File "SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 2/SL-paper2html
File size: 589.31 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">As part of his IB Biology field work, Barry was asked to measure the circumference of trees, in centimetres, that were growing at different distances, in metres, from a river bank. His results are summarized in the following table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.50.23.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether <em>distance from the river bank </em>is a continuous <strong>or </strong>discrete variable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>On graph paper, </strong>draw a scatter diagram to show Barry’s results. Use a scale of 1 cm to represent 5 m on the <em>x</em>-axis and 1 cm to represent 10 cm on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the mean distance, \(\bar x\), of the trees from the river bank;</span></p>
<p><span>(ii) the mean circumference, \(\bar y\), of the trees.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot and label the point \({\text{M}}(\bar x,{\text{ }}\bar y)\) on your graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the Pearson’s product–moment correlation coefficient, \(r\), for Barry’s results;</span></p>
<p><span>(ii) the equation of the regression line \(y\) on \(x\), for Barry’s results.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line \(y\) on \(x\) on your graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use the equation of the regression line</strong> \(y\) on \(x\) to estimate the circumference of a tree that is 40 m from the river bank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>
<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>
<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>
<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p class="p2">For each student, the number of hours spent on social media <span class="s1">(\(x\)) </span>and the number of IB Diploma points obtained <span class="s1">(\(y\)) </span>are shown in the following table.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p class="p1">Use your graphic display calculator to find</p>
</div>
<div class="specification">
<p class="p1">Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between <span class="s1">3 </span>and <span class="s1">30 </span>hours on social media.</p>
<p class="p1">The equation of the regression line <span class="s1"><em>y </em></span>on <span class="s1"><em>x </em></span>for these ten female students is</p>
<p class="p1">\[y = - \frac{2}{3}x + \frac{{125}}{3}.\]</p>
<p class="p1">An eleventh girl spent <span class="s1">34 </span>hours on social media in the month before her IB Diploma examinations.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">On graph paper, draw a scatter diagram for these data. Use a scale of </span><span class="s2">2 cm </span>to represent <span class="s2">5 </span>hours on the \(x\)-axis and <span class="s2">2 cm </span>to represent <span class="s2">10 </span>points on the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space"> \({\bar x}\)</span>, </span>the mean number of hours spent on social media;</p>
<p class="p2">(ii) <span class="Apple-converted-space"> \({\bar y}\)</span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Plot the point \((\bar x,{\text{ }}\bar y)\) </span>on your scatter diagram and label this point <span class="s2">M</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down the value of \(r\), </span>the Pearson’s product–moment correlation coefficient, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the equation of the regression line \(y\) <span class="s1">on \(x\) for these eight male students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the given equation of the regression line to estimate the number of IB Diploma <span class="s1">points that this girl obtained.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A survey was conducted to determine the length of time, \(t\), in minutes, people took to drink their coffee in a café. The information is shown in the following grouped frequency table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-02_om_11.43.00.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of people who were surveyed.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid-interval value for the \(10 < t \leqslant 15\) group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an estimate of the mean time people took to drink their coffee.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The information above has been rewritten as a cumulative frequency table.</span></p>
<p><span><img src="images/Schermafbeelding_2014-09-02_om_11.46.53.png" alt><br></span></p>
<p><span>Write down the value of \(a\) and the value of \(b\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>This information is shown in the following cumulative frequency graph.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.50.20.png" alt><br></span></p>
<p><span>For the people who were surveyed, use the graph to estimate</span></p>
<p><span>(i) the time taken for the first \(40\) people to drink their coffee;</span></p>
<p><span>(ii) the number of people who take less than \(8\) minutes to drink their coffee;</span></p>
<p><span>(iii) the number of people who take more than \(23\) minutes to drink their coffee.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, \(N\), was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>A \({\chi ^2}\) test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether \(N\) is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for \(N\), the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for \(N\), the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of \(N\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of \(N\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(p\)-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \({\chi ^2}\) statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The cumulative frequency graph shows the speed, \(s\)<span class="s1">, in \({\text{km}}\,{{\text{h}}^{ - 1}}\), of \(120\) </span>vehicles passing a hospital gate.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-21_om_07.03.09.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Estimate the minimum possible speed of one of these vehicles passing the hospital gate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the median speed of the vehicles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the <span class="s1">\({75^{{\text{th}}}}\) </span>percentile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The speed limit past the hospital gate is \(50{\text{ km}}\,{{\text{h}}^{ - 1}}\).</p>
<p class="p1">Find the number of these vehicles that exceed the speed limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">Find the value of \(p\) and of \(q\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">(i) Write down the modal class.</p>
<p class="p1">(ii) Write down the mid-interval value for this class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">Use your graphic display calculator to calculate an estimate of</p>
<p class="p1">(i) the mean speed of these vehicles;</p>
<p class="p1">(ii) the standard deviation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is proposed that the speed limit past the hospital gate is reduced to \(40{\text{ km}}\,{{\text{h}}^{ - 1}}\) from the current \(50{\text{ km}}\,{{\text{h}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p2">Find the percentage of these vehicles passing the hospital gate that <strong>do not </strong>exceed the current speed limit but <strong>would </strong>exceed the new speed limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The table below shows the scores for 12 golfers for their first two rounds in a local golf tournament.</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the mean score in Round 1.</span></p>
<p><span>(ii) Write down the standard deviation in Round 1.</span></p>
<p><span>(iii) Find the number of these golfers that had a score of more than one standard deviation above the mean in Round 1.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the correlation coefficient, <em>r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Write down the equation of the regression line of</span><span> <em>y</em> on <em>x</em>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Another golfer scored 70 in Round 1.</span></p>
<p><span>Calculate an estimate of his score in Round 2.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Another golfer scored 89 in Round 1.</span></p>
<p><span>Determine whether you can use the equation of the regression line to estimate his score in Round 2. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The figure below shows the lengths in centimetres of fish found in the net of a small trawler.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total number of fish in the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find (i) the modal length interval,</span></p>
<p><span>(ii) the interval containing the median length,</span></p>
<p><span>(iii) an estimate of the mean length.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down an estimate for the standard deviation of the lengths.</span></p>
<p><span>(ii) How many fish (if any) have length <strong>greater than</strong> three standard deviations <strong>above</strong> the mean?</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The fishing company must pay a fine if more than 10% of the catch have lengths less than 40cm.</span></p>
<p><span>Do a calculation to decide whether the company is fined.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A sample of 15 of the fish was weighed. The weight, <em>W</em> was plotted against length, <em>L</em> as shown below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Exactly <strong>two</strong> of the following statements about the plot could be correct. Identify the two correct statements. </span></p>
<p><span><strong>Note:</strong> You do <strong>not</strong> need to enter data in a GDC <strong>or</strong> to calculate <em>r</em> exactly.</span></p>
<p><span>(i) The value of <em>r</em>, the correlation coefficient, is approximately 0.871.</span></p>
<p><span>(ii) There is an exact linear relation between <em>W</em> and <em>L</em>.</span></p>
<p><span>(iii) The line of regression of <em>W</em> on <em>L</em> has equation <em>W</em> = 0.012<em>L</em> + 0.008 .</span></p>
<p><span>(iv) There is negative correlation between the length and weight.</span></p>
<p><span>(v) The value of <em>r</em>, the correlation coefficient, is approximately 0.998.</span></p>
<p><span>(vi) The line of regression of <em>W</em> on <em>L</em> has equation <em>W</em> = 63.5<em>L</em> + 16.5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Daniel grows apples and chooses at random a sample of <span class="s1">100 </span>apples from his harvest.</p>
<p class="p1">He measures the diameters of the apples to the nearest <span class="s1">cm</span>. The following table shows the distribution of the diameters.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_08.48.03.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your graphic display calculator, write down the value of</p>
<p class="p1">(i) the mean of the diameters in this sample;</p>
<p class="p1">(ii) the standard deviation of the diameters in this sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Calculate the percentage of <strong>small </strong>apples in Daniel’s harvest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Of the apples harvested, <span class="s1">5</span>% are <strong>large </strong>apples.</p>
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Find the percentage of <strong>medium </strong>apples.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">This year, Daniel estimates that he will grow <span class="s1">\({\text{100}}\,{\text{000}}\) </span>apples.</p>
<p class="p1">Estimate the number of <strong>large </strong>apples that Daniel will grow this year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The table shows the distance, in km, of eight regional railway stations from a city centre terminus and the price, in \($\), of a return ticket from each regional station to the terminus.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_09.54.14.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram for the above data. Use a scale of \(1\) cm to represent \(10\) km on the \(x\)-axis and \(1\) cm to represent \(\$10\) on the \(y\)-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i) \(\bar x\), the mean of the distances;</span></p>
<p><span>(ii) \(\bar y\), the mean of the prices.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot and label the point \({\text{M }}(\bar x,{\text{ }}\bar y)\) on your scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i) the product–moment correlation coefficient, \(r\,;\)</span></p>
<p><span>(ii) the equation of the regression line \(y\) on \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line \(y\) on \(x\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A ninth regional station is \(76\) km from the city centre terminus.</span></p>
<p><span><span><span>Use the equation of the regression line to estimate the price of a return ticket to the city centre terminus from this regional station. </span></span><span><span><strong>Give your answer correct to the nearest </strong></span><span><span>\({\mathbf{\$ }}\).</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason why it is valid to use your regression line to estimate the price of this return ticket.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The actual price of the return ticket is \(\$80\).</span></p>
<p><span><strong>Using your answer to part (f)</strong>, calculate the percentage error in the estimated price of the ticket.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The lengths (\(l\)) in centimetres of \(100\) copper pipes at a local building supplier were measured. The results are listed in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mode.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, write down the value of</span><br><span>(i) the mean;</span><br><span>(ii) the standard deviation;</span><br><span>(iii) the median.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a box and whisker diagram for this data, on graph paper, using a scale of \(1{\text{ cm}}\) to represent \(5{\text{ cm}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sam estimated the value of the mean of the measured lengths to be \(43{\text{ cm}}\).</span></p>
<p><span>Find the percentage error of Sam’s estimated mean.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Alex and Kris are riding their bicycles together along a bicycle trail and note the following distance markers at the given times.</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram of the data. Use 1 cm to represent 1 hour and 1 cm to represent 10 km.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data </span><span>the mean time, \(\bar t\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data the mean distance, \(\bar d\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Mark and label the point \(M(\bar t,{\text{ }}\bar d)\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your graph</strong>, estimate the time when Alex and Kris pass the 85 km distance marker. Give your answer correct to <strong>one decimal place</strong>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line for the data given.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your equation</strong> calculate the distance marker passed by the cyclists at 10.3 hours.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Is this estimate of the distance reliable? Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a mountain region there appears to be a relationship between the number of trees growing in the region and the depth of snow in winter. A set of 10 areas was chosen, and in each area the number of trees was counted and the depth of snow measured. The results are given in the table below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a study on \(100\) students there seemed to be a difference between males and females in their choice of favourite car colour. The results are given in the table below. A \(\chi^2\) test was conducted.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find </span><span><span>the mean number of trees</span><span>.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the mean depth of snow.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the standard deviation of the depth of snow.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The covariance, <em>S<sub>xy</sub></em> = 188.5.</span></p>
<p><span>Write down the product-moment correlation coefficient, <em>r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line of <em>y</em> on <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If the number of trees in an area is 55, estimate the depth of snow.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the equation of the regression line to estimate the depth of snow in an area with 100 trees.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, e, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether the answer in (e)(i) is a valid estimate of the depth of snow in the area. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, e, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of male students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the expected frequency for males, whose favourite car colour is blue, is 12.6.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Write down the null hypothesis for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, c, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Determine whether the null hypothesis should be accepted at the \(5\%\) significance level. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, c, iv.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The number of bottles of water sold at a railway station on each day is given in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the mean temperature;</span></p>
<p><span>(ii) the standard deviation of the temperatures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the correlation coefficient, \(r\), for the variables \(n\) and \(T\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Comment on your value for \(r\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the line of regression for \(n\) on \(T\) is \(n = dT - 100\).</span></p>
<p><span>(i) Write down the value of \(d\).</span></p>
<p><span>(ii) Estimate how many bottles of water will be sold when the temperature is \({19.6^ \circ }\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On a day when the temperature was \({36^ \circ }\) Peter calculates that \(314\) bottles would be sold. Give one reason why his answer might be unreliable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram shows the cumulative frequency graph for the time <em>t</em> taken to perform a certain task by 2000 men.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the diagram to estimate </span><span>the median time.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the diagram to estimate the upper quartile and the lower quartile.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the diagram to estimate the interquartile range.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of men who take <strong>more than</strong> 11 seconds to perform the task.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>55 % of the men took less than<em> p</em> seconds to perform the task. Find <em>p</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The times taken for the 2000 men were grouped as shown in the table below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the value of </span><span><em>a</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The times taken for the 2000 men were grouped as shown in the table below.</span></p>
<p><span><img alt="onbekend.png"></span></p>
<p><span>Write down the value of <em>b</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate of</span><span> the mean time</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate of the standard deviation of the time.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Everyone who performs the task in <strong>less than</strong> one standard deviation <strong>below</strong> the mean will receive a bonus. Pedro takes 9.5 seconds to perform the task.</span></p>
<p><span>Does Pedro receive the bonus? Justify your answer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>χ</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>
<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>
<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A random sample of 167 people who own mobile phones was used to collect data on the amount of time they spent per day using their phones. The results are displayed in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel conducts a survey on a random sample of 751 people to see which television programme type they watch most from the following: Drama, Comedy, Film, News. The results are as follows.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel decides to ignore the ages and to test at the 5 % level of significance whether the most watched programme type is independent of <strong>gender.</strong></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to calculate approximate values of the mean and standard deviation of the time spent per day on these mobile phones.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On graph paper, draw a fully labelled histogram to represent the data.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a table with 2 rows and 4 columns of data so that Manuel can perform a chi-squared test.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State Manuel’s null hypothesis and alternative hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the number of females who had ‘Comedy’ as their most-watched programme type. Give your answer to the nearest whole number.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, or otherwise, find the chi-squared statistic for Manuel’s data.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) State the number of degrees of freedom available for this calculation.</span></p>
<p><span>(ii) State his conclusion.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The speed, \(s\) , in \({\text{km }}{{\text{h}}^{ - 1}}\), of \(120\) vehicles passing a point on the road was measured. </span><span style="font-size: medium; font-family: times new roman,times;">The results are given below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the midpoint of the \(60 < s \leqslant 70\) interval.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate for</span></p>
<p><span>(i) the mean speed of the vehicles;</span></p>
<p><span>(ii) the standard deviation of the speeds of the vehicles.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of vehicles whose speed is less than or equal to \({\text{60 km }}{{\text{h}}^{ - 1}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the cumulative frequency table below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the value of \(a\) , of \(b\) and of \(c\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the cumulative frequency table below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Draw a cumulative frequency graph for the information from the table. Use \(1\) cm to represent \({\text{10 km }}{{\text{h}}^{ - 1}}\) on the horizontal axis and \(1\) cm to represent \(10\) vehicles on the vertical axis.</span></p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your cumulative frequency graph to estimate</span></p>
<p><span>(i) the median speed of the vehicles;</span></p>
<p><span>(ii) the number of vehicles that are travelling at a speed less than or equal to \({\text{65 km }}{{\text{h}}^{ - 1}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>All drivers whose vehicle’s speed is greater than one standard deviation above the speed limit of \({\text{50 km }}{{\text{h}}^{ - 1}}\) will be fined. </span></p>
<p><span>Use your graph to estimate the number of drivers who will be fined.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Francesca is a chef in a restaurant. She cooks eight chickens and records their masses and cooking times. The mass <em>m</em> of each chicken, in kg, and its cooking time <em>t</em>, in minutes, are shown in the following table.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the relationship between the mass of a chicken and its cooking time. Use 2 cm to represent 0.5 kg on the horizontal axis and 1 cm to represent 10 minutes on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data</span></p>
<p><span>(i) the mean mass, \(\bar m\) ;</span></p>
<p><span>(ii) the mean cooking time, </span><span><span>\(\bar t\)</span> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Label the point \({\text{M}}(\bar m,\bar t)\) on the scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on the scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your line of best fit, estimate the cooking time, in minutes, for a 1.7 kg chicken.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the Pearson’s product–moment correlation coefficient, <em>r</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your value for <em>r</em> , comment on the correlation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cooking time of an additional 2.0 kg chicken is recorded. If the mass and cooking time of this chicken is included in the data, the correlation is weak.</span></p>
<p><span>(i) Explain how the cooking time of this additional chicken might differ from that of the other eight chickens.</span></p>
<p><span>(ii) Explain how a new line of best fit might differ from that drawn in part (d).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A university required all Science students to study one language for one year. A survey was carried out at the university amongst the 150 Science students. These students all studied one of either French, Spanish or Russian. The results of the survey are shown below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Ludmila decides to use the \({\chi ^2}\) test at the \(5\% \) level of significance to determine whether the choice of language is independent of gender.</span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">At the end of the year, only seven of the female Science students sat examinations in Science and French. The marks for these seven students are shown in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State Ludmila’s null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the females studying Spanish.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the \({\chi ^2}\) test statistic for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Ludmila accepts the null hypothesis. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a labelled scatter diagram for this data. Use a scale of \(2{\text{ cm}}\) to represent \(10{\text{ marks}}\) on the \(x\)-axis (\(S\)) and \(10{\text{ marks}}\) on the \(y\)-axis (\(F\)).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic calculator to find</span></p>
<p><span></span></p>
<p><span>(i) \({\bar S}\), the mean of \(S\) ;</span></p>
<p><span>(ii) \({\bar F}\), the mean of \(F\) .</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point \({\text{M}}(\bar S{\text{, }}\bar F)\) on your scatter diagram.</span></p>
<p><span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the equation of the regression line of \(F\) on \(S\) .</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line on your scatter diagram.</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Carletta’s mark on the Science examination was \(44\). She did not sit the French examination. </span></p>
<p><span>Estimate Carletta’s mark for the French examination.</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span></span><span>Monique’s mark on the Science examination was 85. She did not sit the French examination. Her French teacher wants to use the regression line to estimate Monique’s mark.</span></p>
<p><span> State whether the mark obtained from the regression line for Monique’s French examination is reliable. Justify your answer.</span></p>
<p><span></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">B.g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The diagram below shows a square based right pyramid. ABCD is a square of side 10 cm. VX is the perpendicular height of 8 cm. M is the midpoint of BC.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p> </p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a mountain region there appears to be a relationship between the number of trees growing in the region and the depth of snow in winter. A set of 10 areas was chosen, and in each area the number of trees was counted and the depth of snow measured. The results are given in the table below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A path goes around a forest so that it forms the three sides of a triangle. The lengths of two sides are 550 m and 290 m. These two sides meet at an angle of 115°. A diagram is shown below.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the length of XM.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the standard deviation of the number of trees.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of VM.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle between VM and ABCD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of the third side of the triangle. Give your answer correct to the nearest 10 m.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area enclosed by the path that goes around the forest.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Inside the forest a second path forms the three sides of another triangle named ABC. Angle BAC is 53°, AC is 180 m and BC is 230 m.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Calculate the size of angle ACB.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B, c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an ecological study, Ernesto measured the average concentration \((y)\) of the fine dust, \({\text{PM}}10\), in the air at different distances \((x)\) from a power plant. His data are represented on the following scatter diagram. The concentration of \({\text{PM}}10\) is measured in micrograms per cubic metre and the distance is measured in kilometres.</p>
<p><img src="" alt></p>
<p>His data are also listed in the following table.</p>
<p><img src="" alt></p>
<p>Use the scatter diagram to find the value of \(a\) and of \(b\) in the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate</p>
<p>i) \({\bar x}\) , the mean distance from the power plant;</p>
<p>ii) \({\bar y}\) , the mean concentration of \({\text{PM}}10\) ;</p>
<p>iii) \(r\) , the Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line \(y\) on \(x\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ernesto’s school is located \(14\,{\text{km}}\) from the power plant. He uses the equation of the regression line to estimate the concentration of \({\text{PM}}10\) in the air at his school.</p>
<p>i) Calculate the value of Ernesto’s estimate.</p>
<p>ii) State whether Ernesto’s estimate is reliable. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A transportation company owns 30 buses. The distance that each bus has travelled since being purchased by the company is recorded. The cumulative frequency curve for these data is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>It is known that 8 buses travelled more than <em>m</em> kilometres.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance between 15000 and 20000 kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the median distance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the percentage of buses that travelled a distance greater than the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance less than or equal to 12 000 km.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>m</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The smallest distance travelled by one of the buses was 2500 km.<br>The longest distance travelled by one of the buses was 23 000 km.</p>
<p><strong>On graph paper</strong>, draw a box-and-whisker diagram for these data. Use a scale of 2 cm to represent 5000 km.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The heat output in thermal units from burning \(1{\text{ kg}}\) of wood changes according to the wood’s percentage moisture content. The moisture content and heat output of \(10\) blocks of the same type of wood each weighing </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(1{\text{ kg}}\)</span> were measured. These are shown in the table.</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the above data. Use a scale of \(2{\text{ cm}}\) to represent \(10\% \) on the <em>x</em>-axis and a scale of \(2{\text{ cm}}\) to represent \(10\) thermal units on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span><br><span>(i) the mean percentage moisture content, \(\bar x\) ;</span><br><span>(ii) the mean heat output, \(\bar y\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point \((\bar x{\text{, }}\bar y)\) on your scatter diagram and label this point M .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the product-moment correlation coefficient, \(r\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . Draw the regression line \(y\) on \(x\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . Estimate the heat output in thermal units of a \(1{\text{ kg}}\) block of wood that has \(25\% \) moisture content.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . State, with a reason, whether it is appropriate to use the regression line \(y\) on \(x\) to estimate the heat output in part (f).<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In an environmental study of plant diversity around a lake, a biologist collected</span> <span style="font-family: times new roman,times; font-size: medium;">data about the number of different plant species (<em>y</em>) that were growing at different </span><span style="font-family: times new roman,times; font-size: medium;">distances (<em>x</em>) in metres from the lake shore.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the data. Use a scale of 2 cm to represent 10 metres on the <em>x</em>-axis and 2 cm to represent 10 plant species on the<em> y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your scatter diagram, describe the correlation between the number of different plant species and the distance from the lake shore.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down</span><span> \(\bar x\), the mean of the distances from the lake shore.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down \(\bar y\), the mean number of plant species.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point (\(\bar x\), \(\bar y\)) on your scatter diagram. <strong>Label this point M.</strong></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line <em>y</em> on <em>x</em> for the above data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line <em>y</em> on <em>x</em> on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the number of plant species growing 30 metres from the lake shore.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">200 people were asked the amount of time <em>T</em> (minutes) they had spent in the supermarket. The results are represented in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State if the data is discrete or continuous.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the midpoint of the interval 10 < <em>T</em> ≤ 20 .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate for</span></p>
<p><span>(i) the mean;</span></p>
<p><span>(ii) the standard deviation.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The results are represented in the cumulative frequency table below, with upper class boundaries of 10, 20, 30, 40, 50.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>q</em>;</span></p>
<p><span>(ii)<em> r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The results are represented in the cumulative frequency table below, with upper class boundaries of 10, 20, 30, 40, 50.</span></p>
<p><span><img src="" alt></span></p>
<p><span>On graph paper, draw a cumulative frequency graph, using a scale of 2 cm to represent 10 minutes (<em>T</em>) on the horizontal axis and 1 cm to represent 10 people on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use your graph</strong> from part (f) to estimate</span></p>
<p><span>(i) the median;</span></p>
<p><span>(ii) the 90<sup>th</sup> percentile of the results;</span></p>
<p><span>(iii) the number of people who shopped at the supermarket for more than </span><span>15 minutes.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br>