File "SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 3/SL-paper1html
File size: 710.86 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following propositions.</span></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">p </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Students stay up late.</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">q </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Students fall asleep in class.</span></em></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in symbolic form.</span></p>
<p><em><span>If students do not stay up late then they will not fall asleep in class.</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down a reason why the statement \(\neg ( p \vee \neg q)\) is not a contradiction.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the statement <em>\(p \Rightarrow q\)</em>.</p>
<p class="p1" style="text-align: center;">If I break my arm, then it will hurt.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words, the inverse of <em>\(p \Rightarrow q\)</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-03_om_07.18.13.png" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether the converse and the inverse of an implication are logically equivalent.</p>
<p class="p1">Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">For events <em>A</em> and <em>B</em>, the probabilities are \({\text{P}}(A) = \frac{4}{13}\) and \({\text{P}}(B) = \frac{5}{13}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If events <em>A</em> and <em>B</em> are mutually exclusive, write down the value of \({\text{P}} (A\cap B)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If events <em>A</em> and <em>B</em> are independent, find the value of \({\text{P}} (A\cap B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If \({\text{P}} (A \cup B) = \frac{7}{13}\), find the value of \({\text{P}} (A \cap B)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The universal set <em>U</em> is the set of integers from 1 to 20 inclusive.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> and <em>B</em> are subsets of <em>U</em> where:</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> is the set of even numbers between 7 and 17.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>B</em> is the set of multiples of 3.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span><em>A</em>,</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span><em>B</em>,</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span>\(A \cup B\) ,</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following sets:</span></p>
<p><span>\(A \cap B'\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Dune Canyon High School organizes its <strong>school year </strong>into three trimesters: fall/autumn (\(F\)), winter (\(W\)) and spring (\(S\)). The school offers a variety of sporting activities during and outside the school year.</p>
<p>The activities offered by the school are summarized in the following Venn diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.56.10.png" alt="M17/5/MATSD/SP1/ENG/TZ1/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of sporting activities offered by the school during its <strong>school year</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether rock-climbing is offered by the school in the fall/autumn trimester.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the elements of the set \(F \cap W’\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down \(n(W \cap S)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of \(F\), \(W\) and \(S\), an expression for the set which contains only archery, baseball, kayaking and surfing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \(p\) and \(q\) represent the propositions</span></p>
<p style="text-align: left; margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(p\): food may be taken into the cinema</span></p>
<p style="text-align: left; margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(q\): drinks may be taken into the cinema</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below for the symbolic statement \(\neg (p \vee q)\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the meaning of the symbolic statement \(\neg (p \vee q)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in symbolic form the compound statement:</span></p>
<p><span>“no food and no drinks may be taken into the cinema”.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the three propositions <em>p</em>, <em>q </em>and <em>r</em>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> p</em>: <em>The food is well cooked</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> q</em>: <em>The drinks are chilled</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> r</em>: <em>Dinner is spoilt</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in words.</span></p>
<p><span>\[(p \wedge q) \Rightarrow \neg r\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_07.32.41.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the following propositions:</p>
<p>\(p:\) The lesson is cancelled</p>
<p>\(q:\) The teacher is absent</p>
<p>\(r:\) The students are in the library.</p>
<p>Write, in words, the compound proposition \(q \Rightarrow (p \wedge r).\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Hence</strong>, justify why \(q \Rightarrow \neg r\) is not a tautology.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">You may choose from three courses on a lunchtime menu at a restaurant.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>s</em>: you choose a salad,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>m</em>: you choose a meat dish (main course),</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>d</em>: you choose a dessert.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">You choose a <strong>two</strong> course meal which <strong>must</strong> include a main course and either a salad or a dessert, but not both.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the sentence above using logic symbols.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words \(s \Rightarrow \neg d\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"> A group of 33 people was asked about the passports they have. 21 have Australian passports, 15 have British passports and 3 have neither</span>.</p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A group of 33 people was asked about the passports they have. 21 have Australian passports, 15 have British passports and 3 have neither.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number that have both Australian and British passports.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, set <em>A</em> represents the people in the group with Australian passports and set <em>B</em> those with British passports.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>q</em> ;</span></p>
<p><span>(ii) <em>p</em> and of <em>r</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, set <em>A</em> represents the people in the group with Australian passports and set <em>B</em> those with British passports.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find \(n(A \cup B')\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Police in a town are investigating the theft of mobile phones one evening from three cafés, “Alan’s Diner”, “Sarah’s Snackbar” and “Pete’s Eats”.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">They interviewed two suspects, Matthew and Anna, about that evening.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Matthew said:</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">“I visited Pete’s Eats and visited Alan’s Diner and I did not visit Sarah’s Snackbar.”</span></p>
<p style="text-align: left;"><span style="font-family: times new roman,times; font-size: medium;">Let \(p\) , \(q\) and \(r\) be the statements:</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(p\) : I visited Alan’s Diner</span><br><span style="font-family: times new roman,times; font-size: medium;">\(q\) : I visited Sarah’s Snackbar</span><br><span style="font-family: times new roman,times; font-size: medium;">\(r\) : I visited Pete’s Eats</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down Matthew’s statement in symbolic logic form.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>What Anna said was lost by the police, but in symbolic form it was</span></p>
<p><span>\[(q \vee r) \Rightarrow \neg p\]</span></p>
<p><span>Write down, in words, what Anna said.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p style="padding-left: 210px;"><em>p</em> : the baby cries<br><em>q</em> : the baby is happy<br><em>r</em> : the baby wants to play</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in words, \(\left( {q \wedge r} \right) \Rightarrow \neg p\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether \(\left( {q \wedge r} \right) \Rightarrow \neg p\) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the statements</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em> : The numbers <em>x</em> and <em>y</em> are both even.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>q</em> : The sum of <em>x</em> and <em>y</em> is an even number.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the statement <em>p </em>\(\Rightarrow\) <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the inverse of the statement <em>p </em>\(\Rightarrow\) <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the inverse of the statement<em> p</em> \( \Rightarrow \) <em>q</em> is always true. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions <em>p</em> and <em>q</em>:</span></p>
<p><em><span>p: x is a number less than 10.</span></em></p>
<p><span><em><span><span>q: x2 is a number greater than 100.</span></span></em></span></p>
<p><span><span>Write in words the compound proposition \(\neg p \vee q\).</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using part (a), determine whether \(\neg p \vee q\) is true or false, for the case where \(x\) is a number less than 10 and \(x^2\) is a number greater than 100.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down a value of \(x\) for which \(\neg p \vee q\) is false.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"> \(p:x\) is a multiple of \(12\)</p>
<p class="p1"> \(q:x\) is a multiple of \(6\)<span class="s1">.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words \(\neg p\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in symbolic form the compound statement</p>
<p class="p2"><span class="s1">\(r:\) If \(x\) </span>is a multiple of \(12\)<span class="s1">, then \(x\) </span>is a multiple of \(6\)<span class="s1">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the compound statement</p>
<p class="p2"><span class="s1">\(s:\) If \(x\) </span>is a multiple of \(6\)<span class="s1">, then \(x\) </span>is a multiple of \(12\)<span class="s1">.</span></p>
<p class="p1">Identify whether \(s:\) is the inverse, the converse or the contrapositive of \(r\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the compound statement</p>
<p class="p2"><span class="s1">\(s:\) If \(x\) </span>is a multiple of \(6\)<span class="s1">, then \(x\) </span>is a multiple of \(12\)<span class="s1">.</span></p>
<p class="p1">Determine the validity of \(s\). Justify your decision.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the statement<em> p</em>:</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">“If a quadrilateral is a square then the four sides of the quadrilateral are equal”.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the inverse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the converse of statement <em>p</em> in words.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether the converse of statement <em>p</em> is always true. Give an example to justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The truth table below shows the truth-values for the proposition</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q \Rightarrow \neg {\text{ }}p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } \neg q\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain the distinction between the compound propositions, \(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q\) and \(p \vee q\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Fill in the four missing truth-values on the table.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the proposition \(p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } q \Rightarrow \neg p\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \vee } \neg q\) is a tautology, a contradiction or neither.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the propositions <em>p</em> and <em>q</em>.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em>:<em> I take swimming lessons</em></span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>q</em>:<em> I can swim 50 metres</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in symbolic form.</span></p>
<p><em><span>“I cannot swim 50 metres and I take swimming lessons.”</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following compound proposition in words.</span></p>
<p><span>\(q \Rightarrow \neg q \)</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the universal set \(U = \{ x \in \mathbb{N}|3 < x < 13\} \), and the subsets \(A = \{ {\text{multiples of 3}}\} \) and \(B = \{ 4,{\text{ }}6,{\text{ }}12\} \).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following set.</span></p>
<p><span><em>A</em></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of the following set.</span></p>
<p><span>\(A \cap B'\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down one element of \((A \cup B)'\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One of the statements in the table below is false. Indicate with an <strong>X</strong> which statement is false. Give a reason for your answer.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the two propositions <em>p</em> and <em>q</em>.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em>: The sun is shining <em>q</em>: I will go swimming</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound proposition</span></p>
<p><span>\(p \Rightarrow q\) ;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound proposition</span></p>
<p><span>\(\neg p \vee q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The truth table for these compound propositions is given below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Complete the column for \( \neg p\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The truth table for these compound propositions is given below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>State the relationship between the compound propositions \(p \Rightarrow q\) and \(\neg p \vee q\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Two propositions \(p\) and \(q\) are defined as follows</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(p\): Eva is on a diet</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(q\): Eva is losing weight.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the following statement <strong>in words</strong>.</span></p>
<p><span>\[q \Rightarrow p\]</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the contrapositive statement of \(q \Rightarrow p\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether your statement in part (a) is logically equivalent to your statement in part (b). Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aleph has an unbiased cubical (six faced) die on which are written the numbers</p>
<p class="p1"><span class="s1">1 </span>, <span class="s1">2 </span>, <span class="s1">3 </span>, <span class="s1">4 </span>, <span class="s1">5 </span>and <span class="s1">6</span>.</p>
<p class="p1">Beth has an unbiased tetrahedral (four faced) die on which are written the numbers</p>
<p class="p1"><span class="s1">2 </span>, <span class="s1">3 </span>, <span class="s1">5 </span>and <span class="s1">7</span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the Venn diagram with the numbers written on Aleph’s die (\(A\)) and Beth’s die (\(B\))<span class="s1">.</span></p>
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2015-12-20_om_06.18.17.png" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find \(n(B \cap A')\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aleph and Beth are each going to roll their die once only. Shin says the probability that each die will show the same number is \(\frac{1}{8}\).</p>
<p class="p2">Determine whether Shin is correct. Give a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following Venn diagrams. Each diagram is shaded differently.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_14.02.25.png" alt></p>
<p class="p1">In the following table there are six sets. Each of these sets corresponds to the shaded region of one of the Venn diagrams. In the correct space, write the number of the diagram that corresponds to that set.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_14.02.45.png" alt></p>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The probability that it snows today is 0.2. If it does snow today, the probability that it will snow tomorrow is 0.6. If it does not snow today, the probability that it will not snow tomorrow is 0.9.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using the information given, complete the following tree diagram.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_08.12.00.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the probability that it will snow tomorrow.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium;"><span style="font-family: times new roman,times;">Consider two propositions <em>p</em></span> <span style="font-family: times new roman,times;">and</span> <span style="font-family: times new roman,times;"><em>q</em></span>.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether the compound proposition</span><br><span>\[\left( {{\text{ }}p \Rightarrow \neg q} \right) \Leftrightarrow \left( {\neg p \Rightarrow q} \right)\]</span><br><span>is a tautology. State the reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Alan’s laundry basket contains two green, three red and seven black socks. He selects one sock from the laundry basket at random.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that the sock is red.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Alan returns the sock to the laundry basket and selects two socks at random.</span></p>
<p><span>Find the probability that the first sock he selects is green and the second sock is black.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Alan returns the socks to the laundry basket and again selects two socks at random.</span></p>
<p><span>Find the probability that he selects two socks of the same colour.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(U\) is the set of <strong>positive </strong>integers less than or equal to \(10\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(A\), \(B\) and \(C\) are subsets of \(U\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(A = \left\{ {{\text{even integers}}} \right\}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(B = \left\{ {{\text{multiples of }}3} \right\}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(C = \left\{ {6,{\text{ }}7,{\text{ }}8,{\text{ }}9} \right\}\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(A\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(B\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the Venn diagram with <strong>all </strong>the elements of \(U\).</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_17.36.22.png" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey was carried out at an international airport. A number of travellers were interviewed and asked for their flight destinations. The results are shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One traveller is to be chosen at random from all those interviewed. </span></p>
<p><span>Find the probability that this traveller was going to Africa.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One female traveller is to be chosen at random from all those interviewed. </span></p>
<p><span>Find the probability that this female traveller was going to Asia.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One traveller is to be chosen at random from those <strong>not</strong> going to America.</span></p>
<p><span>Find the probability that the chosen traveller is female.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A fair six-sided die has the numbers 1, 2, 3, 4, 5, 6 written on its faces. A fair four-sided die has the numbers 1, 2, 3, and 4 written on its faces. The two dice are rolled.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The following diagram shows the possible outcomes.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the two dice show the same number.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the difference between the two numbers shown on the dice is 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that the number shown on the four-sided die is greater than the number shown on the six-sided die, given that the difference between the two numbers is 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions</span></p>
<p><span><span> </span><em><span>p</span></em><span>:</span><em><span> Cristina understands logic</span></em></span></p>
<p><span> </span><em><span>q</span></em><span>:</span><em><span> Cristina will do well on the logic test.</span></em></p>
<p><span>Write down the following compound proposition in symbolic form.</span></p>
<p><em><span>“If Cristina understands logic then she will do well on the logic test”</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the contrapositive of the proposition given in part (b).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In a particular school, students must choose at least one of three optional subjects: art, psychology or history.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following propositions</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><em>a: I choose art,</em></span><br><span style="font-family: times new roman,times; font-size: medium;"><em>p: I choose psychology,</em></span><br><span style="font-family: times new roman,times; font-size: medium;"><em>h: I choose history.</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write, in words, the compound proposition</span><br><span>\[\neg h \Rightarrow (p \vee a)\].</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table for \(\neg a \Rightarrow p\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether \(\neg a \Rightarrow p\) is a tautology, a contradiction or neither. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Two propositions are defined as follows:</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(p:\) <em>Quadrilateral ABCD has two diagonals that are equal in length.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> \(q:\) <em>Quadrilateral ABCD is a rectangle.</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the following in symbolic form.</span></p>
<p><span><em>“A rectangle always has two diagonals that are equal in length.”</em></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in symbolic form the converse of the statement in (a).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine, <strong>without </strong>using a truth table, whether the statements in (a) and (b) are logically equivalent.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the name of the statement that is logically equivalent to the converse.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p>\[\begin{array}{*{20}{l}} {p{\text{: The car is under warranty}}} \\ {q{\text{: The car is less than 2 years old}}} \\ {r{\text{ : The car has been driven more than 20}}\,{\text{000 km}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words \((q \vee \neg r) \Rightarrow p\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the truth table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_06.43.42.png" alt="N17/5/MATSD/SP1/ENG/TZ0/04.b"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the statement \(\neg p \Rightarrow \neg (q \vee \neg r)\) is the inverse, the converse or the contrapositive of the statement in part (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The following Venn diagram shows the relationship between the sets of numbers</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[\mathbb{N},{\text{ }}\mathbb{Z}{\text{, }}\mathbb{Q}{\text{ and }}\mathbb{R}{\text{.}}\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The number –3 belongs to the set of \(\mathbb{Z}{\text{, }}\mathbb{Q}\) and \(\mathbb{R}\), but not \(\mathbb{N}\), and is placed in the appropriate position on the Venn diagram as an example.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.14.57.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Write down the following numbers in the appropriate place in the Venn diagram.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>4</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\frac{1}{3}\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\pi \)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(0.38\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(\sqrt 5 \)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(-0.25\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following logic propositions:</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(p:{\text{ Sean is at school}}\)</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">\(q:{\text{ Sean is playing a game on his computer}}{\text{.}}\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words, \(p \underline { \vee } q\)</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words, the converse of \(p \Rightarrow \neg q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following truth table for \(p \Rightarrow \neg q\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following logic propositions:</span></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">p </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Yuiko is studying French.</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">q </span></em><span style="font-size: medium; font-family: times new roman,times;">:</span><em><span style="font-size: medium; font-family: times new roman,times;"> Yuiko is studying Chinese.</span></em></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the following compound propositions in symbolic form.</span></p>
<p><span>(i) Yuiko is studying French but not Chinese.</span></p>
<p><span>(ii) Yuiko is studying French or Chinese, but not both.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words the <strong>inverse</strong> of the following compound proposition.</span></p>
<p><em><span>If Yuiko is studying Chinese, then she is not studying French.</span></em></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A class consists of students studying Spanish or French or both. Fifteen students study Spanish and twelve study French.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that a student studies French given that she studies Spanish is \(\frac{{7}}{{15}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a Venn diagram in the space below to illustrate this information.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student studies Spanish given that she studies one language only.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following logic propositions. </p>
<p class="p1" style="padding-left: 60px;"> \(p\): Sandi gets up before eight o’clock</p>
<p class="p1" style="padding-left: 60px;"> \(q\): Sandi goes for a run</p>
<p class="p1" style="padding-left: 60px;"> \(r\): Sandi goes for a swim</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down in words the compound proposition</p>
<p class="p1"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-06_om_13.42.11.png" alt="N16/5/MATSD/SP1/ENG/TZ0/05.b"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">On a morning when Sandi does </span><strong>not </strong>get up before eight o’clock, use your truth table to determine whether \(p \Rightarrow (q{\text{ }}\underline \vee {\text{ }}r)\) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Peter either walks or cycles to work. The probability that he walks is <span class="s1">0.25</span>. If Peter walks to work, the probability that he is late is <span class="s1">0.1</span>. If he cycles to work, the probability that he is late is <span class="s1">0.05</span>. The tree diagram for this information is shown.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_07.11.52.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On a day chosen at random, Peter walked to work.</p>
<p class="p1">Write down the probability that he was on time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For a different day, also chosen at random,</p>
<p class="p1">find the probability that Peter cycled to work and was late.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For a different day, also chosen at random,</p>
<p class="p1">find the probability that, given Peter was late, he cycled to work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A bag contains 7 red discs and 4 blue discs. Ju Shen chooses a disc at random from the bag and removes it. Ramón then chooses a disc from those left in the bag.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that</span></p>
<p><span>(i) Ju Shen chooses a red disc from the bag;</span></p>
<p><span>(ii) Ramón chooses a blue disc from the bag, given that Ju Shen has chosen a red disc;</span></p>
<p><span>(iii) Ju Shen chooses a red disc and Ramón chooses a blue disc from the bag.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Ju Shen and Ramón choose different coloured discs from the bag.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Home Shine factory produces light bulbs, 7% of which are found to be defective.</p>
</div>
<div class="specification">
<p>Francesco buys two light bulbs produced by Home Shine.</p>
</div>
<div class="specification">
<p>The Bright Light factory also produces light bulbs. The probability that a light bulb produced by Bright Light is not defective is \(a\).</p>
<p>Deborah buys three light bulbs produced by Bright Light.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that a light bulb produced by Home Shine is not defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both light bulbs are not defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of Francesco’s light bulbs is defective.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of \(a\), for the probability that at least one of Deborah’s three light bulbs is defective.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In a research project on the relation between the gender of 150 science students at college and their degree subject, the following set of data is collected.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>is either male or studies Chemistry.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student chosen at random </span><span>studies Physics, given that the student is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table shown below.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the compound proposition \((p \vee (p \wedge q)) \Rightarrow p\) is a contradiction, a tautology or neither.</span></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the following propositions.</span></p>
<p><span> </span><em><span>p: Feng finishes his homework</span></em></p>
<p><span> </span><em><span>q: Feng goes to the football match</span></em></p>
<p><span>Write in symbolic form the following proposition.</span></p>
<p><em><span>If Feng does not go to the football match then Feng finishes his homework.</span></em></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The Venn diagram shows the numbers of pupils in a school according to whether they study the sciences Physics (\(P\)), Chemistry (\(C\)), Biology (\(B\)).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of pupils that study Chemistry only.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Write down the number of pupils that study</span> <span><strong>exactly</strong> two sciences.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of pupils that do not study Physics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(n[(P \cup B) \cap C]\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following logic statements.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em>p: Carlos is playing the guitar</em></span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"><em>q: Carlos is studying for his IB exams</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words the compound statement \(\neg p \wedge q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following statement in symbolic form.</span></p>
<p><span><em>“Either Carlos is playing the guitar or he is studying for his IB exams but not both.”</em></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the <strong>converse</strong> of the following statement in <strong>symbolic form</strong>.</span></p>
<p><em><span>“If Carlos is playing the guitar then he is not studying for his IB exams.”</span></em></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the Canadian city of Ottawa:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{97% of the population speak English,}}} \\ {{\text{38% of the population speak French,}}} \\ {{\text{36% of the population speak both English and French.}}} \end{array}\]</p>
</div>
<div class="specification">
<p>The total population of Ottawa is \(985\,000\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of the population of Ottawa that speak English but not French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of people in Ottawa that speak both English and French.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (b) in the form \(a \times {10^k}\) where \(1 \leqslant a < 10\) and <em>k </em>\( \in \mathbb{Z}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosewood College has 120 students. The students can join the sports club (\(S\)) and the music club (\(M\)).</p>
<p>For a student chosen at random from these 120, the probability that they joined both clubs is \(\frac{1}{4}\) and the probability that they joined the music club is\(\frac{1}{3}\).</p>
<p>There are 20 students that did not join either club.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram for these students.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_08.15.35.png" alt="N17/5/MATSD/SP1/ENG/TZ0/07.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the students who joined the sports club is chosen at random. Find the probability that this student joined both clubs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether the events \(S\) and \(M\) are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the propositions</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em>\(p\): <em>I have a bowl of soup.</em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><em> </em> \(q\): <em>I have an ice cream.</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in words, the compound proposition \(\neg p \Rightarrow q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_17.49.25.png" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in symbolic form, the converse of \(\neg p \Rightarrow q\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p>\[\begin{array}{*{20}{l}} {p{\text{: I completed the task}}} \\ {q{\text{: I was paid}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words \(\neg q\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in symbolic form the compound statement:</p>
<p>If I was paid then I completed the task.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following truth table.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_13.11.00.png" alt="M17/5/MATSD/SP1/ENG/TZ1/03.c.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the statements \(p \vee \neg q\) and \(q \Rightarrow p\) are logically equivalent. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let \({\text{P}}(A) = 0.5\), \({\text{P}}(B) = 0.6\) and \({\text{P}}(A \cup B) = 0.8\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \({\text{P}}(A \cap B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \({\text{P}}(A|B)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether <em>A</em> and <em>B</em> are independent events. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two friends, Sensen and Cruz, are conducting an investigation on probability.</p>
<p>Sensen has a fair six-sided die with faces numbered \(1,\,\,2,\,\,2,\,\,4,\,\,4\) and \(4\). Cruz has a fair disc with one red side and one blue side.</p>
<p>The die and the disc are thrown at the same time.</p>
<p>Find the probability that the number shown on the die is \(1\) <strong>and</strong> the colour shown on the disc is blue;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the number shown on the die is \(1\) <strong>or</strong> the colour shown on the disc is blue;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the number shown on the die is even given that the colour shown on the disc is red.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the propositions \(r\), \(p\) and \(q\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the following truth table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_13.45.17.png" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether the compound proposition \(\neg \left( {(r \wedge p) \vee \neg q)} \right) \Leftrightarrow \neg (r \wedge p) \wedge q\) <span class="s1">is a tautology, a contradiction or neither.</span></p>
<p class="p2">Give a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the following statements</p>
<p>\(z\,:\,x\) is an integer<br>\(q\,:\,x\) is a rational number<br>\(r\,:\,x\) is a real number.</p>
<p>i) Write down, in words, \(\neg q\).</p>
<p>ii) Write down a value for \(x\) such that the statement \(\neg q\) is true.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write the following argument in symbolic form:<br>“If \(x\) is a real number and \(x\) is not a rational number, then \(x\) is not an integer”.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phoebe states that the argument in part (b) can be shown to be valid, without the need of a truth table.</p>
<p>Justify Phoebe’s statement.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Ramzi travels to work each day, either by bus or by train. The probability that he travels by bus is \(\frac{3}{5}\). If he travels by bus, the probability that he buys a magazine is \(\frac{2}{3}\). If he travels by train, the probability that he buys a magazine is \(\frac{3}{4}\).</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-03_om_06.15.58.png" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Ramzi buys a magazine when he travels to work.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;"><em>B</em> and <em>C</em> are subsets of a universal set <em>U</em> such that</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">\(U = \left\{ {x:x \in \mathbb{Z},0 \leqslant x < 10} \right\},{\text{ }}B = \left\{ {{\text{prime numbers}} < 10} \right\},{\text{ }}C = \left\{ {x:x \in \mathbb{Z},1 < x \leqslant 6} \right\}.\)</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the members of sets</span></p>
<p><span>(i) \(B\)</span></p>
<p><span>(ii) \(C \cap B\)</span></p>
<p><span>(iii) \(B \cup C′\)</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the propositions:</span></p>
<p><span><em>p</em> : <em>x</em> is a prime number less than 10.</span></p>
<p><span><em>q</em> : <em>x</em> is a positive integer between 1 and 7.</span></p>
<p><span>Write down, in words, the contrapositive of the statement, “If <em>x</em> is a prime number less than 10, then <em>x</em> is a positive integer between 1 and 7.”</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tuti has the following polygons to classify: rectangle (R), rhombus (H), isosceles triangle (I), regular pentagon (P), and scalene triangle (T).</p>
<p class="p1">In the Venn diagram below, set \(A\) consists of the polygons that have at least one pair of parallel sides, and set \(B\) consists of the polygons that have at least one pair of equal sides.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-03_om_08.19.15.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the Venn diagram by placing the letter corresponding to each polygon in the appropriate region. For example, R has already been placed, and represents the rectangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State which polygons from Tuti’s list are elements of</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>\(A \cap B\);</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>\((A \cup B)'\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following statements about the quadrilateral ABCD</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(q:\) ABCD has four equal sides \(s:\) ABCD is a square</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express in words the statement, \(s \Rightarrow q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down in words, the inverse of the statement, \(s \Rightarrow q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine the validity of the argument in (b). Give a reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey was carried out in a group of 200 people. They were asked whether they smoke or not. The collected information was organized in the following table.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">One person from this group is chosen at random.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that this person is a smoker.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that this person is male given that they are a smoker.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that this person is a smoker or is male.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">On a work day, the probability that Mr Van Winkel wakes up early is \(\frac{4}{5}\).</p>
<p class="p1">If he wakes up early, the probability that he is on time for work is \(p\).</p>
<p class="p1">If he wakes up late, the probability that he is on time for work is \(\frac{1}{4}\).</p>
</div>
<div class="specification">
<p class="p1">The probability that Mr Van Winkel arrives on time for work is \(\frac{3}{5}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Complete the tree diagram below.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-07_om_06.20.32.png" alt="N16/5/MATSD/SP1/ENG/TZ0/12.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of \(p\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following Venn diagram shows the sets \(A\), \(B\), \(C\) and \(U\).</p>
<p class="p1">\(x\) is an element of \(U\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.16.47.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In the table indicate whether the given statements are True or False.</p>
<p class="p1"><img src="images/Schermafbeelding_2017-03-06_om_12.54.23.png" alt="N16/5/MATSD/SP1/ENG/TZ0/03.a"></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the Venn diagram, shade the region \(A \cap (B \cup C)'\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sara regularly flies from Geneva to London. She takes either a direct flight or a non-directflight that goes via Amsterdam.</p>
<p>If she takes a direct flight, the probability that her baggage does not arrive in London is 0.01.<br>If she takes a non-direct flight the probability that her baggage arrives in London is 0.95.</p>
<p>The probability that she takes a non-direct flight is 0.2.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.08.43.png" alt="M17/5/MATSD/SP1/ENG/TZ1/07"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Sara’s baggage arrives in London.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The IB grades attained by a group of students are listed as follows.</p>
<p class="p1">\[{\text{6}}\;\;\;{\text{4}}\;\;\;{\text{5}}\;\;\;{\text{3}}\;\;\;{\text{7}}\;\;\;{\text{3}}\;\;\;{\text{5}}\;\;\;{\text{4}}\;\;\;{\text{2}}\;\;\;{\text{5}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the median grade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the probability that a student chosen at random from the group scored at least a grade \(4\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A <strong>weighted</strong> die has 2 red faces, 3 green faces and 1 black face. When the die is thrown,</span> <span style="font-size: medium; font-family: times new roman,times;">the black face is three times as likely to appear on top as one of the other five faces. </span><span style="font-size: medium; font-family: times new roman,times;">The other five faces have equal probability of appearing on top.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The following table gives the probabilities.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of</span></p>
<p><span>(i) <em>m</em>;</span></p>
<p><span>(ii) <em>n</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The die is thrown once.</span></p>
<p><span>Given that the face on top is not red, find the probability that it is black.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The die is now thrown twice.</span></p>
<p><span>Calculate the probability that black appears on top both times.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Complete the truth table below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>(ii) State whether the compound propositions \(\neg (p \wedge q)\) and \(\neg p \vee \neg q\) are equivalent.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the following propositions.</span></p>
<p><span>\(p:{\text{ Amy eats sweets}}\)</span></p>
<p><span> \(q:{\text{ Amy goes swimming.}}\)</span></p>
<p><span>Write, in symbolic form, the following proposition.</span></p>
<p><span><em>Amy either eats sweets or goes swimming, but not both.</em></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider each of the following statements</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\[p:Alex{\text{ }}is{\text{ }}from{\text{ }}Uruguay\]\[q:Alex{\text{ }}is{\text{ }}a{\text{ }}scientist\]\[r:Alex{\text{ }}plays{\text{ }}the{\text{ }}flute\]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write the following argument in words</span><br><span>\[\neg r \Rightarrow (q \vee p)\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table for the argument in part (a) using the values below for \(p\) , \(q\) , \(r\) and \(\neg r\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The argument \(\neg r \Rightarrow (q \vee p)\) is invalid. State the reason for this.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that it will snow tomorrow is 0.3.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If it snows tomorrow the probability that Chuck will be late for school is 0.8.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If it does not snow tomorrow the probability that Chuck will be late for school is 0.1.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that it does not snow tomorrow and Chuck is late for school.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Chuck is late for school.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A fitness club has 60 members. 35 of the members attend the club’s aerobics course (<em>A</em>) and 28 members attend the club’s yoga course (<em>Y</em>). 17 members attend both courses. </span><span style="font-family: times new roman,times; font-size: medium;">A Venn diagram is used to illustrate this situation.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>p</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the number of members of the fitness club who attend neither the aerobics course (<em>A</em>) nor the yoga course (<em>Y</em>).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Shade, on your Venn diagram, \(A' \cap Y\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the truth table below.</span></p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the statement \((p \wedge q) \Rightarrow (\neg p \underline \vee q)\) is a logical contradiction, a tautology or neither.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason for your answer to part (b)(i).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A group of 30 students were asked about their favourite topping for toast.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> 18 liked peanut butter (<em>A</em>)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> 10 liked jam (<em>B</em>)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> 6 liked neither</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show this information on the Venn diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who like both peanut butter and jam.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a randomly chosen student from the group likes peanut butter, given that they like jam.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Merryn plans to travel to a concert tomorrow. Due to bad weather, there is a 60 % chance that all flights will be cancelled tomorrow. If the flights are cancelled Merryn will travel by car.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If she travels by plane the probability that she <strong>will be late</strong> for the concert is 10 %.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If she travels by car, the probability that she <strong>will not be late</strong> for the concert is 25 %.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Merryn will not be late for the concert.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Merryn was not late for the concert the next day.</span></p>
<p><span>Given that, find the probability that she travelled to the concert by car.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">\(U = \{ x|x{\text{ is an integer, }}2 < x < 10\}\)</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><em>A</em> and <em>B</em> are subsets of <em>U</em> such that <em>A</em> = {multiples of 3}, <em>B</em> = {factors of 24}.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of</span></p>
<p><span>(i) <em>U</em> ;</span></p>
<p><span>(ii) <em>B</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the elements of <em>U</em> on the Venn diagram.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(n (A \cap B)\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">When Andy plays tennis, \(65\% \) of his first serves go into the correct area of the court.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If the first serve goes into the correct area, his chance of winning the point is \(90\% \).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If his first serve does not go into the correct area, Andy is allowed a second serve and, of these, \(80\% \) go into the correct area.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If the second serve goes into the correct area, his chance of winning the point is \(60\% \).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">If neither serve goes into the correct area, Andy loses the point.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Andy loses the point.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The following histogram shows the weights of a number of frozen chickens in a supermarket. The weights are grouped such that \(1 \leqslant {\text{weight}} < 2\), \(2 \leqslant {\text{weight}} < 3\) and so on.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total number of chickens.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Gabriel chooses a chicken at random. </span></p>
<p><span>Find the probability that this chicken weighs less than \(4{\text{ kg}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p><span>The sets \(P\), \(Q\) and \(U\) are defined as</span></p>
<p><span><span><em>U</em> = {Real Numbers} , <em>P</em> = {Positive Numbers} and <em>Q</em> = {Rational Numbers}.</span></span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down in the correct region on the Venn diagram the numbers</span></p>
<p><span>\(\frac{{22}}{7}\) , \(5 \times {10^{ - 2}}\) , \(\sin (60^\circ )\) , \(0\) , \(\sqrt[3]{{ - 8}}\) , \( - \pi \).</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Music lessons in Piano (<em>P</em>), Violin (<em>V</em>) and Flute (<em>F</em>) are offered to students at a school. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The Venn diagram shows the number of students who learn each kind of instrument.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of students in the school.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of students who</span></p>
<p><span>(i) learn violin only;</span></p>
<p><span>(ii) learn piano or flute or both;</span></p>
<p><span>(iii) do not learn flute.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain, in words, the meaning of the part of the diagram that represents the set \(P \cap F'\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A boy is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Maria travels to school either by walking or by bicycle. The probability she cycles to </span><span style="font-family: times new roman,times; font-size: medium;">school is 0.75.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">If she walks, the probability that she is late for school is 0.1.</span><br><span style="font-family: times new roman,times; font-size: medium;">If she cycles, the probability that she is late for school is 0.05.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below, showing the appropriate probabilities.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Maria is late for school.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following propositions.</p>
<p style="padding-left: 90px;"><br><em>p</em>: my Mathematical Studies homework is due tomorrow<br><em>q</em>: today is Wednesday</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down in words the compound proposition <em>¬</em>\(p \Rightarrow q\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the truth table.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether the compound proposition (\(\neg p \Rightarrow q\)) ∨ (\(\neg p \wedge q\)) is a tautology, contradiction or neither.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span>The Venn diagram shows the number sets \(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\) and \(\mathbb{R}\). Place each of the following</span> <span>numbers in the appropriate region of the Venn diagram.</span></p>
<p><span>\(\frac{{1}}{{4}}\), −3, π, cos 120°, 2.7 × 10<sup>3</sup>, 3.4 × 10<sup>–2</sup></span></p>
<p><span><img src="" alt></span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The grades obtained by a group of \(20\) IB students are listed below:</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following table for the grades obtained by the students.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal grade obtained by the students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the median grade obtained by the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One student is chosen at random from the group. </span></p>
<p><span>Find the probability that this student obtained either grade \(4\) or grade \(5\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The probability that Tanay eats lunch in the school cafeteria is \(\frac{3}{5}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If he eats lunch in the school cafeteria, the probability that he has a sandwich is \(\frac{3}{{10}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">If he does not eat lunch in the school cafeteria the probability that he has a sandwich</span> <span style="font-size: medium; font-family: times new roman,times;">is \(\frac{9}{{10}}\)</span><span style="font-size: medium; font-family: times new roman,times;">.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that Tanay has a sandwich for his lunch.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">\(U\) is the set of all the <strong>positive</strong> integers less than or equal to \(12\).</span><br><span style="font-size: medium; font-family: times new roman,times;">\(A\) , \(B\) and \(C\) are subsets of \(U\) .</span><br><span style="font-size: medium; font-family: times new roman,times;">\[A = \{ 1{\text{, }}2{\text{, }}3{\text{, }}4{\text{, }}6{\text{, }}12\} \]</span><span style="font-size: medium; font-family: times new roman,times;">\[B = \{ {\text{odd integers}}\} \]</span><span style="font-size: medium; font-family: times new roman,times;">\[C = \{ 5{\text{, }}6{\text{, }}8\} \]</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of elements in \(A \cap C\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>List the elements of \(B\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following Venn diagram with <strong>all</strong> the elements of \(U\) .</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The probability that it rains today is \(0.4\) . If it rains today, the probability that it will rain tomorrow is \(0.8\) . If it does not rain today, the probability that it will rain tomorrow is \(0.7\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the probability of rain tomorrow.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A school offers three activities, basketball (<em>B</em>), choir (<em>C</em>) and drama (<em>D</em>). Every student must participate in at least one activity.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">16 students play basketball only.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">18 students play basketball and sing in the choir but do not do drama.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">34 students play basketball and do drama but do not sing in the choir.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">27 students are in the choir and do drama but do not play basketball.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Enter the above information on the Venn diagram below.</span></p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>99 of the students play basketball, 88 sing in the choir and 110 do drama.</span></p>
<p><span>Calculate the number of students <em>x</em> participating in all three activities.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>99 of the students play basketball, 88 sing in the choir and 110 do drama.</span></span></p>
<p><span>Calculate the total number of students in the school.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Shade \((A \cup B) \cap C'\) on the diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In the Venn diagram below, the number of elements in each region is given.</span></p>
<p><span>Find \(n((P \cap Q) \cup R)\).</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(U\) is the set of positive integers, \({\mathbb{Z}^ + }\).</span></p>
<p><span>\(E\) is the set of even numbers.</span></p>
<p><span>\(M\) is the set of multiples of \(3\).</span></p>
<p><span>(i) List the first six elements of the set \(M\).</span></p>
<p><span>(ii) List the first six elements of the set \(E' \cap M\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table below shows the number of words in the extended essays of an IB class.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a histogram on the grid below for the data in this table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The maximum word count is \(4000\) words.<br></span></p>
<p><span>Write down the probability that a student chosen at random is on or over the word count.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following Venn diagrams.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the <strong>shaded</strong> region represented by Diagram 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in set notation, for the shaded region represented by Diagram 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set \(\left( {H \cup I} \right)'\).</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shade, on the Venn diagram, the region represented by the set \(J \cap K\).</p>
<p><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>All the children in a summer camp play at least one sport, from a choice of football (\(F\)) or basketball (\(B\)). 15 children play both sports.</p>
<p>The number of children who play only football is double the number of children who play only basketball.</p>
<p>Let \(x\) be the number of children who play only football.</p>
</div>
<div class="specification">
<p>There are 120 children in the summer camp.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression, in terms of \(x\), for the number of children who play only basketball.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the above information.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of children who play only football.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(n(F)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The probability that Nikita wins a tennis match depends on the surface of the tennis court on which she is playing. The probability that she plays on a grass court is \(0.4\). The probability that Nikita wins on a grass court is \(0.35\). The probability that Nikita wins when the court is not grass is \(0.25\).</p>
<p>Complete the following tree diagram.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Nikita wins a match.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 60 sports enthusiasts visited the PyeongChang 2018 Winter Olympic games to watch a variety of sporting events.</p>
<p>The most popular sports were snowboarding (<em>S</em>), figure skating (<em>F</em>) and ice hockey (<em>H</em>).</p>
<p>For this group of 60 people:</p>
<p style="padding-left: 120px;">4 did not watch any of the most popular sports,<br><em>x</em> watched all three of the most popular sports,<br>9 watched snowboarding only,<br>11 watched figure skating only,<br>15 watched ice hockey only,<br>7 watched snowboarding and figure skating,<br>13 watched figure skating and ice hockey,<br>11 watched snowboarding and ice hockey.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the Venn diagram using the given information.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(n\left( {\left( {F \cup H} \right) \cap S'} \right)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>