File "SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 2/SL-paper1html
File size: 934.7 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p class="p1">In a particular week, the number of eggs laid by each hen on a farm was counted. The results are summarized in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-03_om_06.38.36.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether these data are discrete or continuous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>the number of hens on the farm;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the modal number of eggs laid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>the mean number of eggs laid;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the standard deviation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The resting pulse rates of a group of 10 students who exercise regularly are given below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">65, 62, 75, 63, 69, 58, 65, 67, 55, 60</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median resting pulse rate of the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the mean resting pulse rate of the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A new student joins the class and the mean resting pulse rate of the group of 11 students becomes 65.</span></p>
<p><span>Find the resting pulse rate of the student who joined the group.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The time, in minutes, that students in a school spend on their homework per day is presented in the following box-and-whisker diagram.</p>
<p style="text-align: center;"><br><img src="images/Schermafbeelding_2015-12-02_om_19.55.30.png" alt></p>
<p style="text-align: center;">Time, in minutes, students spend on their homework per day</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find</p>
<p>(i) the longest amount of time spent on homework per day;</p>
<p>(ii) the interquartile range.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the statistical term corresponding to the value of 140 minutes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the percentage of students who spend</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>between 100 and 140 minutes per day on their homework;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>more than 100 minutes per day on their homework.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"> The grades obtained by a group of 13 students are listed below. \[5{\text{ }}3{\text{ }}6{\text{ }}5{\text{ }}7{\text{ }}3{\text{ }}2{\text{ }}6{\text{ }}4{\text{ }}6{\text{ }}6{\text{ }}6{\text{ }}4\]</span></p>
<p align="CENTER"> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal grade.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the mean grade.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the standard deviation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The mean of the ten numbers listed below is 6.8.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">8, 5, 5, 10, 8, 4, 9, 7, <em>p</em>, <em>q</em></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation in terms of <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The mode of these ten numbers is five and <em>p</em> is less than <em>q</em>.</span></p>
<p><span>Write down the value of</span><span> <em>p</em></span><span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The mode of these ten numbers is five and <em>p</em> is less than <em>q</em>.</span></p>
<p><span>Write down the value of <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median of the ten numbers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The distribution of rainfall in a town over 80 days is displayed on the following box-and-whisker diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.29.11.png" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median rainfall.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the minimum rainfall.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of days the rainfall will be</span></p>
<p><span>(i) between 43 mm and 48 mm;</span></p>
<p><span>(ii) between 20 mm and 59 mm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Eight houses in a street are inhabited by different numbers of people, as shown in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The following statements refer to the number of inhabitants per house. Write down true (T) or false (F) for each.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The mean is \(5\).<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The range is \(4\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The mode is \(6\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The standard deviation is \(1.4\) correct to \(2\) significant figures.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the interquartile range for the number of inhabitants per house.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The cumulative frequency graph represents the speed, <em>s</em>, in \({\text{km }}{{\text{h}}^{ - 1}}\), of 80 cars passing a speed camera.</span></p>
<div style="text-align: center;"><br><img src="images/Schermafbeelding_2014-09-20_om_07.57.59.png" alt></div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of cars passing the camera with speed of less than or equal </span><span>to 50 \({\text{km}}\,{{\text{h}}^{ - 1}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following grouped frequency table for \(s\), the speed of the cars passing the camera.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-20_om_08.02.56.png" alt></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid-interval value of the \(50 < s \leqslant 70\) interval.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate of</span></p>
<p><span>(i) the mean speed of the cars passing the camera;</span></p>
<p><span>(ii) the standard deviation of the speed of the cars passing the camera.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The following <strong>six</strong> integers are arranged from smallest to largest</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">1 , <em>x</em> , 3 , <em>y</em> , 14 , <em>z</em></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The mode is 1 , the median is 5 and the mean is 7.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>x</em> ;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>y</em> ;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>z .</em><br></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>For a study, a researcher collected 200 leaves from oak trees. After measuring the lengths of the leaves, in cm, she produced the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_17.29.13.png" alt="M17/5/MATSD/SP1/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>The researcher finds that 10% of the leaves have a length greater than \(k\) cm.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median length of these leaves.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of leaves with a length less than or equal to 8 cm.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Before measuring, the researcher estimated \(k\) to be approximately 9.5 cm. Find the percentage error in her estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The following table shows the number of errors per page in a 100 page document.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the data is discrete, continuous or neither.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the mean number of errors per page.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median number of errors per page.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mode.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey was conducted of the number of bedrooms in \(208\) randomly chosen houses. The results are shown in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the data is discrete or continuous.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mean number of bedrooms per house.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the standard deviation of the number of bedrooms per house.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find how many houses have a number of bedrooms greater than one standard deviation above the mean.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The weights, in kg, of 60 adolescent females were collected and are summarized in the box and whisker diagram shown below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median weight of the females.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the probability that the weight of a randomly chosen female is more than 50 kg.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the box and whisker diagram to determine if the mean weight of the females is less than the median weight. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The daily rainfall for the town of St. Anna is collected over a 20-day period of time. The collected data are represented in the box and whisker plot below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i) the lowest daily rainfall;</span></p>
<p><span>(ii) the highest daily rainfall.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State what the value of 12 mm represents on the given diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the percentage of the data which is less than the upper quartile.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(240\) cars were tested to see how far they travelled on \(10\) litres of fuel. The graph shows the cumulative frequency distribution of the results.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_05.00.55.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median distance travelled by the cars.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the interquartile range of the distance travelled by the cars.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of cars that travelled more than \(130\) km.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">\(80\) matches were played in a football tournament. The following table shows the number of goals scored in all matches.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the mean number of goals scored per match.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median number of goals scored per match.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A local newspaper claims that the mean number of goals scored per match is two. Calculate the percentage error in the local newspaper’s claim.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Five pipes labelled, “6 metres in length”, were delivered to a building site. The contractor measured each pipe to check its length (in metres) and recorded the following;</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">5.96, 5.95, 6.02, 5.95, 5.99.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Find the mean of the contractor’s measurements.</span></p>
<p><span>(ii) Calculate the percentage error between the mean and the stated, <strong>approximate</strong> length of 6 metres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(\sqrt {{{3.87}^5} - {{8.73}^{ - 0.5}}} \), giving your answer</span></p>
<p><span>(i) correct to the nearest integer,</span></p>
<p><span>(ii) in the form \(a \times 10^k\), where 1 ≤ <em>a</em> < 10, \(k \in {\mathbb{Z}}\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Each month the number of days of rain in Cardiff is recorded.<br>The following data was collected over a period of 10 months.</p>
<p style="text-align: center;">11 13 8 11 8 7 8 14 <em>x </em> 15</p>
<p style="text-align: left;">For these data the <strong>median</strong> number of days of rain per month is 10.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The lengths of trout in a fisherman’s catch were recorded over one month, and are represented in the following histogram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_10.45.21.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following table.</p>
<p><img src="images/Schermafbeelding_2017-08-15_om_12.36.53.png" alt="M17/5/MATSD/SP1/ENG/TZ1/01"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <strong>length of trout </strong>is a continuous or discrete variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Any trout with length 40 cm or less is returned to the lake.</p>
<p>Calculate the percentage of the fisherman’s catch that is returned to the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The weights in kg, of 80 adult males, were collected and are summarized in the box and whisker plot shown below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median weight of the males.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the number of males who weigh between \(61\) kg and \(66\) kg.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the mean weight of the lightest \(40\) males.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The IB grades attained by a group of students are listed as follows.</p>
<p class="p1">\[{\text{6}}\;\;\;{\text{4}}\;\;\;{\text{5}}\;\;\;{\text{3}}\;\;\;{\text{7}}\;\;\;{\text{3}}\;\;\;{\text{5}}\;\;\;{\text{4}}\;\;\;{\text{2}}\;\;\;{\text{5}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the median grade.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the probability that a student chosen at random from the group scored at least a grade \(4\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The weights of 90 students in a school were recorded. The information is displayed in the following table.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid interval value for the interval \(50 \leqslant w \leqslant 60\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate for </span><span>the mean weight</span><span>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate for </span><span>the standard deviation.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the weight that is 3 standard deviations below the mean.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table below shows the frequency distribution of the number of dental fillings for a group of \(25\) children.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \(q\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span><br><span>(i) the mean number of fillings;</span><br><span>(ii) the median number of fillings;</span><br><span>(iii) the standard deviation of the number of fillings.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 20 students travelled to a gymnastics tournament together. Their ages, in years, are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_17.17.22.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01"></p>
</div>
<div class="specification">
<p>The lower quartile of the ages is 16 and the upper quartile is 18.5.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group find the mean age;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the students in this group write down the median age.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a box-and-whisker diagram, for these students’ ages, on the following grid.</p>
<p><img src="images/Schermafbeelding_2018-02-12_om_18.53.31.png" alt="N17/5/MATSD/SP1/ENG/TZ0/01.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A tetrahedral (four-sided) die has written on it the numbers 1, 2, 3 and 4. The die is rolled many times and the scores are noted. The table below shows the resulting frequency distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_05.55.47.png" alt="M17/5/MATSD/SP1/ENG/TZ2/07"></p>
<p>The die was rolled a total of 100 times.</p>
</div>
<div class="specification">
<p>The mean score is 2.71.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an equation, in terms of \(x\) and \(y\), for the total number of times the die was rolled.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the mean score, write down a second equation in terms of \(x\) and \(y\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(x\) and of \(y\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">56 students were given a test out of 40 marks. The teacher used the following box and whisker plot to represent the marks of the students.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down </span><span>the median mark</span><span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span><span> the 75<sup><span>th</span></sup> percentile mark</span><span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the range of marks.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the number of students who achieved a mark greater than 32.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A class of 13 Mathematics students received the following grades in their final IB examination.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">3 5 3 4 7 3 2 7 5 6 5 3 4</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>For these grades, find </span><span>the mode;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>For these grades, find the median;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>For these grades, find </span><span>the upper quartile;</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>For these grades, find </span><span>the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State which of the following sets of data are discrete.</span></p>
<p><span>(i) Speeds of cars travelling along a road.</span></p>
<p><span>(ii) Numbers of members in families.</span></p>
<p><span>(iii) Maximum daily temperatures.</span></p>
<p><span>(iv) Heights of people in a class measured to the nearest cm.</span></p>
<p><span>(v) Daily intake of protein by members of a sporting team.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The boxplot below shows the statistics for a set of data.</span></p>
<p><span><img src="" alt></span></p>
<p><span>For this data set write down the value of</span></p>
<p><span>(i) the median</span></p>
<p><span>(ii) the upper quartile</span></p>
<p><span>(iii) the minimum value present</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down three different integers whose mean is 10.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A survey was carried out on a road to determine the number of passengers in each car (excluding the driver). The table shows the results of the survey.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-02_om_16.26.22.png" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the data is discrete or continuous.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mode.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i) the mean number of passengers per car;</span></p>
<p><span>(ii) the median number of passengers per car;</span></p>
<p><span>(iii) the standard deviation.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Toronto’s annual snowfall, <em>x</em>, in cm, has been recorded for the past 176 years. The results are shown in the table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal class.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid interval value for the class 6 ≤ <em>x</em> < 10 .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate an estimate of the mean annual snowfall.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of years for which the annual snowfall was at least 18 cm.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The temperatures in °C, at midday in Geneva, were measured for eight days and the </span><span style="font-family: times new roman,times; font-size: medium;">results are recorded below.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">7, 4, 5, 4, 8, <em>T</em>, 14, 4</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The mean temperature was found to be 7 °C.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>T</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Write down the mode.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The number of passengers in the first ten carriages of a train is listed below.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">6 , 8 , 6 , 3 , 8 , 4 , 8 , 5 , <em>p</em> , <em>p</em></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The mean number of passengers per carriage is 5.6.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the value of <em>p</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the median number of passengers per carriage.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If the passengers in the eleventh carriage are also included, the mean number of passengers per carriage increases to 6.0.</span></p>
<p><span>Determine the number of passengers in the eleventh carriage of the train.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The grades obtained by a group of \(20\) IB students are listed below:</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the following table for the grades obtained by the students.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal grade obtained by the students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the median grade obtained by the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One student is chosen at random from the group. </span></p>
<p><span>Find the probability that this student obtained either grade \(4\) or grade \(5\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The following histogram shows the weights of a number of frozen chickens in a supermarket. The weights are grouped such that \(1 \leqslant {\text{weight}} < 2\), \(2 \leqslant {\text{weight}} < 3\) and so on.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total number of chickens.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Gabriel chooses a chicken at random. </span></p>
<p><span>Find the probability that this chicken weighs less than \(4{\text{ kg}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The cumulative frequency graph shows the heights, in cm, of <strong>80</strong> young trees.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median height of the trees.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the 75<sup>th</sup> percentile.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the number of trees that are more than 40 cm in height.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A sample of <span class="s1">120 </span>oranges was tested for Vitamin C content. The cumulative frequency curve below represents the Vitamin C content, in milligrams, of these oranges.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-06_om_09.11.24.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02"></p>
</div>
<div class="specification">
<p class="p1">The minimum level of Vitamin C content of an orange in the sample was <span class="s1">30.1 </span>milligrams. The maximum level of Vitamin C content of an orange in the sample was <span class="s1">35.0 </span>milligrams.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Giving your answer to one decimal place, write down the value of</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>the median level of Vitamin C content of the oranges in the sample;</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>the lower quartile;</p>
<p class="p2">(iii) <span class="Apple-converted-space"> </span>the upper quartile.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a box-and-whisker diagram on the grid below to represent the Vitamin C content, <span class="s1">in milligrams, for this sample.</span></p>
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2017-03-06_om_12.47.06.png" alt="N16/5/MATSD/SP1/ENG/TZ0/02.b"></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: 'times new roman', times;">The length, in cm, of six baseball bats was measured. The lengths are given below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: 'times new roman', times;">104.5, 105.1, 104.8, 105.2, 104.9, 104.9</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the <strong>exact value</strong> of the mean length.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write your answer to part (a) in the form <em>a</em> × 10<sup><em>k</em></sup> where 1 ≤ <em>a</em> < 10 and \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Marian calculates the mean length and finds it to be 105 cm.</span></p>
<p><span>Calculate the percentage error made by Marian.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table below shows the number of words in the extended essays of an IB class.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a histogram on the grid below for the data in this table.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The maximum word count is \(4000\) words.<br></span></p>
<p><span>Write down the probability that a student chosen at random is on or over the word count.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the frequency histogram for the distribution of the time, \(t\) , in minutes of telephone calls that Helen made last week.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the frequency table for this distribution.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the modal class.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid interval value of the \(10 < t \leqslant 15\) class.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find an estimate for the mean time.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In an international competition, participants can answer questions in <strong>only one</strong> of the three following languages: Portuguese, Mandarin or Hindi. 80 participants took part in the competition. The number of participants answering in Portuguese, Mandarin or Hindi is shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A boy is chosen at random.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of boys who answered questions in Portuguese.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the boy answered questions in Hindi.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two girls are selected at random.</p>
<p>Calculate the probability that one girl answered questions in Mandarin and the other answered questions in Hindi.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the following numbers in increasing order.</span></p>
<p><span>\(3.5\), \(1.6 \times 10^{−19}\), \(60730\), \(6.073 \times 10^{5}\), \(0.006073 \times 10^6\), \(\pi\), \(9.8 \times 10^{−18}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median of the numbers in part (a).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State which of the numbers in part (a) is irrational.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p><span>Complete the following table of values for the height and weight of seven students.</span></p>
<p><span><img src="" alt></span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The distribution of the weights, correct to the nearest kilogram, of the members of a football club is shown in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the grid below draw a histogram to show the above weight distribution.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid-interval value for the \(40 - 49\) interval.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an estimate of the mean weight of the members of the club.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an estimate of the standard deviation of their weights.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A random sample of 200 females measured the length of their hair in cm. The results are displayed in the cumulative frequency curve below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median length of hair in the sample.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range for the length of hair in the sample.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that the shortest length was \(6{\text{ cm}}\) and the longest \(47{\text{ cm}}\), draw and label a box and whisker plot for the data on the grid provided below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The cumulative frequency curve shows the percentage marks, given correct to the nearest integer, gained by 500 students in an examination.</span></p>
<p><br><img src="" alt></p>
<p><span style="font-size: medium; font-family: times new roman,times;"> </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The passing grades were determined as given below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">85 to 100 %, grade A</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">66 to 84 %, grade B</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">57 to 65 %, grade C</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">50 to 56 %, grade D</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Those scoring less than 50 % failed the examination.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who failed the examination.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who were awarded grade C or better.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The top 20 % of the students are eligible for further study.</span></p>
<p><span>Find the lowest mark required to be eligible for further study.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">There are \(120\) teachers in a school. Their ages are represented by the cumulative frequency graph below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median age.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range for the ages.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that the youngest teacher is \(21\) years old and the oldest is \(72\) years old, represent the information on a box and whisker plot using the scale below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows the cumulative frequency distribution of the heights in metres of \(600\) trees in a wood.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median height of the trees.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the interquartile range of the heights of the trees.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Given that the smallest tree in the wood is \(3{\text{ m}}\) high and the tallest tree is \(28{\text{ m}}\) high, draw the box and whisker plot on the grid below that shows the distribution of trees in the wood.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following set of data which is plotted on the scatter diagram below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the mean point \((\bar x{\text{, }}\bar y)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(r\), the Pearson’s product-moment correlation coefficient for this set of data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line for \(y\) on \(x\) on the set of axes above.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A group of students were asked how long they spend practising mathematics during the week. The results are shown in the following table.</p>
<p><img src="" alt></p>
<p>It is known that \(35 < a < 52\) .</p>
<p>Write down</p>
<p>i) the modal class;</p>
<p>ii) the mid-interval value of the modal class;</p>
<p>iii) the class in which the median lies.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this group of students, the estimated mean number of hours spent practising mathematics is \(2.69\).</p>
<p>Calculate the value of \(a\) .</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The cumulative frequency graph shows the amount of time in minutes, 200 students spend waiting for their train on a particular morning.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median waiting time.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range for the waiting time.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a box and whisker plot on the grid below to represent this information.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two groups of <span class="s1">40 </span>students were asked how many books they have read in the last two months. The results for <strong>the first group </strong>are shown in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_13.30.36.png" alt></p>
<p class="p1">The quartiles for these results are <span class="s1">3 </span>and <span class="s1">5</span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the value of the median for these results.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a box-and-whisker diagram for these results on the following grid.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_13.33.23.png" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The results for <strong>the second group </strong>of <span class="s1">40 </span>students are shown in the following box-and-whisker diagram.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_13.36.13.png" alt></p>
<p class="p1">Estimate the number of students <strong>in the second group </strong>who have read at least <span class="s1">6 </span>books.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">120 Mathematics students in a school sat an examination. Their scores (given as a percentage) were summarized on a cumulative frequency diagram. This diagram is given below.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Complete the grouped frequency table for the students.</span></p>
<p><img src="" alt></p>
<p> </p>
<p> </p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mid-interval value of the \(40 < x \leqslant 60\) interval.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate an estimate of the mean examination score of the students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a high school, 160 students completed a questionnaire which asked for the number of people they are following on a social media website. The results were recorded in the following box-and-whisker diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The following incomplete table shows the distribution of the responses from these 160 students.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for the 100 < <em>x</em> ≤ 150 group.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the table, calculate an estimate for the mean number of people being followed on the social media website by these 160 students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A cumulative frequency graph is given below which shows the height of students in a school.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the median height of the students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the 25<sup>th</sup> percentile.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the 75<sup>th</sup> percentile.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The height of the tallest student is 195 cm and the height of the shortest student is 136 cm.</span></p>
<p><span>Draw a box and whisker plot on the grid below to represent the heights of the students in the school.</span></p>
<p><br><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The histogram shows the time, <em>t</em>, in minutes, that it takes the customers of a restaurant to eat their lunch on one particular day. Each customer took less than 25 minutes.</p>
<p>The histogram is incomplete, and only shows data for 0 ≤ <em>t</em> < 20.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>The mean time it took <strong>all</strong> customers to eat their lunch was estimated to be 12 minutes.</p>
<p>It was found that <em>k</em> customers took between 20 and 25 minutes to eat their lunch.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the mid-interval value for 10 ≤ <em>t</em> < 15.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of customers in terms of<em> k</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>k</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, complete the histogram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The table shows the number of bicycles owned by 50 households.</span></p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of</span></p>
<p><span>(i) <em>t</em> ;</span></p>
<p><span>(ii) <em>w</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Indicate with a tick (</span><span><img src="" alt>) whether the following statements are True or False.</span></p>
<p><img src="" alt width="593" height="180"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a school 160 students sat a mathematics examination. Their scores, given as marks out of 90, are summarized on the cumulative frequency diagram.</p>
<p><img src="" alt></p>
<p>Write down the median score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lower quartile of these scores is 40.</p>
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lowest score was 6 marks and the highest score was 90 marks.</p>
<p>Draw a box-and-whisker diagram on the grid below to represent the students’ examination scores.</p>
<p><img src="" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>