incorrect answer to part (c) was 3/8 &times; 2/7.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>(ii)    State whether the compound propositions \(\neg (p \wedge q)\) and \(\neg p \vee \neg q\) are equivalent.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the following propositions.</span></p>
<p><span>\(p:{\text{ Amy eats sweets}}\)</span></p>
<p><span> \(q:{\text{ Amy goes swimming.}}\)</span></p>
<p><span>Write, in symbolic form, the following proposition.</span></p>
<p><span><em>Amy either eats sweets or goes swimming, but not both.</em></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)</span></p>
<p><span><img src="" alt>     <em><strong>(A3)</strong></em></span></p>
<p><span><strong>Note: </strong>Award <em><strong>(A1)</strong></em> for \(p \wedge q\) column correct, <strong><em>(A1)</em>(ft)</strong> for \(\neg (p \wedge q)\) column correct, <em><strong>(A1)</strong></em> for last column correct.<em><strong><br></strong></em></span></p>
<p><span> </span></p>
<p><span>(ii)    Yes.     <em><strong>(R1)</strong></em><strong>(ft)</strong>     <em><strong>(C4)</strong></em></span></p>
<p><span><strong>Note: (ft)</strong> from their second and the last columns. Must be correct from their table.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(p {\underline \vee} q\).     <em><strong>(A1)(A1)     (C2)</strong></em></span></p>
<p><span><strong>Note: </strong>Award <em><strong>(A1)</strong></em> for \(p \ldots q\), <em><strong>(A1)</strong></em> for \({\underline \vee} \). Accept \((p \vee q) \wedge \neg (p \wedge q)\) or \((p \vee q) \wedge (\neg p \vee \neg q)\).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by many of the candidates. It is an area of the syllabus that is well taught and many managed to get a follow through mark even though one of the columns in the table might have been incorrect.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by many of the candidates. It is an area of the syllabus that is well taught and many managed to get a follow through mark even though one of the columns in the table might have been incorrect.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider each of the following statements</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\[p:Alex{\text{ }}is{\text{ }}from{\text{ }}Uruguay\]\[q:Alex{\text{ }}is{\text{ }}a{\text{ }}scientist\]\[r:Alex{\text{ }}plays{\text{ }}the{\text{ }}flute\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following argument in words</span><br><span>\[\neg r \Rightarrow (q \vee p)\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table for the argument in part (a) using the values below for \(p\) , \(q\) , \(r\) and \(\neg r\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The argument \(\neg r \Rightarrow (q \vee p)\) is invalid. State the reason for this.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>If Alex does not play the flute then he is <strong>either</strong> a scientist <strong>or</strong> from Uruguay.     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> if… then, correct <em><strong>(A1)</strong></em> antecedent, <em><strong>(A1)</strong></em> correct consequent.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>    </span></span><span> <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>Not all entries in the final column are T.    </span> <span><em><strong>(R1)</strong></em>     <em><strong>(C1)</strong></em></span></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that it will snow tomorrow is 0.3.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If it snows tomorrow the probability that Chuck will be late for school is 0.8.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If it does not snow tomorrow the probability that Chuck will be late for school is 0.1.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that it does not snow tomorrow and Chuck is late for school.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Chuck is late for school.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct pair.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.7 \times 0.1\)</span></p>
<p><span>\( = 0.07(\frac{7}{{100}},{\text{ }}7\% )\)</span><span>     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.3 \times 0.8 + 0.07\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = 0.31(\frac{{31}}{{100}},{\text{ }}31\% )\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> In (b) and (c) follow through from sensible answers only i.e. not a probability greater than one.     <em><strong>(C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was answered well.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was answered well.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A few students were unable to do part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A fitness club has 60 members. 35 of the members attend the club&rsquo;s aerobics course (<em>A</em>) and 28 members attend the club&rsquo;s yoga course (<em>Y</em>). 17 members attend both courses.&nbsp;</span><span style="font-family: times new roman,times; font-size: medium;">A Venn diagram is used to illustrate this situation.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>p</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the number of members of the fitness club who attend neither the aerobics course (<em>A</em>) nor the yoga course (<em>Y</em>).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Shade, on your Venn diagram, \(A' \cap Y\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>17     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>35 – 17     </span><span><em><strong>(M1)</strong></em></span></p>
<p><span>= 18     </span><span><em><strong>(A1)</strong></em>    <em><strong>(C2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct answer only.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(60 - (35 - 17) - (28 - 17) - 17\)     <em><strong>(M1)</strong></em></span><br><span>= 14    <strong><em> (A1)</em>(ft)  <em>   (C2)</em></strong></span></p>
<p><br><span><strong>Note:</strong> Follow through from (a) and (b).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><em><strong><span>     (A1)     (C1)</span></strong></em></span></p>
<p><span><em><strong><span>[1 mark]</span></strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was probably the question that most candidates found the easiest. Nearly all candidates gained either 5 or 6 marks with the mark lost in shading the region on the Venn diagram.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was probably the question that most candidates found the easiest. Nearly all candidates gained either 5 or 6 marks with the mark lost in shading the region on the Venn diagram.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was probably the question that most candidates found the easiest. Nearly all candidates gained either 5 or 6 marks with the mark lost in shading the region on the Venn diagram.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was probably the question that most candidates found the easiest. Nearly all candidates gained either 5 or 6 marks with the mark lost in shading the region on the Venn diagram.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the statement \((p \wedge q) \Rightarrow (\neg p \underline \vee q)\) is a logical contradiction, a tautology or neither.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason for your answer to part (b)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt>     <em><strong>(A1)(A1)(A1)</strong></em><strong>(ft)<em>(A1)</em>(ft)</strong>     <em><strong>(C4)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for each correct column.</span></p>
<p><span>            Award first <strong><em>(A1)</em>(ft)</strong> from their third column in the table.</span></p>
<p><span>            Award second <strong><em>(A1)</em>(ft)</strong> from their fourth and fifth column in the table.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Tautology     <strong><em>(A1)</em>(ft)     <em>(C1)</em></strong></span></p>
<p><span><strong>Note:</strong> Answer must be consistent with last column in table.</span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><span>All entries (in the final column) are true.<span>     </span><strong><em>(R1)</em>(ft)</strong><span>     </span><strong><em>(C1)</em></strong></span></span></span> </p>
<p><span><span><span><span><strong>Note:</strong></span><span> Answer must be consistent with their answer to part (b)(i).</span></span></span></span></p>
<p><span><span><span><span><span><strong>Note:</strong></span><span> Special case <strong><em>(A1)(R0)</em></strong> may be awarded.</span></span></span></span></span></p>
<p><em><strong><span><span><span><span><span>[1 mark]</span></span></span></span></span></strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Weaker candidates had some difficulty here with the majority scoring less than 2 marks on this question. The more confident candidates were able to score well with most marks being lost only on completing the truth table for \((\neg p \underline \vee q)\). As a consequence, the final column entries of the table were often incorrect but earned the (A1)(ft) mark. Many candidates went on to correctly identify the correct (ft) response to (b)(i) and were able to support their answer with a correct reason.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Weaker candidates had some difficulty here with the majority scoring less than 2 marks on this question. The more confident candidates were able to score well with most marks being lost only on completing the truth table for \((\neg p \underline \vee q)\). As a consequence, the final column entries of the table were often incorrect but earned the (A1)(ft) mark. Many candidates went on to correctly identify the correct (ft) response to (b)(i) and were able to support their answer with a correct reason.</span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Weaker candidates had some difficulty here with the majority scoring less than 2 marks on this question. The more confident candidates were able to score well with most marks being lost only on completing the truth table for \((\neg p \underline \vee q)\). As a consequence, the final column entries of the table were often incorrect but earned the (A1)(ft) mark. Many candidates went on to correctly identify the correct (ft) response to (b)(i) and were able to support their answer with a correct reason.</span></p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A group of 30 students were asked about their favourite topping for toast.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp; &nbsp; &nbsp;18 liked peanut butter (<em>A</em>)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp; &nbsp; &nbsp;10 liked jam (<em>B</em>)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp; &nbsp; &nbsp;6 liked neither</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show this information on the Venn diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who like both peanut butter and jam.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a randomly chosen student from the group likes peanut butter, given that they like jam.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span><strong> OR</strong> <img src="" alt>     <em><strong>(A2)     (C2)</strong></em></span></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A2)</strong></em> for 3 correctly placed values, and no extras (4 need not be seen), <em><strong>(A1)</strong></em> for 2 correctly placed values, <em><strong>(A0)</strong></em> for 1 or no correctly placed values.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>18 + 10 + 6 = 30    <em><strong> (M1)</strong></em></span><br><span>= 4   <em><strong>  (A1)     (C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P}}(A|B) = \frac{4}{{10}}\left( {\frac{2}{5},{\text{ }}0.4,{\text{ }}40{\text{ }}\% } \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)     (C2)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award<strong><em> (A1)</em>(ft)</strong> for their numerator from part (b),<em><strong> (A1)</strong> </em>for denominator.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The first two parts of this question were well answered with most candidates completing the Venn diagram correctly and finding the number in the intersection. The final part, requiring a conditional probability to be found, proved more difficult as many candidates tried to use the formula, when all that was required was to look at the values in the Venn diagram. Follow through marks were awarded in part (c) for values correctly used from parts (a) and (b).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The first two parts of this question were well answered with most candidates completing the Venn diagram correctly and finding the number in the intersection. The final part, requiring a conditional probability to be found, proved more difficult as many candidates tried to use the formula, when all that was required was to look at the values in the Venn diagram. Follow through marks were awarded in part (c) for values correctly used from parts (a) and (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The first two parts of this question were well answered with most candidates completing the Venn diagram correctly and finding the number in the intersection. The final part, requiring a conditional probability to be found, proved more difficult as many candidates tried to use the formula, when all that was required was to look at the values in the Venn diagram. Follow through marks were awarded in part (c) for values correctly used from parts (a) and (b).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Merryn plans to travel to a concert tomorrow. Due to bad weather, there is a 60 % chance that all flights will be cancelled tomorrow. If the flights are cancelled Merryn will travel by car.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If she travels by plane the probability that she <strong>will be late</strong> for the concert is 10 %.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If she travels by car, the probability that she <strong>will not be late</strong> for the concert is 25 %.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Merryn will not be late for the concert.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Merryn was not late for the concert the next day.</span></p>
<p><span>Given that, find the probability that she travelled to the concert by car.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)     </strong><strong>(C1)</strong></em></span></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 0.9 and 0.75.<br></span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0.4 × 0.9 + 0.6 × 0.25     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their two relevant products, <em><strong>(M1)</strong></em> for adding their two products.</span></p>
<p> </p>
<p><span>\(0.51\left( {\frac{{51}}{{100}},{\text{ }}51\% } \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C3)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answers to part (a).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{0.6 \times 0.25}}{{0.51}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted conditional probability formula.</span></p>
<p> </p>
<p><span>\(0.294\left( {\frac{5}{{17}}{\text{, }}0.294117...} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)   </strong>  <strong><em>(C2)</em></strong></span> </p>
<p><span><strong>Note:</strong> Follow through from their tree diagram and their part (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to see many correct answers in parts (a) and (b) with many writing their answer to part (b) in the context of the question and writing down a percentage. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to see many correct answers in parts (a) and (b) with many writing their answer to part (b) in the context of the question and writing down a percentage. </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Conditional probability is not an easy topic for candidates to understand and many simply wrote down 0.6 &times; 0.25 = 0.15(15%) for part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">\(U = \{ x|x{\text{ is an integer, }}2 &lt; x &lt; 10\}\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> and <em>B</em> are subsets of <em>U</em> such that <em>A</em> = {multiples of 3}, <em>B</em> = {factors of 24}.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of</span></p>
<p><span>(i) <em>U</em> ;</span></p>
<p><span>(ii) <em>B</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the elements of <em>U</em> on the Venn diagram.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(n (A \cap B)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 3, 4, 5, 6, 7, 8, 9     <em><strong>(A1)</strong></em></span></p>
<p><span>(ii) 3, 4, 6, 8     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Follow through from part (a)(i).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em><strong>(ft)</strong> for their 3, 6</span><br><span><span><em><strong>(A1)</strong></em><strong>(ft)</strong></span> for their 4, 8, 9</span><br><span><span><em><strong>(A1)</strong></em><strong>(ft)</strong></span> for their 5, 7     </span><span><em><strong><span><em><strong>(A1)</strong></em></span></strong></em></span><span><strong><span><span><span><strong>(ft)</strong></span></span></span></strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C3)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Follow through from their universal set and set B in part (a).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>2     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their Venn diagram.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates were unable to write down correctly the universal set which was integers between \(2\) and \(10\). Some candidates did not read the direction &ldquo;on the Venn diagram&rdquo; so complained of lack of space for their answer. It is important candidates read the directions carefully. Many candidates listed the elements of the intersection rather than answering the question to specify the number of elements. The empty set for \(\left( {A \cup B} \right)'\) was awarded a maximum of 2 marks as this has simplified the problem.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates were unable to write down correctly the universal set which was integers between \(2\) and \(10\). Some candidates did not read the direction &ldquo;on the Venn diagram&rdquo; so complained of lack of space for their answer. It is important candidates read the directions carefully. Many candidates listed the elements of the intersection rather than answering the question to specify the number of elements. The empty set for \(\left( {A \cup B} \right)'\) was awarded a maximum of 2 marks as this has simplified the problem.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many candidates were unable to write down correctly the universal set which was integers between \(2\) and \(10\). Some candidates did not read the direction &ldquo;on the Venn diagram&rdquo; so complained of lack of space for their answer. It is important candidates read the directions carefully. Many candidates listed the elements of the intersection rather than answering the question to specify the number of elements. The empty set for \(\left( {A \cup B} \right)'\) was awarded a maximum of 2 marks as this has simplified the problem.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">When Andy plays tennis, \(65\% \) of his first serves go into the correct area of the court.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If the first serve goes into the correct area, his chance of winning the point is \(90\% \).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If his first serve does not go into the correct area, Andy is allowed a second serve and, of these, \(80\% \) go into the correct area.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If the second serve goes into the correct area, his chance of winning the point is \(60\% \).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If neither serve goes into the correct area, Andy loses the point.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Andy loses the point.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span><span><span>    </span><span> <em><strong>(A1)(A1)     (C2)</strong></em></span></span></p>
<p><span><span><em><strong>[2 marks]<br></strong></em></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.65 \times 0.1\) (\( = 0.065\))     <em><strong>(A1)</strong></em></span></p>
<p><span>\(0.35 \times 0.8 \times 0.4\) (\( = 0.112\))     <em><strong>(A1)</strong></em></span></p>
<p><span>\(0.35 \times 0.2 \times 1\) <em>the 1 can be implied</em> (\( = 0.07\))     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>0.247     <em><strong>(A1)</strong></em><strong>(ft)     <em>(C4)</em><br></strong></span></p>
<p><span><strong>Note:</strong> No <strong>(ft)</strong> for any probabilities greater than 1.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question proved to be the easiest question (along with question 1) with many candidates gaining full marks. The probability tree diagram was completed correctly and then most could go on to find the required probability. Very few added the probabilities instead of multiplying them.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question proved to be the easiest question (along with question 1) with many candidates gaining full marks. The probability tree diagram was completed correctly and then most could go on to find the required probability. Very few added the probabilities instead of multiplying them.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The following histogram shows the weights of a number of frozen chickens in a supermarket. The weights are grouped such that \(1 \leqslant {\text{weight}} &lt; 2\), \(2 \leqslant {\text{weight}} &lt; 3\) and so on.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total number of chickens.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Gabriel chooses a chicken at random. </span></p>
<p><span>Find the probability that this chicken weighs less than \(4{\text{ kg}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(96\)     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3 \leqslant {\text{weight}} &lt; 4{\text{ kg}}\) . <em>Accept</em> \(3 - 4{\text{ kg}}\)     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>For adding three heights or subtracting \(14\) from \(96\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(\frac{{82}}{{96}}{\text{ }}(0.854{\text{ or }}\frac{{41}}{{48}}{\text{, }}85.4\% )\) <strong>(ft)</strong> <em>from (b).</em>     <em><strong>(A1)</strong></em><strong>(ft)<em>     (C2)</em></strong></span></p>
<p><span><strong><em>[2 marks]<br></em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few candidates could draw a frequency polygon correctly. The word &lsquo;Draw&rsquo; means that a ruler should be used. Many managed to draw from the mid-point of the bar but did not extend it to \(0.5\) or \(5.5\). Most could answer the probability part of the question.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few candidates could draw a frequency polygon correctly. The word &lsquo;Draw&rsquo; means that a ruler should be used. Many managed to draw from the mid-point of the bar but did not extend it to \(0.5\) or \(5.5\). Most could answer the probability part of the question.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few candidates could draw a frequency polygon correctly. The word &lsquo;Draw&rsquo; means that a ruler should be used. Many managed to draw from the mid-point of the bar but did not extend it to \(0.5\) or \(5.5\). Most could answer the probability part of the question.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span>The sets \(P\), \(Q\) and \(U\) are defined as</span></p>
<p><span><span><em>U</em> = {Real Numbers} ,  <em>P</em> = {Positive Numbers} and  <em>Q</em> = {Rational Numbers}.</span></span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down in the correct region on the Venn diagram the numbers</span></p>
<p><span>\(\frac{{22}}{7}\) ,  \(5 \times {10^{ - 2}}\) ,  \(\sin (60^\circ )\) ,  \(0\) ,  \(\sqrt[3]{{ - 8}}\) ,  \( - \pi \).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span><img src="" alt>     </span><span><em><strong>(A1)(A1)(A1)</strong></em></span><span><em><strong>(A1)(A1)(A1)     (C6)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each number placed once in the correct region. Accept equivalent forms for numbers.</span></p>
<p><span> </span></p>
<p><em><strong><span>[6 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">Very few candidates gained full marks in this question. A common error turned out to be that \(\frac{{22}}{7}\) and \(5 \times {10^{ - 2}}\) were not considered rational numbers. Also, \(0\) and \(\sin (60^\circ )\) were often placed incorrectly. However, it was encouraging that very few candidates placed values in more than one region.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Music lessons in Piano (<em>P</em>), Violin (<em>V</em>) and Flute (<em>F</em>) are offered to students at a school. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The Venn diagram shows the number of students who learn each kind of instrument.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of students in the school.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of students who</span></p>
<p><span>(i) learn violin only;</span></p>
<p><span>(ii) learn piano or flute or both;</span></p>
<p><span>(iii) do not learn flute.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain, in words, the meaning of the part of the diagram that represents the set \(P \cap F'\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>145     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 56     <em><strong>(A1)</strong></em></span></p>
<p><span> </span></p>
<p><span>(ii) 85     <em><strong>(A1)</strong></em></span></p>
<p><span> </span></p>
<p><span>(iii) 89     <em><strong>(A1)</strong></em>     <em><strong>(C3)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>The students who learn the piano and do not learn the flute.     <em><strong>(A1)(A1)</strong></em>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for students who learn piano, not flute, <em><strong>(A1)</strong></em> for and</span> <span>(accept but). Accept correct alternative statements.</span> <span>Accept “The number of students who learn the piano and do not </span><span>learn the flute”.</span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The most common error in Question 4 was to omit counting the four non-music students. Explaining in words the meaning of the set notation was difficult for some candidates.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The most common error in Question 4 was to omit counting the four non-music students. Explaining in words the meaning of the set notation was difficult for some candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The most common error in Question 4 was to omit counting the four non-music students. Explaining in words the meaning of the set notation was difficult for some candidates.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A boy is chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>20     <em><strong>(A1) (C1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{5}{{43}}\,\,\,\left( {0.11627 \ldots ,\,\,11.6279 \ldots {\text{% }}} \right)\)     <em><strong>(A1)(A1) (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct numerator, <em><strong>(A1)</strong></em> for correct denominator.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{7}{{37}} \times \frac{{12}}{{36}} + \frac{{12}}{{37}} \times \frac{7}{{36}}\)     <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for first or second correct product seen, <em><strong>(M1)</strong></em> for adding their two products or for multiplying their product by two.</p>
<p>\( = \frac{{14}}{{111}}\,\,\left( {\,0.12612 \ldots ,\,\,12.6126\,{\text{% }}} \right)\)     <em><strong>(A1) (C3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Maria travels to school either by walking or by bicycle. The probability she cycles to&nbsp;</span><span style="font-family: times new roman,times; font-size: medium;">school is 0.75.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">If she walks, the probability that she is late for school is 0.1.</span><br><span style="font-family: times new roman,times; font-size: medium;">If she cycles, the probability that she is late for school is 0.05.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below, showing the appropriate probabilities.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Maria is late for school.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)     (C3)</strong></em></span></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award<em><strong> (A1)</strong> </em>for 0.25,<em><strong> (A1)</strong></em> for 0.1 and 0.9, <em><strong>(A1)</strong></em> for 0.05 and 0.95</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P}}({\text{late}}) = 0.25 \times 0.1 + 0.75 \times 0.05\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for two correct products from their diagram and</span> <span>award<em><strong> (M1)</strong></em> for addition of their two products.</span></p>
<p><span> </span></p>
<p><span>\( = 0.0625\left( {\frac{1}{{16}},{\text{ }}6.25\% } \right)\)   <em><strong>  (A1)</strong></em><strong>(ft)</strong><em><strong>     (C3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Part (a) of this question was very well answered with many candidates gaining the maximum marks. Many candidates were less successful in part (b) and it seemed as if many of them either gained 3 marks or 0 marks. This shows that students who knew how to approach part (b) were also able to correctly substitute in the formula they used and reach the correct answer. Very few of those students lost the last mark for wrong rounding.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (a) of this question was very well answered with many candidates gaining the maximum marks. Many candidates were less successful in part (b) and it seemed as if many of them either gained 3 marks or 0 marks. This shows that students who knew how to approach part (b) were also able to correctly substitute in the formula they used and reach the correct answer. Very few of those students lost the last mark for wrong rounding.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p style="padding-left: 90px;"><br><em>p</em>: my Mathematical Studies homework is due tomorrow<br><em>q</em>: today is Wednesday</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words the compound proposition <em>¬</em>\(p \Rightarrow q\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the truth table.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the compound proposition (\(\neg p \Rightarrow q\)) ∨ (\(\neg p \wedge q\)) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>If my Mathematical Studies homework is not due in tomorrow then today is Wednesday.     <em><strong>(A1)(A1)  (C2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for If… then…<br>Award <em><strong>(A1)</strong></em> for correct propositions, <em>my Mathematical Studies homework is <strong>not</strong> due in tomorrow and today is Wednesday</em>, in the correct order.<br>Award <em><strong>(A1)(A0)</strong></em> for “<em>If ¬p then q</em>”.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">  <strong><em>(A1)(A1)(A1)</em>(ft)  <em>(C3)</em></strong></p>
<p> </p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>neither      <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em><br><strong>Note:</strong> Follow through from the final column of their truth table.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span>The Venn diagram shows the number sets \(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\) and \(\mathbb{R}\). Place each of the following</span> <span>numbers in the appropriate region of the Venn diagram.</span></p>
<p><span>\(\frac{{1}}{{4}}\), −3, π, cos 120°, 2.7 × 10<sup>3</sup>, 3.4 × 10<sup>–2</sup></span></p>
<p><span><img src="" alt></span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)(A1)(A1)(A1)    </strong> <strong>(C6)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each number placed once in the correct section. Accept equivalent forms for numbers.</span></p>
<p><span> </span></p>
<p><span><em><strong>[6</strong></em> <em><strong>marks]</strong></em></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">About half of the students answered this question correctly. The placement of cos120 and&nbsp;</span><span style="font-family: times new roman,times; font-size: medium;">&pi;&nbsp;appeared to cause the most problems.</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The grades obtained by a group of \(20\) IB students are listed below:</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following table for the grades obtained by the students.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal grade obtained by the students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the median grade obtained by the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One student is chosen at random from the group. </span></p>
<p><span>Find the probability that this student obtained either grade \(4\) or grade \(5\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A2)     (C2)</strong></em></span></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for three correct. Award <em><strong>(A0)</strong></em> for two or fewer correct.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Mode}} = 6\)     <strong><em>(A1)</em>(ft)     <em>(C1)</em></strong></span></p>
<p><span><strong><em>[1 mark]<br></em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Median}} = 4.5\)     <strong><em>(M1)(A1)</em>(ft)</strong>     <em><strong>(C2)</strong></em></span></p>
<p><span><strong>Note:</strong> <em><strong>(M1)</strong></em> for attempt to order raw data (if frequency table not used) or <em><strong>(M1)</strong></em> halfway between 10<sup>th</sup> and 11<sup>th</sup> result.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(\frac{7}{{20}}{\text{ }}(0.35{\text{, }}35\% )\)    </span> <span><strong><em>(A1)</em>(ft)</strong>     <em><strong>(C1)</strong></em></span></span></p>
<p><span><span><em><strong>[1 mark]<br></strong></em></span></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well done by the vast majority of candidates.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts (a) and (b) were well done by the vast majority of candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (c) caused problems to many &ndash; with (1) the mean of the two grades not being taken (2) the mean being calculated instead of the median.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (d) was successfully completed by those candidates who did the question by counting. Those who tried to use the probability laws were not successful.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Much of the question could have been checked by inputting the data into the GDC.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that Tanay eats lunch in the school cafeteria is \(\frac{3}{5}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If he eats lunch in the school cafeteria, the probability that he has a sandwich is \(\frac{3}{{10}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If he does not eat lunch in the school cafeteria the probability that he has a sandwich</span> <span style="font-size: medium; font-family: times new roman,times;">is \(\frac{9}{{10}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Tanay has a sandwich for his lunch.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)</strong></em>     <em><strong>(C3)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct pair of branches.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{3}{5} \times \frac{3}{{10}} + \frac{2}{5} \times \frac{9}{{10}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their two correct products, <em><strong>(M1)</strong></em> for addition of their products. Follow through from their tree diagram.</span></p>
<p><br><span>\( = \frac{{27}}{{50}}(0.54,54\% )\)     <em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C3)</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">\(U\) is the set of all the <strong>positive</strong> integers less than or equal to \(12\).</span><br><span style="font-size: medium; font-family: times new roman,times;">\(A\) , \(B\) and \(C\) are subsets of \(U\) .</span><br><span style="font-size: medium; font-family: times new roman,times;">\[A = \{ 1{\text{, }}2{\text{, }}3{\text{, }}4{\text{, }}6{\text{, }}12\} \]</span><span style="font-size: medium; font-family: times new roman,times;">\[B = \{ {\text{odd integers}}\} \]</span><span style="font-size: medium; font-family: times new roman,times;">\[C = \{ 5{\text{, }}6{\text{, }}8\} \]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of elements in \(A \cap C\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(B\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following Venn diagram with <strong>all</strong> the elements of \(U\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(1\) (one)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><strong>Note:</strong> \(6\), \(\{6\} \) or \(\{1\} \) earns no marks.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1\), \(3\), \(5\), \(7\), \(9\), \(11\)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><strong>Note:</strong> Do not penalise if braces, parentheses or brackets are seen.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong>     <em><strong>(C4)</strong></em></span></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for the empty set \(A \cap B \cap C\) .</span></p>
<p><span>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the correct placement of \(6\), \(5\), \(1\) and \(3\).</span></p>
<p><span>Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the correct placement of \(2\), \(4\), \(12\), \(7\), \(9\), \(11\), \(8\).</span></p>
<p><span>Award <strong><em>(A1)</em>(ft)</strong> for the correct placement of \(10\).</span></p>
<p><span>Follow through from part (b).</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There was much confusion amongst candidates as to the understanding of the words <em>number of elements</em>. Many candidates simply wrote down \(6\) or \(\{ 6\} \) and consequently lost the first mark.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">There was much confusion amongst candidates as to the understanding of the words <em>number of elements</em>. Many candidates simply wrote down \(6\) or \(\{ 6\} \) and consequently lost the first mark. Part (b) was done well and many successful attempts were made at completing the Venn diagram in part (c). The most common error in the last part of the question was the omission of the element \(10\).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part (b) was done well and many successful attempts were made at completing the Venn diagram in part (c). The most common error in the last part of the question was the omission of the element \(10\).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The probability that it rains today is \(0.4\) . If it rains today, the probability that it will rain tomorrow is \(0.8\) . If it does not rain today, the probability that it will rain tomorrow is \(0.7\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the probability of rain tomorrow.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>          <em><strong>(A1)(A1)(A1)     (C3)</strong></em></span></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct pair.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.4 \times 0.8 + 0.6 \times 0.7\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft)</strong> for two consistent products from tree diagram, <em><strong>(M1)</strong></em> for addition of their products. Follow through from their</span> <span>tree diagram provided all probabilities are between 0 and 1.</span></p>
<p> </p>
<p><span><span>\( = 0.74\)    </span><span> <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>     (C3)</strong></em></span></span></p>
<p><span><span><em><strong>[3 marks]</strong></em></span></span></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part a of this question was well answered, however part b caused many problems. Candidates did not seem to know how to find the probability of the combined events.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part a of this question was well answered, however part b caused many problems. Candidates did not seem to know how to find the probability of the combined events.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A school offers three activities, basketball (<em>B</em>), choir (<em>C</em>) and drama (<em>D</em>). Every student must participate in at least one activity.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">16 students play basketball only.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">18 students play basketball and sing in the choir but do not do drama.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">34 students play basketball and do drama but do not sing in the choir.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">27 students are in the choir and do drama but do not play basketball.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Enter the above information on the Venn diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>99 of the students play basketball, 88 sing in the choir and 110 do drama.</span></p>
<p><span>Calculate the number of students <em>x</em> participating in all three activities.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>99 of the students play basketball, 88 sing in the choir and 110 do drama.</span></span></p>
<p><span>Calculate the total number of students in the school.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt>     <em><span><strong>(A2)</strong></span></em></span></p>
<p><em><span><strong>(A1)</strong> only if 1 error</span></em></p>
<p><em><span><strong>(A0)</strong> otherwise     <strong>(C2)</strong></span></em></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x + 16 + 18 + 34 = 99\)</span></p>
<p><span>\(x = 31\)     <em><strong>(A1)</strong></em>     <em><strong>(C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Choir only      \(= 88 - (18 + 27 + 31) = 12\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>Drama only      \( = 110 - (27 + 34 + 31) = 18\)</span><span>     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>Total     \( = 16 + 34 + 18 + 31 + 12 + 27 + 18 = 156\)</span><span>     <em><strong>(A1)</strong></em><strong>(ft)     <em>(C3)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Venn diagrams continue to be a problem area. Quite a good number of candidates managed to fill in the information on the Venn diagram accurately. However, finding the correct value for <em>x</em> and calculating the number of students in the school posed a big problem for many candidates.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Venn diagrams continue to be a problem area. Quite a good number of candidates managed to fill in the information on the Venn diagram accurately. However, finding the correct value for <em>x</em> and calculating the number of students in the school posed a big problem for many candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Venn diagrams continue to be a problem area. Quite a good number of candidates managed to fill in the information on the Venn diagram accurately. However, finding the correct value for <em>x</em> and calculating the number of students in the school posed a big problem for many candidates.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Shade \((A \cup B) \cap C'\) on the diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, the number of elements in each region is given.</span></p>
<p><span>Find \(n((P \cap Q) \cup R)\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(U\) is the set of positive integers, \({\mathbb{Z}^ + }\).</span></p>
<p><span>\(E\) is the set of even numbers.</span></p>
<p><span>\(M\) is the set of multiples of \(3\).</span></p>
<p><span>(i)     List the first six elements of the set \(M\).</span></p>
<p><span>(ii)    List the first six elements of the set \(E' \cap M\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span>not shading \(C\) or shading \(A \cup B\)     <em><strong>(A1)</strong></em></span></p>
<p><span>correct shading     <em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Identifying the correct 5 numbers \(3\), \(4\), \(5\), \(6\), \(9\)     <em><strong>(A1)</strong></em></span></p>
<p><span>\(27\)     <em><strong>(A1)     (C2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(M = \{ 3{\text{, }}6{\text{, }}9{\text{, }}12{\text{, }}15{\text{, }}18\} \) <em>brackets not required</em>.     <em><strong>(A1)</strong></em></span></p>
<p><span>(ii)    \(E' \cap M = \{ 3{\text{, }}9{\text{, }}15{\text{, }}21{\text{, }}27{\text{, }}33\} \) <strong>(ft)</strong> <em>from (i)</em>.     <em><strong>(A1)</strong></em><strong>(ft)     <em>(C2)</em></strong></span></p>
<p><span><strong><em>[2 marks]<br></em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question proved to be one of the easier questions with a number of candidates able to shade in the required region and finding values in a set. They still had problems with part (b).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question proved to be one of the easier questions with a number of candidates able to shade in the required region and finding values in a set. They still had problems with part (b).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question proved to be one of the easier questions with a number of candidates able to shade in the required region and finding values in a set. They still had problems with part (b).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table below shows the number of words in the extended essays of an IB class.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a histogram on the grid below for the data in this table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The maximum word count is \(4000\) words.<br></span></p>
<p><span>Write down the probability that a student chosen at random is on or over the word count.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A3)    </strong><strong> (C3)</strong></em></span></span></p>
<p><span><strong>Notes: <em>(A3)</em></strong> for correct histogram, <em><strong>(A2)</strong></em> for one error, <em><strong>(A1)</strong></em> for two errors, <em><strong>(A0)</strong></em> for more than two errors.</span><br><span>Award maximum<em><strong> (A2)</strong></em> if lines do not appear to be drawn with a ruler.</span><br><span>Award maximum <em><strong>(A2)</strong></em> if a frequency polygon is drawn.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Modal group}} = 3800 \leqslant w &lt; 4000\)     <em><strong>(A1)     (C1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Probability}} = \frac{3}{{35}}{\text{ }}(0.0857{\text{, }}8.57\% )\)     <em><strong>(A1)(A1)     (C2)<br></strong></em></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for correct numerator <em><strong>(A1)</strong></em> for correct denominator.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A surprising number of the candidates did not appear to have brought a ruler/straight edge and so lost a mark in this question as they were asked to <strong>draw</strong> a histogram which means the lines must be drawn using a ruler/straight edge. Some candidates drew a frequency polygon. Parts (b) and (c) were generally answered well though \(20/35\) was seen occasionally in part (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A surprising number of the candidates did not appear to have brought a ruler/straight edge and so lost a mark in this question as they were asked to <strong>draw</strong> a histogram which means the lines must be drawn using a ruler/straight edge. Some candidates drew a frequency polygon. Parts (b) and (c) were generally answered well though \(20/35\) was seen occasionally in part (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A surprising number of the candidates did not appear to have brought a ruler/straight edge and so lost a mark in this question as they were asked to <strong>draw</strong> a histogram which means the lines must be drawn using a ruler/straight edge. Some candidates drew a frequency polygon. Parts (b) and (c) were generally answered well though \(20/35\) was seen occasionally in part (c).</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Venn diagrams.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the shaded region represented by Diagram 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set \(\left( {H \cup I} \right)'\).</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set \(J \cap K\).</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>A'     <strong>(A1)</strong><br></em></p>
<p><em><strong>Note:</strong> </em>Accept alternative set notation for complement such as<em> U − A.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(C \cap D'\)  <strong>OR</strong>  \(D' \cap C\)     <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Accept alternative set notation for complement.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {E \cap F} \right) \cup G\)  <strong>OR  </strong>\(G \cup \left( {E \cap F} \right)\)     <em><strong>(A2) (C4)</strong></em></p>
<p><strong>Note:</strong> Accept equivalent answers, for example \(\left( {E \cup G} \right) \cap \left( {F \cup G} \right)\).</p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">     <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1) (C2)</strong></em><br><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>All the children in a summer camp play at least one sport, from a choice of football (\(F\)) or basketball (\(B\)). 15 children play both sports.</p>
<p>The number of children who play only football is double the number of children who play only basketball.</p>
<p>Let \(x\) be the number of children who play only football.</p>
</div>

<div class="specification">
<p>There are 120 children in the summer camp.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of \(x\), for the number of children who play only basketball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the above information.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of children who play only football.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(n(F)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{2}x\)     <strong><em>(A1)</em></strong>     <strong><em>(C1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="">    <strong><em>(A1)(A1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1) </em></strong>for 15 placed in the correct position, award <strong><em>(A1)</em>(ft) </strong>for \(x\) and their \(\frac{1}{2}x\) placed in the correct positions of diagram. Do not penalize the absence of 0 inside the rectangle and award at most <strong><em>(A1)(A0) </em></strong>if any value other than 0 is seen outside the circles. Award at most <strong><em>(A1)(A0) </em></strong>if 35 and 70 are seen instead of \(x\) and their \(\frac{1}{2}x\).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x + \frac{1}{2}x + 15 = 120\) or equivalent     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for adding the values in their Venn and equating to 120 (or equivalent).</p>
<p> </p>
<p>\((x = ){\text{ }}70\)     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their Venn diagram, but only if the answer is a positive integer and \(x\) is seen in their Venn diagram.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>85     <strong><em>(A1)</em>(ft)</strong>     <strong><em>(C1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from their Venn diagram and their answer to part (c), but only if the answer is a positive integer and less than 120.</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The probability that Nikita wins a tennis match depends on the surface of the tennis court on which she is playing. The probability that she plays on a grass court is \(0.4\). The probability that Nikita wins on a grass court is \(0.35\). The probability that Nikita wins when the court is not grass is \(0.25\).</p>
<p>Complete the following tree diagram.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Nikita wins a match.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt>              <em><strong>(A1)(A1)(A1)    (C3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct entry.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.4 \times 0.35 + 0.6 \times 0.25\)       <em><strong> (A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note: </strong>Award<strong><em> (A1)</em>(ft) </strong>for two correct products from their tree diagram seen, and<em><strong> (M1) </strong></em>for the addition of their products.</p>
<p><br>\( = 0.29\)        <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>   (C3)</strong></em></p>
<p> </p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Tree diagram<br>This was a good starting question and answered correctly by the majority of the candidates. However, some candidates were unable to interpret part (b). The weakest seemed not to be aware that the sum of the probabilities on the branches should equal 1.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Tree diagram<br>This was a good starting question and answered correctly by the majority of the candidates. However, some candidates were unable to interpret part (b). The weakest seemed not to be aware that the sum of the probabilities on the branches should equal 1.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 60 sports enthusiasts visited the PyeongChang 2018 Winter Olympic games to watch a variety of sporting events.</p>
<p>The most popular sports were snowboarding (<em>S</em>), figure skating (<em>F</em>) and ice hockey (<em>H</em>).</p>
<p>For this group of 60 people:</p>
<p style="padding-left: 120px;">4 did not watch any of the most popular sports,<br><em>x</em> watched all three of the most popular sports,<br>9 watched snowboarding only,<br>11 watched figure skating only,<br>15 watched ice hockey only,<br>7 watched snowboarding and figure skating,<br>13 watched figure skating and ice hockey,<br>11 watched snowboarding and ice hockey.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the given information.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(n\left( {\left( {F \cup H} \right) \cap S'} \right)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""><em><strong>(A1)(A1)(A1)  (C3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 4 in correct place.</p>
<p>Award <em><strong>(A1)</strong></em> for 9, 11, 15 in correct place.</p>
<p>Award <em><strong>(A1)</strong></em> for 7 − <em>x</em>, 13 − <em>x</em>, 11 − <em>x</em> in correct place.</p>
<p>Accept 2, 8 and 6 in place of  7 − <em>x</em>, 13 − <em>x</em>, 11 − <em>x</em>.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(4 + 9 + 11 + 15 + x + \left( {7 - x} \right) + \left( {11 - x} \right) + \left( {13 - x} \right) = 60\)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating the sum of at least seven of the entries in their Venn diagram to 60.</p>
<p>\(\left( {x = } \right)\,\,5\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a), but only if answer is positive.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>34     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (C1)</strong></em></p>
<p><strong>Note:</strong> Follow through from their Venn diagram.</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>