File "markSceme-SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 1/markSceme-SL-paper2html
File size: 4.83 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>Give your answers to parts (a) to (e) to the nearest dollar.</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">On Hugh&rsquo;s 18th birthday his parents gave him options of how he might receive his monthly allowance for the next two years.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;&nbsp; &nbsp; Option A &nbsp; &nbsp; </strong></span><span style="font-family: 'times new roman', times; font-size: medium;">\(\$60\) each month for two years</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;&nbsp; &nbsp; Option B &nbsp; &nbsp; </strong>\(\$10\) in the first month, \(\$15\) in the second month, \(\$20\) in the third month, increasing by \(\$5\) each month for two years</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;&nbsp; &nbsp; Option C &nbsp; &nbsp; </strong>\(\$15\) in the first month and increasing by \(10\%\) each month for two years</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>&nbsp;&nbsp; &nbsp; Option D &nbsp; &nbsp; </strong>Investing \(\$1500\) at a bank at the beginning of the first year, with an interest rate of \(6\%\) per annum, <strong>compounded monthly</strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Hugh does not spend any of his allowance during the two year period.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Hugh chooses <strong>Option A</strong>, calculate the total value of his allowance at the end of the two year period.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Hugh chooses <strong>Option B</strong>, calculate</span></p>
<p><span>(i)     the amount of money he will receive in the 17th month;</span></p>
<p><span>(ii)     the total value of his allowance at the end of the two year period.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Hugh chooses <strong>Option C</strong>, calculate</span></p>
<p><span>(i)     the amount of money Hugh would receive in the 13th month;</span></p>
<p><span>(ii)     the total value of his allowance at the end of the two year period.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Hugh chooses <strong>Option D</strong>, calculate the total value of his allowance at the end of the two year period.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State which of the options, A, B, C or D, Hugh should choose to give him the greatest total value of his allowance at the end of the two year period.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Another bank guarantees Hugh an amount of \(\$1750\) after two years of investment </span></span><span>if he invests $1500 at this bank. The interest is <strong>compounded annually</strong>.</span></p>
<p><span>Calculate the interest rate per annum offered by the bank.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first time an answer is not given to the nearest dollar in parts (a) to (e), the final (A1) in that part is not awarded.</em></strong></span></p>
<p><span>\(60 \times 24\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct product.</span></p>
<p> </p>
<p><span>\( = 1440\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first time an answer is not given to the nearest dollar in parts (a) to (e), the final (A1) in that part is not awarded.</em></strong></span></p>
<p><span>(i)     \(10 + (17 - 1)(5)\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted arithmetic sequence formula, <strong><em>(A1) </em></strong>for correct substitution.</span></p>
<p> </p>
<p><span>\( = 90\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span>(ii)     \(\frac{{24}}{2}\left( {2(10) + (24 - 1)(5)} \right)\)     <strong><em>(M1)</em></strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\frac{{24}}{2}\left( {10 + 125} \right)\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in arithmetic series formula.</span></p>
<p> </p>
<p><span>\( = 1620\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from part (b)(i).</span></p>
<p> </p>
<p><span><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first time an answer is not given to the nearest dollar in parts (a) to (e), the final (A1) in that part is not awarded.</em></strong></span></p>
<p><span>(i)     \(15{(1.1)^{12}}\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted geometric sequence formula, <strong><em>(A1) </em></strong>for correct substitutions.</span></p>
<p> </p>
<p><span>\( = 47\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1)(A1)(A0) </em></strong>for \(47.08\).</span></p>
<p><span>     Award <strong><em>(G1) </em></strong>for \(47.08\) if workings are not shown.</span></p>
<p> </p>
<p><span>(ii)     \(\frac{{15({{1.1}^{24}} - 1)}}{{1.1 - 1}}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in geometric series formula.</span></p>
<p> </p>
<p><span>\( = 1327\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from part (c)(i).</span></p>
<p> </p>
<p><span><strong><em>[5 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span><strong><em>The first time an answer is not given to the nearest dollar in parts (a) to (e), the final (A1) in that part is not awarded.</em></strong></span></p>
<p><span>\(1500{\left( {1 + \frac{6}{{100(12)}}} \right)^{12(2)}}\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted compound interest formula, <strong><em>(A1) </em></strong>for correct substitutions.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(N = 2\)</span></p>
<p><span>\(I\%  = 6\)</span></p>
<p><span>\(PV = 1500\)</span></p>
<p><span>\(P/Y = 1\)</span></p>
<p><span>\(C/Y = 12\)     <strong><em>(A1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(C/Y = 12\) seen, <strong><em>(M1) </em></strong>for other correct entries.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(N = 24\)</span></p>
<p><span>\(I\%  = 6\)</span></p>
<p><span>\(PV = 1500\)</span></p>
<p><span>\(P/Y = 12\)</span></p>
<p><span>\(C/Y = 12\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(C/Y = 12\) seen, <strong><em>(M1) </em></strong>for other correct entries.</span></p>
<p> </p>
<p><span>\( = 1691\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first time an answer is not given to the nearest dollar in parts (a) to (e), the final (A1) in that part is not awarded.</em></strong></span></p>
<p><span>Option D     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their parts (a), (b), (c) and (d). Award <strong><em>(A1)</em>(ft) </strong>only if values for the four options are seen and only if their answer is consistent with their parts (a), (b), (c) and (d).</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1750 = 1500{\left( {1 + \frac{r}{{100}}} \right)^2}\)     <em><strong>(M1)(A1)</strong></em><br><br></span></p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted compound interest formula equated to \(1750\), <strong><em>(A1) </em></strong>for correct substitutions into formula.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(N = 2\)</span></p>
<p><span>\(PV = 1500\)</span></p>
<p><span>\(FV =  - 1750\)</span></p>
<p><span>\(P/Y = 1\)</span></p>
<p><span>\(C/Y = 1\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(FV = 1750\) seen, <strong><em>(M1) </em></strong>for other correct entries.</span></p>
<p> </p>
<p><span>\( = 8.01\% {\text{ (8.01234}} \ldots \% ,{\text{ }}0.0801{\text{)}}\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The line \({L_1}\) has equation \(2y - x - 7 = 0\) and is shown on the diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.59.34.png" alt="N16/5/MATSD/SP2/ENG/TZ0/03"></p>
<p class="p1" style="text-align: left;">The point <span class="s1">A </span>has coordinates \((1,{\text{ }}4)\).</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">C </span>has coordinates \((5,{\text{ }}12)\). <span class="s1">M </span>is the midpoint of <span class="s1">AC</span>.</p>
</div>

<div class="specification">
<p class="p1">The straight line, \({L_2}\), is perpendicular to <span class="s1">AC </span>and passes through <span class="s1">M</span>.</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">D </span>is the intersection of \({L_1}\) and \({L_2}\).</p>
</div>

<div class="specification">
<p class="p1">The length of <span class="s1">MD </span>is \(\frac{{\sqrt {45} }}{2}\).</p>
</div>

<div class="specification">
<p class="p1">The point <span class="s1">B </span>is such that <span class="s1">ABCD </span>is a rhombus.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Show that </span><span class="s2">A </span>lies on \({L_1}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of <span class="s1">M</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the length of <span class="s1">AC</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the equation of \({L_2}\) <span class="s1">is \(2y + x - 19 = 0\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of <span class="s1">D</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down the length of </span><span class="s2">MD </span>correct to five significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the area of <span class="s1">ABCD</span><span class="s2">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(2 \times 4 - 1 - 7 = 0\) (or equivalent) <span class="Apple-converted-space">    </span><strong><em>(R1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>For <strong><em>(R1) </em></strong>accept substitution of \(x = 1\) or \(y = 4\) into the equation followed by a confirmation that \(y = 4\) or \(x = 1\).</p>
<p class="p2"> </p>
<p class="p1">(since the point satisfies the equation of the line,) <span class="s1">A </span>lies on \({L_1}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Do not award <strong><em>(A1)(R0)</em></strong>.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{1 + 5}}{2}\) <strong>OR</strong> \(\frac{{4 + 12}}{2}\) seen <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for at least one correct substitution into the midpoint formula.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\((3,{\text{ }}8)\)    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Accept \(x = 3,{\text{ }}y = 8\).</p>
<p class="p1">Award <strong><em>(M1)(A0) </em></strong>for \(\left( {\frac{{1 + 5}}{2},{\text{ }}\frac{{4 + 12}}{2}} \right)\).</p>
<p class="p1">Award <strong><em>(G1) </em></strong>for each correct coordinate seen without working.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\sqrt {{{(5 - 1)}^2} + {{(12 - 4)}^2}} \)    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for a correct substitution into distance between two points formula.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 8.94{\text{ }}\left( {4\sqrt 5 ,{\text{ }}\sqrt {80} ,{\text{ }}8.94427 \ldots } \right)\)    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">gradient of \({\text{AC}} = \frac{{12 - 4}}{{5 - 1}}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution into gradient formula.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 2\)    </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1)(A1) </em></strong>for gradient of \({\text{AC}} = 2\) with or without working</p>
<p class="p2"> </p>
<p class="p1">gradient of the normal \( =  - \frac{1}{2}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for the negative reciprocal of their gradient of <span class="s1">AC</span>.</p>
<p class="p2"> </p>
<p class="p1">\(y - 8 =  - \frac{1}{2}(x - 3)\) <strong>OR</strong> \(8 =  - \frac{1}{2}(3) + c\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for substitution of their point and gradient into straight line formula. This <strong><em>(M1) </em></strong>can <strong>only </strong>be awarded where \( - \frac{1}{2}\) (gradient) is correctly determined as the gradient of the normal to <span class="s1">AC</span>.</p>
<p class="p2"> </p>
<p class="p1">\(2y - 16 =  - (x - 3)\) <strong>OR</strong> \( - 2y + 16 = x - 3\) <strong>OR</strong> \(2y =  - x + 19\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for correctly removing fractions, <strong>but only </strong>if their equation is equivalent to the given equation.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\(2y + x - 19 = 0\)    </span><strong><em>(AG)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>The conclusion \(2y + x - 19 = 0\) must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p class="p1">Where the candidate has <strong>shown </strong>the gradient of the normal to \({\text{AC}} =  - 0.5\), award <strong><em>(M1) </em></strong>for \(2(8) + 3 - 19 = 0\) and <strong><em>(A1) </em></strong>for (therefore) \(2y + x - 19 = 0\).</p>
<p class="p1">Simply substituting \((3,{\text{ }}8)\) into the equation of \({L_2}\) with no other prior working, earns no marks.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\((6,{\text{ }}6.5)\)    </span><strong><em>(A1)(A1)(G2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for <span class="s1">6</span>, <strong><em>(A1) </em></strong>for <span class="s1">6.5</span>. Award a maximum of <strong><em>(A1)(A0) </em></strong>if answers are not given as a coordinate pair. Accept \(x = 6,{\text{ }}y = 6.5\).</p>
<p class="p1">Award <strong><em>(M1)(A0) </em></strong>for an attempt to solve the two simultaneous equations \(2y - x - 7 = 0\) and \(2y + x - 19 = 0\) algebraically, leading to at least one incorrect or missing coordinate.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">3.3541 <span class="Apple-converted-space">    </span><span class="s1"><strong><em>(A1)</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>Answer <span>must</span> be to <span class="s2">5 </span>significant figures.</p>
<p class="p2"> </p>
<p class="p3"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">\(2 \times \frac{1}{2} \times \sqrt {80}  \times \frac{{\sqrt {45} }}{2}\) <span class="Apple-converted-space">    </span></span><strong><em>(M1)(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution into area of triangle formula.</p>
<p class="p1">If their triangle is a quarter of the rhombus then award <strong><em>(M1) </em></strong>for multiplying their triangle by <span class="s2">4</span>.</p>
<p class="p1">If their triangle is a half of the rhombus then award <strong><em>(M1) </em></strong>for multiplying their triangle by <span class="s2">2</span>.</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{1}{2} \times \sqrt {80}  \times \sqrt {45} \)    </span><strong><em>(M1)(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for doubling <span class="s2">MD </span>to get the diagonal <span class="s2">BD</span>, <strong><em>(M1) </em></strong>for correct substitution into the area of a rhombus formula.</p>
<p class="p1">Award <strong><em>(M1)(M1) </em></strong>for \(\sqrt {80}  \times \) their (f).</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 30\)    </span><strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Follow through from parts (c) and (f).</p>
<p class="p1">\(8.94 \times 3.3541 = 29.9856 \ldots \)</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The natural numbers: 1, 2, 3, 4, 5&hellip; form an arithmetic sequence.</span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A geometric progression \(G_1\) has 1 as its first term and 3 as its common ratio.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the values of<em> u</em><sub>1</sub> and <em>d</em> for this sequence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use an appropriate formula to show that the sum of the natural numbers from 1 to <em>n</em> is given by \(\frac{1}{2}n (n +1)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the sum of the natural numbers from 1 to 200.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The sum of the first <em>n</em> terms of <em>G</em><sub>1</sub> is 29 524. Find <em>n</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A second geometric progression <em>G</em><sub>2</sub> has the form \(1,\frac{1}{3},\frac{1}{9},\frac{1}{{27}}...\)</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the sum of the first 10 terms of <em>G</em><sub>2</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain why the sum of the first 1000 terms of <em>G</em><sub>2</sub> will give the same answer as the sum of the first 10 terms, when corrected to three significant figures.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your results from parts (a) to (c), or otherwise, calculate the sum of the first 10 terms of the sequence \(2,3\frac{1}{3},9\frac{1}{9},27\frac{1}{{27}}...\) </span></p>
<p><span>Give your answer <strong>correct to one decimal place</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(u_1 = d = 1\).     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Sum is \(\frac{1}{2}n(2{u_1} + d(n - 1))\) or \(\frac{1}{2}n({u_1} + {u_n})\)     <em><strong>(M1)</strong></em></span></p>
<p><em><span>Award <strong>(M1)</strong> for either sum formula seen, even without substitution.</span></em></p>
<p><span>So sum is \(\frac{1}{2}n(2 + (n - 1)) = \frac{1}{2}n(n + 1)\)     <em><strong>(A1)(AG)</strong></em></span></p>
<p><span><em>Award <strong>(A1)</strong> for substitution of</em> \({u_1} = 1 = d\) <em>or</em> \({u_1} = 1\) <em>and</em> \({u_n} = n\) </span><em><span>with simplification where appropriate.</span></em><span> \(\frac{1}{2}n(n + 1)\) <em>must be seen to award this <strong>(A1)</strong>.</em></span></p>
<p><strong><span><em>[2 marks]</em></span></strong></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{2}(200)(201) = 20 100\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><em><span><strong>(M1)</strong> is for correct formula with correct numerical input. Original sum formula with u, d and n can be used.</span></em></p>
<p><strong><em><span>[2 marks]</span></em></strong></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{1 - {3^n}}}{{1 - 3}} = 29524\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><em><span><strong>(M1)</strong> for correctly substituted formula on one side, <strong>(A1)</strong> for</span> <span>= 29524 on the other side.</span></em></p>
<p><span>n = 10.     <em><strong>(A1)(G2)</strong></em></span></p>
<p><em><span>Trial and error is a valid method. Award <strong>(M1)</strong> for at least</span></em> <span>\(\frac{{1 - {3^{10}}}}{{1 - 3}}\) </span><span><em>seen and then <strong>(A1)</strong> for = 29524,</em> <em><strong>(A1)</strong> for</em> \(n = 10\)<em>.</em></span> <span><em>For only unproductive trials with</em> \(n \ne 10\)<em>, award <strong>(M1)</strong> and</em></span><em> <span>then <strong>(A1)</strong> if the evaluation is correct.</span></em></p>
<p><strong><em><span>[3 marks]</span></em></strong></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Common ratio is \(\frac{1}{3}\), (0.333 (3sf) or 0.3)     <em><strong>(A1)</strong></em></span></p>
<p><em><span>Accept ‘divide by 3’.</span></em></p>
<p><strong><em><span>[1 mark]</span></em></strong></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{1 - {{\left( {\frac{1}{3}} \right)}^{10}}}}{{1 - \frac{1}{3}}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 1.50 (3sf)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></p>
<p><span><span><em>1.5 and</em> \(\frac{3}{2}\) <em>receive</em> <em><strong>(A0)(AP)</strong> if <strong>AP</strong> not yet used Incorrect formula seen in (a) or incorrect value in (b) can follow through to (c). Can award <strong>(M1)</strong> for</em></span> <span>\(1 + \left( {\frac{1}{3}} \right) + \left( {\frac{1}{9}} \right) + ......\)</span></span></p>
<p><em><strong><span><span>[2 marks]</span></span></strong></em></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Both \({\left( {\frac{1}{3}} \right)^{10}}\) and \({\left( {\frac{1}{3}} \right)^{1000}}\) (or those numbers divided by 2/3) are 0 when corrected to 3sf, so they make no difference to the final answer.     <em><strong>(R1)</strong></em></span></p>
<p><em><span>Accept any valid explanation but please note: statements which only convey the idea of convergence are not enough for <strong>(R1)</strong>. The reason must show recognition that the convergence is adequately fast (though this might be expressed in a much less technical manner).</span></em></p>
<p><strong><em><span>[1 mark]</span></em></strong></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>The sequence given is \(G_1 + G_2\)     <em><strong>(M1)</strong></em></span></p>
<p><span>The sum is 29 524 + 1.50     <em><strong>(A1)(</strong></em><strong>ft)</strong></span></p>
<p><span>= 29 525.5     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><em><span>The <strong>(M1)</strong> is implied if the sum of the two numbers is seen.</span> <span>Award <strong>(G1)</strong> for 29 500 with no working.</span> <span><strong>(M1)</strong> can be awarded for</span></em><br><span>\(2 + 3\frac{1}{3} + ...\)</span> <em><span>Award final <strong>(A1)</strong> only</span> <span>for answer given correct to 1dp.</span></em></p>
<p><strong><em><span>[3 marks]</span></em></strong></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Identification of <em>u</em><sub>1</sub> and <em>d</em> was fine. In (b) many candidates failed to recognise the need for a general proof and simply gave an example substitution. Part (c) was well done.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Identification of <em>u</em><sub>1</sub> and <em>d</em> was fine. In (b) many candidates failed to recognise the need for a general proof and simply gave an example substitution. Part (c) was well done.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Identification of <em>u</em><sub>1</sub> and <em>d</em> was fine. In (b) many candidates failed to recognise the need for a general proof and simply gave an example substitution. Part (c) was well done.</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Too many candidates here failed to swap to the GP formulae. Those who did know what was happening here often performed the calculations well and got decent marks. The explanations in (d) were often unsatisfactory but some allowance was made for the language difficulties encountered by candidates writing in a 2<sup>nd</sup> or higher language. The last part (e) of the question, intended as a high-grade discriminator performed that task very well.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Too many candidates here failed to swap to the GP formulae. Those who did know what was happening here often performed the calculations well and got decent marks. The explanations in (d) were often unsatisfactory but some allowance was made for the language difficulties encountered by candidates writing in a 2<sup>nd</sup> or higher language. The last part (e) of the question, intended as a high-grade discriminator performed that task very well.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Too many candidates here failed to swap to the GP formulae. Those who did know what was happening here often performed the calculations well and got decent marks. The explanations in (d) were often unsatisfactory but some allowance was made for the language difficulties encountered by candidates writing in a 2<sup>nd</sup> or higher language. The last part (e) of the question, intended as a high-grade discriminator performed that task very well.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Too many candidates here failed to swap to the GP formulae. Those who did know what was happening here often performed the calculations well and got decent marks. The explanations in (d) were often unsatisfactory but some allowance was made for the language difficulties encountered by candidates writing in a 2<sup>nd</sup> or higher language. The last part (e) of the question, intended as a high-grade discriminator performed that task very well.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Too many candidates here failed to swap to the GP formulae. Those who did know what was happening here often performed the calculations well and got decent marks. The explanations in (d) were often unsatisfactory but some allowance was made for the language difficulties encountered by candidates writing in a 2<sup>nd</sup> or higher language. The last part (e) of the question, intended as a high-grade discriminator performed that task very well.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Daniel wants to invest \(\$ 25\,000\) for a total of three years. There are two investment options.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Option One</strong>&nbsp; &nbsp; &nbsp;pays compound interest at a nominal annual rate of interest of 5 %, compounded <strong>annually</strong>.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Option Two</strong> &nbsp; &nbsp; pays compound interest at a nominal annual rate of interest of 4.8 %, compounded <strong>monthly</strong>.</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">An arithmetic sequence is defined as</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><em>u<sub>n</sub></em> = 135 + 7<em>n</em>,&nbsp;&nbsp;&nbsp;&nbsp; <em>n</em> = 1, 2, 3, &hellip;</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the value of his investment at the end of the third year for each investment option, <strong>correct to two decimal places</strong>.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine Daniel’s best investment option.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate <em>u</em><sub>1</sub>, the first term in the sequence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the common difference is 7.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>S<sub>n</sub></em> is the sum of the first <em>n</em> terms of the sequence.</span></p>
<p><span><span>Find an expression for <em>S<sub>n</sub></em>. Give your answer in the form <em>S<sub>n</sub></em></span><span> = <em>An</em><sup>2</sup> + <em>Bn</em>, where <em>A</em> and<em> B</em> are constants.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The first term, <em>v</em><sub>1</sub>, of a geometric sequence is 20 and its fourth term <em>v</em><sub>4</sub> is 67.5.</span></p>
<p><span>Show that the common ratio, <em>r</em>, of the geometric sequence is 1.5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><em>T<sub>n</sub></em> is the sum of the first <em>n</em> terms of the geometric sequence.</span></p>
<p><span>Calculate <em>T</em><sub>7</sub>, the sum of the first seven terms of the geometric sequence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span><em>T</em><sub><span><em>n</em></span></sub> is the sum of the first <em>n</em> terms of the geometric sequence.</span></span></p>
<p><span>Use your graphic display calculator to find the smallest value of <em>n</em> for which <em>T<sub>n</sub></em> &gt; <em>S<sub>n</sub></em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong>Option 1: </strong>    Amount    \( = 25\,000{\left( {1 + \frac{5}{{100}}} \right)^3}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>= \(28\,940.63\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in compound interest formula, <em><strong>(A1)</strong></em> for correct substitution. Give full credit for use of lists.</span></p>
<p><br><span><strong>Option 2:</strong>     Amount     \( = 25\,000{\left( {1 + \frac{{4.8}}{{12(100)}}} \right)^{3 \times 12}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>= \(28\,863.81\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award<em><strong> (M1)</strong></em> for correct substitution in the compound interest formula. Give full credit for use of lists.</span></p>
<p><span> </span></p>
<p><em><strong><span>[8 marks]</span></strong></em></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Option 1 is the best investment option.     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><br><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>u</em><sub>1</sub> = 135 + 7(1)    <em><strong> (M1)</strong></em></span></p>
<p><span>= 142    <em><strong> (A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>u</em><sub>2</sub> = 135 + 7(2) = 149   <em><strong>  (M1)</strong></em></span></p>
<p><span><em>d</em> = 149 – 142     <strong>OR</strong> <em>alternatives</em>    <strong><em> (M1)</em>(ft)</strong></span></p>
<p><span><em>d</em> = 7   <em><strong>  (AG)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({S_n} = \frac{{n[2(142) + 7(n - 1)]}}{2}\)    <em><strong> (M1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in correct formula.</span></p>
<p><span> </span></p>
<p><span>\( = \frac{{n[277 + 7n]}}{2}\)     <strong>OR</strong> <em>equivalent</em>    <em><strong> (A1)</strong></em></span></p>
<p><span>\( = \frac{{7{n^2}}}{2} + \frac{{277n}}{2}\)     (= 3.5<em>n</em><sup>2 </sup>+ 138.5<em>n</em>)     <em><strong>(A1)(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>20<em>r</em><sup>3 </sup>= 67.5     <em><strong>(M1)</strong></em></span></p>
<p><span><em>r</em><sup>3</sup> = 3.375     <strong>OR</strong> \(r = \sqrt[3]{{3.375}}\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em>r</em> = 1.5   <em><strong>  (AG)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({T_7} = \frac{{20({{1.5}^7} - 1)}}{{(1.5 - 1)}}\)     <strong><em>(M1)</em></strong></span></p>
<p><br><span><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct substitution in correct formula.</span></p>
<p><br><span>= 643<em> (accept 643.4375)  </em>   <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{20({{1.5}^n} - 1)}}{{(1.5 - 1)}} &gt; \frac{{7{n^2}}}{2} + \frac{{277n}}{2}\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for an attempt using lists or for relevant graph.</span></p>
<p><br><span><em>n</em> = 10     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2) </strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Follow through from their (c).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">B.f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common error was to make all the comparisons using interest alone; though much credit was given for doing this, candidates should be aware of what is being asked for in the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Many did not understand the notion of monthly compounding periods.</span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common error was to make all the comparisons using interest alone; though much credit was given for doing this, candidates should be aware of what is being asked for in the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Many did not understand the notion of monthly compounding periods.</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: 'times new roman', times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For many, this question came as a welcome relief following the previous two questions. For those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A common weakness was seen in the &ldquo;show that&rdquo; parts of the question where, despite a lenient approach to method, many were unable to communicate their thoughts on paper.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">For many, finding an expression for <em>S<sub>n</sub></em> in (c) was problematical.<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The final part was challenging to the great majority, with a large number not attempting it at all; only the highly competent reached the correct answer.</span></p>
<div class="question_part_label">B.f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Give all answers in this question correct to two decimal places.</span></strong></p>
<h1><span style="font-family: times new roman,times; font-size: medium;">Part A</span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">Estela lives in Brazil and wishes to exchange 4000 BRL (Brazil reals) for GBP (British pounds). The exchange rate is 1.00 BRL = 0.3071 GBP. The bank charges 3 % commission on the amount in BRL.</span></p>
</div>

<div class="specification">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Give all answers in this question correct to two decimal places.</span></strong></p>
<h1><span style="font-family: times new roman,times; font-size: medium;">Part B<br></span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">Daniel invests $1000 in an account that offers a nominal annual interest rate of 3.5 % <strong>compounded half yearly</strong>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find, <strong>in BRL</strong>, the amount of money Estela has after commission.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find, in GBP, the amount of money Estela receives.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>After her trip to the United Kingdom Estela has 400 GBP left. At the airport she changes this money back into BRL. The exchange rate is now 1.00 BRL = 0.3125 GBP.</span></p>
<p><span>Find, in BRL, the amount of money that Estela should receive.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estela actually receives 1216.80 BRL after commission.</span></p>
<p><span>Find, in BRL, the commission charged to Estela.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The commission rate is <em>t</em> % . Find the value of <em>t</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that after three years Daniel will have $1109.70 in his account, correct to two decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the interest Daniel receives after three years.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>4000 × 0.97 = 3880.00 (3880)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplication of correct numbers.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>3 % of 4000 = 120     <em><strong>(A1)</strong></em></span></p>
<p><span>4000 – 120 = 3880.00 (3880)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>3880 × 0.3071 = 1191.55     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplication of correct numbers. Follow through from their answer to part (a).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{400}}{{0.3125}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 1280.00 (1280)     <em><strong>(A1)(G2)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for division of correct numbers.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<p> </p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>63.20 <em><strong>(A1)</strong></em><strong>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> Follow through (their (c) –1216.80).</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(t = \frac{{63.20 \times 100}}{{1280}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em>t</em> = 4.94     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answers to parts (c) and (d).</span><br><br></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{A}} = 1000{\left( {1 + \frac{{3.5}}{{2 \times 100}}} \right)^6} = 1109.7023...\)     <em><strong>(M1)(A1)(A1)</strong></em></span></p>
<p><span>= 1109.70     <em><strong>(AG)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution into correct formula, <em><strong>(A1)</strong></em> for correct substitution, <em><strong>(A1)</strong></em> for unrounded answer. If 1109.70 not seen award at most <em><strong>(M1)(A1)(A0)</strong></em>.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\({\text{I}} = 1000{\left( {1 + \frac{{3.5}}{{2 \times 100}}} \right)^6} - 1000 = 109.7023\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>A = 1109.7023...     <em><strong>(A1)</strong></em></span></p>
<p><span>= 1109.70     <em><strong>(AG)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into correct formula, <em><strong>(A1)</strong></em> for correct substitution, <em><strong>(A1)</strong></em> for unrounded answer.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>109.70     <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> No follow through here.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">B.b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The first three parts were well done. Some students gave their answer to part (d) in (e) and</span> <span style="font-family: times new roman,times; font-size: medium;">their answer to (e) in (d). This means that when reading commission they directed their </span><span style="font-family: times new roman,times; font-size: medium;">answers to a percentage (commission rate).</span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The first three parts were well done. Some students gave their answer to part (d) in (e) and</span> <span style="font-family: times new roman,times; font-size: medium;">their answer to (e) in (d). This means that when reading commission they directed their </span><span style="font-family: times new roman,times; font-size: medium;">answers to a percentage (commission rate).</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The first three parts were well done. Some students gave their answer to part (d) in (e) and</span> <span style="font-family: times new roman,times; font-size: medium;">their answer to (e) in (d). This means that when reading commission they directed their </span><span style="font-family: times new roman,times; font-size: medium;">answers to a percentage (commission rate).</span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The first three parts were well done. Some students gave their answer to part (d) in (e) and</span> <span style="font-family: times new roman,times; font-size: medium;">their answer to (e) in (d). This means that when reading commission they directed their </span><span style="font-family: times new roman,times; font-size: medium;">answers to a percentage (commission rate).</span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The first three parts were well done. Some students gave their answer to part (d) in (e) and</span> <span style="font-family: times new roman,times; font-size: medium;">their answer to (e) in (d). This means that when reading commission they directed their </span><span style="font-family: times new roman,times; font-size: medium;">answers to a percentage (commission rate).</span></p>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students used the correct formula but not all made the correct substitution. From those that made the correct substitution, very few showed the unrounded answer. Part (b) was well done. In part (c) the majority did not put the interest (only) in the formula but the total amount $1109.70.</span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students were penalized in this question for not given their money answers</span> <span style="font-family: times new roman,times; font-size: medium;">correct to the specified accuracy (2 decimal places).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Most of the students used the correct formula but not all made the correct substitution. From those that made the correct substitution, very few showed the unrounded answer. Part (b) was well done. In part (c) the majority did not put the interest (only) in the formula but the total amount $1109.70.</span></p>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In the diagram below A, B and C represent three villages and the line segments AB, BC and CA represent the roads joining them. The lengths of AC and CB are 10 km and 8 km respectively and the size of the angle between them is 150&deg;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of the road AB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of the angle CAB.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Village D is halfway between A and B. A new road perpendicular to AB and passing through D is built. Let T be the point where this road cuts AC. This information is shown in the diagram below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Write down the distance from A to D.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the distance from D to T is 2.06 km correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A bus starts and ends its journey at A taking the route AD to DT to TA.</span></p>
<p><span>Find the total distance for this journey.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The average speed of the bus while it is moving on the road is 70 km h<sup>–1</sup>. The bus stops for <strong>5 minutes</strong> at each of D and T .</span></p>
<p><span>Estimate the time taken by the bus to complete its journey. Give your answer correct to the nearest minute.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>AB<sup>2</sup> = 10<sup>2</sup> + 8<sup>2</sup> – 2 × 10 </span><span><span>×</span> 8 </span><span><span>×</span> cos150°     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>AB = 17.4 km     <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into correct formula, <em><strong>(A1)</strong></em> for correct substitution, <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{8}{{\sin {\text{C}}\hat {\rm A}{\text{B}}}} = \frac{{17.4}}{{\sin 150^\circ }}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\({\text{C}}\hat {\rm A}{\text{B}} = 13.3^\circ \)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <strong><em>(M1)</em></strong> for substitution into correct formula, <em><strong>(A1)</strong></em> for correct substitution, <em><strong>(A1)</strong></em> for correct answer. Follow through from their answer to part (a).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>AD = 8.70 km (8.7 km)     <em><strong>(A1)</strong></em><strong>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (a).</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>DT = tan (13.29...°) × 8.697... = 2.0550...     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>= 2.06     <em><strong>(AG)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the correct formula,</span> <span>award <em><strong>(A1)</strong></em> for the unrounded answer seen. </span><span>If 2.06 not seen award at most <em><strong>(M1)(AO)</strong>.</em></span></p>
<p><span><em><strong>[2 marks]</strong><br></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\sqrt {{{8.70}^2} + {{2.06}^2}}  + 8.70 + 2.06\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>= 19.7 km     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <strong><em>(A1)</em></strong> for AT, <em><strong>(M1)</strong></em> for adding the three sides of </span><span>the triangle ADT, <em><strong>(A1)</strong></em><strong>(ft)</strong> for answer.</span> <span>Follow through from their answer to part (c).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{19.7}}{{70}} \times 60 + 10\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span>= 26.9     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for time on road in minutes, <em><strong>(M1)</strong></em> for adding 10, <em><strong>(A1)</strong></em><strong>(ft)</strong> for unrounded answer. Follow through from their answer to (e).</span></p>
<p><br><span>= 27  (nearest minute)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their unrounded answer given to the nearest minute.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The weak students answered parts (a) and (b) using right-angled trigonometry. Different types of mistakes were seen in (a) when applying the cosine rule: some forgot to square root their answer and others calculated each part separately and then missed the 2 minuses. Part (b) was better done than (a). Follow through was applied from (a) to (c). Part (d) was not well done. Most of the students lost one mark in this part question as they did not show the unrounded answer (2.0550...). Part (e) was fairly well done by those who attempted it. In (f) there were very few correct answers. Students found it difficult to find the time when the average speed and distance were given.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Mal is shopping for a school trip. He buys \(50\) tins of beans and \(20\) packets of cereal. The total cost is \(260\) Australian dollars (\({\text{AUD}}\)).</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The triangular faces of a square based pyramid, \({\text{ABCDE}}\), are all inclined at \({70^ \circ }\) to the base. The edges of the base \({\text{ABCD}}\) are all \(10{\text{ cm}}\) and \({\text{M}}\) is the centre. \({\text{G}}\) is the mid-point of \({\text{CD}}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation showing this information, taking \(b\) to be the cost of one tin of beans and \(c\) to be the cost of one packet of cereal in \({\text{AUD}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Stephen thinks that Mal has not bought enough so he buys \(12\) more tins of beans and \(6\) more packets of cereal. He pays \(66{\text{ AUD}}\).</span></p>
<p><span>Write down another equation to represent this information.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Stephen thinks that Mal has not bought enough so he buys \(12\) more tins of beans and \(6\) more packets of cereal. He pays \(66{\text{ AUD}}\).</span></span></p>
<p><span>Find the cost of one tin of beans.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Sketch the graphs of the two equations from parts (a) and (b).</span></p>
<p><span>(ii)    Write down the coordinates of the point of intersection of the two graphs.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using the letters on the diagram draw a triangle showing the position of a \({70^ \circ }\) angle.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the height of the pyramid is \(13.7{\text{ cm}}\), to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span></p>
<p><span>(i)     the length of \({\text{EG}}\);</span></p>
<p><span>(ii)    the size of angle \({\text{DEC}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(50b + 20c = 260\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(12b + 6c = 66\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Solve to get \(b = 4\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong>Note: <em>(M1)</em></strong> for attempting to solve the equations simultaneously.</span></p>
<p><span><strong><em>[2 marks]</em></strong><br></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)</span></p>
<p><span><img src="" alt>     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><em><strong><br></strong></em><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for labels and some idea of scale, <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong> for each line.</span></span><span><strong><br></strong>The axis can be reversed.</span></p>
<p><span><br>(ii)    \((4,3)\) or \((3,4)\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong><br>Note: </strong>Accept \(b = 4\), \(c = 3\)<br></span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span><span><span>    </span><span> <em><strong>(A1)</strong></em></span></span></p>
<p><span><span><em><strong>[1 mark]<br></strong></em></span></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\tan 70 = \frac{h}{5}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(h = 5\tan 70 = 13.74\)     <em><strong>(A1)</strong></em></span></p>
<p><span>\(h = 13.7{\text{ cm}}\)     <em><strong>(AG)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in this part of the question where indicated in the left hand column.</em></span></p>
<p><span>(i)     \({\text{E}}{{\text{G}}^2} = {5^2} + {13.7^2}\) OR \({5^2} + {(5\tan 70)^2}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(UP)</strong></em>     \({\text{EG}} = 14.6{\text{ cm}}\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span>(ii)    \({\text{DEC}} = 2 \times {\tan ^{ - 1}}\left( {\frac{5}{{14.6}}} \right)\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = {37.8^ \circ }\)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[4 marks]<br></em></strong></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in this part of the question where indicated in the left hand column.</em></span></p>
<p><span>\({\text{Area}} = 10 \times 10 + 4 \times 0.5 \times 10 \times 14.619\)     <em><strong>(M1)</strong></em><br></span></p>
<p><span><em><strong>(UP)</strong></em>     \( = 392{\text{ c}}{{\text{m}}^2}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em><br></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in this part of the question where indicated in the left hand column.</em></span></p>
<p><span>\({\text{Volume}} = \frac{1}{3} \times 10 \times 10 \times 13.7\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(UP)</strong></em>     \( = 457{\text{ c}}{{\text{m}}^3}\) (\(458{\text{ c}}{{\text{m}}^3}\))     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates managed to write down the equation.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates managed to write down the equation.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many managed to find the correct answer and the others tried their best but made some mistake in the process.</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Few candidates sketched the graphs well. Few used a ruler.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp; Many candidates could not be awarded ft from their graph because the answer they gave was not possible.</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Very few correct drawings.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Some managed to show this more by good fortune and ignoring their original triangle than by good reasoning.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Many found this as ft from the previous part. Some lost a UP here.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp; This was not well done. The most common answer was \({40^ \circ }\).</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many managed this or were awarded ft points.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was well done and most candidates also remembered their units on this part.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p>Rosa joins a club to prepare to run a marathon. During the first training session Rosa runs a distance of 3000 metres. Each training session she increases the distance she runs by 400 metres.</p>
</div>

<div class="specification">
<p>A marathon is 42.195 kilometres.</p>
<p>In the \(k\)th training session Rosa will run further than a marathon for the first time.</p>
</div>

<div class="specification">
<p>Carlos joins the club to lose weight. He runs 7500 metres during the first month. The distance he runs increases by 20% each <strong>month</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the distance Rosa runs in the third training session;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the distance Rosa runs in the \(n\)th training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total distance, in <strong>kilometres</strong>, Rosa runs in the first 50 training sessions.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the distance Carlos runs in the fifth month of training.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total distance Carlos runs in the first year.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>3800 m     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3000 + (n - 1)400{\text{ m}}\)\(\,\,\,\)<strong>OR</strong>\(\,\,\,\)\(2600 + 400n{\text{ m}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into arithmetic sequence formula, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(3000 + (k - 1)400 &gt; 42195\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(M1) </em></strong>for their correct inequality. Accept \(3 + (k - 1)0.4 &gt; 42.195\).</p>
<p>Accept \( = \) <strong>OR </strong>\( \geqslant \). Award <strong><em>(M0) </em></strong>for \(3000 + (k - 1)400 &gt; 42.195\).</p>
<p> </p>
<p>\((k = ){\text{ }}99\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Follow through from part (a)(ii), but only if \(k\) is a positive integer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{50}}{2}\left( {2 \times 3000 + (50 - 1)(400)} \right)\)     <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into sum of an arithmetic series formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution.</p>
<p> </p>
<p>\(640\,000{\text{ m}}\)     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1) </em></strong>for their \(640\,000\) seen.</p>
<p> </p>
<p>\( = 640{\text{ km}}\)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(A1)</em>(ft) </strong>for correctly converting their answer in metres to km; this can be awarded independently from previous marks.</p>
<p> </p>
<p><strong><em>OR</em></strong></p>
<p>\(\frac{{50}}{2}\left( {2 \times 3 + (50 - 1)(0.4)} \right)\)     <strong><em>(M1)(A1)</em>(ft)<em>(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into sum of an arithmetic series formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution, <strong><em>(A1) </em></strong>for correctly converting 3000 m and 400 m into km.</p>
<p> </p>
<p>\( = 640{\text{ km}}\)     <strong><em>(A1)(G3)</em></strong></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(7500 \times {1.2^{5 - 1}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into geometric series formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p>\( = 15\,600{\text{ m }}(15\,552{\text{ m}})\)     <strong><em>(A1)(G3)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>\(7.5 \times {1.2^{5 - 1}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into geometric series formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p>\( = 15.6{\text{ km}}\)     <strong><em>(A1)(G3)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{7500({{1.2}^{12}} - 1)}}{{1.2 - 1}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(M1) </em></strong>for substitution into sum of a geometric series formula, <strong><em>(A1) </em></strong>for correct substitutions. Follow through from their ratio (\(r\)) in part (d). If \(r &lt; 1\) (distance does not increase) or the final answer is unrealistic (<em>eg </em>\(r = 20\)), do not award the final <em><strong>(A1)</strong></em>.</p>
<p> </p>
<p>\( = 297\,000{\text{ m }}(296\,853 \ldots {\text{ m}},{\text{ }}297{\text{ km}})\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Violeta plans to grow flowers in a rectangular plot. She places a fence to mark out the perimeter of the plot and uses 200 metres of fence. The length of the plot is \(x\) metres.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.40.47.png" alt="M17/5/MATSD/SP2/ENG/TZ2/05"></p>
</div>

<div class="specification">
<p>Violeta places the fence so that the area of the plot is maximized.</p>
</div>

<div class="specification">
<p>By selling her flowers, Violeta earns 2 Bulgarian Levs (BGN) per square metre of the plot.</p>
</div>

<div class="specification">
<p>Violeta wants to invest her 5000 BGN.</p>
<p>A bank offers a nominal annual interest rate of 4%, compounded <strong>half-yearly</strong>.</p>
</div>

<div class="specification">
<p>Another bank offers an interest rate of \(r\)% compounded <strong>annually</strong>, that would allow her to double her money in 12 years.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the width of the plot, in metres, is given by \(100 - x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the area of the plot in terms of \(x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(x\) that maximizes the area of the plot.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Violeta earns 5000 BGN from selling the flowers grown on the plot.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the amount of money that Violeta would have after 6 years. Give your answer correct to two decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find how long it would take for the interest earned to be 2000 BGN.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the lowest possible value for \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{200 - 2x}}{2}\) (or equivalent)     <strong><em>(M1)</em></strong></p>
<p><strong>OR</strong></p>
<p>\(2x + 2y = 200\) (or equivalent)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for a correct expression leading to \(100 - x\) (the \(100 - x\) does not need to be seen). The 200 must be seen for the <strong><em>(M1) </em></strong>to be awarded. Do not accept \(100 - x\) substituted in the perimeter of the rectangle formula.</p>
<p> </p>
<p>\(100 - x\)     <strong><em>(AG)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(({\text{area}} = ){\text{ }}x(100 - x)\)\(\,\,\,\)<strong>OR</strong>\(\,\,\,\)\( - {x^2} + 100x\) (or equivalent)     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(x = \frac{{ - 100}}{{ - 2}}\)\(\,\,\,\)<strong>OR</strong>\(\,\,\,\)\( - 2x + 100 = 0\)\(\,\,\,\)<strong>OR</strong>\(\,\,\,\)graphical method     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for use of axis of symmetry formula or first derivative equated to zero or a sketch graph.</p>
<p> </p>
<p>\(x = 50\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b), provided <em>x </em>is positive and less than 100.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(50(100 - 50) \times 2\)     <strong><em>(M1)(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting their \(x\) into their formula for area (accept “\(50 \times 50\)” for the substituted formula), and <strong><em>(M1) </em></strong>for multiplying by 2. Award at most <strong><em>(M0)(M1) </em></strong>if their calculation does not lead to 5000 (BGN), although the 5000 (BGN) does not need to be seen explicitly.</p>
<p>Substitution of 50 into area formula may be seen in part (c).</p>
<p> </p>
<p>5000 (BGN)     <strong><em>(AG)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5000{\left( {1 + \frac{4}{{2 \times 100}}} \right)^{2 \times 6}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substitution into compound interest formula, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p><strong>OR</strong></p>
<p>\({\text{N}} = 6\)</p>
<p>\({\text{I}}\%  = 4\)</p>
<p>\({\text{PV}} =  - 5000\)</p>
<p>\({\text{P/Y}} = 1\)</p>
<p>\({\text{C/Y}} = 2\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for \({\text{C/Y}} = 2\)  seen, <strong><em>(M1) </em></strong>for other correct entries.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\({\text{N}} = 12\)</p>
<p>\({\text{I}}\%  = 4\)</p>
<p>\({\text{PV}} =  - 5000\)</p>
<p>\({\text{P/Y}} = 2\)</p>
<p>\({\text{C/Y}} = 2\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for \({\text{C/Y}} = 2\) seen, <strong><em>(M1) </em></strong>for other correct entries.</p>
<p> </p>
<p>6341.21 (BGN)     <strong><em>(A1)(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct answer, to two decimal places only.</p>
<p>Award <strong><em>(G2) </em></strong>for 6341.20 or a correct, unrounded final answer if no working is seen (6341.2089…).</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5000{\left( {1 + \frac{4}{{2 \times 100}}} \right)^{2 \times t}} = 7000\)     <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for using the compound interest formula with a variable for time, <strong><em>(A1)</em>(ft) </strong>for substituting the correct values and equating to 7000. Follow through for their “2” from part (e)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\({\text{I% }} = 4\)</p>
<p>\({\text{PV}} = ( \pm )5000\)</p>
<p>\({\text{FV}} =  \mp 7000\)</p>
<p>\({\text{P/Y}} = 1\)</p>
<p>\({\text{C/Y}} = 2\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for 7000 seen, <strong><em>(M1) </em></strong>for the other correct entries.</p>
<p>Award <strong><em>(M1) </em></strong>for their C/Y from part (e)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\({\text{I% }} = 4\)</p>
<p>\({\text{PV}} = ( \pm )5000\)</p>
<p>\({\text{FV}} =  \mp 7000\)</p>
<p>\({\text{P/Y}} = 2\)</p>
<p>\({\text{C/Y}} = 2\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for 7000 seen, <strong><em>(M1) </em></strong>for the other correct entries.</p>
<p>Award <strong><em>(M1) </em></strong>for their C/Y from part (e)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p><img src="images/Schermafbeelding_2017-08-17_om_09.56.01.png" alt="M17/5/MATSD/SP2/ENG/TZ2/05.e.ii/M">     <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for a sketch with a straight line intercepted by appropriate curve, <strong><em>(A1)</em>(ft) </strong>for numerical answer in the range of 8.4 and 8.5.</p>
<p>Follow through from their part (e)(i).</p>
<p>\(t = 8.50{\text{ (years) }}(8.49564 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award only <strong><em>(A1) </em></strong>if 16.9912… is seen without working. If working is seen, award at most <strong><em>(M1)(A1)(A0)</em></strong>.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5000{\left( {1 + \frac{r}{{100}}} \right)^{12}} = 10000\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into compound interest formula with 10 000 seen. </p>
<p><strong>OR</strong></p>
<p>\(2 = {\left( {1 + \frac{r}{{100}}} \right)^{12}}\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution and simplification of compound interest formula, equating to 2.</p>
<p> </p>
<p>\(r = 5.95{\text{ (% ) }}(5.94630 \ldots )\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In a game, <em>n</em> small pumpkins are placed 1 metre apart in a straight line. Players start 3 metres before the <span class="s1">first </span>pumpkin.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_15.01.57.png" alt></p>
<p class="p1">Each player <strong>collects</strong> a single pumpkin by picking it up and bringing it back to the start. The nearest pumpkin is collected <span class="s1">first. </span>The player then collects the next nearest pumpkin and the game continues in this way until the signal is given for the end.</p>
<p class="p1">Sirma runs to get each pumpkin and brings it back to the start.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the distance, \({a_1}\), in metres that she has to run in order to <strong>collect</strong> the <span class="s1">first </span>pumpkin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The distances she runs to <strong>collect</strong> each pumpkin form a sequence \({a_1},{\text{ }}{a_2},{\text{ }}{a_3}, \ldots \) .</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find \({a_2}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find \({a_3}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the common difference, \(d\), of the sequence.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The <span class="s1">final </span>pumpkin Sirma <strong>collected</strong> was 24 metres from the start.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the total number of pumpkins that Sirma <strong>collected</strong>.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the total distance that Sirma ran to <strong>collect</strong> these pumpkins.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Peter also plays the game. When the signal is given for the end of the game he has run 940 metres.</p>
<p class="p1">Calculate the total number of pumpkins that Peter <strong>collected</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Peter also plays the game. When the signal is given for the end of the game he has run 940 metres.</p>
<p class="p1">Calculate Peter’s distance from the start when the signal is given.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(6{\text{ (m)}}\)    </span><strong><em>(A1)(G1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \(8\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">    \(10\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Note: </strong>Follow through from part (a).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(2{\text{ (m)}}\)    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Note: </strong>Follow through from parts (a) and (b).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(2 \times 24 = 6 + 2(n - 1)\;\;\;\)<strong>OR</strong>\(\;\;\;24 = 3 + (n - 1)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in arithmetic sequence formula.</p>
<p class="p1"> </p>
<p class="p1">\(n = 22\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from parts (a) and (c).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(\frac{{(6 + 48)}}{2} \times 22\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution in arithmetic series formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution.</p>
<p class="p2"> </p>
<p class="p1">\( = 594\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from parts (a) and (d)(i).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\left[ {2 \times 6 + 2(n - 1)} \right] \times n}}{2} = 940\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution in arithmetic series formula, <strong><em>(A1) </em></strong>for their correct substituted formula equated to \(940\). Follow through from parts (a) and (c).</p>
<p class="p1"> </p>
<p class="p1">\({n^2} + 5n - 940 = 0\)</p>
<p class="p1">\(n = 28.2611 \ldots \)</p>
<p class="p1">\(n = 28\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\left[ {2 \times 6 + 2(28 - 1)} \right] \times 28}}{2}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituting their \(28\) into the arithmetic series formula.</p>
<p class="p2"> </p>
<p class="p1">\( = 16{\text{ (m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part A</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The Green Park Amphitheatre was built in the form of a horseshoe and has 20 rows. The number of seats in each row increase by a fixed amount, <em>d</em>, compared to the number of seats in the previous row. The number of seats in the sixth row, <em>u</em><sub>6</sub>, is 100, and the number of seats in the tenth row, <em>u</em><sub>10</sub>, is 124. <em>u</em><sub>1</sub> represents the number of seats in the first row.</span></p>
</div>

<div class="specification">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part B</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Frank is at the amphitheatre and receives a text message at 12:00. Five minutes later he forwards the text message to three people. Five minutes later, those three people forward the text message to three new people. <strong>Assume this pattern continues and each time the text message is sent to people who have not received it before.</strong> </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The number of new people who receive the text message forms a geometric sequence</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;">1 , 3 , &hellip;</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write an equation for <em>u</em><sub>6</sub> in terms of <em>d</em> and <em>u</em><sub>1</sub>.<br></span></p>
<p><span>(ii) Write an equation for <em>u</em><sub>10</sub> in terms of <em>d</em> and <em>u</em><sub>1</sub>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of</span></p>
<p><span>(i) <em>d</em> ;</span></p>
<p><span>(ii) <em>u</em><sub>1</sub> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the <strong>total</strong> number of seats in the amphitheatre.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A few years later, a <strong>second</strong> level was added to increase the amphitheatre’s capacity by</span> <span>another 1600 seats. Each row has four more seats than the previous row. The first row </span><span>on this level has 70 seats.</span></p>
<p><span>Find the number of rows on the second level of the amphitheatre.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the next two terms of this geometric sequence.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the common ratio of this geometric sequence.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the number of people who will receive the text message at 12:30.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the <strong>total</strong> number of people who will have received the text message by 12:30.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the exact time at which a total of 29 524 people will have received the text message.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) <em>u</em><sub>1</sub> + 5<em>d</em> = 100     <em><strong>(A1)</strong></em></span></p>
<p> </p>
<p><span>(ii) <em>u</em><sub>1</sub> + 9<em>d</em> = 124     <em><strong>(A1)</strong></em> </span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 6     <em><strong>(G1)</strong></em><strong>(ft)</strong></span></p>
<p> </p>
<p><span>(ii) 70     <em><strong>(G1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Follow through from their equations in parts (a) and (b) even if working not seen. Their answers must be integers. Award <em><strong>(M1)(A0)</strong></em> for an attempt to solve two equations analytically.</span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(S_{20} = \frac{20}{2}(2 \times 70 + (20 - 1) \times 6)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted sum of AP formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct substituted values.</span></p>
<p><br><span>= 2540     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their part (b).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{n}{2}(2 \times 70 + (n - 1) \times 4) = 1600\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted sum of AP formula, <em><strong>(A1)</strong></em> for their correct substituted values.</span></p>
<p><br><span>4<em>n</em><sup>2</sup> +136<em>n</em> – 3200 = 0     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for this equation (or other equivalent expanded quadratic) seen, may be implied if correct final answer seen.</span></p>
<p><br><span><em>n</em> = 16     <em><strong>(A1)(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Do not award the final <em><strong>(A1)</strong></em> for <em>n</em> = 16, – 50 given as final answer, award <em><strong>(G2)</strong></em> if <em>n</em> = 16, – 50 given as final answer without working.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>9, 27     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>3     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>1 × 3<sup>6</sup>     <em><strong>(M1)</strong></em></span></p>
<p><span>= 729     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted GP formula. Follow through from their answer to part (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{1(3^7 - 1)}}{(3 - 1)}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted GP formula. Accept sum 1+ 3 + 9 + 27 + ... + 729. If lists are used, award <em><strong>(M1)</strong></em> for correct list that includes 1093. (1, 4, 13, 40, 121, 364, 1093, 3280…)</span></p>
<p><br><span>= 1093     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (b). For consistent use of <em>n</em> = 6 from part (c) (243) to part (d) leading</span><br><span>to an answer of 364, treat as double penalty and award <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong> if working is shown.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{1(3^n - 1)}}{(3 - 1)} = 29524\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted GP formula. If lists are used, award <em><strong>(M1)</strong></em> for correct list that includes 29524. (1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573...). Accept alternative methods, for example continuation of sum in part (d).</span></p>
<p><br><span><em>n</em> = 10     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (b).</span></p>
<p><br><span>Exact time = 12:45     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">B.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part A: Arithmetic</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The contextual nature of this question posed problems for many, though there were many fine attempts. Failure to discriminate between the sequence and series formulas was the cause of the most errors. The final part saw many able to substitute into the formula for the series, but then unable to continue. The use of the GDC in such situations is encouraged; either by graphing each side of the equation and drawing the resultant sketch or by the solver function.</span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part A: Arithmetic</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The contextual nature of this question posed problems for many, though there were many fine attempts. Failure to discriminate between the sequence and series formulas was the cause of the most errors. The final part saw many able to substitute into the formula for the series, but then unable to continue. The use of the GDC in such situations is encouraged; either by graphing each side of the equation and drawing the resultant sketch or by the solver function.</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part A: Arithmetic</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The contextual nature of this question posed problems for many, though there were many fine attempts. Failure to discriminate between the sequence and series formulas was the cause of the most errors. The final part saw many able to substitute into the formula for the series, but then unable to continue. The use of the GDC in such situations is encouraged; either by graphing each side of the equation and drawing the resultant sketch or by the solver function.</span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Part A: Arithmetic</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The contextual nature of this question posed problems for many, though there were many fine attempts. Failure to discriminate between the sequence and series formulas was the cause of the most errors. The final part saw many able to substitute into the formula for the series, but then unable to continue. The use of the GDC in such situations is encouraged; either by graphing each side of the equation and drawing the resultant sketch or by the solver function.</span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Part B: Geometric</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The early straightforward parts were accessible to the majority. The context caused the problems with many choosing the incorrect value of <em>n</em> when using the formulas. Weaker candidates were more successful via counting. The context again proved challenging in the final part, with the incorrect time being determined from the correct value of <em>n</em>. Here, as in Part A, the use of the GDC by graphing each side of the equation is encouraged; however, if teachers feel that such questions require the use (and teaching) of logarithms, such an approach is, of course, given full credit.</span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Part B: Geometric</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The early straightforward parts were accessible to the majority. The context caused the problems with many choosing the incorrect value of <em>n</em> when using the formulas. Weaker candidates were more successful via counting. The context again proved challenging in the final part, with the incorrect time being determined from the correct value of <em>n</em>. Here, as in Part A, the use of the GDC by graphing each side of the equation is encouraged; however, if teachers feel that such questions require the use (and teaching) of logarithms, such an approach is, of course, given full credit.</span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Part B: Geometric</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The early straightforward parts were accessible to the majority. The context caused the problems with many choosing the incorrect value of <em>n</em> when using the formulas. Weaker candidates were more successful via counting. The context again proved challenging in the final part, with the incorrect time being determined from the correct value of <em>n</em>. Here, as in Part A, the use of the GDC by graphing each side of the equation is encouraged; however, if teachers feel that such questions require the use (and teaching) of logarithms, such an approach is, of course, given full credit.</span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Part B: Geometric</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The early straightforward parts were accessible to the majority. The context caused the problems with many choosing the incorrect value of <em>n</em> when using the formulas. Weaker candidates were more successful via counting. The context again proved challenging in the final part, with the incorrect time being determined from the correct value of <em>n</em>. Here, as in Part A, the use of the GDC by graphing each side of the equation is encouraged; however, if teachers feel that such questions require the use (and teaching) of logarithms, such an approach is, of course, given full credit.</span></p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">Part B: Geometric</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The early straightforward parts were accessible to the majority. The context caused the problems with many choosing the incorrect value of <em>n</em> when using the formulas. Weaker candidates were more successful via counting. The context again proved challenging in the final part, with the incorrect time being determined from the correct value of <em>n</em>. Here, as in Part A, the use of the GDC by graphing each side of the equation is encouraged; however, if teachers feel that such questions require the use (and teaching) of logarithms, such an approach is, of course, given full credit.</span></p>
<div class="question_part_label">B.e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows a perfume bottle made up of a cylinder and a cone.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_07.37.58.png" alt></p>
<p class="p1">The radius of both the cylinder and the base of the cone is <span class="s1">3 cm</span>.</p>
<p class="p1">The height of the cylinder is <span class="s1">4.5 cm</span>.</p>
<p class="p1">The slant height of the cone is <span class="s1">4 cm</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)     Show that the vertical height of the cone is \(2.65\)<span class="s1"> cm </span>correct to three significant figures.</p>
<p class="p1">(ii)     Calculate the volume of the perfume bottle.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The bottle contains \({\text{125 c}}{{\text{m}}^{\text{3}}}\) </span>of perfume. The bottle is <strong>not </strong>full and all of the perfume is in the cylinder part.</p>
<p class="p1">Find the height of the perfume in the bottle.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi makes some crafts with perfume bottles, like the one above, once they are empty. Temi wants to know the surface area of one perfume bottle.</p>
<p class="p1">Find the <strong>total </strong>surface area of the perfume bottle.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi covers the perfume bottles with a paint that costs 3 South African rand (ZAR) per millilitre. One millilitre of this paint covers an area of \({\text{7 c}}{{\text{m}}^{\text{2}}}\).</p>
<p class="p2"><span class="s1">Calculate the cost, in ZAR</span>, of painting the perfume bottle. <strong>Give your answer correct to two decimal places</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Temi sells her perfume bottles in a craft fair for <span class="s1">325 ZAR </span>each. Dominique from France buys one and wants to know how much she has spent, in euros <span class="s1">(EUR)</span>. The exchange rate is 1 EUR = 13.03 ZAR<span class="s2">.</span></p>
<p class="p1">Find the price, in <span class="s1">EUR</span>, that Dominique paid for the perfume bottle. <strong>Give your answer </strong><strong>correct to two decimal places</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)     \({x^2} + {3^2} = {4^2}\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras’ formula.</p>
<p>Accept correct alternative method using trigonometric ratios.</p>
<p> </p>
<p>\(x = 2.64575 \ldots \)     <strong><em>(A1)</em></strong></p>
<p>\(x = 2.65{\text{ }}({\text{cm}})\)     <strong><em>(AG)</em></strong></p>
<p><strong>Note: </strong>The unrounded and rounded answer must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(\sqrt {{4^2} - {3^2}} \)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras’ formula.</p>
<p> </p>
<p>\( = \sqrt 7 \)     <strong><em>(A1)</em></strong></p>
<p>\( = 2.65{\text{ (cm)}}\)     <strong><em>(AG)</em></strong></p>
<p><strong>Note: </strong>The exact answer must be seen for the final <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p>(ii)     \(\pi  \times {3^2} \times 4.5 + \frac{1}{3}\pi  \times {3^2} \times 2.65\)     <strong><em>(M1)(M1)(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the volume of a cylinder formula, <strong><em>(M1) </em></strong>for correct substitution into the volume of a cone formula, <strong><em>(M1) </em></strong>for adding both of their volumes.</p>
<p> </p>
<p>\( = 152{\text{ c}}{{\text{m}}^3}\;\;\;(152.210 \ldots {\text{ c}}{{\text{m}}^3},{\text{ }}48.45\pi {\text{ c}}{{\text{m}}^3})\)     <strong><em>(A1)(G3)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\pi {3^2}h = 125\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution into the volume of a cylinder formula.</p>
<p class="p1">Accept alternative methods. Accept \(4.43\)<span class="s1"> </span>(\(4.42913 \ldots \)) from using rounded answers in \(h = \frac{{125 \times 4.5}}{{127}}\).</p>
<p class="p2"> </p>
<p class="p1">\(h = 4.42{\text{ (cm)}}\;\;\;\left( {4.42097 \ldots {\text{ (cm)}}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2\pi  \times 3 \times 4.5 + \pi  \times 3 \times 4 + \pi  \times {3^2}\)     <strong><em>(M1)(M1)(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into curved surface area of a cylinder formula, <strong><em>(M1) </em></strong>for correct substitution into the curved surface area of a cone formula, <strong><em>(M1) </em></strong>for adding the area of the base of the cylinder to the other two areas.</p>
<p> </p>
<p>\( = 151{\text{ c}}{{\text{m}}^2}\;\;\;(150.796 \ldots {\text{ c}}{{\text{m}}^2},{\text{ }}48\pi {\text{ c}}{{\text{m}}^2})\)     <strong><em>(A1)(G3)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{150.796 \ldots }}{7} \times 3\) <span class="Apple-converted-space">    </span><strong><em>(M1)(M1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for dividing their answer to (c) by \(7\), <strong><em>(M1) </em></strong>for multiplying by \(3\). Accept equivalent methods.</p>
<p class="p2"> </p>
<p class="p1">\( = 64.63{\text{ (ZAR)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>The <strong><em>(A1) </em></strong>is awarded for their correct answer, correctly rounded to <span class="s1">2 </span>decimal places. Follow through from their answer to part (c). If rounded answer to part (c) is used the answer is \(64.71\)<span class="s1"> (ZAR)</span>.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{325}}{{13.03}}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for dividing \(325\)<span class="s1"> </span>by \(13.03\).</p>
<p class="p2"> </p>
<p class="p1">\( = 24.94{\text{ (EUR)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>The <strong><em>(A1) </em></strong>is awarded for the correct answer rounded to <span class="s1">2 </span>decimal places, unless already penalized in part (d).</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A geometric sequence has second term 12 and fifth term 324.</span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following propositions</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>p</em>: The number is a multiple of five.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>q</em>: The number is even.</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;"><em>r</em>: The number ends in zero.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the value of the common ratio.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the 10<sup>th</sup> term of this sequence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The <em>k</em><sup>th</sup> term is the first term which is greater than 2000. Find the value of <em>k</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write in words \((q \wedge \neg r) \Rightarrow \neg p\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the statement “If the number is a multiple of five, and is not even then it will not end in zero”.</span></p>
<p><span>Write this statement in symbolic form.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">ii, b, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the statement “If the number is a multiple of five, and is not even then it will not end in zero”.</span></p>
<p><span>Write the contrapositive of this statement in symbolic form.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii, b, ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>u</em><sub>1</sub><em>r</em><sup>4</sup> = 324     <em><strong>(A1)</strong></em></span></p>
<p><span><em>u</em><sub>1</sub><em>r</em> = 12     <em><strong>(A1)</strong></em></span></p>
<p><span><em>r</em><sup>3</sup> = 27     <em><strong>(M1)</strong></em></span></p>
<p><span><em>r</em> = 3     <em><strong>(A1)(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award at most <em><strong>(G3)</strong></em> for trial and error.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">i, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4 × 3<sup>9</sup> = 78732 <strong>or </strong>12 </span><span><span>× </span>3<sup>8</sup> = 78732     <em><strong>(A1)(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>u</em><sub>1</sub> = 4 if<em> n</em> = 9 , <strong>or</strong> <em>u</em><sub>1</sub> = 12 if <em>n</em> = 8, <em><strong>(M1)</strong></em> for correctly substituted formula.</span></p>
<p><span><strong>(ft)</strong> from their (a).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">i, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4 × 3<sup><em>k</em>−1</sup> &gt; 2000     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in correct formula. Accept an</span> <span>equation.</span></p>
<p><br><span><em>k</em> &gt; 6     <em><strong>(A1)</strong></em></span></p>
<p><span><em>k</em> = 7     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> If second line not seen award <em><strong>(A2)</strong></em> for correct answer. <strong>(ft)</strong> from</span> <span>their (a).</span></p>
<p><span>Accept a list, must see at least <strong>3 terms</strong> including the 6<sup>th</sup> and 7<sup>th</sup>.</span></p>
<p><br><span><strong>Note:</strong> If arithmetic sequence formula is used consistently in parts (a), (b)</span> <span>and (c), award <em><strong>(A0)(A0)(M0)(A0)</strong></em> for (a) and <strong>(ft)</strong> for parts (b) </span><span>and (c).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">i, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>If the number is even and the number does not end in zero, (then) the number is not a multiple of five.     <em><strong>(A1)(A1)(A1)</strong></em><br></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “if…(then)”, <em><strong>(A1)</strong></em> for “the number is even and the number does not end in zero”, <em><strong>(A1)</strong></em> for the number is not a multiple of 5.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">ii, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\((p \wedge \neg q) \Rightarrow \neg r\)     <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></p>
<p><span><em><strong>(A1)</strong></em> <em>for</em> \(\Rightarrow\), <em><strong>(A1)</strong></em> <em>for</em> \(\wedge\), <em><strong>(A1)</strong></em> <em>for</em> p and \(\neg q\), <em><strong>(A1)</strong></em> <em>for</em> \(\neg r\)</span></p>
<p><br><span><strong>Note:</strong> If parentheses not present award at most <strong><em>(A1)(A1)(A1)(A0)</em></strong>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<p><br><span><br></span></p>
<div class="question_part_label">ii, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(r \Rightarrow (\neg p \vee q)\)   <strong>OR</strong>   \(r \Rightarrow \neg (p \wedge \neg q)\)     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></span></p>
<p><span><span><br> </span><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for reversing the order, <strong><em>(A1)</em></strong> for negating the statements on both sides.</span></p>
<p><span>If parentheses not present award at most <strong><em>(A1)</em>(ft)<em>(A0)</em></strong>.</span></p>
<p><span>Do not penalise twice for missing parentheses in (i) and (ii).</span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">ii, b, ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">An easy ratio to find and the majority of candidates found <em>r</em> = 3, though many had trouble showing the appropriate method, thus losing marks.</span></p>
<div class="question_part_label">i, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">A fairly straightforward part for most candidates.</span></p>
<div class="question_part_label">i, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The majority found <em>k</em>&nbsp;&minus; 7; many without supporting work which lost them a mark. Where candidates had difficulty in this part, it was generally a case of poor algebraic skills.</span></p>
<div class="question_part_label">i, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question on logic was straightforward for most candidates who scored full marks for parts (a) and (b) (i). A few omitted the brackets in part (b).</span></p>
<div class="question_part_label">ii, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question on logic was straightforward for most candidates who scored full marks for parts (a) and (b) (i). A few omitted the brackets in part (b).</span></p>
<div class="question_part_label">ii, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 10.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Very poorly answered with many candidates scoring just one mark. The main error was to open the bracket and not use the &ldquo;or&rdquo;.</span></p>
<div class="question_part_label">ii, b, ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A greenhouse ABCDPQ is constructed on a rectangular concrete base ABCD and is made of glass. Its shape is a right prism, with cross section, ABQ, an isosceles triangle. The length of BC is 50 m, the length of AB is 10 m and the size of angle QBA is 35&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle AQB.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AQ.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of CQ is 50.37 m, correct to 4 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of the angle AQC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total area of the glass needed to construct</span></p>
<p><span>(i) the two rectangular faces of the greenhouse;</span></p>
<p><span>(ii) the two triangular faces of the greenhouse.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cost of one square metre of glass used to construct the greenhouse is 4.80 USD.</span></p>
<p><span>Calculate the cost of glass to make the greenhouse. Give your answer correct to the nearest 100 USD.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>110°     <em><strong>(A1)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{AQ}}{{\sin 35^\circ }} = \frac{{10}}{{\sin 110^\circ }}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted sine rule formula, <em><strong>(A1)</strong></em> for their correct substitutions.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\(AQ = \frac{5}{{\cos 35^\circ }}\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 5 seen, <em><strong>(M1)</strong></em> for correctly substituted trigonometric ratio.</span></p>
<p><br><span>\(AQ = 6.10\) (6.10387...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><br><strong>Notes:</strong> Follow through from their answer to part (a).<em><strong><br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(AC^2 = 10^2 + 50^2\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted Pythagoras formula.</span></p>
<p><br><span>\(AC = 51.0 (\sqrt{2600}, 50.9901...)\)     <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(QC^2 = (6.10387...)^2 + (50)^2\)     <em><strong>(M1)</strong></em></span><br><br></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted Pythagoras formula.</span></p>
<p><br><span>\(QC = 50.3711...\)     <em><strong>(A1)</strong></em></span></p>
<p><span>\(= 50.37\)     <em><strong>(AG)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Both the unrounded and rounded answers must be seen to award <em><strong>(A1)</strong></em>. </span></p>
<p><span>   If 6.10 is used then 50.3707... is the unrounded answer.</span></p>
<p><span>   For an incorrect follow through from part (b) award a maximum of <em><strong>(M1)(A0)</strong></em> – the given answer must be reached to award the final<em><strong> (A1)(AG)</strong></em>.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\cos AQC = \frac{{{{(6.10387...)}^2} + {{(50.3711...)}^2} - {{(50.9901...)}^2}}}{{2(6.10387...)(50.3711...)}}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><br><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted cosine rule formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct substitutions.</span></p>
<p><span><br>= 92.4</span><span>°</span><span>   (\({92.3753...^\circ }\))</span><span>     </span><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><span><em><strong><br></strong></em><strong>Notes:</strong> Follow through from their answers to parts (b), (c) and (d). Accept 92.2 if the 3 sf answers to parts (b), (c) and (d) are used. </span></p>
<p><span>     Accept 92.5°</span><span> (<span>\({92.4858...^\circ }\)</span><span>)</span> if the 3 sf answers to parts (b), (c) and 4 sf answers to part (d) used.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(2(50 \times 6.10387...)\)     <em><strong>(M1)</strong></em><br><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted rectangular area formula, the area of one rectangle is not sufficient.</span></p>
<p><br><span>= 610 m<sup>2</sup> (610.387...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)<br><br></strong></em></span></p>
<p><span><strong>Notes:</strong> Follow through from their answer to part (b). </span></p>
<p><span>    The answer is 610 m<sup>2</sup>. The units are required.</span></p>
<p><br><span>(ii) Area of triangular fa</span><span>ce \( = \frac{1}{2} \times 10 \times 6.10387... \times \sin 35^\circ \)  </span>  <span> <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>Area of triangular face \( = \frac{1}{2} \times 6.10387... \times 6.10387... \times \sin 110^\circ \)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(= 17.5051...\)<br><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted triangle area formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for</span> <span>correct substitutions. <br></span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>(Height of triangle) \( = {(6.10387...)^2} - {5^2}\)</span><span><br></span></p>
<p><span>\(= 3.50103...\)</span></p>
<p><span>Area of triangular face \( = \frac{1}{2} \times 10 \times their{\text{ }} height\)<br></span></p>
<p><span>\(= 17.5051...\)<br></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted triangle area formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for correctly substituted area formula. If 6.1 is used, the height is 3.49428... and the area of both triangular faces 34.9 m<sup>2<br></sup></span></p>
<p><span> </span></p>
<p><span>Area of both triangular faces = 35.0 m<sup>2</sup></span><span> (35.0103...)     <em><strong>(A1)(ft)(G2)</strong></em><br></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Notes:</strong> The answer is 35.0 m<sup>2</sup>. The units are required. Do not penalize if already penalized in part (f)(i). Follow through from their part (b).</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(610.387... + 35.0103...) × 4.80     <em><strong>(M1)</strong></em></span></p>
<p><span>= 3097.90...     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Notes:</strong> Follow through from their answers to parts (f)(i) and (f)(ii). </span></p>
<p><span>    Accept 3096 if the 3 sf answers to part (f) are used.</span></p>
<p><span> </span></p>
<p><span>= 3100     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span><br><br></p>
<p><span><strong>Notes:</strong> Follow through from their unrounded answer, irrespective of whether it is correct. Award <em><strong>(M1)(A2)</strong></em> if working is shown and 3100 seen without the unrounded answer being given.<br></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognize sine rule, substitute correctly and reach the required result.<br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognize sine rule, substitute correctly and reach the required result. The use of Pythagoras&rsquo; theorem was also successful, the major source of error being the lack of unrounded and rounded answers in part (d).<br></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Again, most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognize sine rule, substitute correctly and reach the required result. Part (e) was less well answered, due in part to the triangle being in three dimensions. However, all three sides had either been asked for in previous parts or given and all that was required was a sketch of a triangle with the vertices labelled; such a diagram was never on any script and this technique should be encouraged.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Again, most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates used the appropriate area formula &ndash; however, some did not read the question with the attention it required and found the area of three rectangles &ndash; one of which being the stated &ldquo;concrete base&rdquo;.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Leanne goes fishing at her favourite pond. The pond contains four different types of fish: bream, flathead, whiting and salmon. The fish are either undersized or normal. This information is shown in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of fish in the pond.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Leanne catches a fish.</span></p>
<p><span>Find the probability that she</span></p>
<p><span>(i) catches an undersized bream;</span></p>
<p><span>(ii) catches either a flathead or an undersized fish or both;</span></p>
<p><span>(iii) does not catch an undersized whiting;</span></p>
<p><span>(iv) catches a whiting given that the fish was normal.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Leanne notices that on windy days, the probability she catches a fish is 0.1 while on non-windy days the probability she catches a fish is 0.65. The probability that it will be windy on a particular day is 0.3.</span></p>
<p><span><strong>Copy and complete</strong> the probability tree diagram below.</span></p>
<p><span><img src="" alt></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Leanne notices that on windy days, the probability she catches a fish is 0.1 while on non-windy days the probability she catches a fish is 0.65. The probability that it will be windy on a particular day is 0.3.</span></span></p>
<p><span>Calculate the probability that it is windy and Leanne catches a fish on a particular day.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Leanne notices that on windy days, the probability she catches a fish is 0.1 while on non-windy days the probability she catches a fish is 0.65. The probability that it will be windy on a particular day is 0.3.</span></span></p>
<p><span>Calculate the probability that Leanne catches a fish on a particular day.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your answer to part (e) to calculate the probability that Leanne catches a fish on two consecutive days.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Leanne notices that on windy days, the probability she catches a fish is 0.1 while on non-windy days the probability she catches a fish is 0.65. The probability that it will be windy on a particular day is 0.3.</span></span></p>
<p><span>Given that Leanne catches a fish on a particular day, calculate the probability that the day was windy.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>90     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(\frac{3}{{90}}(0.0\bar 3,{\text{ }}0.0333,{\text{ }}0.0333...,{\text{ }}3.\bar 3\% ,{\text{ }}3.33\% )\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> For the denominator follow through from their answer in part (a).</span></p>
<p><br><span>(ii) \(\frac{{53}}{{90}}(0.5\bar 8,{\text{ }}0.588...,{\text{ }}0.589,{\text{ }}58.\bar 8\% ,{\text{ }}58.9\% )\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for the numerator. <em><strong>(A1)</strong></em><strong>(ft)</strong> for denominator. For the denominator follow through from their answer in part (a).</span></p>
<p><br><span>(iii) \(\frac{{72}}{{90}}{\text{(0.8, 80}}\%)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for the numerator, (their part (a) –18) <strong><em>(A1)</em>(ft)</strong> for denominator. For the denominator follow through from their answer in part (a).</span></p>
<p><br><span><span>(iv) </span><span>\(\frac{{24}}{{48}}(0.5,{\text{ 50}}\% )\)</span>     <em><strong>(A1)(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for numerator, <em><strong>(A1)</strong></em> for denominator.</span></p>
<p><span> </span></p>
<p><span><span><em><strong>[7 marks]</strong></em></span> </span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>    </span></span><span> <em><strong><span>(A1)(A1)(A1)</span><br></strong></em><br><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for each correct entry. Tree diagram must be seen for marks to be awarded.<em><strong><br></strong></em></span></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.3 \times 0.1 = 0.03\left( {\frac{3}{{100}}} \right)\)</span><em><strong><span>     (M1)(A1)(G2)</span></strong></em></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct product seen.</span><em><strong><span><br></span></strong></em></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.3 \times 0.1+ 0.7\times0.65\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for \(0.7\times0.65\) (or 0.455) seen, <em><strong>(M1)</strong></em> for adding their 0.03. Follow through from their answers to parts (c) and (d).</span></p>
<p><br><span>\( = 0.485\left( {\frac{{485}}{{1000}},\frac{{97}}{{200}}} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their tree diagram and their answer to part (d).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.485 \times 0.485\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(0.235\left( {\frac{{9409}}{{40000}}{\text{, }}0.235225} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (e).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{0.03}}{{0.485}}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substituted conditional probability formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for their (d) as numerator and their (e) as denominator.</span><br><br><span>\(0.0619\left( {\frac{{6}}{{97}}}\text{, 0.0618556...} \right) \)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their parts (d) and (e).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(a) Most candidates found this correctly although a few wrote 180 instead of 90.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(b) This was also answered well. The main errors were putting 65/90 in part (ii) and</span> <span style="font-size: medium; font-family: times new roman,times;">24/90 in part (iv).</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(c) The tree diagram was completed correctly in most scripts. It appears that some </span><span style="font-size: medium; font-family: times new roman,times;">candidates may have answered this on their question paper and this was not sent to </span><span style="font-size: medium; font-family: times new roman,times;">the scanning centre with the answer papers.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(d) Many answered this correctly. Some added instead of multiplying.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(e) Surprisingly well answered. Again some added and multiplied in the wrong place.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(f) Most candidates added here and then divided by 2 rather than multiplying.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(g) This was badly done with very few correct answers seen.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A closed rectangular box has a height \(y{\text{ cm}}\) and width \(x{\text{ cm}}\). Its length is twice its width. It has a fixed outer surface area of \(300{\text{ c}}{{\text{m}}^2}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Factorise \(3{x^2} + 13x - 10\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equation \(3{x^2} + 13x - 10 = 0\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Find the equation of the axis of symmetry on the graph of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider a function \(f(x) = 3{x^2} + 13x - 10\) .</span></p>
<p><span>Calculate the minimum value of this function.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(4{x^2} + 6xy = 300\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find an expression for \(y\) in terms of \(x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence show that the volume \(V\) of the box is given by \(V = 100x - \frac{4}{3}{x^3}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(\frac{{{\text{d}}V}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Hence find the value of \(x\) and of \(y\) required to make the volume of the box a maximum.</span></p>
<p><span>(ii)    Calculate the maximum volume.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\((3x - 2)(x + 5)\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\((3x - 2)(x + 5) = 0\)</span></p>
<p><span>\(x = \frac{2}{3}\) or \(x = - 5\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = \frac{{ - 13}}{6}{\text{ }}( - 2.17)\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><br><span><strong>Note: <em>(A1)</em></strong> is for \(x = \), <em><strong>(A1)</strong></em> for value. <strong>(ft)</strong> if value is half way between roots in (b).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Minimum \(y = 3{\left( {\frac{{ - 13}}{6}} \right)^2} + 13\left( {\frac{{ - 13}}{6}} \right) - 10\)     <em><strong>(M1)</strong></em></span><br><br><span><strong>Note: <em>(M1)</em></strong> for substituting their value of \(x\) from (c) into \(f(x)\) .</span></p>
<p><br><span>\( = - 24.1\)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]<br></em></strong></span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Area}} = 2(2x)x + 2xy + 2(2x)y\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for using the correct surface area formula (which can</span> <span>be implied if numbers in the correct place). <em><strong>(A1)</strong></em> for using correct numbers.</span><br><br></p>
<p><span>\(300 = 4{x^2} + 6xy\)     <em><strong>(AG)</strong></em></span></p>
<p><span><span><strong><br>Note: </strong>Final line must be seen or previous</span> <span><em><strong>(A1)</strong></em> mark is lost.</span></span></p>
<p><span><span><em><strong>[2 marks]</strong></em><br></span></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(6xy = 300 - 4{x^2}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(y = \frac{{300 - 4{x^2}}}{{6x}}\) <em>or</em> \(\frac{{150 - 2{x^2}}}{{3x}}\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Volume}} = x(2x)y\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(V = 2{x^2}\left( {\frac{{300 - 4{x^2}}}{{6x}}} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\( = 100x - \frac{4}{3}{x^3}\)     <strong>(AG)</strong></span></p>
<p><br><span><strong>Note: </strong>Final line must be seen or previous <em><strong>(A1)</strong></em> mark is lost.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}V}}{{{\text{d}}x}} = 100 - \frac{{12{x^2}}}{3}\)  or  \(100 - 4{x^2}\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong> </strong></em><strong>Note: <em>(A1)</em></strong> for each term.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column</em></span></p>
<p><span>(i)     For maximum \(\frac{{{\text{d}}V}}{{{\text{d}}x}} = 0\)  or  \(100 - 4{x^2} = 0\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(x = 5\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(y = \frac{{300 - 4{{(5)}^2}}}{{6(5)}}\)  or  \(\left( {\frac{{150 - 2{{(5)}^2}}}{{3(5)}}} \right)\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = \frac{{20}}{3}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><strong>(UP)</strong></em>     (ii)    \(333\frac{1}{3}{\text{ c}}{{\text{m}}^3}{\text{ }}(333{\text{ c}}{{\text{m}}^3})\)</span></p>
<p><span><strong><br>Note: (ft)</strong> from their (e)(i) if working for volume is seen.</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates made a good attempt to factorise the expression.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many gained both marks here from a correct answer or ft from the previous part.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many used the formula correctly. Some forgot to put \(x = \)</span> .</p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates found this value from their GDC.</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A good attempt was made to show the correct surface area.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many could rearrange the equation correctly.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Although this was not a difficult question it probably looked complicated for the candidates and it was often left out.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Those who reached this length could usually manage the differentiation.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Many found the correct value of \(x\) but not of \(y\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp; This was well done and again the units were included in most scripts.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p><strong><span style="font-size: medium; font-family: times new roman,times;">Give all answers in this question to the nearest whole currency unit.</span></strong></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Ying and Ruby each have 5000 USD to invest.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Ying invests his 5000 USD in a bank account that pays a nominal annual interest rate of 4.2 % <strong>compounded yearly</strong>. Ruby invests her 5000 USD in an account that offers a fixed interest of 230 USD each year.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the amount of money that Ruby will have in the bank after 3 years.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that Ying will have 7545 USD in the bank at the end of 10 years.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of complete years it will take for Ying’s investment to first exceed 6500 USD.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of complete years it will take for Ying’s investment to exceed Ruby’s investment.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Ruby moves from the USA to Italy. She transfers 6610 USD into an Italian bank which has an exchange rate of 1 USD = 0.735 Euros. The bank charges 1.8 % commission.</span></p>
<p><span>Calculate the amount of money Ruby will invest in the Italian bank after commission.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Ruby returns to the USA for a short holiday. She converts 800 Euros at a bank in Chicago and receives 1006.20 USD. The bank advertises an exchange rate of 1 Euro = 1.29 USD.</span></p>
<p><span>Calculate the percentage commission Ruby is charged by the bank.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>5000 + 3 × 230 = 5690     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Accept alternative method.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{A}} = 5000{\left( {1 + \frac{{4.2}}{{100}}} \right)^{10}}\) <em>or equivalent</em>     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\( = 7544.79 \ldots \)     <em><strong>(A1)</strong></em></span></p>
<p><span>\( = 7545{\text{ USD}}\)     <em><strong>(AG)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substituted compound interest formula, <em><strong>(A1)</strong></em> for correct substitutions, <em><strong>(A1)</strong></em> for unrounded answer seen.</span></p>
<p><span>If final line not seen award at most <em><strong>(M1)(A1)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>5000(1.042)<sup><em>n</em> </sup>&gt; 6500     <em><strong>(M1)(A1)</strong></em></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for setting up correct equation/inequality, <em><strong>(A1)</strong></em> for correct values.</span></p>
<p><span>Follow through from their formula in part (b).</span></p>
<p> </p>
<p><strong><span>OR</span></strong></p>
<p><span>List of values seen with at least 2 terms     <em><strong>(M1)</strong></em></span></p>
<p><span>Lists of values including at least the terms with <em>n</em> = 6 and <em>n</em> = 7     <em><strong>(A1)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Follow through from their formula in part (b).</span></p>
<p> </p>
<p><strong><span>OR</span></strong></p>
<p><span>Sketch showing 2 graphs, one exponential, the other a horizontal line     <em><strong>(M1)</strong></em></span></p>
<p><span>Point of intersection identified or vertical line     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their formula in part (b).</span></p>
<p><br><span><em>n</em> = 7     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span> </span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>5000(1.042)<sup><em>n</em></sup> &gt; 5000 + 230<em>n</em>     <em><strong>(M1)(A1)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up correct equation/inequality, <em><strong>(A1)</strong></em> for correct values.</span></p>
<p> </p>
<p><strong><span>OR</span></strong></p>
<p><span>2 lists of values seen (at least 2 terms per list)     <em><strong>(M1)</strong></em></span></p>
<p><span>Lists of values including at least the terms with <em>n</em> = 5 and <em>n</em> = 6     <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> One of the lists may be written under (c).</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>Sketch showing 2 graphs of correct shape     <em><strong>(M1)</strong></em></span></p>
<p><span>Point of intersection identified or vertical line     <em><strong>(M1)</strong></em></span></p>
<p><span><em>n</em> = 6     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their formulae used in parts (a) and (b).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>6610 × 0.735     <em><strong>(M1)</strong></em></span></p>
<p><span>= 4858.35     <em><strong>(A1)</strong></em></span></p>
<p><span>4858.35 × 0.982(= 4770.8997...)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 4771 Euros     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Accept alternative method.</span></p>
<p><span> </span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>800 × 1.29 (= 1032 USD)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying by 1.29, <em><strong>(A1)</strong></em> for 1032. Award <em><strong>(G2)</strong></em> for 1032 if product not seen.</span></p>
<p><br><span>(1032 – 1006.20 = 25.8)</span></p>
<p><span>\(25.8 \times \frac{100}{1032} \%\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 25.8 seen, <em><strong>(M1)</strong></em> for multiplying by \(\frac{100}{1032}\).</span></p>
<p> </p>
<p><strong><span>OR</span></strong></p>
<p><span>\(\frac{1006.20}{1032} = 0.975\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>\(\frac{1006.20}{1032} \times 100 = 97.5\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\( = 2.5{\text{ }}\% \)     <em><strong>(A1)(G3)</strong></em></span></p>
<p> </p>
<p><span><strong>Notes:</strong> If working not shown award <em><strong>(G3)</strong></em> for 2.5.</span></p>
<p><span>Accept alternative method.</span></p>
<p><span> </span></p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">It was nice to see many students recovering after part (d) and to gain full marks in the last two parts of the question.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">It was nice to see many students recovering after part (d) and to gain full marks in the last two parts of the question.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Most of the students read carefully the instruction written in the heading of the question and therefore gave their answers with the accuracy stated but some did not. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Simple interest was well done as well as compound interest with only a small minority of candidates making no progress. A number of students lost the answer mark in (b) for not showing the unrounded answer before writing the answer given. It is also important to mention that calculator commands are not accepted as correct working and therefore full marks are not awarded. Also, some candidates wrote their answers without showing any working leading to a number of marks being lost.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">It was nice to see many students recovering after part (d) and to gain full marks in the last two parts of the question.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><em>Give all answers in this question correct to the <strong>nearest</strong> dollar.</em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Clara wants to buy some land. She can choose between two different payment options. Both options require her to pay for the land in <strong>20</strong> monthly installments.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Option 1:&nbsp;&nbsp;&nbsp;&nbsp; The first installment is \(\$ 2500\). Each installment is \(\$ 200\) more than the one before.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Option 2:&nbsp;&nbsp;&nbsp;&nbsp; The first installment is \(\$ 2000\). Each installment is \(8\% \) more than the one before.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Clara chooses option 1,</span></p>
<p><span>(i) write down the values of the second and third installments;</span></p>
<p><span>(ii) calculate the value of the final installment;</span></p>
<p><span>(iii) show that the <strong>total amount</strong> that Clara would pay for the land is \(\$ 88000\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If Clara chooses option 2,</span></p>
<p><span>(i) find the value of the second installment;</span></p>
<p><span>(ii) show that the value of the fifth installment is \(\$ 2721\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The price of the land is \(\$ 80000\). In option 1 her total repayments are \(\$ 88000\) over the <strong>20</strong> months. Find the annual rate of simple interest which gives this total.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Clara knows that the<strong> total amount</strong> she would pay for the land is not the same for both options. She wants to spend the least amount of money. Find how much she will save by choosing the cheaper option.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) Second installment \( = \$ 2700\)     <em><strong>(A1)</strong></em></span></p>
<p><span>Third installment \( = \$ 2900\)     <em><strong>(A1)</strong></em></span></p>
<p><span>(ii) Final installment \( = 2500 + 200 \times 19\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for substituting in correct formula or listing, <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p><br><span>\( = \$ 6300\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span>(iii) Total amount \( = \frac{{20}}{2}(2500 + 6300)\)</span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\( \frac{{20}}{2}(5000 + 19 \times 200)\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for substituting in correct formula or listing, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\( = \$ 88000\)     <em><strong>(AG)</strong></em></span></p>
<p><span><span><strong>Note: </strong>Final line must be seen or previous</span><span> <em><strong>(A1)</strong></em> mark is lost.</span></span></p>
<p><span><span><em><strong>[7 marks]</strong></em><br></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) Second installment \(2000 \times 1.08 = \$ 2160\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for multiplying by \(1.08\) or equivalent, <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><br><span>(ii) Fifth installment \( = 2000 \times {1.08^4} = 2720.98 = \$ 2721\)     <em><strong>(M1)(A1)(AG)</strong></em></span></p>
<p><span><strong><br>Notes: <em>(M1)</em></strong> for correct formula used with numbers from the problem. <em><strong>(A1)</strong></em> for correct substitution. The \(2720.9 \ldots \) must be seen for the <em><strong>(A1)</strong></em> mark to be awarded.</span> <span>Accept list of 5 correct values. If values are rounded prematurely award <em><strong>(M1)(A0)(AG)</strong></em>.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Interest is \( = \$ 8000\)     <em><strong>(A1)</strong></em></span></p>
<p><span>\(80000 \times \frac{r}{{100}} \times \frac{{20}}{{12}} = 8000\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note: <em>(M1)</em></strong> for attempting to substitute in simple interest formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>Simple Interest Rate \( = 6\% \)     <em><strong>(A1)(G3)<br><br></strong></em></span></p>
<p><span><strong>Note: </strong>Award <em><strong>(G3)</strong></em> for answer of \(6\% \) with no working present if interest is also seen award <em><strong>(A1)</strong></em> for interest and <em><strong>(G2)</strong></em> for correct answer.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Financial accuracy penalty <strong>(FP)</strong> is applicable where indicated in the left hand column.</em></span></p>
<p><span><em><strong>(FP)</strong></em>     Total amount for option 2 \( = 2000\frac{{(1 - {{1.08}^{20}})}}{{(1 - 1.08)}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for substituting in correct formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\( = \$ 91523.93\) (\( = \$ 91524\))     <em><strong>(A1)</strong></em></span><br><span>\(91523.93 - 88000 = \$ 3523.93 = \$ 3524\) to the nearest dollar     <em><strong>(A1)</strong></em><strong>(ft)<em>(G3)</em></strong></span></p>
<p><span><strong><br>Note: </strong>Award <em><strong>(G3)</strong></em> for an answer of \(\$ 3524\) with no working. The difference follows through from the sum, if reasonable. Award a maximum of <strong><em>(M1)(A0)(A0)(A1)</em>(ft)</strong> if candidate has treated option 2 as an arithmetic sequence and has followed through into their common difference. Award a maximum of <em><strong>(M1)(A1)(A0)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em> if candidate has consistently used \(0.08\) in (b) and (d).</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was answered correctly by many. Candidates were able to restart if they failed to complete a particular part. Many candidates wasted much time because their understanding was limited to a recursive method and hence wrote out all the terms rather than using the formula for the nth term or sum. A surprising number of students were not able to use the simple interest formula for a period which was not a whole number of years. Also hardly anyone knew to calculate interest first before substituting into the formula. Many students who attempted part (d) lost a point due to FP. A number of students rounded their answers prematurely to the nearest dollar.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was answered correctly by many. Candidates were able to restart if they failed to complete a particular part. Many candidates wasted much time because their understanding was limited to a recursive method and hence wrote out all the terms rather than using the formula for the nth term or sum. A surprising number of students were not able to use the simple interest formula for a period which was not a whole number of years. Also hardly anyone knew to calculate interest first before substituting into the formula. Many students who attempted part (d) lost a point due to FP. A number of students rounded their answers prematurely to the nearest dollar.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was answered correctly by many. Candidates were able to restart if they failed to complete a particular part. Many candidates wasted much time because their understanding was limited to a recursive method and hence wrote out all the terms rather than using the formula for the nth term or sum. A surprising number of students were not able to use the simple interest formula for a period which was not a whole number of years. Also hardly anyone knew to calculate interest first before substituting into the formula. Many students who attempted part (d) lost a point due to FP. A number of students rounded their answers prematurely to the nearest dollar.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was answered correctly by many. Candidates were able to restart if they failed to complete a particular part. Many candidates wasted much time because their understanding was limited to a recursive method and hence wrote out all the terms rather than using the formula for the nth term or sum. A surprising number of students were not able to use the simple interest formula for a period which was not a whole number of years. Also hardly anyone knew to calculate interest first before substituting into the formula. Many students who attempted part (d) lost a point due to FP. A number of students rounded their answers prematurely to the nearest dollar.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A geometric sequence has \(1024\) as its first term and \(128\) as its fourth term.</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the arithmetic sequence \(1{\text{, }}4{\text{, }}7{\text{, }}10{\text{, }}13{\text{, }} \ldots \)</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the common ratio is \(\frac{1}{2}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the eleventh term.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the sum of the first eight terms.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of terms in the sequence for which the <strong>sum</strong> first exceeds \(2047.968\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of the eleventh term.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The sum of the first \(n\) terms of this sequence is \(\frac{n}{2}(3n - 1)\).</span></p>
<p><span>(i)     Find the sum of the first 100 terms in this arithmetic sequence.</span></p>
<p><span>(ii)    The sum of the first \(n\) terms is \(477\).</span></p>
<p><span>     (a)     Show that \(3{n^2} - n - 954 = 0\) .</span></p>
<p><span>     (b)     Using your graphic display calculator or otherwise, find the number of terms, \(n\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">B.b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(1024{r^3} = 128\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\({r^3} = \frac{1}{8}\) <strong>or</strong> \(r = \sqrt[3]{{\frac{1}{8}}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(r = \frac{1}{2}{\text{ }}(0.5)\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award at most <em><strong>(M1)(M0)</strong></em> if last line not seen. Award <em><strong>(M1)(M0)</strong></em> if \(128\) is found by repeated multiplication (division) of \(1024\) by \(0.5\) \((2)\).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1024 \times {0.5^{10}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into correct formula. Accept an equivalent method.</span></p>
<p><span> </span></p>
<p><span><span>1    </span><span> <em><strong>(A1)(G2)</strong></em></span></span></p>
<p><span><span><em><strong>[2 marks]<br></strong></em></span></span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({S_8} = \frac{{1024\left( {1 - {{\left( {\frac{1}{2}} \right)}^8}} \right)}}{{1 - \frac{1}{2}}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the correct formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span><em><strong>(A1)</strong></em> for complete and correct list of eight terms     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>(M1)</strong></em> for their eight terms added     <em><strong>(M1)</strong></em></span></p>
<p><span><span>\({S_8} = 2040\)    </span><span> <em><strong>(A1)(G2)</strong></em></span></span></p>
<p><span><span><em><strong>[3 marks]<br></strong></em></span></span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{1024\left( {1 - {{\left( {\frac{1}{2}} \right)}^n}} \right)}}{{1 - \frac{1}{2}}} &gt; 2047.968\)     <strong><em>(M1)(M1)</em>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into the correct formula for the sum, <em><strong>(M1)</strong></em> for comparing to \(2047.968\) . Accept equation. Follow through from their expression for the sum used in part (c).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>If a list is used: \({S_{15}} = 2047.9375\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\({S_{16}} = 2047.96875\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(n = 16\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their expression for the sum used in part (c).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{common difference}} = 3\) (may be implied)     <em><strong>(A1)</strong></em></span></p>
<p><span>\({u_{11}} = 31\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(\frac{{100}}{2}(3 \times 100 - 1)\)     <strong>OR</strong>     \(\frac{{100(2 + 99 \times 3)}}{2}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>         \(14 950\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii)     (a)     \(\frac{n}{2}(3n - 1) = 477\)     <strong>OR</strong>     \(\frac{n}{2}(2 + 3(n - 1)) = 477\)     <em><strong>(M1)</strong></em></span></p>
<p><span>                   \(3{n^2} - n = 954\)     <em><strong>(M1)</strong></em></span></p>
<p><span>                   \(3{n^2} - n - 954 = 0\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award second <em><strong>(M1)</strong></em> for correct removal of denominator or brackets and no further incorrect </span><span>working seen. Award at most</span></p>
<p><span><em><strong>(M1)(M0)</strong></em> if last line not seen.</span></p>
<p> </p>
<p><span>        (b)     \(18\)     <em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> If both solutions to the quadratic equation are seen and the correct value is not identified as the required answer, award <em><strong>(G1)(G0)</strong></em>.</span></p>
<p><span> </span></p>
<p><span><em><strong>[6 marks]</strong></em><br></span></p>
<div class="question_part_label">B.b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A: Geometric sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of the candidates were not able to offer a satisfactory justification in a) and only scored 1 mark. </span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A: Geometric sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Parts b) and c) were mostly well answered.</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A: Geometric sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Parts b) and c) were mostly well answered. </span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A: Geometric sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> The responses to part d) were often weak. Those candidates who set up the equation scored two marks but very few of</span> <span style="font-family: times new roman,times; font-size: medium;">them were able to reach the correct final answer.</span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part B: Arithmetic sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Parts a), and b)(i) were mostly answered correctly. <br></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part B: Arithmetic sequences/series</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Parts a), and b)(i) were mostly answered correctly. Parts b)(ii)a) and b)(ii)b) were poorly answered. Many candidates did not know how to approach the &ldquo;show that&rdquo; question. A few were able to solve the quadratic equation using the GDC. Those who attempted to solve it without the GDC generally failed to find the correct answer.</span></p>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Jenny has a circular cylinder with a lid. The cylinder has height 39 <strong>cm</strong> and diameter 65 <strong>mm</strong>.</span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">An old tower (BT) leans at 10&deg; away from the vertical (represented by line TG).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The base of the tower is at B so that \({\text{M}}\hat {\rm B}{\text{T}} = 100^\circ \).</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Leonardo stands at L on flat ground 120 m away from B in the direction of the lean.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">He measures the angle between the ground and the top of the tower T to be \({\text{B}}\hat {\rm L}{\text{T}} = 26.5^\circ \).</span></p>
<p>&nbsp;</p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the cylinder<strong> in cm<sup>3</sup></strong>. Give your answer correct to <strong>two</strong> decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder is used for storing tennis balls. Each ball has a <strong>radius</strong> of 3.25 cm.</span></p>
<p><span>Calculate how many balls Jenny can fit in the cylinder if it is filled to the top.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Jenny fills the cylinder with the number of balls found in part (b) and puts the lid on. Calculate the volume of air inside the cylinder in the spaces between the tennis balls.</span></p>
<p><span>(ii) Convert your answer to (c) (i) into cubic metres.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Find the value of angle \({\text{B}}\hat {\rm T}{\text{L}}\).</span></p>
<p><span>(ii) Use triangle BTL to calculate the sloping distance BT from the base,</span> <span>B to the top, T of the tower.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the vertical height TG of the top of the tower.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Leonardo now walks to point M, a distance 200 m from B on the opposite side of the tower. Calculate the distance from M to the top of the tower at T.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\pi \times 3.25^2 \times 39\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>(= 1294.1398)</span></p>
<p><span>Answer 1294.14 (cm<sup>3</sup>)(2dp)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>(UP)</strong> not applicable in this part due to wording of question.</em></span><em> <span><strong>(M1)</strong> is for substituting appropriate numbers from the problem</span> <span>into the correct formula, even if the units are mixed up. <strong>(A1)</strong></span> <span>is for correct substitutions or correct answer with more than</span> <span>2dp in cubic centimetres seen.</span> <span>Award <strong>(G1)</strong> for answer to &gt; 2dp with no working and no</span> <span>attempt to correct to 2dp.</span> <span>Award <strong>(M1)(A0)(A1)(ft)</strong> for </span></em><span>\(\pi  \times {32.5^2} \times 39{\text{ c}}{{\text{m}}^3}\)</span><span> (= 129413.9824) = 129413.98</span></p>
<p><span><em>Use of \(\pi = \frac{22}{7}\) </em><strong>or</strong> 3.142<em> etc is premature rounding and is</em></span><em> <span>awarded at most <strong>(M1)(A1)(A0)</strong> or <strong>(M1)(A0)(A1)(ft)</strong></span> <span>depending on whether the intermediate value is seen or not. </span><span>For all other incorrect substitutions, award <strong>(M1)(A0)</strong> and only</span> <span>follow through the 2 dp correction if the intermediate answer</span> <span>to more decimal places is seen.</span> <span>Answer given as a multiple of </span></em><span>\(\pi\)</span><em><span> is awarded at most</span> <strong><span>(M1)(A1)(A0).</span></strong> <span>As usual, an <strong>unsubstituted</strong> formula followed by correct answer</span> <span>only receives the G marks.</span></em></p>
<p><em><span><strong>[3 marks]</strong><br></span></em></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>39/6.5 = 6     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</em><br></span></p>
<p><span><em> </em></span></p>
<p><span><em><strong>(UP)</strong> </em>(i) Volume of one ball is \(\frac{4}{3} \pi \times 3.25^3 {\text{ cm}}^3\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\({\text{Volume of air}} = \pi  \times {3.25^2} \times 39 - 6 \times \frac{4}{3}\pi  \times {3.25^3} = 431{\text{ c}}{{\text{m}}^3}\)</span><span>     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><em><span>Award first <strong>(M1)</strong> for substituted volume of sphere formula</span> <span>or for numerical value of sphere volume seen (143.79… or</span> <span>45.77… </span></em><span>\( \times \pi\)</span><em><span>).</span> <span>Award second <strong>(M1)</strong> for subtracting candidate’s sphere</span> <span>volume multiplied by their answer to (b).</span> <span>Follow through from parts (a) and (b) only, but negative </span><span>or zero answer is always awarded <strong>(A0)</strong></span></em><span><strong>(ft)</strong></span></p>
<p><br><span><em><strong>(UP)</strong></em> (ii) 0.000431m<sup>3</sup> or  4.31×10<sup>−4</sup></span><span> m</span><span><sup>3</sup>     <em><strong>(A1)</strong></em><strong>(ft)</strong><br></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong><em>[4 marks]</em><br></strong></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</em></span></p>
<p><span>(i) \({\text{Angle B}}\widehat {\text{T}}{\text{L}} = 180 - 80 - 26.5\)</span><span> or \(180 - 90 - 26.5 - 10\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(= 73.5^\circ\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii) \(\frac{{BT}}{{\sin (26.5^\circ )}} = \frac{{120}}{{\sin (73.5^\circ )}}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><strong>(UP)</strong></em> BT = 55.8 m (3sf)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong><em>[5 marks]</em><br></strong></span></p>
<p><span><strong><em><br></em></strong><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but</em><br><em>negative lengths are always awarded <strong>(A0)(ft)</strong>.</em></span></p>
<p><em><span>The answers are (all 3sf)</span></em></p>
<p><em><span>(ii)(a)     – 124 m <strong>(A0)</strong></span></em><strong><span>(ft)</span></strong><span></span></p>
<p><em><span>(ii)(b)     123 m </span><span><strong>(A0)</strong></span></em><span></span><span></span><span></span></p>
<p><em><span>(ii)(c)     313 m </span><span><strong>(A0)</strong></span></em><span></span><span></span></p>
<p><span><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but negative lengths are always awarded <strong>(A0)</strong></em><strong>(ft)</strong></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</em></span></p>
<p><span>TG = 55.8sin(80°) or 55.8cos(10°)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(UP) =</strong></em> 55.0 m (3sf)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em>Apply <strong>(AP)</strong> if 0 missing</em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span><span><strong><br></strong></span></p>
<p><span><strong><em><br></em></strong><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but</em><br><em>negative lengths are always awarded <strong>(A0)(ft)</strong>.</em></span></p>
<p><em><span>The answers are (all 3sf)</span></em></p>
<p><em><span>(ii)(a)     – 124 m <strong>(A0)</strong></span></em><strong><span>(ft)</span></strong><span></span></p>
<p><em><span>(ii)(b)     123 m </span><span><strong>(A0)</strong></span></em><span></span><span></span><span></span></p>
<p><em><span>(ii)(c)     313 m </span><span><strong>(A0)</strong></span></em><span></span><span></span></p>
<p><span><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but negative lengths are always awarded <strong>(A0)</strong></em><strong>(ft)</strong></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable where indicated in the left hand column.</em></span></p>
<p><span>\({\text{MT}}^2 = 200^2 + 55.8^2 - 2 \times 200 \times 55.8 \times \cos(100^\circ)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><strong>(UP)</strong></em> MT = 217 m  (3sf)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><em><span>Follow through only from part (ii)(a)(ii).</span> <span>Award marks at discretion for any valid alternative method.</span></em></p>
<p><em><span><strong>[3 marks]</strong></span></em><em><span><strong><span><strong><span><strong><br></strong></span></strong></span></strong></span></em></p>
<p><span><strong><em><br></em></strong><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but</em><br><em>negative lengths are always awarded <strong>(A0)(ft)</strong>.</em></span></p>
<p><em><span>The answers are (all 3sf)</span></em></p>
<p><em><span>(ii)(a)     – 124 m <strong>(A0)</strong></span></em><strong><span>(ft)</span></strong><span></span></p>
<p><em><span>(ii)(b)     123 m </span><span><strong>(A0)</strong></span></em><span></span><span></span><span></span></p>
<p><em><span>(ii)(c)     313 m </span><span><strong>(A0)</strong></span></em><span></span><span></span></p>
<p><span><em>If radian mode has been used throughout the question, award <strong>(A0)</strong> to the first incorrect answer then follow through, but negative lengths are always awarded <strong>(A0)</strong></em><strong>(ft)</strong></span></p>
<p></p>
<div class="question_part_label">ii.c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Many candidates incurred the new one-off unit penalty here. Too many ignored the call for two decimal places and some extrapolated that instruction to later parts (which was clearly not intended). There was the predictable confusion of using radius instead of diameter. Another common error was to divide the cylinder volume by that of the ball, to decide how many would fit. Some follow-through was allowed later from this error, however, this led to zero or negligible air volume, which was clearly ridiculous.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Choice and use of the formulae for volumes was often competent but the conversion to cubic metres was very badly done. Almost no correct answers were seen at all.</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Many candidates incurred the new one-off unit penalty here. Too many ignored the call for two decimal places and some extrapolated that instruction to later parts (which was clearly not intended). There was the predictable confusion of using radius instead of diameter. Another common error was to divide the cylinder volume by that of the ball, to decide how many would fit. Some follow-through was allowed later from this error, however, this led to zero or negligible air volume, which was clearly ridiculous.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Choice and use of the formulae for volumes was often competent but the conversion to cubic metres was very badly done. Almost no correct answers were seen at all.</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(i) Many candidates incurred the new one-off unit penalty here. Too many ignored the call for two decimal places and some extrapolated that instruction to later parts (which was clearly not intended). There was the predictable confusion of using radius instead of diameter. Another common error was to divide the cylinder volume by that of the ball, to decide how many would fit. Some follow-through was allowed later from this error, however, this led to zero or negligible air volume, which was clearly ridiculous.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Choice and use of the formulae for volumes was often competent but the conversion to cubic metres was very badly done. Almost no correct answers were seen at all.</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Candidates were often sloppy in reading the information. In particular, despite the statement BL = 120 clearly written, many took GL as 120. Triangle TBL was often taken as right-angled. Angle BTL presented few problems, though sometimes the method was very long-winded. Candidates often managed part (a) then went awry in later parts. Many unit penalties were applied, if not already used in questions 1 or 2.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Candidates were often sloppy in reading the information. In particular, despite the statement BL = 120 clearly written, many took GL as 120. Triangle TBL was often taken as right-angled. Angle BTL presented few problems, though sometimes the method was very long-winded. Candidates often managed part (a) then went awry in later parts. Many unit penalties were applied, if not already used in questions 1 or 2.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(ii) Candidates were often sloppy in reading the information. In particular, despite the statement BL = 120 clearly written, many took GL as 120. Triangle TBL was often taken as right-angled. Angle BTL presented few problems, though sometimes the method was very long-winded. Candidates often managed part (a) then went awry in later parts. Many unit penalties were applied, if not already used in questions 1 or 2.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the sequence \({u_1},{\text{ }}{u_2},{\text{ }}{u_3},{\text{ }} \ldots ,{\text{ }}{{\text{u}}_n},{\text{ }} \ldots \) where</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[{u_1} = 600,{\text{ }}{u_2} = 617,{\text{ }}{u_3} = 634,{\text{ }}{u_4} = 651.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The sequence continues in the same manner.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \({u_{20}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the sum of the first 10 terms of the sequence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Now consider the sequence \({v_1},{\text{ }}{v_2},{\text{ }}{v_3},{\text{ }} \ldots ,{\text{ }}{v_n},{\text{ }} \ldots \) where</span></p>
<p><span>\[{v_1} = 3,{\text{ }}{v_2} = 6,{\text{ }}{v_3} = 12,{\text{ }}{v_4} = 24\]</span></p>
<p><span>This sequence continues in the same manner.</span></p>
<p><span>Find the exact value of \({v_{10}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Now consider the sequence \({v_1},{\text{ }}{v_2},{\text{ }}{v_3},{\text{ }} \ldots ,{\text{ }}{v_n},{\text{ }} \ldots \) where</span></p>
<p><span>\[{v_1} = 3,{\text{ }}{v_2} = 6,{\text{ }}{v_3} = 12,{\text{ }}{v_4} = 24\]</span></p>
<p><span>This sequence continues in the same manner.</span></p>
<p><span>Find the sum of the first 8 terms of this sequence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\(k\) is the smallest value of \(n\) for which \({v_n}\) is greater than \({u_n}\).</span></p>
<p><span>Calculate the value of \(k\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(600 + (20 - 1) \times 17\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted arithmetic sequence formula, <strong><em>(A1) </em></strong>for correct substitutions. If a list is used, award <strong><em>(M1) </em></strong>for at least 6 correct terms seen, award <strong><em>(A1) </em></strong>for at least 20 correct terms seen.</span></p>
<p> </p>
<p><span>\( = 923\)     <strong><em>(A1)(G3)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{10}}{2}\left[ {2 \times 600 + (10 - 1) \times 17} \right]\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted arithmetic series formula, <strong><em>(A1) </em></strong>for their correct substitutions. Follow through from part (a). For consistent use of geometric series formula in part (b) with the geometric sequence formula in part (a) award a maximum of <strong><em>(M1)(A1)(A0) </em></strong>since their final answer cannot be an integer.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\({u_{10}} = 600 + (10 - 1)17 = 753\)     <strong><em>(M1)</em></strong></span></p>
<p><span>\({S_{10}} = \frac{{10}}{2}\left( {600 + {\text{their }}{u_{10}}} \right)\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their correctly substituted arithmetic sequence formula, <strong><em>(M1) </em></strong>for their correctly substituted arithmetic series formula. Follow through from part (a) and <strong>within </strong>part (b).</span></p>
<p> </p>
<p><span><strong>Note: </strong>If a list is used, award <strong><em>(M1) </em></strong>for at least 10 correct terms seen, award <strong><em>(A1) </em></strong>for these terms being added.</span></p>
<p> </p>
<p><span>\( = 6765\)   (accept \(6770\))     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3 \times {2^9}\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted geometric sequence formula, <strong><em>(A1) </em></strong>for correct substitutions. If a list is used, award <strong><em>(M1) </em></strong>for at least 6 correct terms seen, award <strong><em>(A1) </em></strong>for at least 8 correct terms seen.</span></p>
<p> </p>
<p><span>\( = 1536\)     <strong><em>(A1)(G3)</em></strong></span></p>
<p> </p>
<p><span><strong>Note:</strong> Exact answer only. If both exact and rounded answer seen, award the final <strong><em>(A1)</em></strong>.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{3 \times \left( {{2^8} - 1} \right)}}{{2 - 1}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted geometric series formula, <strong><em>(A1) </em></strong>for their correct substitutions. Follow through from part (c). If a list is used, award <strong><em>(M1) </em></strong>for at least 8 correct terms seen, award <strong><em>(A1) </em></strong>for these 8 correct terms being added. For consistent use of arithmetic series formula in part (d) with the arithmetic sequence formula in part (c) award a maximum of <strong><em>(M1)(A1)(A1)</em></strong>.</span></p>
<p> </p>
<p><span>\( = 765\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3 \times {2^{k - 1}} &gt; 600 + (k - 1)(17)\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their correct inequality; allow equation. </span></p>
<p><span>Follow through from parts (a) and (c). Accept sketches of the two functions as a valid method.</span></p>
<p> </p>
<p><span>\(k &gt; 8.93648 \ldots \)   (may be implied)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(8.93648…\) seen. The GDC gives answers of \(-34.3\) and \(8.936\) to the inequality; award <strong><em>(M1)(A1) </em></strong>if these are seen with working shown.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\({v_8} = 384\)     \({u_8} = 719\)     <strong><em>(M1)</em></strong></span></p>
<p><span>\({v_9} = 768\)     \({u_9} = 736\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for \({v_8}\) and \({u_8}\) both seen, <strong><em>(M1) </em></strong>for \({v_9}\) and \({u_9}\) both seen.</span></p>
<p> </p>
<p><span>\(k = 9\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(G1) </em></strong>for \(8.93648…\) and \(-34.3\) seen as final answer without working. Accept use of \(n\).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A farmer has a triangular field, ABC, as shown in the diagram.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">AB = 35 m, BC = 80 m and B&Acirc;C = 105&deg;, and D is the midpoint of BC.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the size of BĈA.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AD.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The farmer wants to build a fence around ABD.</span></p>
<p><span>Calculate the total length of the fence.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The farmer wants to build a fence around ABD.</span></p>
<p><span>The farmer pays 802.50 USD for the fence. Find the cost per metre.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Calculate the area of the triangle ABD.</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A layer of earth 3 cm thick is removed from ABD. Find the volume removed in cubic metres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{\sin {\text{BCA}}}}{{35}} = \frac{{\sin 105^\circ }}{{80}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substituted formula, <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p><br><span>\({\text{B}}{\operatorname{\hat C}}{\text{A}} = 25.0^{\circ}\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>Note: Unit penalty (UP) applies in parts (b)(c) and (e)</span></strong></em></p>
<p><span> </span></p>
<p><span>Length BD = 40 m     <em><strong>(A1)</strong></em></span></p>
<p><span>Angle ABC = 180° − 105° </span><span><span>−</span> 25° = 50°     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note: (ft)</strong> from their answer to (a).</span></p>
<p><br><span>AD<sup>2</sup> = 35</span><span><span><sup>2</sup></span> + 40</span><span><span><sup>2</sup></span> </span><span><span><span>−</span></span> (2 × 35</span><span><span> × </span>40</span><span><span> × </span>cos 50°)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substituted formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct</span> <span>substitutions.</span></p>
<p><br><span><em><strong>(UP)</strong></em>     AD = 32.0 m     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em> <br></span></p>
<p><br><span><strong>Notes:</strong> If 80 is used for BD award at most <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span> <span>for an answer of 63.4 m.</span></p>
<p><span>If the angle ABC is incorrectly calculated <strong>in this part</strong> award at most </span><em><strong><span>(A1)(A0)(M1)(A1)</span></strong></em><strong><span>(ft)</span></strong><em><strong><span>(A1)</span></strong></em><strong><span>(ft)</span></strong><span>.</span></p>
<p><span>If angle BCA is used award at most <em><strong>(A1)(A0)(M1)(A0)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>Note: Unit penalty (UP) applies in parts (b)(c) and (e)</span></strong></em></p>
<p><span> </span></p>
<p><span>length of fence = 35 + 40 + 32     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(UP)</strong></em>     = 107 m     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for adding 35 + 40 + their (b).</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>cost per metre \( = \frac{802.50}{107}\)</span>     <em><strong><span>(M1)</span></strong></em></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing 802.50 by their (c).</span></p>
<p><br><span>cost per metre = 7.50 USD (7.5 USD) (USD not required)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>Note: Unit penalty (UP) applies in parts (b)(c) and (e)</span></strong></em></p>
<p><span> </span></p>
<p><span>Area of ABD \( = \frac{1}{2} \times 35 \times 40 \times \sin 50^\circ \)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 536.2311102     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em><strong>(UP)</strong></em>     = 536 m<sup>2</sup>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for correct substituted formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct</span> <span>substitution, <strong>(ft)</strong> from their value of BD and their angle ABC in (b).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Volume = 0.03 × 536     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>= 16.08</span></p>
<p><span>= 16.1     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 0.03, <em><strong>(M1)</strong></em> for correct formula. <strong>(ft)</strong> from their (e).</span></p>
<p><span>If 3 is used award at most <em><strong>(A0)(M1)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was a simple application of non-right angled trigonometry and most </span><span style="font-size: medium; font-family: times new roman,times;">candidates answered it well. Some candidates lost marks in both parts due to the incorrect </span><span style="font-size: medium; font-family: times new roman,times;">setting of the calculators. Those that did not score well overall primarily used Pythagoras.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This was a simple application of non-right angled trigonometry and most </span><span style="font-size: medium; font-family: times new roman,times;">candidates answered it well. Some candidates lost marks in both parts due to the incorrect </span><span style="font-size: medium; font-family: times new roman,times;">setting of the calculators. Those that did not score well overall primarily used Pythagoras.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Most candidates scored full marks, many by follow through from an incorrect part</span> <span style="font-size: medium; font-family: times new roman,times;">(b). The main error was using the value for BC and not BD.</span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Most candidates scored full marks, many by follow through from an incorrect part</span> <span style="font-size: medium; font-family: times new roman,times;">(b). The main error was using the value for BC and not BD.</span></span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Done well; again some candidates used the right-angled formula.</span></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">This part was poorly done; many candidates unable to convert 3 cm to 0.03 m. A</span> <span style="font-size: medium; font-family: times new roman,times;">significant number used the wrong formula, multiplying their answer by 1/3.</span></span></span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The following graph shows the temperature in degrees Celsius of Robert&rsquo;s cup of coffee, \(t\) minutes after pouring it out. The equation of the cooling graph is \(f (t) = 16 + 74 \times 2.8^{&minus;0.2t}\) where \(f (t)\) is the temperature and \(t\) is the time in minutes after pouring the coffee out.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Robert, who lives in the UK, travels to Belgium. The exchange rate is 1.37 euros to one British Pound (GBP) with a commission of 3 GBP, which is subtracted before the exchange takes place. Robert gives the bank 120 GBP.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the initial temperature of the coffee.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the horizontal asymptote.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the room temperature.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the temperature of the coffee after 10 minutes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the temperature of Robert’s coffee after being heated in the microwave for 30 <strong>seconds</strong> after it has reached the temperature in part (d).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of time it would take a similar cup of coffee, initially at 20°C, to be heated in the microwave to reach 100°C.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate <strong>correct to 2 decimal places</strong> the amount of euros he receives.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He buys 1 kilogram of Belgian chocolates at 1.35 euros per 100 g.</span></p>
<p><span>Calculate the cost of his chocolates in GBP <strong>correct to 2 decimal places</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in part (i)(a)(c)(d)(e) and (f)</em></span></p>
<p><span><em><strong>(UP)</strong></em> 90°C     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>y</em> = 16     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em><span><em>Unit penalty <strong>(UP)</strong> is applicable in part (i)(a)(c)(d)(e) and (f)</em></span></em></span></p>
<p><span><em><strong>(UP)</strong></em> 16°C <strong>(ft)</strong><em> from answer to part (b)     <strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong><em>[1 mark]</em><br></strong></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em><span><em>Unit penalty <strong>(UP)</strong> is applicable in part (i)(a)(c)(d)(e) and (f)</em></span></em></span></p>
<p><span><em><strong>(UP)</strong></em> 25.4°C     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong><span>[1 mark]</span></strong></em></span><span><em><strong> </strong></em></span>  </p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><span><span><em><span><em>Unit penalty <strong>(UP)</strong> is applicable in part (i)(a)(c)(d)(e) and (f)</em></span></em></span></span></em></p>
<p><em><span>for seeing </span></em><span>2</span><span><sup>0.75</sup></span><em><span> or equivalent     <strong>(A1)</strong><br></span></em></p>
<p><em><span>for multiplying their (d) by their </span></em><span>2<sup>0.75</sup></span><em><span>     <strong>(M1)</strong></span></em></p>
<p><span><em><strong>(UP)</strong></em> 42.8°C     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em><em><span>Unit penalty <strong>(UP)</strong> is applicable in part (i)(a)(c)(d)(e) and (f)<br></span></em></em></span></p>
<p><span><em>for seeing </em> \(20 \times 2^{1.5t} = 100\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em>for seeing a value of t between</em> 1.54 <em>and</em> 1.56 <em>inclusive     <strong>(M1)(A1)</strong></em></span></p>
<p><span><em><strong>(UP)</strong></em> 1.55 minutes or 92.9 seconds     <em><strong>(A1)(G3)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Financial accuracy penalty <strong>(FP)</strong> is applicable in part (ii) <strong>only</strong>.</em><br></span></p>
<p><span>\(120 - 3 = 117\)</span></p>
<p><span><em><strong>(FP)</strong></em> \(117 \times 1.37\)     <em><strong>(A1)</strong></em></span></p>
<p><span>= 160.29 euros<em> (correct answer only)     <strong>(M1)</strong></em></span></p>
<p><em><span>first <strong>(A1)</strong> for 117 seen, <strong>(M1)</strong> for multiplying by 1.37     <strong>(A1)(G2)</strong></span></em></p>
<p><em><span><strong>[3 marks]<br></strong></span></em></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Financial accuracy penalty <strong>(FP)</strong> is applicable in part (ii) <strong>only</strong>.</em><br></span></p>
<p><span><em><strong>(FP)</strong></em> \(\frac{{13.5}}{{1.37}}\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>9.85 GBP <em>(answer correct to 2dp only)</em></span></p>
<p><span><em>first <strong>(A1)</strong> is for 13.5 seen, <strong>(M1)</strong> for dividing by 1.37</em>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had not lost a UP in question 2 lost one here. Parts (a), (c) and (d) were reasonably well tackled. Almost everybody had difficulty with the equation of the horizontal asymptote, a common answer being <em>y</em> = 20. Most of the candidates realised that 30 seconds was 0.5 minutes and calculated part (e) correctly. Part (f), solving an exponential equation, was a good discriminator. Trial and error was expected but many students did not think of doing this.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The financial part was the best done question in the paper and a large majority of candidates gained full marks here.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The financial part was the best done question in the paper and a large majority of candidates gained full marks here.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia designs a wastepaper bin made in the shape of an <strong>open</strong> cylinder with a volume of \(8000{\text{ c}}{{\text{m}}^3}\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Nadia decides to make the radius, \(r\) , of the bin \(5{\text{ cm}}\).</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Merryn also designs a cylindrical wastepaper bin with a volume of \(8000{\text{ c}}{{\text{m}}^3}\). She decides to fix the radius of its base so that the <strong>total external surface area</strong> of the bin is minimized.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Let the radius of the base of Merryn&rsquo;s wastepaper bin be \(r\) , and let its height be \(h\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate</span><br><span>(i)     the area of the base of the wastepaper bin;</span><br><span>(ii)    the height, \(h\) , of Nadia’s wastepaper bin;</span><br><span>(iii)   the total <strong>external</strong> surface area of the wastepaper bin.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Nadia’s design is practical. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an equation in \(h\) and \(r\) , using the given volume of the bin.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total external surface area, \(A\) , of the bin is \(A = \pi {r^2} + \frac{{16000}}{r}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i)     Find the value of \(r\) that minimizes the total external surface area of the wastepaper bin.</span><br><span>(ii)    Calculate the value of \(h\) corresponding to this value of \(r\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether Merryn’s design is an improvement upon Nadia’s. Give a reason.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \({\text{Area}} = \pi {(5)^2}\)     <em><strong>(M1)</strong></em></span><br><span>\( = 78.5{\text{ (c}}{{\text{m}}^2}{\text{)}}\) (\(78.5398 \ldots \))     <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept \(25\pi \) .</span></p>
<p><br><span>(ii)    \(8000 = 78.5398 \ldots  \times h\)     <em><strong>(M1)</strong></em></span><br><span>\(h = 102{\text{ (cm)}}\) (\(101.859 \ldots \))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (a)(i).</span></p>
<p><br><span>(iii)   \({\text{Area}} = \pi {(5)^2} + 2\pi (5)(101.859 \ldots )\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their substitution in curved surface area formula, <em><strong>(M1)</strong></em> for addition of their two areas.</span></p>
<p><br><span>\( = 3280{\text{ (c}}{{\text{m}}^2}{\text{)}}\) (\(3278.53 \ldots \))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their answers to parts (a)(i) and (ii).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>No, it is too tall/narrow.     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(R1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their value for \(h\).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(8000 = \pi {r^2}h\)    </span> <span><em><strong>(A1)</strong></em></span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(A = \pi {r^2} + 2\pi r\left( {\frac{{8000}}{{\pi {r^2}}}} \right)\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct rearrangement of <strong>their</strong> part (c), <em><strong>(M1)</strong></em> for substitution of <strong>their</strong> rearrangement into area formula.</span></p>
<p><br><span>\( = \pi {r^2} + \frac{{16000}}{r}\)     <em><strong>(AG)</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 2\pi r - 16000{r^{ - 2}}\)     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(2\pi r\) , <em><strong>(A1)</strong></em> for \( - 16000\) <em><strong>(A1)</strong></em> for \({r^{ - 2}}\) . If an extra term is present award at most <em><strong>(A1)(A1)(A0)</strong></em>.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(\frac{{{\text{d}}A}}{{{\text{d}}r}} = 0\)     <em><strong>(M1)</strong></em></span><br><span>\(2\pi {r^3} - 16000 = 0\)    <em><strong>(M1)</strong></em></span><br><span>\(r = 13.7{\text{ cm}}\) (\(13.6556 \ldots \))     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Follow through from their part (e).</span></p>
<p><br><span>(ii)    \(h = \frac{{8000}}{{\pi {{(13.65 \ldots )}^2}}}\)     <em><strong>(M1)</strong></em></span><br><span>\( = 13.7{\text{ cm}}\) (\(13.6556 \ldots \))     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Accept \(13.6\) if \(13.7\) used.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Yes or No, accompanied by a consistent and sensible reason.     <em><strong>(A1)(R1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A0)(R0)</strong></em> if no reason is given.</span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The lengths (\(l\)) in centimetres of \(100\) copper pipes at a local building supplier were measured. The results are listed in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the mode.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, write down the value of</span><br><span>(i)     the mean;</span><br><span>(ii)    the standard deviation;</span><br><span>(iii)   the median.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the interquartile range.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a box and whisker diagram for this data, on graph paper, using a scale of \(1{\text{ cm}}\) to represent \(5{\text{ cm}}\).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sam estimated the value of the mean of the measured lengths to be \(43{\text{ cm}}\).</span></p>
<p><span>Find the percentage error of Sam’s estimated mean.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(47.5{\text{ (cm)}}\)    </span> <span><em><strong>(A1)</strong></em></span></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(45.85{\text{ (cm)}}\)     <em><strong>(G2)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Note:</strong> Accept \(45.9\) .</span></p>
<p> </p>
<p><span>(ii)    \(17.1{\text{ }}(17.0888 \ldots )\)     <em><strong>(G1)</strong></em></span><br><span>(iii)   \(47.5{\text{ (cm)}}\)     <em><strong>(G1)</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(62.5 - 32.5 = 30\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct quartiles seen.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for correct label and scale</span><br><span><strong><em>(A1)</em>(ft)</strong> for correct median</span><br><span><strong><em>(A1)</em>(ft)</strong> for correct quartiles and box</span><br><span><em><strong>(A1)</strong></em> for endpoints at \(17.5\) and \(77.5\) joined to box by straight lines     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em></span></p>
<p><span> </span></p>
<p><span><span><strong>Notes:</strong> The final</span> <span><em><strong>(A1)</strong></em> is lost if the lines go through the box. Follow through from their parts (b) and (c).</span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\varepsilon  = \left| {\frac{{43 - 45.85}}{{45.85}}} \right| \times 100\% \)     <strong>(M1)</strong></span></p>
<p> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution in \(\% \) error formula.</span></p>
<p> </p>
<p><span>\( = 6.22\% \) (\(6.21592 \ldots \))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Follow through from their answer to part (b)(i). Accept \(6.32\% \) with use of \(45.9\) .</span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The sum of the first \(n\) terms of an arithmetic sequence is given by \({S_n} = 6n + {n^2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the value of</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>\({S_1}\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\({S_2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \({n^{{\text{th}}}}\) term of the arithmetic sequence is given by \({u_n}\).</p>
<p class="p1">Show that \({u_2} = 9\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \({n^{{\text{th}}}}\) term of the arithmetic sequence is given by \({u_n}\).</p>
<p class="p1">Find the common difference of the sequence.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \({n^{{\text{th}}}}\) term of the arithmetic sequence is given by \({u_n}\).</p>
<p class="p1">Find \({u_{10}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \({n^{{\text{th}}}}\) term of the arithmetic sequence is given by \({u_n}\).</p>
<p class="p1">Find the lowest value of \(n\) for which \({u_n}\) <span class="s1">is greater than \(1000\)</span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The \({n^{{\text{th}}}}\) term of the arithmetic sequence is given by \({u_n}\).</p>
<p>There is a value of \(n\) for which</p>
<p>\[{u_1} + {u_2} +  \ldots  + {u_n} = 1512.\]</p>
<p>Find the value of \(n\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\({S_1} = 7\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\({S_2} = 16\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(({u_2} = ){\text{ }}16 - 7 = 9\) <span class="Apple-converted-space">    </span><strong><em>(M1)(AG)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for subtracting <span class="s1">7 </span>from <span class="s1">16</span>. The <span class="s1">9 </span>must be seen.</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">\(16 - 7 - 7 = 2\)</p>
<p class="p1">\(({u_2} = ){\text{ }}7 + (2 - 1)(2) = 9\) <span class="Apple-converted-space">    </span><strong><em>(M1)(AG)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for subtracting twice \(7\)<span class="s1"> </span>from \(16\)<span class="s1"> </span>and for correct substitution in correct arithmetic sequence formula.</p>
<p class="p1">The \(9\)<span class="s1"> </span>must be seen.</p>
<p class="p1">Do not accept: \(9 - 7 = 2,{\text{ }}{u_2} = 7 + (2 - 1)(2) = 9\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({u_1} = 7\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">\(d = 2{\text{ }}( = 9 - 7)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Follow through from their \({S_1}\) in part (a)(i).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(7 + 2 \times (10 - 1)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in the correct arithmetic sequence formula. Follow through from <strong>their </strong>parts (a)(i) and (c).</p>
<p class="p2"> </p>
<p class="p1">\( = 25\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their correct tenth term.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(7 + 2 \times (n - 1) &gt; 1000\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for their correct expression for the \({n^{{\text{th}}}}\) term, <strong><em>(M1) </em></strong>for comparing their expression to \(1000\). Accept an equation. Follow through from their parts (a)(i) and (c).</p>
<p class="p2"> </p>
<p class="p1">\(n = 498\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Answer must be a natural number.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(6n + {n^2} = 1512\;\;\;\)<strong>OR</strong>\(\;\;\;\frac{n}{2}\left( {14 + 2(n - 1)} \right) = 1512\;\;\;\)<strong>OR</strong></p>
<p>\({S_n} = 1512\;\;\;\)<strong>OR</strong>\(\;\;\;7 + 9 +  \ldots  + {u_n} = 1512\)     <strong><em>(M1)</em></strong></p>
<p><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for equating the sum of the first \(n\) terms to \(1512\). Accept a sum of at least the first 7 correct terms.</p>
<p> </p>
<p>\(n = 36\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong>Note:</strong> If \(n = 36\) is seen without working, award <strong><em>(G2)</em></strong>. Award a maximum of <strong><em>(M1)(A0) </em></strong>if \( - 42\) is also given as a solution.</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Abdallah owns a plot of land, near the river Nile, in the form of a quadrilateral ABCD.</p>
<p>The lengths of the sides are \({\text{AB}} = {\text{40 m, BC}} = {\text{115 m, CD}} = {\text{60 m, AD}} = {\text{84 m}}\) and angle \({\rm{B\hat AD}} = 90^\circ \).</p>
<p>This information is shown on the diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.24.18.png" alt="N17/5/MATSD/SP2/ENG/TZ0/03"></p>
</div>

<div class="specification">
<p>The formula that the ancient Egyptians used to estimate the area of a quadrilateral ABCD is</p>
<p style="text-align: center;">\({\text{area}} = \frac{{({\text{AB}} + {\text{CD}})({\text{AD}} + {\text{BC}})}}{4}\).</p>
<p>Abdallah uses this formula to estimate the area of his plot of land.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{BD}} = 93{\text{ m}}\) correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate angle \({\rm{B\hat CD}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the area of ABCD.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Abdallah’s estimate for the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in Abdallah’s estimate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({\text{B}}{{\text{D}}^2} = {40^2} + {84^2}\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras.</p>
<p>Accept correct substitution into cosine rule.</p>
<p>\({\text{BD}} = 93.0376 \ldots \)     <strong><em>(A1)</em></strong></p>
<p>\( = 93\)     <strong><em>(AG)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Both the rounded and unrounded value must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\cos C = \frac{{{{115}^2} + {{60}^2} - {{93}^2}}}{{2 \times 115 \times 60}}{\text{ }}({93^2} = {115^2} + {60^2} - 2 \times 115 \times 60 \times \cos C)\)     <strong><em>(M1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for substitution into cosine formula, <strong><em>(A1) </em></strong>for correct substitutions.</p>
<p> </p>
<p>\( = 53.7^\circ {\text{ }}(53.6679 \ldots ^\circ )\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{1}{2}(40)(84) + \frac{1}{2}(115)(60)\sin (53.6679 \ldots )\)     <strong><em>(M1)(M1)(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into right-angle triangle area. Award <strong><em>(M1) </em></strong>for substitution into area of triangle formula and <strong><em>(A1)</em>(ft) </strong>for correct substitution.</p>
<p> </p>
<p>\( = 4460{\text{ }}{{\text{m}}^2}{\text{ }}(4459.30 \ldots {\text{ }}{{\text{m}}^2})\)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Follow through from part (b).</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{(40 + 60)(84 + 115)}}{4}\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution in the area formula used by ‘Ancient Egyptians’.</p>
<p> </p>
<p>\( = 4980{\text{ }}{{\text{m}}^2}{\text{ }}(4975{\text{ }}{{\text{m}}^2})\)     <strong><em>(A1)(G2)</em></strong></p>
<p> </p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left| {\frac{{4975 - 4459.30 \ldots }}{{4459.30 \ldots }}} \right| \times 100\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:     </strong>Award <strong><em>(M1) </em></strong>for correct substitution into percentage error formula.</p>
<p> </p>
<p>\( = 11.6{\text{ }}(\% ){\text{ }}(11.5645 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Notes:    </strong>Follow through from parts (c) and (d)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;"><strong>Give all your numerical answers correct to two decimal places.</strong></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">On 1 January 2005, Daniel invested \(30000{\text{ AUD}}\) at an annual <strong>simple</strong> interest rate in a <em>Regular Saver</em> account. On 1 January 2007, Daniel had \(31650{\text{ AUD}}\) in the account.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On 1 January 2005, Rebecca invested \(30000{\text{ AUD}}\) in a <em>Supersaver</em> account at a nominal annual rate of \(2.5\% \) <strong>compounded annually</strong>. Calculate the amount in the <em>Supersaver</em> account after two years.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>On 1 January 2005, Rebecca invested \(30000{\text{ AUD}}\) in a <em>Supersaver</em> account at a nominal annual rate of \(2.5\% \) <strong>compounded annually</strong>. <br></span></span></p>
<p><span>Find the number of complete years since 1 January 2005 it would take for the amount in Rebecca’s account to exceed the amount in Daniel’s account.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On 1 January 2007, Daniel reinvested \(80\% \) of the money from the <em>Regular Saver</em> account in an <em>Extra Saver</em> account at a nominal annual rate of \(3\% \) <strong>compounded quarterly</strong>.</span></p>
<p><span>(i)     Calculate the amount of money reinvested by Daniel on the 1 January 2007.</span></p>
<p><span>(ii)    Find the number of complete years it will take for the amount in Daniel’s <em>Extra Saver</em> account to exceed \(30000{\text{ AUD}}\).</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Amount}} = 30000{\left( {1 + \frac{{2.5}}{{100}}} \right)^2}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into compound interest formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span>\(31518.75{\text{ AUD}}\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\({\text{I}} = 30000{\left( {1 + \frac{{2.5}}{{100}}} \right)^2} - 30000\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into compound interest formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span><span>\(31518.75{\text{ AUD}}\)    </span> <span><em><strong>(A1)(G2)</strong></em></span></span></p>
<p><span><span><em><strong>[3 marks]<br></strong></em></span></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Rebecca's amount}} = 30000{\left( {1 + \frac{{2.5}}{{100}}} \right)^n}\)</span><br><span>\({\text{Daniel's amount}} = 30000 + \frac{{30000 \times 2.75 \times n}}{{100}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in the correct formula for the two amounts, <em><strong>(A1)</strong></em> for correct substitution. Follow through from their</span> <span>expressions used in part (a) and/or part (b).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>2 lists of values seen (at least 2 terms per list)     <em><strong>(M1)</strong></em></span></p>
<p><span>lists of values including at least the terms with \(n = 8\) and \(n = 9\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span>For \(n = 8\)     \({\text{CI}} = 36552.09\)     \({\text{SI}} = 36600\)</span></p>
<p><span>For \(n = 9\)     </span><span><span>\({\text{CI}} = 37465.89\)</span></span><span>     \({\text{SI}} = 37425\)</span></p>
<p><span><strong>Note:</strong> Follow through from their expressions used in part (a) or/and (b).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>Sketch showing 2 graphs, one exponential and the other straight line     <em><strong>(M1)</strong></em></span></p>
<p><span>point of intersection identified     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their expressions used in part (a) or/and (b).</span></p>
<p> </p>
<p><span>\(n = 9\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Answer \(8.57\) without working is awarded <em><strong>(G1)</strong></em>.</span></p>
<p><span><strong>Note:</strong> Accept comparison of interests instead of the total amounts in the two accounts.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(0.80 \times 31650 = 25320\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct use of percentages.</span></p>
<p> </p>
<p><span>(ii)    \(25320{\left( {1 + \frac{3}{{4 \times 100}}} \right)^{4n}} &gt; 30000\)     <strong><em>(M1)(M1)</em>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct left-hand side of the inequality, <em><strong>(M1)</strong></em> for comparison to \(30000\). Accept equation. Follow through from their answer to part (d) (i).</span></p>
<p><span> </span></p>
<p><span><strong>OR</strong></span></p>
<p><span>List of values from their \(25320{\left( {1 + \frac{3}{{4 \times 100}}} \right)^{4n}} \) seen (at least 2 terms)     <em><strong>(M1)</strong></em></span></p>
<p><span>Their correct values for \(n = 5\) (\(29401.18\)) and \(n = 6\) (\(30293\)) seen     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to (d) (i).</span></p>
<p><span> </span></p>
<p><span><strong>OR</strong></span></p>
<p><span>Sketch showing 2 graphs <span>–</span> an exponential and a horizontal line     <em><strong>(M1)</strong></em></span></p>
<p><span>Point of intersection identified or vertical line drawn     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to (d) (i).</span></p>
<p> </p>
<p><span>\(n = 6\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for answer \(5.67\) with no working.</span></p>
<p><span> </span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Part b) was well done. <br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts c) and d) were not answered well. Marks were gained by candidates who showed detailed working. Many candidates had difficulty working with the compound interest formula where the interest was compounded quarterly. Correct final answers in parts c) and d) were rare.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Parts c) and d) were not answered well. Marks were gained by candidates who showed detailed working. Many candidates had difficulty working with the compound interest formula where the interest was compounded quarterly. Correct final answers in parts c) and d) were rare.</span></p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prachi is on vacation in the United States. She is visiting the Grand Canyon.</p>
<p><br>When she reaches the top, she drops a coin down a cliff. The coin falls down a distance of \(5\) metres during the first second, \(15\) metres during the next second, \(25\) metres during the third second and continues in this way. The distances that the coin falls during each second forms an arithmetic sequence.</p>
<p> </p>
<p>(i)     Write down the common difference, \(d\) , of this arithmetic sequence.</p>
<p>(ii)    Write down the distance the coin falls during the fourth second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the distance the coin falls during the \(15{\text{th}}\) second.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> distance the coin falls in the first \(15\) seconds. Give your answer in kilometres.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prachi drops the coin from a height of \(1800\) metres above the ground.</p>
<p>Calculate the time, to the nearest second, the coin will take to reach the ground.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prachi visits a tourist centre nearby. It opened at the start of \(2015\) and in the first year there were \(17\,000\) visitors. The number of people who visit the tourist centre is expected to increase by \(10\,\% \) each year.</p>
<p>Calculate the number of people expected to visit the tourist centre in \(2016\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total number of people expected to visit the tourist centre during the first \(10\) years since it opened.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)     \(10\,({\text{m}})\)         <em><strong> (A1)</strong></em></p>
<p> </p>
<p>(ii)    \(35\,({\text{m}})\)         <em><strong> (A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (a)(i).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(5 + 14 \times 10\)        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into arithmetic sequence formula. A list of <strong>their</strong> \(10\) correct terms (excluding those given in question and the \(35\) from part (a)(ii)) must be seen for the <em><strong>(M1)</strong></em> to be awarded.</p>
<p>\( = 145\,({\text{m}})\)         <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from their value for \(d\).</p>
<p>If a list is used, award <em><strong>(A1)</strong></em> for their \({15^{{\text{th}}}}\) term.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{15}}{2}(2 \times 5 + 14 \times 10)\) <strong>OR</strong> \(\frac{{15}}{2}(5 + 145)\)         <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into arithmetic series formula. Follow through from their part (a)(i). Accept a list added together until the \(15{\text{th}}\) term.</p>
<p>\( = 1125\,\,{\text{(m)}}\)          <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from parts (a) and (b).</p>
<p>\({\text{ = 1}}{\text{.13}}\,\,{\text{(km)}}\,\,(1.125\,{\text{(km)}})\)          <strong><em>(A1)</em>(ft)<em>(G2)</em></strong>    </p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for correctly converting <strong>their</strong> metres to kilometres, irrespective of method used. To award the last <strong><em>(A1)</em>(ft)</strong> in follow through, the candidate’s answer in metres must be seen.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{n}{2}\left( {2 \times 5 + (n - 1)10} \right) = 1800\)           <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into arithmetic series formula equated to \(1800\). Follow through from their part (a)(i). Accept a list of terms that shows clearly the \(18{\text{th}}\) second and \(19{\text{th}}\) second distances.<br>Correct use of kinematics equations is a valid method.</p>
<p>\(n = 18.97\)         <strong><em>(A1)</em>(ft)</strong></p>
<p>\(19\) (seconds)         <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for correct unrounded value for \(n\). The second <strong><em>(A1)</em>(ft)</strong> is awarded for the correct rounding off of their value for \(n\) to the nearest second if their unrounded value is seen.<br>Award <strong><em>(M1)(A2)</em>(ft)</strong> for their \(19\) if method is shown. Unrounded value for \(n\) may not be seen. Follow through from their \({u_I}\) and \(d\) only if workings are shown.</p>
<p><strong>OR</strong></p>
<p>\(1125 + 155 + 165 + 175 + 185 = 1805\)           <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for adding the terms until reaching \(1800\).</p>
<p>\((n = )\,19\)            <strong><em>(A2)</em>(ft)</strong></p>
<p><strong>Note:</strong> In this method, follow through from their \(d\) from part (a) and their \(1125\) from part (c).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(17\,000\,\,(1.1)\) (or equivalent)          <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying \(17\,000\) by \(1.1\) or equivalent.</p>
<p>\( = 18\,700\)                   <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({S_{10}} = \frac{{17\,000\,({{1.1}^{10}} - 1)}}{{1.1 - 1}}\)           <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the geometric series formula, <strong><em>(A1)</em>(ft)</strong> for correct substitution. Award <strong><em>(A1)</em>(ft)</strong> for a list of their correct \(10\) terms, <em><strong>(M1)</strong></em> for adding their \(10\) terms.</p>
<p>\(271\,000\,\,\,(270\,936)\)           <strong><em>(A1)</em>(ft)(G2)</strong></p>
<p><strong>Note:</strong> Follow through from their \(1.1\) in part (e).</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series<br>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the \({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series</p>
<p>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the&nbsp;\({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series</p>
<p>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the&nbsp;\({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series</p>
<p>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the&nbsp;\({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series</p>
<p>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the&nbsp;\({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 2: Arithmetic and geometric sequences and series</p>
<p>Parts (a), (b), (c) and (e) were well done. Quite a few forgot to convert their answer to km in part (c). The main problem with part (d) was that candidates chose to equate the&nbsp;\({n^{{\text{th}}}}\) term formula to 1800 rather than the sum of the first n terms formula. Some of those who managed to write the correct equation were not always successful at solving it. Some candidates made use of the trial and error method to reach the correct answer. Part (e) was obvious to some, others put it into a formula with little understanding and a surprising number of candidates had place value issues (stating 10% of 17000 was 170). Many candidates used the compound interest formula in both parts (e) and (f). In part (f) many candidates did not realize that they needed to use the sum of a geometric series formula. They either used the sum of an arithmetic series or as previously mentioned, the compound interest formula.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A lobster trap is made in the shape of half a cylinder. It is constructed from a steel frame with netting pulled tightly around it. The steel frame consists of a rectangular base, two semicircular ends and two further support rods, as shown in the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.54.16.png" alt><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The semicircular ends each have radius \(r\) and the support rods each have length \(l\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Let \(T\) be the total length of steel used in the frame of the lobster trap.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down an expression for \(T\) in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Write down an equation for the volume of the lobster trap in terms of \(r\), \(l\) and \(\pi \).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Show that \(T = (2\pi  + 4)r + \frac{6}{{\pi {r^2}}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The volume of the lobster trap is \(0.75{\text{ }}{{\text{m}}^{\text{3}}}\).</span></p>
<p><span>Find \(\frac{{{\text{d}}T}}{{{\text{d}}r}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Show that the value of \(r\) for which \(T\) is a minimum is \(0.719 {\text{ m}}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the value of \(l\) for which \(T\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The lobster trap is designed so that the length of steel used in its frame is a minimum.</span></p>
<p><span>Calculate the minimum value of \(T\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(2\pi r + 4r + 4l\)     <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1) </em></strong>for \(2\pi r\) (“\(\pi \)” must be seen), <strong><em>(A1) </em></strong>for \(4r\), <strong><em>(A1) </em></strong>for \(4l\). Accept equivalent forms. Accept \(T = 2\pi r + 4r + 4l\). Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.75 = \frac{{\pi {r^2}l}}{2}\)     <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes:</strong>     Award <strong><em>(A1) </em></strong>for their formula equated to \(0.75\), <strong><em>(A1) </em></strong>for \(l\) substituted into volume of cylinder formula, <strong><em>(A1) </em></strong>for volume of cylinder formula divided by \(2\).</span></p>
<p><span>If “\(\pi \)” not seen in part (a) accept use of \(3.14\) or greater accuracy. Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(T = 2\pi r + 4r + 4\left( {\frac{{1.5}}{{\pi {r^2}}}} \right)\)     <strong><em>(A1)</em>(ft)<em>(A1)</em></strong></span></p>
<p><span>\( = (2\pi  + 4)r + \frac{6}{{\pi {r^2}}}\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct rearrangement of their volume formula in part (b) seen, award <strong><em>(A1) </em></strong>for the correct substituted formula for \(T\)<em>. </em>The final line must be seen, with no incorrect working, for this second <strong><em>(A1) </em></strong>to be awarded.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}T}}{{{\text{d}}r}} = 2\pi  + 4 - \frac{{12}}{{\pi {r^3}}}\)     <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(2\pi  + 4\), <strong><em>(A1)</em></strong> for \(\frac{{ - 12}}{\pi }\), <strong><em>(A1)</em></strong> for \({r^{ - 3}}\).</span></p>
<p><span>     Accept 10.3 (10.2832…) for \(2\pi  + 4\),  accept \(–3.82\) \(–3.81971…\) for \(\frac{{ - 12}}{\pi }\). Award a maximum of <strong><em>(A1)(A1)(A0) </em></strong>if extra terms are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2\pi  + 4 - \frac{{12}}{{\pi {r^3}}} = 0\)   <strong>OR</strong>   \(\frac{{{\text{d}}T}}{{{\text{d}}r}} = 0\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for setting their derivative equal to zero.</span></p>
<p> </p>
<p><span>\(r = 0.718843 \ldots \)   <strong>OR</strong>   \(\sqrt[3]{{0.371452 \ldots }}\)   <strong>OR</strong>   \(\sqrt[3]{{\frac{{12}}{{\pi (2\pi  + 4)}}}}\)   <strong>OR</strong>   \(\sqrt[3]{{\frac{{3.81971}}{{10.2832 \ldots }}}}\)     <strong><em>(A1)</em></strong></span></p>
<p><span>\(r = 0.719{\text{ (m)}}\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>The rounded and unrounded or formulaic answers must be seen for the final <strong><em>(A1) </em></strong>to be awarded. The use of \(3.14\) gives an unrounded answer of \(r = 0.719039 \ldots \).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.75 = \frac{{\pi  \times {{(0.719)}^2}l}}{2}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting \(0.719\) into their volume formula. Follow through from part (b).</span></p>
<p> </p>
<p><span>\(l = 0.924{\text{ (m)}}\)  \((0.923599 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(T = (2\pi  + 4) \times 0.719 + \frac{6}{{\pi {{(0.719)}^2}}}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituting \(0.719\) in their expression for \(T\). Accept alternative methods, for example substitution of their \(l\) and \(0.719\) into their part (a) (for which the answer is \(11.08961024\)). Follow through from their answer to part (a).</span></p>
<p> </p>
<p><span>\( = 11.1{\text{ (m)}}\)   \((11.0880 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A water container is made in the shape of a cylinder with internal height \(h\) cm and internal base radius \(r\) cm.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p class="p1">The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p class="p1">The volume of the water container is \(0.5{\text{ }}{{\text{m}}^3}\).</p>
</div>

<div class="specification">
<p class="p1">The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p class="p1">One can of water-resistant material coats a surface area of \(2000{\text{ c}}{{\text{m}}^2}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a formula for \(A\), <span class="s1">the surface area to be coated.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Express this volume in \({\text{c}}{{\text{m}}^3}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down, in terms of \(r\) </span>and \(h\), an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2}\frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(\frac{{{\text{d}}A}}{{{\text{d}}r}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your answer to part (e), find the value of \(r\) <span class="s1">which minimizes \(A\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the least number of cans of water-resistant material that will coat the area in <span class="s1">part (g).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\((A = ){\text{ }}\pi {r^2} + 2\pi rh\)    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for either \(\pi {r^2}\) <strong>OR</strong> \(2\pi rh\) seen. Award <strong><em>(A1) </em></strong>for two correct terms added together.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(500\,000\)    </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Units <strong>not </strong>required.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(500\,000 = \pi {r^2}h\)    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for \(\pi {r^2}h\) equating to their part (b).</p>
<p class="p1"><span class="s1">Do not accept </span>unless \(V = \pi {r^2}h\) is explicitly defined as their part (b).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)\)    </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \({\frac{{500\,000}}{{\pi {r^2}}}}\) seen.</p>
<p class="p1">Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> \({\frac{{500\,000}}{{\pi {r^2}}}}\) into a <strong>correct </strong>part (a).</p>
<p class="p1">Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to \(\pi rh = \frac{{500\,000}}{r}\) and substituting for \(\pi rh\) <span class="s1">in expression for \(A\).</span></p>
<p class="p3"> </p>
<p class="p4"><span class="Apple-converted-space">\(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\)    </span><span class="s2"><strong><em>(AG)</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>The conclusion, \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\), must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p class="p4">Accept \({10^6}\) as equivalent to \({1\,000\,000}\).</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(A = \pi {r^2} + 2\pi r\left( {\frac{{500\,000}}{{\pi {r^2}}}} \right)\)    </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \({\frac{{500\,000}}{{\pi {r^2}}}}\) seen.</p>
<p class="p1">Award <strong><em>(M1) </em></strong>for correctly substituting <strong>only</strong> \({\frac{{500\,000}}{{\pi {r^2}}}}\) into a <strong>correct </strong>part (a).</p>
<p class="p1">Award <strong><em>(A1)</em>(ft)<em>(M1) </em></strong>for rearranging part (c) to \(\pi rh = \frac{{500\,000}}{r}\) and substituting for \(\pi rh\) <span class="s1">in expression for \(A\).</span></p>
<p class="p3"> </p>
<p class="p4"><span class="Apple-converted-space">\(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\)    </span><span class="s2"><strong><em>(AG)</em></strong></span></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>The conclusion, \(A = \pi {r^2} + \frac{{1\,000\,000}}{r}\), must be consistent with their working seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p class="p4">Accept \({10^6}\) as equivalent to \({1\,000\,000}\).</p>
<p class="p3"> </p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(2\pi r - \frac{{{\text{1}}\,{\text{000}}\,{\text{000}}}}{{{r^2}}}\)    </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(A1) </em></strong>for \(2\pi r\), <strong><em>(A1) </em></strong>for \(\frac{1}{{{r^2}}}\) or \({r^{ - 2}}\), <strong><em>(A1) </em></strong>for \( - {\text{1}}\,{\text{000}}\,{\text{000}}\).</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(2\pi r - \frac{{1\,000\,000}}{{{r^2}}} = 0\)    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for equating their part (e) to zero.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\({r^3} = \frac{{1\,000\,000}}{{2\pi }}\) <strong>OR</strong> \(r = \sqrt[3]{{\frac{{1\,000\,000}}{{2\pi }}}}\)     </span><strong><em>(M1)</em></strong></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for isolating \(r\).</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">sketch of derivative function <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">with its zero indicated <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><span class="Apple-converted-space">\((r = ){\text{ }}54.2{\text{ }}({\text{cm}}){\text{ }}(54.1926 \ldots )\)    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\pi {(54.1926 \ldots )^2} + \frac{{1\,000\,000}}{{(54.1926 \ldots )}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution of their part (f) into the given equation.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 27\,700{\text{ }}({\text{c}}{{\text{m}}^2}){\text{ }}(27\,679.0 \ldots )\)    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="Apple-converted-space">\(\frac{{27\,679.0 \ldots }}{{2000}}\)    </span><strong><em>(M1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>(M1) </em></strong>for dividing their part (g) by <span class="s1">2000</span>.</p>
<p class="p2"> </p>
<p class="p1"><span class="Apple-converted-space">\( = 13.8395 \ldots \)    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Follow through from part (g).</p>
<p class="p2"> </p>
<p class="p1"><span class="s1">14 </span>(cans) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space">    </span></strong>Final <strong><em>(A1) </em></strong>awarded for rounding up their \(13.8395 \ldots \) to the next integer.</p>
<p class="p2"> </p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">On Monday Paco goes to a running track to train. He runs the first lap of the track</span> <span style="font-size: medium; font-family: times new roman,times;">in 120 seconds. Each lap Paco runs takes him 10 seconds longer than his previous lap.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the time, in seconds, Paco takes to run his fifth lap.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Paco runs his last lap in 260 seconds.</span></p>
<p><span>Find how many laps he has run on Monday.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the <strong>total</strong> time, in <strong>minutes,</strong> run by Paco on Monday.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On Wednesday Paco takes Lola to train. They both run the first lap of the track in 120 seconds. Each lap Lola runs takes 1.06 times as long as her previous lap.</span></p>
<p><span>Find the time, in seconds, Lola takes to run her third lap.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the <strong>total</strong> time, in seconds, Lola takes to run her first four laps.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Each lap Paco runs again takes him 10 seconds longer than his previous lap. After a certain number of laps Paco takes less time per lap than Lola.</span></p>
<p><span>Find the number of the lap when this happens.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(120 + 10 \times 4\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substituted AP formula, <em><strong>(A1)</strong></em> for correct substitutions. Accept a list of 4 correct terms.</span></p>
<p><br><span>= 160     <em><strong>(A1)(G3)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(120 + (n - 1) \times 10 = 260\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted AP formula, <em><strong>(M1)</strong></em> for equating to 260. Accept a list of correct terms showing at least the 14<sup>th</sup> and 15<sup>th</sup> terms.</span></p>
<p><br><span>= 15     <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{15}}{2}(120 + 260)\) <strong>or</strong> \(\frac{{15}}{2}(2 \times 120 + (15 - 1) \times 10)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substituted AP sum formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct substitutions. Accept a sum of a list of 15 correct terms. Follow through from their answer to part (b).</span></p>
<p><br><span>2850 seconds     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(G2)</strong></em> for 2850 seen with no working shown.</span></p>
<p><br><span>47.5 minutes     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span><br><br></p>
<p><span><strong>Notes:</strong> A final <em><strong>(A1)</strong></em><strong>(ft)</strong> can be awarded for correct conversion from seconds</span> <span>into minutes of their incorrect answer.</span> <span>Follow through from their answer to part (b).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(120 \times {1.06^{3 - 1}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substituted GP formula, <em><strong>(A1)</strong></em> for correct substitutions. Accept a list of 3 correct terms.</span></p>
<p><br><span>= 135 (134.832)     <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({S_4} = \frac{{120({{1.06}^4} - 1)}}{{(1.06 - 1)}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substituted GP sum formula, <em><strong>(A1)</strong></em> for correct substitutions. Accept a sum of a list of 4 correct terms.</span></p>
<p><br><span>= 525 (524.953...)     <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(120 + (n - 1) \times 10 &lt; 120 \times {1.06^{n - 1}}\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct left hand side, <strong><em>(M1)</em></strong> for correct right hand side. Accept an equation. Follow through from their expressions given in parts (a) and (d).</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>List of at least 2 terms for both sequences (120, 130, … and 120, 127.2, …)     <em><strong>(M1)</strong></em></span></p>
<p><span>List of correct 12<sup>th</sup> and 13<sup>th</sup> terms for both sequences (..., 230, 240 and …, 227.8, 241.5)     <em><strong>(M1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>A sketch with a line and an exponential curve,     <em><strong>(M1)</strong></em></span></p>
<p><span>An indication of the correct intersection point     <em><strong>(M1)</strong></em></span></p>
<p><span>13<sup>th</sup> lap     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Do not award the final <em><strong>(A1)</strong></em><strong>(ft)</strong> if final answer is not a positive integer.</span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function \(f(x) = {x^3} + \frac{{48}}{x}{\text{, }}x \ne 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate \(f(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(y = f(x)\) for \( - 5 \leqslant x \leqslant 5\) and \( - 200 \leqslant y \leqslant 200\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(2)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the local maximum point on the graph of \(f\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<address><span>Find the range of \(f\) .</span></address>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to the graph of \(f\) at \(x = 1\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a second point on the graph of \(f\) at which the tangent is parallel to the tangent at \(x = 1\). </span></p>
<p><span>Find the \(x\)-coordinate of this point.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(f(2) = {2^3} + \frac{{48}}{2}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(= 32\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for labels and some indication of scale in an appropriate window</span><br><span><em><strong>(A1)</strong></em> for correct shape of the two unconnected and smooth branches</span><br><span><em><strong>(A1)</strong></em> for maximum and minimum in approximately correct positions</span><br><span><em><strong>(A1)</strong></em> for asymptotic behaviour at \(y\)-axis     <em><strong>(A4)</strong></em></span></p>
<p><span><strong>Notes:</strong> Please be rigorous.</span><br><span>The axes need not be drawn with a ruler.</span><br><span>The branches must be smooth: a single continuous line that does not deviate from its proper direction.</span><br><span>The position of the maximum and minimum points must be symmetrical about the origin.</span><br><span>The \(y\)-axis must be an asymptote for both branches. Neither branch should touch the axis nor must the curve approach the</span><br><span>asymptote then deviate away later.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 3{x^2} - \frac{{48}}{{{x^2}}}\)     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(3{x^2}\) , <em><strong>(A1)</strong></em> for \( - 48\) , <em><strong>(A1)</strong></em> for \({x^{ - 2}}\) . Award a maximum of <em><strong>(A1)(A1)(A0)</strong></em> if extra terms seen.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(2) = 3{(2)^2} - \frac{{48}}{{{{(2)}^2}}}\)     <em><strong>(M1)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(x = 2\) into their derivative.</span></p>
<p> </p>
<p><span><span>\(= 0\)</span><span>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></span></p>
<p><span><span><em><strong>[2 marks]<br></strong></em></span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(( - 2{\text{, }} - 32)\) or \(x = - 2\), \(y = - 32\)     <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(G0)(G0)</strong></em> for \(x = - 32\), \(y = - 2\) . Award at most <em><strong>(G0)(G1)</strong></em> if parentheses are omitted.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\{ y \geqslant 32\}  \cup \{ y \leqslant - 32\} \)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft)</strong> \(y \geqslant 32\) or \(y &gt; 32\) seen, <strong><em>(A1)</em>(ft)</strong> for \(y \leqslant - 32\) or \(y &lt; - 32\) , <em><strong>(A1)</strong></em> for weak (non-strict) inequalities used in both of the above.</span><br><span>Accept use of \(f\) in place of \(y\). Accept alternative interval notation.</span><br><span>Follow through from their (a) and (e).</span><br><span>If domain is given award <em><strong>(A0)(A0)(A0)</strong></em>.</span><br><span>Award <strong><em>(A0)(A1)</em>(ft)<em>(A1)</em>(ft)</strong> for \([ - 200{\text{, }} - 32]\) , \([32{\text{, }}200]\).</span><br><span>Award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong> for \(] - 200{\text{, }} - 32]\) , \([32{\text{, }}200[\).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(1) = - 45\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for \(f'(1)\) seen or substitution of \(x = 1\) into their derivative. Follow through from their derivative if working is seen.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = - 1\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for equating their derivative to their \( - 45\) or for seeing parallel lines on their graph in the approximately correct position.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual and by intention, this question caused the most difficulty in terms of its content; however, for those with a sound grasp of the topic, there were many very successful attempts. Much of the question could have been answered successfully by using the GDC, however, it was also clear that a number of candidates did not connect the question they were attempting with the curve that they had either sketched or were viewing on their GDC. Where there was no alternative to using the calculus, many candidates struggled.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority of sketches were drawn sloppily and with little attention to detail. Teachers must impress on their students that a mathematical sketch is designed to illustrate the main points of a curve &ndash; the smooth nature by which it changes, any symmetries (reflectional or rotational), positions of turning points, intercepts with axes and the behaviour of a curve as it approaches an asymptote. There must also be some indication of the dimensions used for the &ldquo;window&rdquo;.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was also evident that some centres do not teach the differential calculus.</span></p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The Brahma chicken produces eggs with weights in grams that are normally distributed about a mean of \(55{\text{ g}}\) with a standard deviation of \(7{\text{ g}}\). The eggs are classified as small, medium, large or extra large according to their weight, as shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch a diagram of the distribution of the weight of Brahma chicken eggs. On your diagram, show clearly the boundaries for the classification of the eggs.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>An egg is chosen at random. Find the probability that the egg is</span><br><span>(i)     medium;</span><br><span>(ii)    extra large.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a probability of \(0.3\) that a randomly chosen egg weighs more than \(w\) grams.</span></p>
<p><span>Find \(w\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The probability that a Brahma chicken produces a large size egg is \(0.121\). Frank’s Brahma chickens produce \(2000\) eggs each month.</span></p>
<p><span>Calculate an estimate of the number of large size eggs produced by Frank’s chickens each month.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The selling price, in US dollars (USD), of each size is shown in the table below.</span><br><span><img src="" alt></span><br><span>The probability that a Brahma chicken produces a small size egg is \(0.388\).</span></p>
<p><span>Estimate the monthly income, in USD, earned by selling the \(2000\) eggs. Give your answer correct to two decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for normal curve with mean of \(55\) indicated</span><br><span><em><strong>(A1)</strong></em> for three lines in approximately the correct position</span><br><span><em><strong>(A1)</strong></em> for labels on the three lines     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \({\text{P}}(53 \leqslant {\text{Weight}} &lt; 63) = 0.486\) (\(0.485902 \ldots \))     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct region indicated on labelled diagram.</span></p>
<p><br><span>(ii)    \({\text{P}}({\text{Weight}} &gt; 73) = 0.00506\) (\(0.00506402\))     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct region indicated on labelled diagram.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{P}}({\text{Weight}} &gt; w) = 0.3\)     <em><strong>(M1)</strong></em></span><br><span>\(w = 58.7\) (\(58.6708 \ldots \))     <em><strong>(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct region indicated on labelled diagram.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Expected number of large size eggs</span></p>
<p><span>\( = 2000(0.121)\)     <em><strong>(M1)</strong></em></span><br><span>\( = 242\)     <em><strong>(A1)(G2)</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Expected income</span><br><span>\( = 2000 \times 0.30 \times 0.388 + 2000 \times 0.50 \times 0.486 + 2000 \times 0.65 \times 0.121 + 2000 \times 0.80 \times 0.00506\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct products, <em><strong>(M1)</strong></em> for addition of 4 terms.</span></p>
<p><span> </span></p>
<p><span>\( = 884.20{\text{ USD}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from part (b).</span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A manufacturer has a contract to make \(2600\) solid blocks of wood. Each block is in the shape of a right triangular prism, \({\text{ABCDEF}}\), as shown in the diagram.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{AB}} = 30{\text{ cm}},{\text{ BC}} = 24{\text{ cm}},{\text{ CD}} = 25{\text{ cm}}\) and angle \({\rm{A\hat BC}} = 35^\circ {\text{ }}\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_12.17.46.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of \({\text{AC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of triangle \({\text{ABC}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Assuming that no wood is wasted, show that the volume of wood required to make all \(2600\) blocks is \({\text{13}}\,{\text{400}}\,{\text{000 c}}{{\text{m}}^3}\), correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write \({\text{13}}\,{\text{400}}\,{\text{000}}\) in the form \(a \times {10^k}\) where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the total surface area of one block is \({\text{2190 c}}{{\text{m}}^2}\), correct to three significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The blocks are to be painted. One litre of paint will cover \(22{\text{ }}{{\text{m}}^2}\).</span></p>
<p><span>Calculate the number of litres required to paint all \(2600\) blocks.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{A}}{{\text{C}}^2} = {30^2} + {24^2} - 2 \times 30 \times 24 \times \cos 35^\circ \)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted cosine rule formula,</span></p>
<p><span>     <strong><em>(A1) </em></strong>for correct substitutions.</span></p>
<p> </p>
<p><span>\({\text{AC}} = 17.2{\text{ cm}}\)   \((17.2168…)\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Use of radians gives \(52.7002…\) Award <strong><em>(M1)(A1)(A0)</em></strong>.</span></p>
<p><span>     No marks awarded in this part of the question where candidates assume that angle \({\text{ACB}} = 90^\circ \).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>Units are required in part (b).</em></strong></span></p>
<p><span>Area of triangle \({\text{ABC = }}\frac{1}{2} \times 24 \times 30 \times \sin 35^\circ \)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution into area formula, <strong><em>(A1) </em></strong>for correct substitutions.</span></p>
<p><span>     <strong>Special Case: </strong>Where a candidate has assumed that angle \({\text{ACB}} = 90^\circ \) in part (a), award <strong><em>(M1)(A1) </em></strong>for a correct alternative substituted formula for the area of the triangle \(\left( {ie{\text{ }}\frac{1}{2} \times {\text{base}} \times {\text{height}}} \right)\).</span></p>
<p> </p>
<p><span>\( = 206{\text{ c}}{{\text{m}}^2}\)   \((206.487 \ldots {\text{c}}{{\text{m}}^2})\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Use of radians gives negative answer, \(–154.145…\) Award (<strong><em>M1)(A1)(A0)</em></strong>.</span></p>
<p><span>     <strong>Special Case: </strong>Award <strong><em>(A1)</em>(ft) </strong>where the candidate has arrived at an area which is correct to the standard rounding rules from their lengths (units required).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(206.487… \times 25 \times 2600\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplication of their answer to part (b) by \(25\) and \(2600\).</span></p>
<p> </p>
<p><span>\({\text{13}}\,{\text{421}}\,{\text{688.61}}\)     <strong><em>(A1)</em></strong></span></p>
<p> </p>
<address><span><strong>Note: </strong>Accept unrounded answer of \({\text{13}}\,{\text{390}}\,{\text{000}}\) for use of \(206\).</span></address>
<p> </p>
<p><span>\({\text{13}}\,{\text{400}}\,{\text{000}}\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>The final <strong><em>(A1) </em></strong>cannot be awarded unless both the unrounded and rounded answers are seen.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1.34 \times {10^7}\)     <strong><em>(A2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes:</strong></span><strong> </strong><span>Award <em><strong>(A2)</strong></em> for the correct answer<span>.</span></span></p>
<p><span>     Award <strong><em>(A1)(A0) </em></strong>for \(1.34\) and an incorrect index value.</span></p>
<p><span>     Award <strong><em>(A0)(A0) </em></strong>for any other combination (including answers such as \(13.4 \times {10^6}\)).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2 \times 206.487 \ldots  + 24 \times 25 + 30 \times 25 + 17.2168 \ldots  \times 25\)     <strong><em>(M1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplication of their answer to part (b) by \(2\) for area of two triangular ends, <strong><em>(M1) </em></strong>for three correct rectangle areas using \(24\), \(30\) and their \(17.2\).</span></p>
<p> </p>
<p><span>\(2193.26…\)     <strong><em>(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Accept \(2192\) for use of 3 sf answers.</span></p>
<p> </p>
<p><span>\(2190\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>The final <strong><em>(A1) </em></strong>cannot be awarded unless both the unrounded and rounded answers are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{2190 \times 2600}}{{22 \times 10\,000}}\)     <strong><em>(M1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for multiplication by \(2600\) and division by \(22\), <strong><em>(M1) </em></strong>for division by \({10\,000}\).</span></p>
<p><span>     The use of \(22\) may be implied <em>ie </em>division by \(2200\) would be acceptable.</span></p>
<p> </p>
<p><span>\(25.9\) litres   \((25.8818…)\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Accept \(26\).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Some candidates assumed that triangle ACB was a right angled triangle with angle \({\text{ACB}} = 90^\circ \). Such candidates earned no marks for part (a) but were able to recover most of the marks in the remainder of the question. For those candidates who correctly used the cosine rule for part (a), most achieved all 3 marks for this part and used a correct formula for the area of the triangle in part (b) to obtain at least 2 marks for this part. The final mark was not awarded, however, if no units or the incorrect units were given. Parts (c) and (e) were generally well done with many candidates showing the unrounded answer before the required answer. Part (f) proved to be quite problematic for many candidates. Whilst many were able to earn a method mark for \(\frac{{2190 \times 2600}}{{22}}\), a significant number of these candidates were unable to convert the units correctly and very few correct answers were seen. Indeed, the most popular answer seemed to be 2590 litres.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the function \(f(x) = \frac{{96}}{{{x^2}}} + kx\), where \(k\) is a constant and \(x \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down \(f'(x)\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Show that \(k = 3\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f(2)\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find \(f'(2)\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Find the equation of the normal to the graph of \(y = f(x)\) at the point where \(x = 2\).</p>
<p class="p1">Give your answer in the form \(ax + by + d = 0\) where \(a,{\text{ }}b,{\text{ }}d \in \mathbb{Z}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1"><span class="s1">Sketch the graph of \(y = f(x)\)</span>, for \( - 5 \leqslant x \leqslant 10\) and \( - 10 \leqslant y \leqslant 100\)<span class="s1">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">Write down the coordinates of the point where the graph of \(y = f(x)\) intersects the \(x\)-axis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph of \(y = f(x)\) has a local minimum point at \(x = 4\).</p>
<p class="p1">State the values of \(x\) for which \(f(x)\) is decreasing.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{ - 192}}{{{x^3}}} + k\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(-192\), <strong><em>(A1) </em></strong>for \({x^{ - 3}}\), <strong><em>(A1) </em></strong>for \(k\) (only).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">at local minimum \(f'(x) = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for seeing \(f'(x) = 0\) (may be implicit in their working).</p>
<p class="p2"> </p>
<p class="p1">\(\frac{{ - 192}}{{{4^3}}} + k = 0\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1">\(k = 3\) <span class="Apple-converted-space">    </span><strong><em>(AG)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for substituting \(x = 4\) in their \(f'(x) = 0\), provided it leads to \(k = 3\)<em>. </em>The conclusion \(k = 3\) must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{96}}{{{2^2}}} + 3(2)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for substituting \(x = 2\) and \(k = 3\) in \(f(x)\).</p>
<p class="p2"> </p>
<p class="p1">\( = 30\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{ - 192}}{{{2^3}}} + 3\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituting \(x = 2\) and \(k = 3\) in their \(f'(x)\).</p>
<p> </p>
<p>\( =  - 21\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from part (a).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y - 30 = \frac{1}{{21}}(x - 2)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1)</em>(ft) </strong>for their \(\frac{1}{{21}}\) seen, <strong><em>(M1) </em></strong>for the correct substitution of their point and their normal gradient in equation of a line.</p>
<p class="p1">Follow through from part (c) and part (d).</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">gradient of normal \( = \frac{1}{{21}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">\(30 = \frac{1}{{21}} \times 2 + c\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\(c = 29\frac{{19}}{{21}}\)</p>
<p class="p1">\(y = \frac{1}{{21}}x + 29\frac{{19}}{{21}}\;\;\;(y = 0.0476x + 29.904)\)</p>
<p class="p1">\(x - 21y + 628 = 0\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: <span class="Apple-converted-space"> </span></strong>Accept equivalent answers.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1"><img src="images/Schermafbeelding_2015-12-21_om_09.26.22.png" alt> <span class="Apple-converted-space">    </span></span><strong><em>(A1)(A1)(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct window (at least one value, other than zero, labelled on each axis), the axes must also be labelled; <strong><em>(A1) </em></strong>for a smooth curve with the correct shape (graph should not touch \(y\)-axis and should not curve away from the \(y\)-axis), on the given domain; <strong><em>(A1) </em></strong>for axis intercept in approximately the correct position (nearer \(-5\)<span class="s2"> </span>than zero); <strong><em>(A1) </em></strong>for local minimum in approximately the correct position (first quadrant, nearer the \(y\)-axis than \(x = 10\)).</p>
<p class="p1">If there is no scale, award a maximum of <strong><em>(A0)(A1)(A0)(A1) </em></strong>– the final <strong><em>(A1) </em></strong>being awarded for the zero and local minimum in approximately correct positions relative to each other.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(( - 3.17,{\text{ }}0)\;\;\;\left( {( - 3.17480 \ldots ,{\text{ 0)}}} \right)\)     <strong><em>(G1)(G1)</em></strong></p>
<p> </p>
<p><strong>Notes: </strong>If parentheses are omitted award <strong><em>(G0)(G1)</em>(ft)</strong>.</p>
<p>Accept \(x =  - 3.17,{\text{ }}y = 0\). Award <strong><em>(G1) </em></strong>for \(-3.17\) seen.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(0 &lt; x \leqslant 4{\text{ or }}0 &lt; x &lt; 4\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct end points of interval, <strong><em>(A1) </em></strong>for correct notation (note: lower inequality must be strict).</p>
<p class="p1">Award a maximum of <strong><em>(A1)(A0) </em></strong>if \(y\) or \(f(x)\) used in place of \(x\).</p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Differentiation of terms including negative indices remains a testing process; it will continue to be tested. There was, however, a noticeable improvement in responses compared to previous years. The parameter k was problematic for a number of candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (b), the manipulation of the derivative to find the local minimum point caused difficulties for all but the most able; note that a GDC approach is not accepted in such questions and that candidates are expected to be able to apply the theory of the calculus as appropriate. Further, once a parameter is given, candidates are expected to use this value in subsequent parts.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (c) and (d) were accessible and all but the weakest candidates scored well.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Parts (c) and (d) were accessible and all but the weakest candidates scored well.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (e) discriminated at the highest level; the gradient of the normal often was not used, the form of the answer not given correctly.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Curve sketching is a skill that most candidates find very difficult; axes must be labelled and some indication of the window must be present; care must be taken with the domain and the range; any asymptotic behaviour must be indicated. It was very rare to see sketches that attained full marks, yet this should be a skill that all can attain. There were many no attempts seen, yet some of these had correct answers to part (g).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Curve sketching is a skill that most candidates find very difficult; axes must be labelled and some indication of the window must be present; care must be taken with the domain and the range; any asymptotic behaviour must be indicated. It was very rare to see sketches that attained full marks, yet this should be a skill that all can attain. There were many no attempts seen, yet some of these had correct answers to part (g).</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Part (h) was not well attempted in the main; decreasing (and increasing) functions is a testing concept for the majority.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Cedric wants to buy an &euro;8000 car. The car salesman offers him a loan repayment option of a 25 % deposit followed by 12 equal monthly payments of &euro;600 .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the amount of the deposit.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total cost of the loan under this repayment scheme.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Cedric’s mother decides to help him by giving him an interest free loan of €8000 to buy the car. She arranges for him to repay the loan by paying her €<em>x</em> in the first month and €<em>y</em> in every following month until the €8000 is repaid.</span></p>
<p><span>The total amount that Cedric’s mother receives after <strong>12</strong> months is €3500. This can be written using the equation <em>x</em> +11<em>y</em> = 3500. The total amount that Cedric’s mother receives after <strong>24</strong> months is €7100.</span></p>
<p><span>Write down a second equation involving <em>x</em> and <em>y</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Cedric’s mother decides to help him by giving him an interest free loan of €8000 to buy the car. She arranges for him to repay the loan by paying her €<em>x</em> in the first month and €<em>y</em> in every following month until the €8000 is repaid.</span></p>
<p><span>The total amount that Cedric’s mother receives after <strong>12</strong> months is €3500. This can be written using the equation <em>x</em> +11<em>y</em> = 3500. The total amount that Cedric’s mother receives after <strong>24</strong> months is €7100.</span></p>
<p><span>Write down the value of <em>x</em> and the value of <em>y</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Cedric’s mother decides to help him by giving him an interest free loan of €8000 to buy the car. She arranges for him to repay the loan by paying her €<em>x</em> in the first month and €<em>y</em> in every following month until the €8000 is repaid.</span></p>
<p><span>The total amount that Cedric’s mother receives after <strong>12</strong> months is €3500. This can be written using the equation <em>x</em> +11<em>y</em> = 3500. The total amount that Cedric’s mother receives after <strong>24</strong> months is €7100.</span></p>
<p><span>Calculate the number of months it will take Cedric’s mother to receive the €8000.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Cedric decides to buy a cheaper car for €6000 and invests the remaining €2000 at his bank. The bank offers two investment options over three years.</span></p>
<p><span>Option A: Compound interest at an annual rate of 8 %.</span></p>
<p><span>Option B: Compound interest at a nominal annual rate of 7.5 % , <strong>compounded monthly</strong>.</span></p>
<p><em><strong><span>Express each answer in part (f) to the nearest euro.</span></strong></em></p>
<p><span>Calculate the value of his investment at the end of three years if he chooses</span></p>
<p><span>(i) Option A;</span></p>
<p><span>(ii) Option B.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>2000 (euros)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2000 + 12 \times 600\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for addition of two correct terms.</span></p>
<p><span><br>9200 (euros)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their part (a).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> + 23<em>y</em> = 7100     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> = 200, <em>y</em> = 300     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(200 + n \times 300 = 8000\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up the equation. Follow through from their <em>x</em></span> <span>and <em>y</em> found in part (d).</span></p>
<p><br><span><em>n</em> = 26     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>26 + 1 = 27 (months)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Notes:</strong> Middle line <em>n</em> = 26 may be implied if correct answer given. </span><span>The final <em><strong>(A1)</strong></em><strong>(ft)</strong> is for adding 1 to their value of <em>n</em> (even if it is </span><span>incorrect). Follow through from their part (d).</span> <span>If the final answer is not a positive integer award at most</span> <em><strong><span>(M1)(A1)</span></strong></em><strong><span>(ft)</span></strong><em><strong><span>(A0)</span></strong></em><span>.</span> <span>Award <em><strong>(G2)</strong></em> for final answer of 26.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\(\frac{{8000 - 7100}}{{300}} + 24\)</span><span>    </span><span> <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for division of difference by their value of <em>y</em>, <em><strong>(A1)</strong></em> for</span> <span>24 seen.</span></p>
<p><br><span>27 (months)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their value of <em>y</em>.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<p><span> </span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(2000{\left( {1 + \frac{8}{{100}}} \right)^3}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in compound interest formula.</span></p>
<p><br><span>2519 (euros)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> If the answer is not given to the nearest euro award at most <em><strong>(M1)(A0)</strong></em>.</span></p>
<p><span><br>(ii) </span><span>\(2000{\left( {1 + \frac{7.5}{{100 \times 12}}} \right)^{3\times12}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in compound interest formula, <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p><span><br>2503 (euros)     <em><strong>(A1)(G2)</strong></em> </span></p>
<p><span><strong>Note:</strong> If the answer is not given to the nearest euro, award at most <em><strong>(M1)(A1)(A0)</strong></em>, provided this has not been penalized in part (f)(i).<br></span></p>
<p><span> </span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(a) Most candidates managed to answer this correctly.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(b) On the whole this was well answered but some candidates gave 7200 as their final answer.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(c) Some candidates found this surprisingly difficult, others gave the answer as <em>x</em> + 24<em>y</em> = 7100.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(d) Many managed to find the correct answers for <em>x</em> and <em>y</em> even though their answer to part (c) was not correct. Others received follow through marks.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(e) The most common answer here was 26 months.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">(f) Part (i) was well done but there were fewer correct answers seen for part (ii). Some </span><span style="font-size: medium; font-family: times new roman,times;">candidates used 6000 instead of 2000, others did not give their answer to the nearest </span><span style="font-size: medium; font-family: times new roman,times;">euro and others kept the same interest rate for both parts of the question.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, \(x\), and the average weight of the brain, \(y\), of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="specification">
<p>The average body weight of mice is 0.023 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate \(r\), the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line \(y\) on \(x\), in the form \(y = mx + c\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line to estimate the average weight of the brain of mice. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(529 - 3\)     <strong><em>(M1)</em></strong></p>
<p>\( = 526{\text{ (kg)}}\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.922{\text{ }}(0.921857 \ldots )\)     <strong><em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(very) strong, positive     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (b)(i).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y = 0.000986x + 0.0923{\text{ }}(y = 0.000985837 \ldots x + 0.0923391…)\)     <strong><em>(A1)(A1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for \(0.000986x\), <strong><em>(A1) </em></strong>for 0.0923.</p>
<p>Award a maximum of <strong><em>(A1)(A0) </em></strong>if the answer is not an equation in the form \(y = mx + c\).</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.000985837 \ldots (36) + 0.0923391 \ldots \)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for substituting 36 into their equation.</p>
<p> </p>
<p>\(0.128{\text{ (kg) }}\left( {0.127829 \ldots {\text{ (kg)}}} \right)\)     <strong><em>(</em></strong><strong><em>A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Follow through from part (c). The final <strong><em>(A1) </em></strong>is awarded only if their answer is positive.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left| {\frac{{0.127829 \ldots  - 0.120}}{{0.120}}} \right| \times 100\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for their correct substitution into percentage error formula.</p>
<p> </p>
<p>\(6.52{\text{ }}(\% ){\text{ }}\left( {6.52442...{\text{ }}(\% )} \right)\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong> Follow through from part (d). Do not accept a negative answer.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Not valid     <strong><em>(A1)</em></strong></p>
<p>the mouse is smaller/lighter/weighs less than the cat (lightest mammal)     <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>as it would mean the mouse’s brain is heavier than the whole mouse     <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>0.023 kg is outside the given data range.     <strong><em>(R1)</em></strong></p>
<p><strong><em>OR</em></strong></p>
<p>Extrapolation     <strong><em>(R1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Do not award <strong><em>(A1)(R0)</em></strong>. Do not accept percentage error as a reason for validity.</p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a college 450 students were surveyed with the following results</span></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">150 have a television</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">205 have a computer</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">220 have an iPhone</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">75 have an iPhone and a computer</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">60 have a television and a computer</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">70 have a television and an iPhone</span></em></p>
<p style="margin-left: 30px;"><em><span style="font-size: medium; font-family: times new roman,times;">40 have all three.</span></em></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a Venn diagram to show this information. Use <em>T</em> to represent the set of students who have a television,<em> C</em> the set of students who have a computer and <em>I</em> the set of students who have an iPhone.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of students that</span></p>
<p><span>(i) have a computer only;</span></p>
<p><span>(ii) have an iPhone and a computer but no television.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down \(n[T \cap (C \cup I)']\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the number of students who have none of the three.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two students are chosen at random from the 450 students. Calculate the probability that</span></p>
<p><span>(i) neither student has an iPhone;</span></p>
<p><span>(ii) only one of the students has an iPhone.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The students are asked to collect money for charity. In the first month, the students collect <em>x</em> dollars and the students collect <em>y</em> dollars in each subsequent month. In the first 6 months, they collect 7650 dollars. This can be represented by the equation <em>x</em> + 5<em>y</em> = 7650.</span></p>
<p><span>In the first 10 months they collect 13 050 dollars.</span></p>
<p><span>(i) Write down a second equation in <em>x</em> and <em>y</em> to represent this information.</span></p>
<p><span>(ii) Write down the value of <em>x</em> and of <em>y </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The students are asked to collect money for charity. In the first month, the students collect <em>x</em> dollars and the students collect <em>y</em> dollars in each subsequent month. In the first 6 months, they collect 7650 dollars. This can be represented by the equation <em>x</em> + 5<em>y</em> = 7650.</span></p>
<p><span>In the first 10 months they collect 13 050 dollars.</span></p>
<p><span>Calculate the number of months that it will take the students to collect 49 500 dollars.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for labelled sets <em>T</em>, <em>C</em>, and <em>I</em> included inside an enclosed universal set. (Label <em>U</em> is not essential.) Award <em><strong>(A1)</strong></em> for central entry 40. <em><strong>(A1)</strong></em> for 20, 30 and 35 in the other intersecting regions. <em><strong>(A1)</strong></em> for 60, 110 and 115 or <em>T</em>(150), <em>C</em>(205), <em>I</em>(220).</span></p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>In parts (b), (c) and (d) follow through from their diagram.<br></span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>(i) 110     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong> </strong></span></p>
<p><span>(ii) 35     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong> </strong></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>In parts (b), (c) and (d) follow through from their diagram.</span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>60</span><em><strong><span>     (A1)</span></strong></em><strong><span>(ft)</span></strong><em><strong><span><br></span></strong></em></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>In parts (b), (c) and (d) follow through from their diagram.</span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>450 </span><span><span>− </span>(60 </span><span><span>+ </span>20 </span><span><span>+ </span>40 </span><span><span>+ </span>30 </span><span><span>+ </span>115 </span><span><span>+ </span>35 </span><span><span>+ </span>110)     <strong><em>(M1)</em></strong> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for subtracting all their values from 450.<br></span></p>
<p><span> </span></p>
<p><span>= 40     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(\frac{{230}}{{450}} \times \frac{{229}}{{449}}\)     <em><strong>(A1)(M1)</strong></em></span> </p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct fractions, <em><strong>(M1)</strong></em> for multiplying their fractions.</span></p>
<p> </p>
<p><span>\(\frac{{52670}}{{202050}}\left( {\frac{{5267}}{{20205}},{\text{ 0}}{\text{.261, 26}}{\text{.1% }}} \right)(0.26067...)\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong><span><strong>Note:</strong></span></strong><span> Follow through from their Venn diagram in part (a).</span></span></p>
<p><span> </span></p>
<p><span>(ii) \(\frac{{220}}{{450}} \times \frac{{230}}{{449}} + \frac{{230}}{{450}} \times \frac{{220}}{{449}}\)     <em><strong>(A1)(A1)</strong></em><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for addition of their products, <em><strong>(A1)</strong></em> for two correct products.<br></span></p>
<p><span> </span></p>
<p><span><strong>OR</strong><br></span></p>
<p><span>\(\frac{{230}}{{450}} \times \frac{{220}}{{449}} \times 2\)     <em><strong>(A1)(A1)</strong></em> <br></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for their product of two fractions multiplied by 2, <em><strong>(A1)</strong></em> for correct product of two fractions multiplied by 2. Award <em><strong>(A0)(A0)</strong></em> if correct product is seen not multiplied by 2.<br></span></p>
<p><span> </span></p>
<p><span>\(\frac{{2024}}{{4041}}(0.501,{\text{ 50}}{\text{.1% )(0}}{\text{.50086}}...{\text{)}}\)     <em><strong>(A1)(G2)</strong></em><br></span></p>
<p><span><strong>Note:</strong> Follow through from their Venn diagram in part (a) and/or their 230 used in part (e)(i).</span></p>
<p><span><strong>Note:</strong> For consistent use of replacement in parts (i) and (ii) award at most <em><strong>(A0)(M1)(A0)</strong></em> in part (i) and <em><strong>(A1)</strong></em><strong>(</strong><strong>ft)</strong><em><strong>(A1)(A1)</strong></em><strong>(ft)</strong> in part (ii).<br></span></p>
<p><span> </span></p>
<p><span><em><strong>[6 marks]</strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) <em>x</em> + 9<em>y</em> = 13050     <em><strong>(A1)</strong></em><br></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii) <em>x</em> = 900     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em>y</em> = 1350     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Follow through from their equation in (f)(i). Do not award <em><strong>(A1)</strong></em><strong>(ft)</strong> if answer is negative. Award <em><strong>(M1)(A0)</strong></em> for an attempt at solving simultaneous equations algebraically but incorrect answer obtained.</span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>49500 = 900 + 1350<em>n</em>     <em><strong>(A1)</strong></em><strong>(ft)</strong></span> </p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for setting up correct equation. Follow through from candidate’s part (f).</span></p>
<p> </p>
<p><span><em>n</em> = 36     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>The total number of months is 37.     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for 36 seen as final answer with no working. The value of <em>n</em> must be a positive integer for the last two <em><strong>(A1)</strong></em><strong>(ft)</strong> to be awarded.</span></p>
<p> </p>
<p><span><strong>OR</strong> </span></p>
<p><span>49500 = 900 + 1350(<em>n</em> − 1)     <em><strong>(A2)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A2)</strong></em><strong>(ft)</strong> for setting up correct equation. Follow through from candidate’s part (f).</span></p>
<p> </p>
<p><span><em>n</em> = 37     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> The value of <em>n</em> must be a positive integer for the last <em><strong>(A1)</strong></em><strong>(ft)</strong> to be awarded.</span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. The majority of candidates answered part (a) and at least parts of (b), and (d). <br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. The majority of candidates answered part (a) and at least parts of (b), and (d). <br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. Part (c) proved to be difficult, as it required understanding and interpreting set notation. <br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. The majority of candidates answered part (a) and at least parts of (b), and (d). <br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. Part (e) was rarely answered in its entirety. <br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. Part (f) was answered by many candidates, but most of them offered a partial answer to part (g); a typical response was 36 instead of 37.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The question was moderately well answered. Part (f) was answered by many candidates, but most of them offered a partial answer to part (g); a typical response was 36 instead of 37.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the function <em>f </em>(<em>x</em>) = <em>x</em><sup>3 </sup><em>&ndash;</em> 3x&ndash; 24<em>x</em> + 30.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down <em>f</em> (0).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(f'(x)\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> = 1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Use </span><em>f '</em><span>(</span><em>x</em><span>) to find the </span><em>x</em><span>-coordinate of M and of N.</span></p>
<p><span>(ii) Hence or otherwise write down the coordinates of M and of N.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>f</em> (<em>x</em>) for \( - 5 \leqslant x \leqslant 7\) and \( - 60 \leqslant y \leqslant 60\). Mark clearly M and N on your graph.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Lines <em>L</em><sub>1</sub> and <em>L</em><sub>2</sub> are parallel, and they are tangents to the graph of <em>f</em> (<em>x</em>) at points A and B respectively. <em>L<sub>1</sub></em> has equation <em>y</em> = 21<em>x</em> + 111.</span></p>
<p><span>(i) Find the <em>x</em>-coordinate of A and of B.</span></p>
<p><span>(ii) Find the <em>y</em>-coordinate of B.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>30     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> <em>'</em>(<em>x</em>) = 3<em>x</em><sup>2</sup> – 6<em>x</em> – 24     <em><strong>(A1)(A1)(A1)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each term. Award at most <em><strong>(A1)(A1)</strong></em> if extra terms present.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f '</em>(1) = –27     <em><strong>(M1)(A1)</strong></em><strong>(ft</strong><strong>)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting <em>x</em> = 1 into their derivative.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)<em> f '</em>(<em>x</em>) = 0</span></p>
<p><span>3<em>x</em><sup>2</sup> – 6<em>x</em> – 24 = 0     <em><strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 4; <em>x</em> = –2     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for either <em>f '</em>(<em>x</em>) = 0 or 3<em>x</em><sup>2</sup> </span><span>– 6<em>x</em> </span><span>– 24 = 0 seen. Follow through from their derivative. Do not award the two answer marks if derivative not used.</span></p>
<p><br><span>(ii) M(–2, 58) accept <em>x</em> = –2, <em>y</em> = 58     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span>N(4, – 50) accept <em>x</em> = 4, <em>y</em> = –50     <strong><em>(A1)</em>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their answer to part (d) (i).</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for window</span></p>
<p><span><em><strong>(A1)</strong></em> for a smooth curve with the correct shape</span></p>
<p><span><em><strong>(A1)</strong></em> for axes intercepts in approximately the correct positions</span></p>
<p><span><em><strong>(A1)</strong></em> for M and N marked on diagram and in approximately</span><br><span>correct position     <em><strong>(A4)</strong></em><br><br></span></p>
<p><span><strong>Note:</strong> If window is not indicated award at most <em><strong>(A0)(A1)(A0)(A1)</strong></em><strong>(ft)</strong>.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 3<em>x</em><sup>2</sup> – 6<em>x </em></span><span><span>–</span> 24 = 21     <em><strong>(M1)</strong></em></span></p>
<p><span>3<em>x</em><sup>2 </sup></span><span><span>–</span> 6<em>x </em></span><span><span>–</span> 45 = 0     <em><strong>(M1)</strong></em></span></p>
<p><span><em>x</em> = 5; <em>x</em> = </span><span><span>–</span>3     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their derivative.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>Award <em><strong>(A1)</strong></em> for <em>L</em><sub>1</sub> drawn tangent to the graph of <em>f</em> on their </span><span>sketch in approximately the correct position (<em>x</em> = </span><span><span>–</span>3), </span><span><em><strong>(A1)</strong></em> for a second tangent parallel to their <em>L</em><sub>1</sub>, </span><span><em><strong>(A1)</strong></em> for <em>x</em> = –3, <em><strong>(A1)</strong></em> for <em>x</em> = 5 .     </span><strong><em><span><span>(A1)</span></span></em><span><span>(ft)</span></span><em><span><span>(A1)</span></span></em><span><span><span>(ft)</span></span></span><em><span>(A1)(A1)</span></em></strong></p>
<p><br><span><strong>Note:</strong> If only <em>x</em> = </span><span>–3 is shown without working award </span><em><strong>(G2)</strong></em><strong>.</strong><span> </span><span>If both answers are shown irrespective of working</span><span>award <em><strong>(G3)</strong></em>.</span></p>
<p><br><span>(ii)<em> f</em> (5) = </span><span><span>–</span>40     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for attempting to find the image of their <em>x</em> = 5. </span><span>Award <em><strong>(A1)</strong></em> only for (5, </span><span><span>–</span>40). </span><span>Follow through from their <em>x</em>-coordinate of B only if it has</span> <span><strong>been clearly identified</strong> in (f) (i).</span></p>
<p><span><em><strong>[6 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The value of <em>f</em> (0) and the derivative function, <em>f '</em>(<em>x</em>) were well done in parts (a) and (b). In part (c) many candidates found <em>f</em> (1) instead of <em>f</em> <em>'</em>(1) . In part (d) many students did not use their <em>f</em> (<em>x</em>) to find the <em>x</em>-coordinates of M and N and instead used their GDC. The sketch was generally well done although some students forgot to label M and N or did not use the specified window. The last part of the question was a clear discriminator. Examiners were pleased to see how this challenging question was solved using alternative methods.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<h1><span style="font-family: times new roman,times; font-size: medium;">Part A</span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">100 students are asked what they had for breakfast on a particular morning.</span> <span style="font-family: times new roman,times; font-size: medium;">There were three choices: cereal (<em>X</em>) , bread (<em>Y</em>) and fruit (<em>Z</em>). It is found that</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">10 students had all three</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">17 students had bread and fruit only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">15 students had cereal and fruit only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">12 students had cereal and bread only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">13 students had only bread</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">8 students had only cereal</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">9 students had only fruit</span></p>
</div>

<div class="specification">
<h1><span style="font-family: times new roman,times; font-size: medium;">Part B</span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">The same 100 students are also asked how many meals on average they have per day. The data collected is organized in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A \({\chi ^2}\) test is carried out at the 5 % level of significance.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Represent this information on a Venn diagram.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who had none of the three choices for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the percentage of students who had fruit for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Describe in words what the students in the set \(X \cap Y'\) had for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student had <strong>at least</strong> two of the three choices for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two students are chosen at random. Find the probability that both students had all three choices for breakfast.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis, H<sub>0</sub>, for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the expected number of females that have more than 5 meals per day is 13, correct to the nearest integer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the \(\chi _{calc}^2\) for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether H<sub>0</sub> must be accepted. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for rectangle and three intersecting circles</span></p>
<p><span><em><strong>(A1)</strong></em> for 10, <em><strong>(A1)</strong></em> for 8, 13 and 9, <em><strong>(A1)</strong></em> for 12, 15 and 17     <em><strong>(A4)</strong></em></span></p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>100 – (9 +12 +13 +15 +10 +17 + 8) =16     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em>  </span></p>
<p><span><strong>Note:</strong> Follow through from their diagram.</span></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{51}}{{100}}(0.51)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>= 51%     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from their diagram.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong>Note:</strong> The following statements are correct. Please note that the connectives are important. It is not the same (had cereal) <span>and</span></span> <span>(not bread) and (had cereal) <span>or</span> (not bread). The parentheses are not needed but are there to facilitate the understanding of </span><span>the propositions.</span></p>
<p><span> </span></p>
<p><span>(had cereal) and (did not have bread)</span></p>
<p><span>(had cereal only) or (had cereal and fruit only)</span></p>
<p><span>(had either cereal or (fruit and cereal)) and (did not have bread)     <em><strong>(A1)(A1)</strong></em> <br></span></p>
<p><br><span><strong>Notes:</strong> If the statements are correct but the connectives are wrong then</span> <span>award at most <strong><em>(A1)(A0)</em></strong>.</span> <span>For the statement (had only cereal) and (cereal and fruit) award </span><em><strong><span>(A1)(A0)</span></strong></em><span>. </span><span>For the statement had cereal and fruit award <em><strong>(A0)(A0)</strong></em>.</span></p>
<p><em><strong>[2 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{54}}{{100}}(0.54,{\text{ 54 % }})\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for numerator, follow through from their diagram, <strong><em>(A1)</em>(ft)</strong> for denominator. Follow through from total or denominator used in part (c).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{10}}{{100}} \times \frac{9}{{99}} = \frac{1}{{110}}(0.00909,{\text{ 0}}{\text{.909 % }})\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Notes:</strong> Award <strong><em>(A1)</em>(ft)</strong> for their correct fractions, <em><strong>(M1)</strong></em> for multiplying</span> <span>two fractions, <strong><em>(A1)</em>(ft)</strong> for their correct answer.</span> <span>Answer 0.009 with no working receives no marks. </span><span>Follow through from denominator in parts (c) and (e) and from</span> <span>their diagram.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">A.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>H<sub>0</sub> : The (average) number of meals per day a student has and gender are independent     <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> For “independent” accept “not associated” but do not accept “not related” or “not correlated”.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>2     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>5.99 (accept 5.991)     <em><strong>(A1)</strong></em><strong>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> Follow through from their part (b).</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{28 \times 45}}{{100}} = 12.6 = 13\) or \(\frac{{28}}{{100}} \times \frac{{25}}{{100}} \times 100 = 12.6 = 13\)     <em><strong>(M1)(A1)(AG)</strong></em> </span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for correct formula and <em><strong>(A1)</strong></em> for correct substitution. Unrounded answer must be seen for the <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<p> </p>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0.0321      <em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> For 0.032 award <em><strong>(G1)(G1)(AP)</strong></em>. For 0.03 with no working award <em><strong>(G0)</strong></em>.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>0.0321 &lt; 5.99 or 0.984 &gt; 0.05     <em><strong>(R1)</strong></em></span></p>
<p><span>accept H<sub>0</sub>     <strong><em>(A1)</em>(ft)</strong> </span></p>
<p><br><span><strong>Note:</strong> If reason is incorrect both marks are lost, do not award <em><strong>(R0)(A1)</strong></em>.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">B.f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was in general well done. Candidates began the paper well by drawing the Venn diagram correctly. Some students omitted the rectangle (universal set) around the three circles. There were quite a few errors in (c) as some students forgot to convert their answers to percentages. Also describing in words what the students in \(X \cap Y'\) had for breakfast seemed to be difficult for the majority of the candidates. Some misread what <em>Y</em> was and even more missed the complement sign. However, the main problem in answering this question seemed to be the lack of knowledge in the relationship between set theory and logic (use of</span> <span style="font-size: medium; font-family: times new roman,times;">"and" and "or"). Combining probabilities caused problems to many. Common wrong answers were \(\frac{{10}}{{100}}\), \(\frac{{10}}{{100}} \times \frac{{10}}{{100}}\) or \(\frac{{10}}{{100}} + \frac{9}{{99}}\).</span></p>
<div class="question_part_label">A.f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">In general this part question was well answered. The major concerns of the examining team were the following:</span></p>
<ul>
<li><span style="font-family: times new roman,times; font-size: medium;">In (f) many students wrote down the expected values table (from the GDC) and highlighted the correct expected value, 12.6. As this is a "show that" question the use of the GDC is not expected and therefore no marks are awarded for this working. Instead it is expected the use of the formula for the expected value with the correct substitutions.</span></li>
<li><span style="font-family: times new roman,times; font-size: medium;">In (e) surprisingly many candidates found the \(\chi _{calc}^2\) through the use of the formula. </span><span style="font-family: times new roman,times; font-size: medium;">Unfortunately this led to some incorrect answers and also to a bad use of time. The </span><span style="font-family: times new roman,times; font-size: medium;">question clearly says "use your graphic display calculator" and it is worth 2 marks </span><span style="font-family: times new roman,times; font-size: medium;">therefore a student should not spend more than 2 minutes to answer this part </span><span style="font-family: times new roman,times; font-size: medium;">question. Time management is essential in this type of examinations and the IB rule </span><span style="font-family: times new roman,times; font-size: medium;">is one minute &ndash; one mark.</span></li>
</ul>
<div class="question_part_label">B.f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following diagram shows two triangles, OBC and OBA, on a set of axes. Point C lies on the \(y\)-axis, and O is the origin.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_16.03.31.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The equation of the line BC is \(y = 4\).</p>
<p class="p1">Write down the coordinates of point C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The \(x\)-coordinate of point B is \(a\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the coordinates of point B;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Write down the gradient of the line OB.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Point A lies on the \(x\)-axis and the line AB is perpendicular to line OB.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the gradient of line AB.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that the equation of the line AB is \(4y + ax - {a^2} - 16 = 0\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The area of triangle AOB is <strong>three times</strong> the area of triangle OBC.</p>
<p class="p1">Find an expression, <strong>in terms of <em>a</em></strong>, for</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>the area of triangle OBC;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the <em>x</em>-coordinate of point A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\((0,{\text{ }}4)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Accept \(x = 0,{\text{ }}y = 4\).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\((a,{\text{ }}4)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Notes: </strong>Follow through from part (a).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(\frac{4}{a}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Follow through from part (b)(i).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     \( - \frac{a}{4}\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Follow through from part (b)(ii).</p>
<p> </p>
<p>(ii)     \(y =  - \frac{a}{4}x + c\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of their gradient from part (c)(i) in the equation.</p>
<p> </p>
<p>\(4 =  - \frac{a}{4} \times a + c\)</p>
<p>\(c = \frac{1}{4} \times {a^2} + 4\)</p>
<p>\(y =  - \frac{a}{4}x + \frac{1}{4}{a^2} + 4\)     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(y - 4 =  - \frac{a}{4}(x - a)\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of their gradient from part (c)(i) in the equation.</p>
<p> </p>
<p>\(y =  - \frac{{ax}}{4} + \frac{{{a^2}}}{4} + 4\)     <strong><em>(A1)</em></strong></p>
<p>\(4y =  - ax + {a^2} + 16\)</p>
<p>\(4y + ax - {a^2} - 16 = 0\)     <strong><em>(AG)</em></strong></p>
<p><strong>Note: </strong>Both the simplified and the not simplified equations must be seen for the final <strong><em>(A1) </em></strong>to be awarded.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     \(2a\)     <strong><em>(A1)</em></strong></p>
<p> </p>
<p>(ii)     \(\frac{{4x}}{2} = 3 \times 2a\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct equation.</p>
<p> </p>
<p>\(x = 3a\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (d)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(0 - 4 =  - \frac{a}{4}(x - a)\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their gradient and the coordinates of their point into the equation of a line.</p>
<p> </p>
<p>\(\frac{{16}}{a} = x - a\)</p>
<p>\(x = a + \frac{{16}}{a}\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Follow through from parts (b)(i) and (c)(i).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(4 \times 0 + ax - {a^2} - 16 = 0\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of the coordinates of \({\text{A}}(x,{\text{ }}0)\) into the equation of line AB.</p>
<p> </p>
<p>\(ax - {a^2} - 16 = 0\)</p>
<p>\(x = a + \frac{{16}}{a}\;\;\;\)<strong>OR</strong>\(\;\;\;x = \frac{{({a^2} + 16)}}{a}\)     <strong><em>(A1)(G1)</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(4(0) + a(3a) - {a^2} - 16 = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of their \(3a\) from part (d)(ii) into the equation of line AB.</p>
<p class="p2"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">\(\frac{1}{2}\left( {a + \frac{{16}}{a}} \right) \times 4 = 3\left( {\frac{{4a}}{2}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for area of triangle AOB (with their substituted \(a + \frac{{16}}{a}\) and 4) equated to three times their area of triangle AOB.</p>
<p class="p1"> </p>
<p class="p1">\(a = 2.83\;\;\;\left( {2.82842...,{\text{ }}2\sqrt 2 ,{\text{ }}\sqrt 8 } \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Follow through from parts (d)(i) and (d)(ii).</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A pan, in which to cook a pizza, is in the shape of a cylinder. The pan has a diameter of 35 cm and a height of 0.5 cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.14.51.png" alt="M17/5/MATSD/SP2/ENG/TZ1/04"></p>
</div>

<div class="specification">
<p>A chef had enough pizza dough to exactly fill the pan. The dough was in the shape of a sphere.</p>
</div>

<div class="specification">
<p>The pizza was cooked in a hot oven. Once taken out of the oven, the pizza was placed in a dining room.</p>
<p>The temperature, \(P\), of the pizza, in degrees Celsius, &deg;C, can be modelled by</p>
<p>\[P(t) = a{(2.06)^{ - t}} + 19,{\text{ }}t \geqslant 0\]</p>
<p>where \(a\) is a constant and \(t\) is the time, in minutes, since the pizza was taken out of the oven.</p>
<p>When the pizza was taken out of the oven its temperature was 230 &deg;C.</p>
</div>

<div class="specification">
<p>The pizza can be eaten once its temperature drops to 45 &deg;C.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of this pan.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the radius of the sphere in cm, correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the temperature that the pizza will be 5 minutes after it is taken out of the oven.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, to the nearest second, the time since the pizza was taken out of the oven until it can be eaten.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of this model, state what the value of 19 represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\((V = ){\text{ }}\pi  \times {{\text{(17.5)}}^2} \times 0.5\)     <strong><em>(A1)(M1)</em></strong></p>
<p> </p>
<p><strong>Notes:</strong>     Award <strong><em>(A1) </em></strong>for 17.5 (or equivalent) seen.</p>
<p>Award <strong><em>(M1) </em></strong>for correct substitutions into volume of a cylinder formula.</p>
<p> </p>
<p>\( = 481{\text{ c}}{{\text{m}}^3}{\text{ }}(481.056 \ldots {\text{ c}}{{\text{m}}^3},{\text{ }}153.125\pi {\text{ c}}{{\text{m}}^3})\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{4}{3} \times \pi  \times {r^3} = 481.056 \ldots \)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating <strong>their </strong>answer to part (a) to the volume of sphere.</p>
<p> </p>
<p>\({r^3} = \frac{{3 \times 481.056 \ldots }}{{4\pi }}{\text{ }}( = 114.843 \ldots )\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correctly rearranging so \({r^3}\) is the subject.</p>
<p> </p>
<p>\(r = 4.86074 \ldots {\text{ (cm)}}\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(A1) </em></strong>for correct unrounded answer seen. Follow through from part (a).</p>
<p> </p>
<p>\( = 4.9{\text{ (cm)}}\)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     The final <strong><em>(A1)</em>(ft) </strong>is awarded for rounding their unrounded answer to one decimal place.</p>
<p> </p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(230 = a{(2.06)^0} + 19\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution.</p>
<p> </p>
<p>\(a = 211\)     <strong><em>(A1)(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((P = ){\text{ }}211 \times {(2.06)^{ - 5}} + 19\)      <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for correct substitution into the function, \(P(t)\). Follow through from part (c). The negative sign in the exponent is required for correct substitution.</p>
<p> </p>
<p>\( = 24.7\) (°C) \((24.6878 \ldots \) (°C))     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(45 = 211 \times {(2.06)^{ - t}} + 19\)     <strong><em>(M1)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award <strong><em>(M1) </em></strong>for equating 45 to the exponential equation and for correct substitution (follow through for their \(a\) in part (c)).</p>
<p> </p>
<p>\((t = ){\text{ }}2.89711 \ldots \)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></p>
<p>\(174{\text{ (seconds) }}\left( {173.826 \ldots {\text{ (seconds)}}} \right)\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p><strong>Note:</strong>     Award final <strong><em>(A1)</em>(ft) </strong>for converting their \({\text{2.89711}} \ldots \) minutes into seconds.</p>
<p> </p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the temperature of the (dining) room     <strong><em>(A1)</em></strong></p>
<p><strong>OR</strong></p>
<p>the lowest final temperature to which the pizza will cool     <strong><em>(A1)</em></strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Antonio and Barbara start work at the same company on the same day. They each earn an annual salary of \(8000\) euros during the first year of employment. The company gives them a salary increase following the completion of each year of employment. Antonio is paid using plan A and Barbara is paid using plan B.</p>
<p>Plan A: The annual salary increases by \(450\) euros each year.</p>
<p>Plan B: The annual salary increases by \(5\,\% \) each year.</p>
<p>Calculate</p>
<p>i)     Antonio’s annual salary during his second year of employment;</p>
<p>ii)    Barbara’s annual salary during her second year of employment.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for</p>
<p>i)     Antonio’s annual salary during his \(n\) th year of employment;</p>
<p>ii)    Barbara’s annual salary during her \(n\) th year of employment.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of years for which Antonio’s annual salary is greater than or equal to Barbara’s annual salary.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Both Antonio and Barbara plan to work at the company for a total of \(15\) years.</p>
<p>i)     Calculate the <strong>total amount</strong> that <strong>Barbara</strong> will be paid during these \(15\) years.</p>
<p>ii)    Determine whether Antonio earns more than Barbara during these \(15\) years.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i)     \(8450\,({\text{euro}})\)       <em><strong>(A1)</strong></em></p>
<p> </p>
<p>ii)    \(8000 \times 1.05\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for \(8000 \times 1.05\)  <strong>OR</strong> \(\left( {8000 \times 0.05} \right) + 8000.\)</p>
<p>\( = 8400\,({\text{euro}})\)       <em><strong>(A1)(G3)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)     \(8000 + 450\,\left( {n - 1} \right)\,\,\,\left( {{\text{accept}}\,\,450\,n + 7550} \right)\)        <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in arithmetic sequence formula; <em><strong>(A1)</strong></em> for correct substitutions.</p>
<p> </p>
<p>ii)    \(8000 \times {1.05^{\left( {n - 1} \right)\,}}\)        <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in arithmetic sequence formula; <em><strong>(A1)</strong></em> for correct substitutions.</p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(8000 + 450\,(n - 1) \geqslant 8000 \times {1.05^{n - 1}}\)        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting a correct inequality using their expressions for (b)(i) and (b)(ii). Accept an equation.</p>
<p><strong>OR</strong></p>
<p>list of at least 4 correct terms of each sequence        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct lists corresponding to their answers for parts (b)(i) and (b)(ii).</p>
<p>\(6\)        <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Value must be an integer for the final <em><strong>(A1)</strong></em> to be awarded. Follow through from parts (b)(i) and (b)(ii). Award <em><strong>(G1)</strong></em> for a final answer of \(6.70018...\) seen without working.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)     \({S_{15}} = \frac{{8000 \times \left( {{{1.05}^{15}} - 1} \right)}}{{1.05 - 1}}\)         <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into geometric series formula and <em><strong>(A1)</strong></em> for correct substitution of \({u_1}\) and their \(r\) from part (b)(ii). Follow through from part (b)(ii).</p>
<p><strong>OR</strong></p>
<p>\(8000 + 8400 + 8820... + 15839.45\)        <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (b)(ii).</p>
<p>\( = 173\,000\,({\text{euro}})\,\,\,(172629...)\)         <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p> </p>
<p>ii)    \({S_{15}} = \frac{{15}}{2}\left( {2 \times 8000 + 450 \times 14} \right)\)         <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into arithmetic series formula and <em><strong>(A1</strong></em>) for correct substitution, using their first term and their last term from part (b)(i), or their \({u_1}\) and \(d\). Follow through from part (b)(i).</p>
<p><strong>OR</strong></p>
<p>\(8000 + 8450 + 8900... + 14300\)          <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (b)(i).</p>
<p>\( = 167\,000\,({\text{euro}})\,\,\,(167\,250)\)         <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p>Antonio does not earn more than Barbara</p>
<p>(his total salary will be less than Barbara’s)         <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for a final answer that is consistent with their part (d)(i) and (d)(ii). Accept “Barbara earns more”. The final <em><strong>(A1)</strong></em> can only be awarded if two total salaries are seen.</p>
<p> </p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Arithmetic and Geometric progression<br>Most candidates calculated the salaries in the second year correctly. The most common error was to calculate the salaries for the third instead of the second year. In part (b) the use of \(n\) instead of \(n - 1\) &nbsp;was very common. For the geometric sequence often a ratio of 0.05 instead of 1.05 was used. Also many of the expressions given did not represent a geometric sequence. Candidates who used a list for part (c) did usually better than the ones that tried to solve an equation. In part (d) the sum of the arithmetic progression was done better than the geometric series. Many candidates calculated the 15th term of the progression and not the series. In general this question part was not answered well.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Arithmetic and Geometric progression</p>
<p>Most candidates calculated the salaries in the second year correctly. The most common error was to calculate the salaries for the third instead of the second year. In part (b) the use of&nbsp;\(n\)&nbsp;instead of&nbsp;\(n - 1\) &nbsp;was very common. For the geometric sequence often a ratio of 0.05 instead of 1.05 was used. Also many of the expressions given did not represent a geometric sequence. Candidates who used a list for part (c) did usually better than the ones that tried to solve an equation. In part (d) the sum of the arithmetic progression was done better than the geometric series. Many candidates calculated the 15th term of the progression and not the series. In general this question part was not answered well.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Arithmetic and Geometric progression</p>
<p>Most candidates calculated the salaries in the second year correctly. The most common error was to calculate the salaries for the third instead of the second year. In part (b) the use of&nbsp;\(n\)&nbsp;instead of&nbsp;\(n - 1\) &nbsp;was very common. For the geometric sequence often a ratio of 0.05 instead of 1.05 was used. Also many of the expressions given did not represent a geometric sequence. Candidates who used a list for part (c) did usually better than the ones that tried to solve an equation. In part (d) the sum of the arithmetic progression was done better than the geometric series. Many candidates calculated the 15th term of the progression and not the series. In general this question part was not answered well.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 5: Arithmetic and Geometric progression</p>
<p>Most candidates calculated the salaries in the second year correctly. The most common error was to calculate the salaries for the third instead of the second year. In part (b) the use of&nbsp;\(n\)&nbsp;instead of&nbsp;\(n - 1\) &nbsp;was very common. For the geometric sequence often a ratio of 0.05 instead of 1.05 was used. Also many of the expressions given did not represent a geometric sequence. Candidates who used a list for part (c) did usually better than the ones that tried to solve an equation. In part (d) the sum of the arithmetic progression was done better than the geometric series. Many candidates calculated the 15th term of the progression and not the series. In general this question part was not answered well.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A cross-country running course consists of a beach section and a forest section. Competitors run from \({\text{A}}\) to \({\text{B}}\), then from \({\text{B}}\) to \({\text{C}}\) and from \({\text{C}}\) back to \({\text{A}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The running course from&nbsp;\({\text{A}}\)&nbsp;to&nbsp;\({\text{B}}\)&nbsp;is along the beach, while the course from&nbsp;\({\text{B}}\), through&nbsp;\({\text{C}}\)&nbsp;and&nbsp;back to&nbsp;\({\text{A}}\),&nbsp;is through&nbsp;the forest.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The course is shown on the following diagram.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_11.39.47.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Angle&nbsp;\({\text{ABC}}\)&nbsp;is \(110^\circ\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">It takes Sarah \(5\) minutes and \(20\) seconds to run from&nbsp;\({\text{A}}\)&nbsp;to&nbsp;\({\text{B}}\)&nbsp;at a speed of \(3.8{\text{ m}}{{\text{s}}^{ -&nbsp;1}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using ‘<em>distance </em>= <em>speed </em>\( \times \) <em>time</em>’, show that the distance from \({\text{A}}\) to \({\text{B}}\) is \(1220\) metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the speed, in \({\text{m}}{{\text{s}}^{ - 1}}\), that Sarah runs from \({\text{B}}\) to \({\text{C}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span><span><span>Calculate the distance, in metres, from </span></span><span><span>\({\mathbf{C}}\)</span></span><span><span> </span></span><strong><span><span>to </span></span></strong><span><span>\({\mathbf{A}}\).</span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\) is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the total distance, in metres, of the cross-country running course.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\)</span><span> is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Find the size of angle \({\text{BCA}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The distance from \({\text{B}}\) to \({\text{C}}\)</span><span> is \(850\) metres. Running this part of the course takes Sarah \(5\) minutes and \(3\) seconds.</span></p>
<p><span>Calculate the area of the cross-country course bounded by the lines \({\text{AB}}\), \({\text{BC}}\) and \({\text{CA}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(3.8 \times 320\)     <strong><em>(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(320\) or equivalent seen.</span></p>
<p> </p>
<p><span>\( = 1216\)     <strong><em>(A1)</em></strong></span></p>
<p><span>\( = 1220{\text{ (m)}}\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Both unrounded and rounded answer must be seen for the final <strong><em>(A1) </em></strong>to be awarded.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{850}}{{303}}{\text{ (m}}{{\text{s}}^{ - 1}}){\text{ (2.81, 2.80528}} \ldots {\text{)}}\)     <strong><em>(A1)(G1)</em></strong></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{A}}{{\text{C}}^2} = {1220^2} + {850^2} - 2(1220)(850)\cos 110^\circ \)     <strong><em>(M1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution into cosine rule formula, <strong><em>(A1) </em></strong>for correct substitutions.</span></p>
<p> </p>
<p><span>\({\text{AC}} = 1710{\text{ (m) (1708.87}} \ldots {\text{)}}\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Accept \(1705{\text{ }} (1705.33…)\).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1220 + 850 + {\text{1708.87}} \ldots \)     <strong><em>(M1)</em></strong></span></p>
<p><span>\( = {\text{3780 (m) (3778.87}} \ldots {\text{)}}\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for adding the three sides. Follow through from their answer to part (c). Accept \(3771{\text{ }} (3771.33…)\).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{\sin C}}{{1220}} = \frac{{\sin 110^\circ }}{{{\text{1708.87}} \ldots }}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution into sine rule formula, <strong><em>(A1)</em>(ft) </strong>for correct substitutions. Follow through from their part (c).</span></p>
<p> </p>
<p><span>\(C = 42.1^\circ {\text{ (42.1339}} \ldots {\text{)}}\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Accept \(41.9^{\circ}, 42.0^{\circ}, 42.2^{\circ}, 42.3^{\circ}\).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p> </p>
<p><span>\(\cos C = \frac{{{\text{1708.87}}{ \ldots ^2} + {{850}^2} - {{1220}^2}}}{{2 \times {\text{1708.87}} \ldots  \times 850}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution into cosine rule formula, <strong><em>(A1)</em>(ft) </strong>for correct substitutions. Follow through from their part (c).</span></p>
<p> </p>
<p><span>\(C = 42.1^\circ {\text{ (42.1339}} \ldots {\text{)}}\)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Accept \(41.2^{\circ}, 41.8^{\circ}, 42.4^{\circ}\).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{2} \times 1220 \times 850 \times \sin 110^\circ \)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\frac{1}{2} \times {\text{1708.87}} \ldots  \times 850 \times \sin {\text{42.1339}} \ldots ^\circ \)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\frac{1}{2} \times 1220 \times {\text{1708.87}} \ldots  \times \sin {\text{27.8661}} \ldots ^\circ \)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution into area formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution.</span></p>
<p> </p>
<p><span>\( = 487\,000{\text{ }}{{\text{m}}^2}{\text{ (487}}\,{\text{230}} \ldots {\text{ }}{{\text{m}}^2})\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>The answer is \(487\,000{\text{ }}{{\text{m}}^2}\), <strong>units are required</strong>.</span></p>
<p><span>     Accept \(486\,000{\text{ }}{{\text{m}}^2}{\text{ (485}}\,{\text{633}} \ldots {\text{ }}{{\text{m}}^2})\).</span></p>
<p><span>     If workings are not shown and units omitted, award <strong><em>(G1) </em></strong>for \(487\,000{\text{ or }}486\,000\).</span></p>
<p><span>     Follow through from parts (c) and (e).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The cumulative frequency graph shows the speed, \(s\)<span class="s1">, in \({\text{km}}\,{{\text{h}}^{ - 1}}\), of \(120\)&nbsp;</span>vehicles passing a hospital gate.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-21_om_07.03.09.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Estimate the minimum possible speed of one of these vehicles passing the hospital gate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the median speed of the vehicles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the <span class="s1">\({75^{{\text{th}}}}\) </span>percentile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The speed limit past the hospital gate is \(50{\text{ km}}\,{{\text{h}}^{ - 1}}\).</p>
<p class="p1">Find the number of these vehicles that exceed the speed limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">Find the value of \(p\) and of \(q\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">(i)     Write down the modal class.</p>
<p class="p1">(ii)     Write down the mid-interval value for this class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The table shows the speeds of these vehicles travelling past the hospital gate.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-21_om_07.07.41.png" alt></p>
<p class="p1">Use your graphic display calculator to calculate an estimate of</p>
<p class="p1">(i)     the mean speed of these vehicles;</p>
<p class="p1">(ii)     the standard deviation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is proposed that the speed limit past the hospital gate is reduced to \(40{\text{ km}}\,{{\text{h}}^{ - 1}}\) from the current \(50{\text{ km}}\,{{\text{h}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p2">Find the percentage of these vehicles passing the hospital gate that <strong>do not </strong>exceed the current speed limit but <strong>would </strong>exceed the new speed limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(10{\text{ (km}}\,{{\text{h}}^{ - 1}})\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(36\)     <strong><em>(G2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(41.5\)     <span class="s1"><strong><em>(G1) </em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(41.5 - 32.5\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 9{\text{ (}} \pm {\text{1)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for quartiles seen. Follow through from part (c).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(120 - 110\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 10\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for \(110\)<span class="s1"> </span>seen.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(p = 4\;\;\;q = 10\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Note: </strong>Follow through from part (e).</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(30 &lt; s \leqslant 40\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    \(35\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Follow through from part (g)(i).</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(36.8{\text{ (km}}\,{{\text{h}}^{ - 1}})\;\;\;(36.8333)\) <span class="Apple-converted-space">    </span><strong><em>(G2)</em>(ft)</strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Follow through from part (f).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(8.85\;\;\;(8.84904 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(G1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Follow through from part (f), irrespective of working seen.</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{26}}{{120}} \times 100\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for \(\frac{{26}}{{120}} \times 100\) seen.</p>
<p class="p2"> </p>
<p class="p1">\( = 21.7{\text{ (}}\% )\;\;\;\left( {21.6666 \ldots ,{\text{ }}21\frac{2}{3},{\text{ }}\frac{{65}}{3}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will<strong> not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>For the great majority, this was a straightforward and accessible question. There were many, however, who had no appreciation of medians, percentiles and quartiles &ndash; all straightforward concepts. Most were able to read from the graph, using correctly the scales; only the weakest misinterpreting these. Calculation of the mean and standard deviation are expected to be completed using the graphic display calculator (GDC) &ndash; formulae are no longer required and the covariance will <strong>not</strong> be given in questions. Many candidates, however, were unable to calculate the mean and standard deviation of a (grouped) frequency distribution, instead treating the data as raw; comments on the G2 forms from schools indicated that some teachers were also unable to do this and advice must be sought.</p>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an ecological study, Ernesto measured the average concentration \((y)\) of the fine dust, \({\text{PM}}10\), in the air at different distances \((x)\) from a power plant. His data are represented on the following scatter diagram. The concentration of \({\text{PM}}10\) is measured in micrograms per cubic metre and the distance is measured in kilometres.</p>
<p><img src="" alt></p>
<p>His data are also listed in the following table.</p>
<p><img src="" alt></p>
<p>Use the scatter diagram to find the value of \(a\) and of \(b\) in the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate</p>
<p>i)      \({\bar x}\) , the mean distance from the power plant;</p>
<p>ii)     \({\bar y}\) , the mean concentration of \({\text{PM}}10\) ;</p>
<p>iii)    \(r\) , the Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line \(y\) on \(x\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ernesto’s school is located \(14\,{\text{km}}\) from the power plant. He uses the equation of the regression line to estimate the concentration of \({\text{PM}}10\) in the air at his school.</p>
<p>i)     Calculate the value of Ernesto’s estimate.</p>
<p>ii)    State whether Ernesto’s estimate is reliable. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(a = 4.2\,;\,\,b = 74\)             <em><strong>(A1)(A1)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)      \(5.91\,({\text{km}})\)       <strong><em>(A1)</em>(ft)</strong></p>
<p>ii)     \(88\) (micrograms per cubic metre)      <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (a) irrespective of working seen.</p>
<p>iii)    \( - 0.956\,\,\,\,( - 0.955528...)\)        <strong><em>(G2)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (a) irrespective of working seen.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y =  - 5.39x + 120\,\,\,\,(y =  - 5.38955...x + 119.852...)\)           <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em><strong>(ft)</strong></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for \( - 5.39\). Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for \(120\). If answer is not an equation award at most <em><strong>(A1)</strong></em><strong>(ft)<em>(A0)</em></strong>. Follow through from part (a) irrespective of working seen.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)     \( - 5.38955... \times 14 + 119.852...\)        <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into their regression line.</p>
<p>\( = 44.4\,\,(44.3984...)\)          <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (c). Accept \(44.5\,\,(44.54)\) from use of \(3\) significant figure values.</p>
<p> </p>
<p>ii)     Ernesto’s estimate is not reliable        <em><strong>(A1)</strong></em></p>
<p>this is extrapolation        <em><strong>(R1)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(14\,{\text{km}}\) is not within the range (outside the domain) of distances given       <em><strong>(R1)</strong></em></p>
<p><strong>Note:</strong> Do not accept “\(14\) is too high” or “\(14\) is an outlier” or “result not valid/not reliable” if explanation not given. Do not award <em><strong>(A1)(R0)</strong></em>. Do not accept reasoning based on the strength of \(r\).</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Reading scatter diagram, mean, correlation and regression line.<br>The majority of the candidates scored very well on this question. There were only a few candidates who read the diagram incorrectly. The most common mistake in parts (b), (c) and (d)(i) were rounding errors, sometimes resulting in candidates losing follow-through marks when working was not presented. Part (d)(ii) was answered incorrectly by most candidates. The most common incorrect answer was based on strong correlation. Some commented on the trend of decreasing PM10 values for increasing distances, showing lack of understanding about extrapolation.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Reading scatter diagram, mean, correlation and regression line.<br>The majority of the candidates scored very well on this question. There were only a few candidates who read the diagram incorrectly. The most common mistake in parts (b), (c) and (d)(i) were rounding errors, sometimes resulting in candidates losing follow-through marks when working was not presented. Part (d)(ii) was answered incorrectly by most candidates. The most common incorrect answer was based on strong correlation. Some commented on the trend of decreasing PM10 values for increasing distances, showing lack of understanding about extrapolation.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Reading scatter diagram, mean, correlation and regression line.<br>The majority of the candidates scored very well on this question. There were only a few candidates who read the diagram incorrectly. The most common mistake in parts (b), (c) and (d)(i) were rounding errors, sometimes resulting in candidates losing follow-through marks when working was not presented. Part (d)(ii) was answered incorrectly by most candidates. The most common incorrect answer was based on strong correlation. Some commented on the trend of decreasing PM10 values for increasing distances, showing lack of understanding about extrapolation.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 1: Reading scatter diagram, mean, correlation and regression line.<br>The majority of the candidates scored very well on this question. There were only a few candidates who read the diagram incorrectly. The most common mistake in parts (b), (c) and (d)(i) were rounding errors, sometimes resulting in candidates losing follow-through marks when working was not presented. Part (d)(ii) was answered incorrectly by most candidates. The most common incorrect answer was based on strong correlation. Some commented on the trend of decreasing PM10 values for increasing distances, showing lack of understanding about extrapolation.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Throughout this question <em>all</em> the numerical answers must be given correct to the nearest whole number.</strong></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Park School started in January 2000 with \(100\) students. Every full year, there is an increase of \(6\% \) in the number of students.</span></p>
<p><span>Find the number of students attending Park School in</span></p>
<p><span>(i)     January 2001;</span></p>
<p><span>(ii)    January 2003.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Park School started in January 2000 with \(100\) students. Every full year, there is an increase of \(6\% \) in the number of students.</span></p>
<p><span>Show that the number of students attending Park School in January 2007 is \(150\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Grove School had \(110\) students in January 2000. Every full year, the number of students is \(10\) more than in the previous year.</span></p>
<p><span>Find the number of students attending Grove School in January 2003.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Grove School had \(110\) students in January 2000. Every full year, the number of students is \(10\) more than in the previous year.</span></p>
<p><span>Find the year in which the number of students attending Grove School will be first \(60\% \) <strong>more than</strong> in January 2000.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Each January, one of these two schools, the one that has more students, is given extra money to spend on sports equipment.</span></p>
<p><span>(i)     Decide which school gets the money in 2007. Justify your answer.</span></p>
<p><span>(ii)    Find the first year in which Park School will be given this extra money.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(100 \times 1.06 = 106\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for multiplying by \(1.06\) or equivalent. <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><br><span>(ii)    \(100 \times {1.06^3} = 119\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> <em><strong>(M1)</strong></em> for multiplying by \({1.06^3}\) or equivalent or for list of values. <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(100 \times {1.06^7} = 150.36 \ldots  = 150\) correct to the nearest whole     <em><strong>(M1)(A1)(AG)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for correct formula or for list of values. <em><strong>(A1)</strong></em> for correct substitution or for \(150\) in the correct position in the list. Unrounded answer must be seen for the <em><strong>(A1)</strong></em>.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(110 + 3 \times 10 = 140\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><br><span><strong>Note: <em>(M1)</em></strong> for adding \(30\) or for list of values. <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong>In (d) and (e) follow through from (c) if consistent wrong use of correct AP formula.</strong></span></p>
<p><span>\(110 + (n - 1) \times 10 &gt; 176\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>\(n = 8\therefore {\text{year 2007}}\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note: <em>(A1)</em></strong> for \(176\) or \(66\) seen. <em><strong>(M1)</strong></em> for showing list of values and comparing them to \(176\) or for equating formula to \(176\) or for writing the inequality. If \(n = 8\) not seen can still get <em><strong>(A2)</strong></em> for 2007. Answer \(n = 8\) with no working gets <em><strong>(G1)</strong></em>.</span></p>
<p><br><span><strong>OR</strong></span></p>
<p><span>\(110 + n \times 10 &gt; 176\)     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>\(n = 7\therefore {\text{year 2007}}\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em>[4 marks]<br></em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong>In (d) and (e) follow through from (c) if consistent wrong use of correct AP formula.</strong></span></p>
<p><span>(i)     \(180\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><br></span></p>
<p><span>Grove School gets the money.     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><br><strong>Note: <em>(A1)</em></strong> for \(180\) seen. <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span><br>(ii)    \({\text{100}} \times {\text{1}}{\text{.0}}{{\text{6}}^{n - 1}} &gt; 110 + (n - 1) \times 10\)     <em><strong>(M1)</strong></em>    </span></p>
<p><span>\(n = 20\therefore {\text{year 2019}}\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)<em>(G2)</em></strong><br></span></p>
<p><span><br><strong>Note: <em>(M1)</em></strong> for showing lists of values for each school and comparing them or for equating both formulae or writing the correct inequality. If \(n = 20\) not seen can still get <em><strong>(A2)</strong></em> for 2019. Follow through with ratio used in (b) and/or formula used in (d).</span></p>
<p><span><br><strong>OR</strong></span></p>
<p><span>\(100 \times {1.06^n} &gt; 110 + n \times 10\)     <em><strong>(M1)</strong></em><br></span></p>
<p><span>\(n = 19\therefore {\text{year 2019}}\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em><br></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>graphically</span></p>
<p><span><br><strong>Note: <em>(M1)</em></strong> for sketch of both functions on the same graph, <em><strong>(A1)</strong></em> for the intersection point, <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span><em><strong>[5 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by the majority of the candidates. Most of the candidates were able to distinguish between the arithmetic and the geometric progression. A number of candidates worked out term by term by hand for which they needed more time than those that used the formulae to find the requested terms. Some of the students that found the terms the long way also lost a mark for premature rounding. It was pleasing to see how the last part of the question was answered using different methods. Those candidates that worked throughout the question using AP and GP formulae used either the solver or a graph to find the solution of the inequality. Those candidates that worked throughout the question in the long way also managed to compare the terms and find the correct year.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by the majority of the candidates. Most of the candidates were able to distinguish between the arithmetic and the geometric progression. A number of candidates worked out term by term by hand for which they needed more time than those that used the formulae to find the requested terms. Some of the students that found the terms the long way also lost a mark for premature rounding. It was pleasing to see how the last part of the question was answered using different methods. Those candidates that worked throughout the question using AP and GP formulae used either the solver or a graph to find the solution of the inequality. Those candidates that worked throughout the question in the long way also managed to compare the terms and find the correct year.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by the majority of the candidates. Most of the candidates were able to distinguish between the arithmetic and the geometric progression. A number of candidates worked out term by term by hand for which they needed more time than those that used the formulae to find the requested terms. Some of the students that found the terms the long way also lost a mark for premature rounding. It was pleasing to see how the last part of the question was answered using different methods. Those candidates that worked throughout the question using AP and GP formulae used either the solver or a graph to find the solution of the inequality. Those candidates that worked throughout the question in the long way also managed to compare the terms and find the correct year.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by the majority of the candidates. Most of the candidates were able to distinguish between the arithmetic and the geometric progression. A number of candidates worked out term by term by hand for which they needed more time than those that used the formulae to find the requested terms. Some of the students that found the terms the long way also lost a mark for premature rounding. It was pleasing to see how the last part of the question was answered using different methods. Those candidates that worked throughout the question using AP and GP formulae used either the solver or a graph to find the solution of the inequality. Those candidates that worked throughout the question in the long way also managed to compare the terms and find the correct year.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question was well answered by the majority of the candidates. Most of the candidates were able to distinguish between the arithmetic and the geometric progression. A number of candidates worked out term by term by hand for which they needed more time than those that used the formulae to find the requested terms. Some of the students that found the terms the long way also lost a mark for premature rounding. It was pleasing to see how the last part of the question was answered using different methods. Those candidates that worked throughout the question using AP and GP formulae used either the solver or a graph to find the solution of the inequality. Those candidates that worked throughout the question in the long way also managed to compare the terms and find the correct year.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A parcel is in the shape of a rectangular prism, as shown in the diagram. It has a length \(l\) cm, width \(w\) cm and height of \(20\) cm.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The total volume of the parcel is \(3000{\text{ c}}{{\text{m}}^3}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Express the volume of the parcel in terms of \(l\) and \(w\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(l = \frac{{150}}{w}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_3.png" alt><br></span></p>
<p><span>Show that the length of string, \(S\) cm, required to tie up the parcel can be written as</span></p>
<p><span>\[S = 40 + 4w + \frac{{300}}{w},{\text{ }}0 &lt; w \leqslant 20.\]</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_5.png" alt><br></span></p>
<p><span>Draw the graph of \(S\) for \(0 &lt; w \leqslant 20\) and \(0 &lt; S \leqslant 500\), clearly showing the local minimum point. Use a scale of \(2\) cm to represent \(5\) units on the horizontal axis \(w\)<em> </em>(cm), and a scale of \(2\) cm to represent \(100\) units on the vertical axis \(S\) (cm).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_4.png" alt><br></span></p>
<p><span>Find \(\frac{{{\text{d}}S}}{{{\text{d}}w}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29.png" alt><br></span></p>
<p><span>Find the value of \(w\) for which \(S\) is a minimum.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_1.png" alt><br></span></p>
<p><span>Write down the value, \(l\), of the parcel for which the length of string is a minimum.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The parcel is tied up using a length of string that fits <strong>exactly </strong>around the parcel, as shown in the following diagram.</span></p>
<p><span><br><img src="images/Schermafbeelding_2014-09-02_om_11.55.29_2.png" alt><br></span></p>
<p><span>Find the minimum length of string required to tie up the parcel.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(20lw\)   <strong>OR</strong>   \(V = 20lw\)     <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3000 = 20lw\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their answer to part (a) to \(3000\).</span></p>
<p> </p>
<p><span>\(l = \frac{{3000}}{{20w}}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for rearranging equation to make \(l\) subject of the formula. The above equation must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(150 = lw\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for division by \(20\) on both sides. The above equation must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span>\(l = \frac{{150}}{w}\)     <strong><em>(AG)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(S = 2l + 4w + 2(20)\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for setting up a correct expression for \(S\).</span></p>
<p> </p>
<p><span>\(2\left( {\frac{{150}}{w}} \right) + 4w + 2(20)\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into the expression for \(S\). The above expression must be seen to award <strong><em>(M1)</em></strong>.</span></p>
<p> </p>
<p><span>\( = 40 + 4w + \frac{{300}}{w}\)     <strong><em>(AG)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><span><strong><br><img src="images/curvy.jpg" alt>    </strong> <strong><em>(A1)(A1)(A1)(A1)</em></strong></span></span></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for correct scales, window and labels on axes, <strong><em>(A1) </em></strong>for approximately correct shape, <strong><em>(A1) </em></strong>for minimum point in approximately correct position, <strong><em>(A1) </em></strong>for asymptotic behaviour at \(w = 0\).</span></p>
<p><span>     Axes must be drawn with a ruler and labeled \(w\) and \(S\)<em>.</em></span></p>
<p><span>     For a smooth curve (with approximately correct shape) there should be <strong>one </strong>continuous thin line, no part of which is straight and no (one-to-many) mappings of \(w\).</span></p>
<p><span>     The \(S\)-axis must be an asymptote. The curve must not touch the \(S\)-axis nor must the curve approach the asymptote then deviate away later.</span></p>
<p> </p>
<p><span><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 - \frac{{300}}{{{w^2}}}\)     <strong><em>(A1)(A1)(A1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for \(4\), <strong><em>(A1) </em></strong>for \(-300\), <strong><em>(A1) </em></strong>for \(\frac{1}{{{w^2}}}\) or \({w^{ - 2}}\). If extra terms present, award at most <strong><em>(A1)(A1)(A0)</em></strong><em>.</em></span></p>
<p><span><em> </em></span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4 - \frac{{300}}{{{w^2}}} = 0\)   <strong>OR</strong>   \(\frac{{300}}{{{w^2}}} = 4\)   <strong>OR</strong>   \(\frac{{{\text{d}}S}}{{{\text{d}}w}} = 0\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating their derivative to zero.</span></p>
<p> </p>
<p><span>\(w = 8.66{\text{ }}\left( {\sqrt {75} ,{\text{ 8.66025}} \ldots } \right)\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answer to part (e).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(17.3 \left( {\frac{{150}}{{\sqrt {75} }},{\text{ 17.3205}} \ldots } \right)\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answer to part (f).</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(40 + 4\sqrt {75}  + \frac{{300}}{{\sqrt {75} }}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of their answer to part (f) into the expression for \(S\).</span></p>
<p> </p>
<p><span>\( = 110{\text{ (cm) }}\left( {40 + 40\sqrt 3 ,{\text{ 109.282}} \ldots } \right)\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Do not accept \(109\).</span></p>
<p><span>     Follow through from their answers to parts (f) and (g).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">On the coordinate axes below, \({\text{D}}\) is a point on the \(y\)-axis and \({\text{E}}\) is a point on the \(x\)-axis. \({\text{O}}\) is the origin. The equation of the line \({\text{DE}}\) is \(y + \frac{1}{2}x = 4\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of point \({\text{E}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>\({\text{C}}\) is a point on the line </span><span><span>\({\text{DE}}\)</span>. </span><span><span>\({\text{B}}\)</span> is a point on the \(x\)-axis such that </span><span><span>\({\text{BC}}\)</span> is parallel to the \(y\)-axis. The \(x\)-coordinate of </span><span><span>\({\text{C}}\)</span> is \(t\).</span></p>
<p><span>Show that the \(y\)-coordinate of </span><span><span>\({\text{C}}\)</span> is \(4 - \frac{1}{2}t\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>\({\text{OBCD}}\) </span>is a trapezium. The \(y\)-coordinate of point </span><span><span>\({\text{D}}\)</span> is \(4\).<br></span></p>
<p><span>Show that the area of </span><span><span><span>\({\text{OBCD}}\) </span></span>is \(4t - \frac{1}{4}{t^2}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The area of </span><span><span><span>\({\text{OBCD}}\) </span></span>is \(9.75\) square units. Write down a quadratic equation that expresses this information.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Using your graphic display calculator, or otherwise, find the two solutions to the quadratic equation written in part (d).</span></p>
<p><span>(ii) Hence find the correct value for \(t\). Give a reason for your answer.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{E}}(8{\text{, }}0)\)    <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes: </strong>Brackets required but do not penalize again if mark lost in <strong>Q4</strong> (i)(d). If missing award <em><strong>(A1)(A0)</strong></em>.</span><br><span>Accept \(x = 8\), \(y = 0\)</span><br><span>Award <em><strong>(A1)</strong></em> for \(x = 8\)</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y + \frac{1}{2}t = 4\)     <em><strong>(M1)(M1)<br><br></strong></em></span></p>
<p><span><strong>Note: <em>(M1)</em></strong> for the equation of the line seen. <em><strong>(M1)</strong></em> for substituting \(t\).</span></p>
<p><br><span>\(y = 4 - \frac{1}{2}t\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note: </strong>Final line must be seen or previous <em><strong>(M1)</strong></em> mark is lost.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Area}} = \frac{1}{2} \times (4 + 4 - \frac{1}{2}t) \times t\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong><br>Note: <em>(M1)</em></strong> for substituting in correct formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\( = \frac{1}{2} \times (8 - \frac{1}{2}t) \times t = \frac{1}{2}(8t - \frac{1}{2}{t^2})\)     <em><strong>(A1)</strong></em></span><br><span>\( = 4t - \frac{1}{4}{t^2}\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note: </strong>Final line must be seen or previous <em><strong>(A1)</strong></em> mark is lost.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span>\(4t - \frac{1}{4}{t^2} = 9.75\) or any equivalent form.    </span> <span><em><strong>(A1)</strong></em></span></span></p>
<p><span><span><em><strong>[1 mark]<br></strong></em></span></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(t = 3\) or \(t =13\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)<br></strong></em><br></span></p>
<p><span><strong>Note: </strong>Follow through from candidate’s equation to part (d). Award <strong><em>(A0)(A1)</em>(ft)</strong> for \((3{\text{, }}0)\) and \((13{\text{, }}0)\).</span></p>
<p><br><span>(ii) \(t\) must be a value between \(0\) and \(8\) then \(t = 3\)</span></p>
<p><span><strong>Note: </strong>Accept \({\text{B}}\) is between \({\text{O}}\) and \({\text{E}}\). Do not award <em><strong>(R0)(A1)</strong></em>.</span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A number of candidates did not attempt this question worth 12 marks but the majority answered this question partially and were able to gain some marks. Parts (a) and (b) were mostly well done. Very few candidates managed to answer part (c) well; this part of the question required good algebra along with a clear understanding of the situation given in the diagram. Many recovered then in (d) when they were asked to write down the quadratic equation. Solving the equation was not always found to be easy. Use of the GDC was expected but many used the formula. The correct solution, \(t = 3\), was chosen in the last part of the question. However, their justification was often false causing them to lose both the reasoning and the answer mark.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A number of candidates did not attempt this question worth 12 marks but the majority answered this question partially and were able to gain some marks. Parts (a) and (b) were mostly well done. Very few candidates managed to answer part (c) well; this part of the question required good algebra along with a clear understanding of the situation given in the diagram. Many recovered then in (d) when they were asked to write down the quadratic equation. Solving the equation was not always found to be easy. Use of the GDC was expected but many used the formula. The correct solution, \(t = 3\), was chosen in the last part of the question. However, their justification was often false causing them to lose both the reasoning and the answer mark.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A number of candidates did not attempt this question worth 12 marks but the majority answered this question partially and were able to gain some marks. Parts (a) and (b) were mostly well done. Very few candidates managed to answer part (c) well; this part of the question required good algebra along with a clear understanding of the situation given in the diagram. Many recovered then in (d) when they were asked to write down the quadratic equation. Solving the equation was not always found to be easy. Use of the GDC was expected but many used the formula. The correct solution, \(t = 3\), was chosen in the last part of the question. However, their justification was often false causing them to lose both the reasoning and the answer mark.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A number of candidates did not attempt this question worth 12 marks but the majority answered this question partially and were able to gain some marks. Parts (a) and (b) were mostly well done. Very few candidates managed to answer part (c) well; this part of the question required good algebra along with a clear understanding of the situation given in the diagram. Many recovered then in (d) when they were asked to write down the quadratic equation. Solving the equation was not always found to be easy. Use of the GDC was expected but many used the formula. The correct solution, \(t = 3\), was chosen in the last part of the question. However, their justification was often false causing them to lose both the reasoning and the answer mark.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A number of candidates did not attempt this question worth 12 marks but the majority answered this question partially and were able to gain some marks. Parts (a) and (b) were mostly well done. Very few candidates managed to answer part (c) well; this part of the question required good algebra along with a clear understanding of the situation given in the diagram. Many recovered then in (d) when they were asked to write down the quadratic equation. Solving the equation was not always found to be easy. Use of the GDC was expected but many used the formula. The correct solution, \(t = 3\), was chosen in the last part of the question. However, their justification was often false causing them to lose both the reasoning and the answer mark.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A surveyor has to calculate the area of a triangular piece of land, DCE.</p>
<p class="p1">The lengths of CE and DE cannot be directly measured because they go through a swamp.</p>
<p class="p1">AB, DE, BD and AE are straight paths. Paths AE and DB intersect at point C.</p>
<p class="p1">The length of AB is 15 km, BC is 10 km, AC is 12 km, and DC is 9 km.</p>
<p class="p1">The following diagram shows the surveyor&rsquo;s information.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_11.57.28.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the size of angle \({\rm{ACB}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that the size of angle \({\rm{DCE}}\) is \(85.5^\circ\), correct to one decimal place.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The surveyor measures the size of angle \({\text{CDE}}\) to be twice that of angle \({\text{DEC}}\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Using angle \({\text{DCE}} = 85.5^\circ \), <span class="s1">find </span>the size of angle \({\text{DEC}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the length of \({\text{DE}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the area of triangle \({\text{DEC}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)     \(\cos {\rm{A\hat CB}} = \frac{{{{10}^2} + {{12}^2} - {{15}^2}}}{{2 \times 10 \times 12}}\)     <strong><em>(M1)(A1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted cosine rule,</p>
<p><strong><em>(A1) </em></strong>for correct substitution.</p>
<p> </p>
<p>\({\rm{A\hat CB}} = 85.5^\circ \;\;\;({\text{85.4593}} \ldots {\text{)}}\)     <strong><em>(A1)(G2)</em></strong></p>
<p> </p>
<p>(ii)     \({\rm{D\hat CE}} = {\rm{A\hat CB}}\;\;\;{\text{and}}\;\;\;{\rm{A\hat CB}} = 85.5^\circ \;\;\;({\text{85.4593}} \ldots ^\circ {\text{)}}\)     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>\({\rm{B\hat CE}} = 180^\circ  - 85.5^\circ  = 94.5^\circ \;\;\;{\text{and}}\;\;\;{\rm{D\hat CE}} = 180^\circ  - 94.5^\circ  = 85.5^\circ \)     <strong><em>(A1)</em></strong></p>
<p><strong>Notes: </strong>Both reasons must be seen for the <strong><em>(A1) </em></strong>to be awarded.</p>
<p> </p>
<p>\({\rm{D\hat CE}} = 85.5^\circ \)     <strong><em>(AG)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)     \({\rm{D\hat EC}} = \frac{{180^\circ  - 85.5^\circ }}{3}\)     <strong><em>(M1)</em></strong></p>
<p>\({\rm{D\hat EC}} = 31.5^\circ \)     <strong><em>(A1)(G2)</em></strong></p>
<p> </p>
<p>(ii)     \(\frac{{\sin (31.5^\circ )}}{9} = \frac{{\sin (85.5^\circ )}}{{{\text{DE}}}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substituted sine rule, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p> </p>
<p>\({\text{DE}} = 17.2{\text{ (km)}}(17.1718 \ldots )\).     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.5 \times 17.1718 \ldots  \times 9 \times \sin (63^\circ )\)     <strong><em>(A1)</em>(ft)<em>(M1)(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for \(63\) seen, <strong><em>(M1) </em></strong>for substituted triangle area formula, <strong><em>(A1)</em>(ft) </strong>for \(0.5 \times 17.1718 \ldots  \times 9 \times \sin ({\text{their angle CDE}})\).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\({\text{(triangle height}} = ){\text{ }}9 \times \sin (63^\circ )\)     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p>\({\text{0.5}} \times {\text{17.1718}} \ldots  \times {\text{9}} \times {\text{sin(their angle CDE)}}\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for \(63\) seen, <strong><em>(A1)</em>(ft) </strong>for correct triangle height with their angle \({\text{CDE}}\), <strong><em>(M1) </em></strong>for \({\text{0.5}} \times {\text{17.1718}} \ldots  \times {\text{9}} \times {\text{sin(their angle CDE)}}\).</p>
<p> </p>
<p>\( = 68.9{\text{ k}}{{\text{m}}^2}\;\;\;(68.8509 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p><strong>Notes: </strong>Units are required for the last <strong><em>(A1)</em>(ft) </strong>mark to be awarded.</p>
<p>Follow through from parts (b)(i) and (b)(ii).</p>
<p>Follow through from their angle \({\text{CDE}}\) <strong>within this part of the question</strong>.</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following table shows the number of bicycles, \(x\), produced daily by a factory and their total production cost, \(y\)<span class="s1">, in US dollars (USD)</span>. The table shows data recorded over seven days.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_10.06.31.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)     Write down the Pearson’s product–moment correlation coefficient, \(r\), for these data.</p>
<p class="p1">(ii)     Hence comment on the result.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the equation of the regression line \(y\) on \(x\) for these data, in the form \(y = ax + b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Estimate the total cost, <strong>to the nearest </strong><span class="s1"><strong>USD</strong></span>, of producing \(13\)<span class="s1"> </span>bicycles on a particular day.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">All the bicycles that are produced are sold. The bicycles are sold for <span class="s1">304 USD </span><strong>each</strong>.</p>
<p class="p1">Explain why the factory does <strong>not </strong>make a profit when producing \(13\)<span class="s1"> </span>bicycles on a particular day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">All the bicycles that are produced are sold. The bicycles are sold for <span class="s1">304 USD </span><strong>each</strong>.</p>
<p class="p1">(i)     Write down an expression for the total selling price of \(x\) bicycles.</p>
<p class="p1">(ii)     Write down an expression for the <strong>profit </strong>the factory makes when producing \(x\) bicycles on a particular day.</p>
<p class="p1">(iii)     Find the least number of bicycles that the factory should produce, on a particular day, in order to make a profit.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(r = 0.985\;\;\;(0.984905 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>If unrounded answer is not seen, award <strong><em>(G1)(G0) </em></strong>for \(0.99\)<span class="s1"> </span>or \(0.984\). Award <strong><em>(G2) </em></strong>for \(0.98\).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>strong, positive <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(y = 259.909 \ldots x + 698.648 \ldots \;\;\;(y = 260x + 699)\) <span class="Apple-converted-space">    </span><strong><em>(G1)(G1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(G1) </em></strong>for \(260x\) and <strong><em>(G1) </em></strong>for \(699\). If the answer is not an equation award a maximum of <strong><em>(G1)(G0)</em></strong>.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(y = 259.909 \ldots  \times 13 + 698.648 \ldots \)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of \(13\) into their regression line equation from part (b).</p>
<p> </p>
<p>\(y = 4077.47 \ldots \)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p>\(y = 4077{\text{ (USD)}}\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Notes: </strong>Follow through from their answer to part (b). If rounded values from part (b) used, answer is \(4079\). Award the final <strong><em>(A1)</em>(ft) </strong>for a correct rounding to the nearest USD of their answer. The unrounded answer may not be seen.</p>
<p>If answer is \(4077\) and no working is seen, award <strong><em>(G2)</em></strong>.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(13 \times 304 - (4077.47) =  - 125.477 \ldots \;\;\;( - 125)\;\;\;\)<strong>OR</strong></p>
<p>\(4077.47 - (13 \times 304) = 125.477 \ldots \;\;\;(125)\)     <strong><em>(M1)</em></strong></p>
<p><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for calculating the difference between \(13 \times 304\) and their answer to part (c).</p>
<p>If rounded values are used in equation, answer is \( - 127\).</p>
<p> </p>
<p>profit is negative\(\;\;\;\)<strong>OR</strong>\(\;\;\;{\text{cost}} &gt; {\text{sales}}\)     <strong><em>(A1)</em></strong></p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(13 \times 304 = 3952\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for calculating the price of \(13\) bikes.</p>
<p> </p>
<p>\(3952 &lt; 4077.47\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for showing \(3952\) is less than their part (c). This may be communicated in words. Follow through from part (c), but only if value is greater than \(3952\).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(\frac{{4077}}{{13}} = 313.62\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for calculating the cost of \(1\) bicycle.</p>
<p> </p>
<p>\(313.62 &gt; 304\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for showing \(313.62\) is greater than \(304\). This may be communicated in words. Follow through from part (c), but only if value is greater than \(304\).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(\frac{{4077}}{{304}} = 13.41\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for calculating the number of bicycles that should have been be sold to cover total cost.</p>
<p> </p>
<p>\(13.41 &gt; 13\)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for showing \(13.41\) is greater than \(13\). This may be communicated in words. Follow through from part (c), but only if value is greater than \(13\).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(304x\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(304x - (259.909 \ldots x + 698.648 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for difference between their answers to parts (b) and (e)(i), <strong><em>(A1)</em>(ft) </strong>for correct expression.</p>
<p class="p2"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>\(304x - (259.909 \ldots x + 698.648 \ldots ) &gt; 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for comparing their expression in part (e)(ii) to \(0\). Accept an equation. Accept \(3040x - y &gt; 0\) or equivalent.</p>
<p class="p2"> </p>
<p class="p1">\(x = 16{\text{ bicycles}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Follow through from their answer to part (b). Answer must be a positive integer greater than \(13\)<span class="s1"> </span>for the <strong><em>(A1)</em>(ft) </strong>to be awarded.</p>
<p class="p1">Award <strong><em>(G1) </em></strong>for an answer of \(15.84\).</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Give all answers in this question correct to two decimal places.</strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Arthur lives in London. On \({1^{{\text{st}}}}\) August 2008 Arthur paid \({\text{37}}\,{\text{500}}\) euros (\({\text{EUR}}\)) for a new car from Germany. The price of the same car in London was \({\text{34}}\,{\text{075}}\) British pounds (\({\text{GBP}}\)).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The exchange rate on \({1^{{\text{st}}}}\) August 2008 was \({\text{1}}\,{\text{EUR&nbsp; =&nbsp; 0.7234}}\,{\text{GBP}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate, <strong>in GBP</strong>, the price that Arthur paid for the car.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in \({\text{GBP}}\), the amount of money Arthur saved by buying the car in Germany.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Between \({1^{{\text{st}}}}\) August 2008 and \({1^{{\text{st}}}}\) August 2012 Arthur’s car depreciated at an annual rate of \(9\%\) of its current value.</span></p>
<p><span>Calculate the value, in \({\text{GBP}}\), of Arthur’s car on \({1^{{\text{st}}}}\) August <strong>2009</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Between \({1^{{\text{st}}}}\) August 2008 and \({1^{{\text{st}}}}\) August 2012 Arthur’s car depreciated at an annual rate of \(9\%\) of its current value.</span></p>
<p><span>Show that the value of Arthur’s car on \({1^{{\text{st}}}}\) August <strong>2012 </strong>was \({\text{18}}\,{\text{600}}\,{\text{GBP}}\), correct to the nearest \({\text{100}}\,{\text{GBP}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first answer not given to two decimal places is not awarded the final (A1). Incorrect rounding is not penalized thereafter. </em></strong></span></p>
<p><span>\(37\,500 \times 0.7234\)     <strong><em>(M1)</em></strong></span></p>
<p><span>\( = 27\,127.50\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first answer not given to two decimal places is not awarded the final (A1). Incorrect rounding is not penalized thereafter. </em></strong></span></p>
<p><span>\(6947.50\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Note: </strong>Follow through from part (a) irrespective of whether working is seen.</span></p>
<p><span> </span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first answer not given to two decimal places is not awarded the final (A1). Incorrect rounding is not penalized thereafter.</em></strong></span></p>
<p><span>\(27\,127.50 \times 0.91\)     <strong><em>(A1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(0.91\) seen or equivalent, <strong><em>(M1) </em></strong>for their \({\text{27}}\,{\text{127.50}}\) multiplied by \(0.91\)</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(27\,127.50 - 0.09 \times 27\,127.50\)     <strong><em>(A1)(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(A1) </em></strong>for \(0.09 \times 27\,127.50\) seen, and <strong><em>(M1) </em></strong>for \(27\,127.50 - 0.09 \times 27\,127.50\).</span></p>
<p> </p>
<p><span>\( = 24\,686.03\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from part (a).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>The first answer not given to two decimal places is not awarded the final (A1). Incorrect rounding is not penalized thereafter.</em></strong></span></p>
<p><span>\(27\,127.50 \times {\left( {1 - \frac{9}{{100}}} \right)^4}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituted compound interest formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution.</span></p>
<p><span>     Follow through from part (a).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\(27\,127.50 \times {(0.91)^4}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substituted geometric sequence formula, <strong><em>(A1)</em>(ft) </strong>for correct substitution.</span></p>
<p><span>     Follow through from part (a).</span></p>
<p> </p>
<p><span><strong>OR </strong>(lists (i))</span></p>
<p><span>\({\text{24}}\,{\text{686.03, 22}}\,{\text{464.28..., 20}}\,{\text{442.50..., 18}}\,{\text{602.67...}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for at least the \({{\text{2}}^{{\text{nd}}}}\) term correct (calculated from their \(({\text{a}}) \times 0.91\)). Award <strong><em>(A1)</em>(ft) </strong>for four correct terms (rounded or unrounded).</span></p>
<p><span>     Follow through from part (a).</span></p>
<p><span>     Accept list containing the last three terms only (\({\text{24}}\,{\text{686.03}}\) may be implied).</span></p>
<p> </p>
<p><span><strong>OR </strong>(lists(ii))</span></p>
<p><span>\(27\,127.50 - (2441.47... + 2221.74... + 2021.79... + 1839.82…)\)     <strong><em>(M1)(A1)(</em>ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for subtraction of four terms from \({\text{27}}\,{\text{127.50}}\).</span></p>
<p><span>     Award <strong><em>(A1) </em></strong>for four correct terms (rounded or unrounded).</span></p>
<p><span>     Follow through from part (a).</span></p>
<p> </p>
<p><span>\( = 18\,602.67\)     <strong><em>(A1) </em></strong></span></p>
<p><span>\( = 18\,600\)     <strong><em>(AG)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>The final <strong><em>(A1) </em></strong>is not awarded unless both the unrounded and rounded answers are seen.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Despite the fact that &ldquo;Give all answers in this question correct to two decimal places&rdquo; was written in bold at the top of the question, many candidates lost one (and only one) mark for giving at least one answer to only a single decimal place. There was a lot of reading in this question and some candidates seemed to lose their way as their solution developed and, as a consequence, lost marks in the latter part of the question. A significant number of candidates obtained nearly full marks for parts (a) through to (d). The marks which tended to not be awarded were not giving the required answer to two decimal places and not adding the amount invested onto the interest earned in part (c). Indeed, many candidates were able to correctly determine the depreciated value of the car on \({1^{{\text{st}}}}\) August 2009 by simply finding 91% of the original price. However, part (e) proved to be elusive for many candidates as some simply treated the problem as a &lsquo;reverse simple interest problem&rsquo; and subtracted 9% for each of a further 3 years. As a consequence, erroneous answers of the form 17,361.60, from \(\left( {27127.50 \times (1 - 0.09 \times 4)} \right)\), were often conveniently ignored and rounded to the required answer of 18,600&nbsp;GBP. Such a method earned no marks at all. There was a lot of information given in the stem to the last part of the question and, as a consequence, many candidates were unable to achieve full marks here. There was certainly a great deal of confusion as to what to divide by 0.8694 (seeing \(\frac{{18\,600 + 8198.05 - 30\,500}}{{0.86944}} =&nbsp; - 4258.05\) was not uncommon) and even introducing the original exchange rate of 0.7234 caused confusion. As a further example, an incorrect value carried forward from part (c) (1,250.55) led to a negative result. Provided the method was correct (despite an incorrect value carried forward), the three method marks were awarded. However, the negative result of &ndash;7,667.53 should have flagged to the candidate that something was wrong somewhere and this could only be in the current part of the question or part (c).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Despite the fact that &ldquo;Give all answers in this question correct to two decimal places&rdquo; was written in bold at the top of the question, many candidates lost one (and only one) mark for giving at least one answer to only a single decimal place. There was a lot of reading in this question and some candidates seemed to lose their way as their solution developed and, as a consequence, lost marks in the latter part of the question. A significant number of candidates obtained nearly full marks for parts (a) through to (d). The marks which tended to not be awarded were not giving the required answer to two decimal places and not adding the amount invested onto the interest earned in part (c). Indeed, many candidates were able to correctly determine the depreciated value of the car on \({1^{{\text{st}}}}\) August 2009 by simply finding 91% of the original price. However, part (e) proved to be elusive for many candidates as some simply treated the problem as a &lsquo;reverse simple interest problem&rsquo; and subtracted 9% for each of a further 3 years. As a consequence, erroneous answers of the form 17,361.60, from \(\left( {27127.50 \times (1 - 0.09 \times 4)} \right)\), were often conveniently ignored and rounded to the required answer of 18,600&nbsp;GBP. Such a method earned no marks at all. There was a lot of information given in the stem to the last part of the question and, as a consequence, many candidates were unable to achieve full marks here. There was certainly a great deal of confusion as to what to divide by 0.8694 (seeing \(\frac{{18\,600 + 8198.05 - 30\,500}}{{0.86944}} =&nbsp; - 4258.05\) was not uncommon) and even introducing the original exchange rate of 0.7234 caused confusion. As a further example, an incorrect value carried forward from part (c) (1,250.55) led to a negative result. Provided the method was correct (despite an incorrect value carried forward), the three method marks were awarded. However, the negative result of &ndash;7,667.53 should have flagged to the candidate that something was wrong somewhere and this could only be in the current part of the question or part (c).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Despite the fact that &ldquo;Give all answers in this question correct to two decimal places&rdquo; was written in bold at the top of the question, many candidates lost one (and only one) mark for giving at least one answer to only a single decimal place. There was a lot of reading in this question and some candidates seemed to lose their way as their solution developed and, as a consequence, lost marks in the latter part of the question. A significant number of candidates obtained nearly full marks for parts (a) through to (d). The marks which tended to not be awarded were not giving the required answer to two decimal places and not adding the amount invested onto the interest earned in part (c). Indeed, many candidates were able to correctly determine the depreciated value of the car on \({1^{{\text{st}}}}\) August 2009 by simply finding 91% of the original price. However, part (e) proved to be elusive for many candidates as some simply treated the problem as a &lsquo;reverse simple interest problem&rsquo; and subtracted 9% for each of a further 3 years. As a consequence, erroneous answers of the form 17,361.60, from \(\left( {27127.50 \times (1 - 0.09 \times 4)} \right)\), were often conveniently ignored and rounded to the required answer of 18,600&nbsp;GBP. Such a method earned no marks at all. There was a lot of information given in the stem to the last part of the question and, as a consequence, many candidates were unable to achieve full marks here. There was certainly a great deal of confusion as to what to divide by 0.8694 (seeing \(\frac{{18\,600 + 8198.05 - 30\,500}}{{0.86944}} =&nbsp; - 4258.05\) was not uncommon) and even introducing the original exchange rate of 0.7234 caused confusion. As a further example, an incorrect value carried forward from part (c) (1,250.55) led to a negative result. Provided the method was correct (despite an incorrect value carried forward), the three method marks were awarded. However, the negative result of &ndash;7,667.53 should have flagged to the candidate that something was wrong somewhere and this could only be in the current part of the question or part (c).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">Despite the fact that &ldquo;Give all answers in this question correct to two decimal places&rdquo; was written in bold at the top of the question, many candidates lost one (and only one) mark for giving at least one answer to only a single decimal place. There was a lot of reading in this question and some candidates seemed to lose their way as their solution developed and, as a consequence, lost marks in the latter part of the question. A significant number of candidates obtained nearly full marks for parts (a) through to (d). The marks which tended to not be awarded were not giving the required answer to two decimal places and not adding the amount invested onto the interest earned in part (c). Indeed, many candidates were able to correctly determine the depreciated value of the car on \({1^{{\text{st}}}}\) August 2009 by simply finding 91% of the original price. However, part (e) proved to be elusive for many candidates as some simply treated the problem as a &lsquo;reverse simple interest problem&rsquo; and subtracted 9% for each of a further 3 years. As a consequence, erroneous answers of the form 17,361.60, from \(\left( {27127.50 \times (1 - 0.09 \times 4)} \right)\), were often conveniently ignored and rounded to the required answer of 18,600&nbsp;GBP. Such a method earned no marks at all. There was a lot of information given in the stem to the last part of the question and, as a consequence, many candidates were unable to achieve full marks here. There was certainly a great deal of confusion as to what to divide by 0.8694 (seeing \(\frac{{18\,600 + 8198.05 - 30\,500}}{{0.86944}} =&nbsp; - 4258.05\) was not uncommon) and even introducing the original exchange rate of 0.7234 caused confusion. As a further example, an incorrect value carried forward from part (c) (1,250.55) led to a negative result. Provided the method was correct (despite an incorrect value carried forward), the three method marks were awarded. However, the negative result of &ndash;7,667.53 should have flagged to the candidate that something was wrong somewhere and this could only be in the current part of the question or part (c).</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the functions \(f(x) = \frac{{2x + 3}}{{x + 4}}\) and \(g(x) = x + 0.5\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of the function \(f(x)\), for \( - 10 \leqslant x \leqslant 10\) . Indicating clearly the axis intercepts and any asymptotes.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the vertical asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same diagram as part (a) sketch the graph of \(g(x) = x + 0.5\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphical display calculator write down the coordinates of <strong>one</strong> of the points of intersection on the graphs of \(f\) and \(g\), <strong>giving your answer correct to five decimal places</strong>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the gradient of the line \(g(x) = x + 0.5\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line \(L\) passes through the point with coordinates \(( - 2{\text{, }} - 3)\) and is perpendicular to the line \(g(x)\) . Find the equation of \(L\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A6)</strong></em></span></span></p>
<p><span><strong>Notes:</strong> <em><strong>(A1)</strong></em> for labels and some idea of scale.</span><br><span><em><strong>(A1)</strong></em> for \(x\)-intercept seen, <em><strong>(A1)</strong></em> for \(y\)-intercept seen in roughly the correct places (coordinates not required).</span><br><span><em><strong>(A1)</strong></em> for vertical asymptote seen, <em><strong>(A1)</strong></em> for horizontal asymptote seen in roughly the correct places (equations of the lines not required).</span><br><span><em><strong>(A1)</strong></em> for correct general shape.</span></p>
<p><span><em><strong>[6 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(x = - 4\)     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note: <em>(A1)</em></strong> for \(x =\), <strong><em>(A1)</em>(ft)</strong> for \( - 4\).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)</strong></em></span></span></p>
<p><span><span><strong>Note:</strong> <em><strong>(A1)</strong></em> for correct axis intercepts, <em><strong>(A1)</strong></em> for straight line</span><br></span></p>
<p><span><span><em><strong>[2 marks]</strong></em><br></span></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(( - 2.85078{\text{, }} - 2.35078)\) OR \((0.35078{\text{, }}0.85078)\)     <em><strong>(G1)(G1)(A1)</strong></em><strong>(ft)</strong><br></span></p>
<p><br><span><strong>Notes: <em>(A1)</em></strong> for \(x\)-coordinate, <em><strong>(A1)</strong></em> for \(y\)-coordinate, <strong><em>(A1)</em>(ft)</strong> for correct accuracy. Brackets required. If brackets not used award <strong><em>(G1)(G0)(A1)</em>(ft)</strong>.<br>Accept \(x = - 2.85078\), \(y = - 2.35078\) or \(x = 0.35078\), \(y = 0.85078\).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{gradient}} = 1\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{gradient of perpendicular}} = - 1\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><em>(can be implied in the next step)</em></span></p>
<p><span>\(y = mx + c\)</span></p>
<p><span>\( - 3 = - 1 \times - 2 + c\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(c = - 5\)</span></p>
<p><span>\(y = - x - 5\)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(y + 3 = - (x + 2)\)     <em><strong>(M1)</strong></em><em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></span></p>
<p><br><span><strong>Note: </strong>Award <em><strong>(G2)</strong></em> for correct answer with no working at all but <em><strong>(A1)(G1)</strong></em> if the gradient is mentioned as \( - 1\) then correct answer with no further working.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This was not very well done. The graph was often correct but was so small that it was difficult to check if axes intercepts were correct or not. Often the vertical asymptote looked as if it were joined to the rest of the graph. Very few of the candidates put a scale and/or labels on their axes.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Reasonably well done. Some put \(y = - 4\) while others omitted the minus sign.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Fairly well done &ndash; but once again too small to check the axes intercepts properly. Also, many candidates did not appear to have a ruler to draw the straight line.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Well done.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most could find the gradient of the line.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Many forgot to find the gradient of the perpendicular line. Others had problems with the equation of a line in general.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The table shows the distance, in km, of eight regional railway stations from a city centre terminus and the price, in \($\), of a return ticket from each regional station to the terminus.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_09.54.14.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram for the above data. Use a scale of \(1\) cm to represent \(10\) km on the \(x\)-axis and \(1\) cm to represent \(\$10\) on the \(y\)-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i)     \(\bar x\), the mean of the distances;</span></p>
<p><span>(ii)     \(\bar y\), the mean of the prices.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot and label the point \({\text{M }}(\bar x,{\text{ }}\bar y)\) on your scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i)     the product–moment correlation coefficient, \(r\,;\)</span></p>
<p><span>(ii)     the equation of the regression line \(y\) on \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line \(y\) on \(x\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A ninth regional station is \(76\) km from the city centre terminus.</span></p>
<p><span><span><span>Use the equation of the regression line to estimate the price of a return ticket to the city centre terminus from this regional station. </span></span><span><span><strong>Give your answer correct to the nearest </strong></span><span><span>\({\mathbf{\$ }}\).</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason why it is valid to use your regression line to estimate the price of this return ticket.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The actual price of the return ticket is \(\$80\).</span></p>
<p><span><strong>Using your answer to part (f)</strong>, calculate the percentage error in the estimated price of the ticket.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><span><img src="images/Schermafbeelding_2014-09-03_om_11.22.50.png" alt>     <strong><em>(A4)</em></strong></span></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for correct scale and labels (accept \(x\) and \(y\)).</span></p>
<p><span>     Award <strong><em>(A3) </em></strong>for \(7\) or \(8\) points plotted correctly.</span></p>
<p><span>     Award <strong><em>(A2) </em></strong>for \(5\) or \(6\) points plotted correctly.</span></p>
<p><span>     Award <strong><em>(A1) </em></strong>for \(3\) or \(4\) points plotted correctly.</span></p>
<p><span>     Award at most <strong><em>(A1)(A2) </em></strong>if points are joined up.</span></p>
<p><span>     If axes are reversed, award at most <strong><em>(A0)(A3)</em></strong><em>.</em></span></p>
<p><span><em>     </em>If graph paper is not used, award at most <strong><em>(A1)(A0)</em></strong>.</span></p>
<p> </p>
<p><span><strong><em>[4 marks]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \((\bar x = ){\text{ 46}}\)     <strong><em>(G1)</em></strong></span></p>
<p><span>(ii)     \((\bar y = ){\text{ 57}}\)     <strong><em>(G1)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{M}} (46, 57)\) plotted and labelled on the scatter diagram     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Follow through from their part (b).</span></p>
<p><span>     Accept \((\bar x,{\text{ }}\bar y)\) as the label.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(0.986\)   \((0.986322...)\)     <strong><em>(G1)</em></strong></span></p>
<p><span>(ii)     \(y = 1.01x + 10.3\)   \((y = 1.01431 \ldots x + 10.3412 \ldots )\)     <strong><em>(G1)(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(G1) </em></strong>for \(1.01x\), <strong><em>(G1) </em></strong>for \(10.3\).</span></p>
<p><span>     Award <strong><em>(G1)(G0) </em></strong>if not written in the form of an equation.</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>\((y - 57) = 1.01(x - 46)\)   \(\left( {y - 57 = 1.01431...(x - 46)} \right)\)     <strong><em>(G1)(G1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(G1) </em></strong>for \(1.01\), <strong><em>(G1) </em></strong>for their \(57\) and \(46\).</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>straight line drawn on the scatter diagram     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>The line must be straight for either of the two marks to be awarded.</span></p>
<p><span>     Award <strong><em>(A1)</em>(ft) </strong>passing through their \({\text{M}}\) plotted in (c).</span></p>
<p><span>     Award <strong><em>(A1)</em>(ft) </strong>for correct \(y\)-intercept (between \(9\) and \(12\)).</span></p>
<p><span>     Follow through from their \(y\)-intercept found in part (d).</span></p>
<p><span>     If part (d) is used, award <strong><em>(A1)</em>(ft) </strong>for their intercept \(( \pm 1)\).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = 1.01431... \times 76 + 10.3412…\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of \(76\) into their regression line.</span></p>
<p> </p>
<p><span>\( = 87.4295…\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from part (d). If 3 sf values are used the value is \(87.06\).</span></p>
<p> </p>
<p><span>\(\$87\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>The final <strong><em>(A1) </em></strong>is awarded for their answer given correct to the nearest dollar.</span></p>
<p><span>     Method, followed by the answer of \(87\) earns <strong><em>(M1)(G2)</em></strong><em>. </em>It is not necessary to see the interim step.</span></p>
<p><span>     Where the candidate uses their graph instead of the equation, and arrives at an answer other than \(87\), award, at most, <strong><em>(G1)</em>(ft)</strong>.</span></p>
<p><span>     If the candidate uses their graph and arrives at the required answer of \(87\), award <strong><em>(G2)</em>(ft)</strong>.</span></p>
<p> </p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(76\) is within the range of distances given in the data <strong>OR </strong>the correlation coefficient is close to \(1\).     <strong><em>(R1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(R1) </em></strong>if <strong>either </strong>condition is given.</span></p>
<p><span>     Sufficient to indicate that \(76\) is ‘within the data range’ and the correlation is ‘strong’.</span></p>
<p><span>     Allow \({r^2}\) close to \(1\).</span></p>
<p><span>     Do <strong>not </strong>accept “within the range of prices”.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{Percentage error}} = \frac{{87 - 80}}{{80}} \times 100\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into formula.</span></p>
<p> </p>
<p><span>\(8.75\%\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Follow through from their answer to part (f).</span></p>
<p><span>     Accept either the rounded or unrounded answer to part (f).</span></p>
<p><span>     If no integer value seen in part (f), follow through from their unrounded answer to part (f).</span></p>
<p><span>     Answer must be positive.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 19.0px Arial;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was very well attempted by a significant majority of candidates. Many good and accurate attempts at plotting a scatter diagram were seen in part (a). However, a minority of candidates chose not to use graph paper but instead used their answer book. These candidates achieved, at most, one mark for that part question. Many correct answers were seen in parts (b) and (d) reflecting good use of the graphic display calculator. Whilst many candidates realized that the line of regression passes through the point <em>M</em>, a significant number of candidates seemed to draw their line &lsquo;by eye&rsquo; rather than using the equation found in part (d) and, as a consequence for many, their straight line (or projected line) did not fall within the required tolerances for the second mark. Many candidates understood the requirements for part (f) and full marks were seen on a majority of scripts. Those candidates, however, who used their graph instead scored, at most, two marks here. Many candidates seemed to be well-drilled in giving a suitable reason in part (f) and &lsquo;within the data range&rsquo; or a &lsquo;strong correlation&rsquo; were frequently seen. Percentage error caused very few problems for candidates and many correct answers were seen in part (h).</span></p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Give your answers to parts (b), (c) and (d) to the nearest whole number.</strong></p>
<p>Harinder has 14 000 US Dollars (USD) to invest for a period of five years. He has two options of how to invest the money.</p>
<p><strong>Option A:</strong> Invest the full amount, in USD, in a fixed deposit account in an American bank.</p>
<p>The account pays a nominal annual interest rate of <em>r&thinsp;</em>% , <strong>compounded yearly</strong>, for the five years. The bank manager says that this will give Harinder a return of 17<em>&thinsp;</em>500 USD.</p>
</div>

<div class="specification">
<p><strong>Option B:</strong> Invest the full amount, in Indian Rupees (INR), in a fixed deposit account in an Indian bank. The money must be converted from USD to INR before it is invested.</p>
<p>The exchange rate is 1 USD = 66.91 INR.</p>
</div>

<div class="specification">
<p>The account in the Indian bank pays a nominal annual interest rate of 5.2 % <strong>compounded monthly</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <em>r</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate 14 000 USD in INR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount of this investment, in INR, in this account after five years.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Harinder chose option B. At the end of five years, Harinder converted this investment back to USD. The exchange rate, at that time, was 1 USD = 67.16 INR.</p>
<p>Calculate how much <strong>more</strong> money, in USD, Harinder earned by choosing option B instead of option A.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(17500 = 14000{\left( {1 + \frac{r}{{100}}} \right)^5}\)     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the compound interest formula, <em><strong>(A1)</strong></em> for correct substitution. Award at most <em><strong>(M1)(A0)</strong></em> if not equated to 17500.</p>
<p>OR</p>
<p><em>N</em> = 5</p>
<p><em>PV</em> = ±14000</p>
<p><em>FV</em> = \( \mp \)17500</p>
<p><em>P</em>/<em>Y</em> = 1</p>
<p><em>C</em>/<em>Y</em> = 1     <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y</em> = 1 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries. <em>FV</em> and <em>PV</em> must have opposite signs.</p>
<p>= 4.56 (%)  (4.56395… (%))     <em><strong>(A1) (G3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>14000 × 66.91     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying 14000 by 66.91.</p>
<p>936740 (INR)     <em><strong>(A1) (G2)</strong></em></p>
<p><strong>Note:</strong> Answer must be given to the nearest whole number.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(936740 \times {\left( {1 + \frac{{5.2}}{{12 \times 100}}} \right)^{12 \times 5}}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the compound interest formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct substitution.</p>
<p><strong>OR </strong></p>
<p><em>N</em> = 60</p>
<p><em>I</em>% = 5.2</p>
<p><em>PV</em> = ±936740</p>
<p><em>P</em>/<em>Y</em>= 12</p>
<p><em>C</em>/<em>Y</em>= 12    <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y </em>= 12 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries.</p>
<p><strong>OR </strong></p>
<p><em>N</em> = 5</p>
<p><em>I</em>% = 5.2</p>
<p><em>PV</em> = ±936740</p>
<p><em>P</em>/<em>Y</em>= 1</p>
<p><em>C</em>/<em>Y</em>= 12    <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>C</em>/<em>Y </em>= 12 seen, <em><strong>(M1)</strong></em> for <strong>all</strong> other correct entries</p>
<p>= 1214204 (INR)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (b). Answer must be given to the nearest whole number.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{1214204}}{{67.16}}\)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing their (c) by 67.16.</p>
<p>\(\left( {\frac{{1214204}}{{67.16}}} \right) - 17500 = 579\) (USD)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for finding the difference between their conversion and 17500. Answer must be given to the nearest whole number. Follow through from part (c).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Daniel grows apples and chooses at random a sample of <span class="s1">100 </span>apples from his harvest.</p>
<p class="p1">He measures the diameters of the apples to the nearest <span class="s1">cm</span>. The following table shows the distribution of the diameters.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_08.48.03.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your graphic display calculator, write down the value of</p>
<p class="p1">(i)     the mean of the diameters in this sample;</p>
<p class="p1">(ii)     the standard deviation of the diameters in this sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Calculate the percentage of <strong>small </strong>apples in Daniel’s harvest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Of the apples harvested, <span class="s1">5</span>% are <strong>large </strong>apples.</p>
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Find the percentage of <strong>medium </strong>apples.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">This year, Daniel estimates that he will grow <span class="s1">\({\text{100}}\,{\text{000}}\) </span>apples.</p>
<p class="p1">Estimate the number of <strong>large </strong>apples that Daniel will grow this year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(6.76{\text{ (cm)}}\) <span class="Apple-converted-space">    </span><strong><em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for an attempt to use the formula for the mean with a least two rows from the table.</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(1.14{\text{ (cm)}}\;\;\;\left( {1.14122 \ldots {\text{ (cm)}}} \right)\) <span class="Apple-converted-space">    </span><strong><em>(G1)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{P}}({\text{diameter}} &lt; 6.5) = 0.338\;\;\;(0.338461)\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for attempting to use the normal distribution to find the probability <strong>or </strong>for correct region indicated on labelled diagram. Award <strong><em>(A1) </em></strong>for correct probability.</p>
<p class="p2"> </p>
<p class="p1">\(33.8(\% )\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G3)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1)</em>(ft) </strong>for converting their probability into a percentage.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{P}}({\text{diameter}} \geqslant a) = 0.05\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for attempting to use the normal distribution to find the probability <strong>or </strong>for correct region indicated on labelled diagram.</p>
<p class="p2"> </p>
<p class="p1">\(a = 8.97{\text{ (cm)}}\;\;\;(8.97382 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(100 - (5 + 33.8461 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p3"><span class="s1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for subtracting “\(5+\) their part (b)” from 100 </span><span class="s2"><strong>or </strong></span><span class="s1"><strong><em>(M1) </em></strong></span>for attempting to use the normal distribution to find the probability \({\text{P}}\left( {6.5 \leqslant {\text{diameter}} &lt; {\text{their part (c)}}} \right)\) <span class="s1"><strong>or </strong>for correct region indicated on labelled diagram.</span></p>
<p class="p2"> </p>
<p class="p1">\( = 61.2(\% )\;\;\;\left( {61.1538 \ldots (\% )} \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Follow through from their answer to part (b). Percentage symbol is not required. Accept \(61.1(\%)\)<span class="s2"> </span>(\(61.1209\ldots(\%)\)) if \(8.97\)<span class="s2"> </span>used.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(100\,000 \times 0.05\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for multiplying by \(0.05\)<span class="s1"> (or \(5\%\)).</span></p>
<p class="p3"> </p>
<p class="p1">\( = 5000\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A boat race takes place around a triangular course, \({\text{ABC}}\), with \({\text{AB}} = 700{\text{ m}}\), \({\text{BC}} = 900{\text{ m}}\)<span class="s1">&nbsp;</span>and angle \({\text{ABC}} = 110^\circ \). The race starts and finishes at point \({\text{A}}\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-21_om_07.47.08.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the total length of the course.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is estimated that the fastest boat in the race can travel at an average speed of \(1.5\;{\text{m}}\,{{\text{s}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p2">Calculate an estimate of the winning time of the race. Give your answer to the nearest minute.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is estimated that the fastest boat in the race can travel at an average speed of \(1.5\;{\text{m}}\,{{\text{s}}^{ - 1}}\)<span class="s1">.</span></p>
<p class="p1">Find the size of angle \({\text{ACB}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">To comply with safety regulations, the area inside the triangular course must be kept clear of other boats, and the shortest distance from \({\text{B}}\)<span class="s1"> </span>to \({\text{AC}}\)<span class="s1"> </span>must be greater than \(375\)<span class="s1"> </span>metres.</p>
<p class="p1">Calculate the area that must be kept clear of boats.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">To comply with safety regulations, the area inside the triangular course must be kept clear of other boats, and the shortest distance from \({\text{B}}\)<span class="s1"> </span>to \({\text{AC}}\)<span class="s1"> </span>must be greater than \(375\)<span class="s1"> </span>metres.</p>
<p class="p1">Determine, giving a reason, whether the course complies with the safety regulations.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The race is filmed from a helicopter, \({\text{H}}\), which is flying vertically above point \({\text{A}}\).</p>
<p class="p1">The angle of elevation of \({\text{H}}\)<span class="s1"> </span>from \({\text{B}}\)<span class="s1"> </span>is \(15^\circ\).</p>
<p class="p1">Calculate the vertical height, \({\text{AH}}\), of the helicopter above \({\text{A}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The race is filmed from a helicopter, \({\text{H}}\), which is flying vertically above point \({\text{A}}\).</p>
<p class="p1">The angle of elevation of \({\text{H}}\)<span class="s1"> </span>from \({\text{B}}\)<span class="s1"> </span>is \(15^\circ\).</p>
<p class="p1">Calculate the maximum possible distance from the helicopter to a boat on the course.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{A}}{{\text{C}}^2} = {700^2} + {900^2} - 2 \times 700 \times 900 \times \cos 110^\circ \) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1">\({\text{AC}} = 1315.65 \ldots \) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1">length of course \( = 2920{\text{ (m)}}\;\;\;(2915.65 \ldots {\text{ m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution into cosine rule formula, <strong><em>(A1) </em></strong>for correct substitution, <strong><em>(A1) </em></strong>for correct answer.</p>
<p class="p1">Award <strong><em>(G3) </em></strong>for \(2920\;\;\;(2915.65 \ldots )\)<span class="s1"> </span>seen without working.</p>
<p class="p1">The final <strong><em>(A1) </em></strong>is awarded for adding \(900\)<span class="s1"> </span>and \(700\)<span class="s1"> </span>to their \({\text{AC}}\)<span class="s1"> </span>irrespective of working seen.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{2915.65}}{{1.5}}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for their length of course divided by \(1.5\)<span class="s1">.</span></p>
<p class="p3">Follow through from part (a).</p>
<p class="p4"> </p>
<p class="p1">\( = 1943.76 \ldots {\text{ (seconds)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1">\( = 32{\text{ (minutes)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award the final <strong><em>(A1) </em></strong>for correct conversion of <strong>their </strong>answer in seconds to minutes, correct to the nearest minute.</p>
<p class="p1">Follow through from part (a).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{700}}{{\sin {\text{ACB}}}} = \frac{{1315.65 \ldots }}{{\sin 110^\circ }}\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em>(ft)</strong></p>
<p class="p1"> </p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">\(\cos {\text{ACB}} = \frac{{{{900}^2} + 1315.65{ \ldots ^2} - {{700}^2}}}{{2 \times 900 \times 1315.65 \ldots }}\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em>(ft)</strong></p>
<p class="p1">\({\text{ACB}} = 30.0^\circ \;\;\;(29.9979 \ldots ^\circ )\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for substitution into sine rule or cosine rule formula, <strong><em>(A1) </em></strong>for their correct substitution, <strong><em>(A1) </em></strong>for correct answer.</p>
<p class="p1">Accept \(29.9^\circ\) for sine rule and \(29.8^\circ\) for cosine rule from use of correct three significant figure values. Follow through from their answer to (a).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{1}{2} \times 700 \times 900 \times \sin 110^\circ \) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Accept \(\frac{1}{2} \times {\text{their AC}} \times {\text{900}} \times {\text{sin(their ACB)}}\). Follow through from <span class="s1">parts (a) and (c).</span></p>
<p class="p3"> </p>
<p class="p1">\( = 296000{\text{ }}{{\text{m}}^2}\;\;\;(296003{\text{ }}{{\text{m}}^2})\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for substitution into area of triangle formula, <strong><em>(A1) </em></strong>for correct substitution, <strong><em>(A1) </em></strong>for correct answer.</p>
<p class="p1">Award <strong><em>(G1) </em></strong>if \(296000\)<span class="s2"> </span>is seen without units or working.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sin 29.9979 \ldots  = \frac{{{\text{distance}}}}{{900}}\)     <strong><em>(M1)</em></strong></p>
<p>\({\text{(distance}} = ){\text{ }}450{\text{ (m)}}\;\;\;{\text{(449.971}} \ldots {\text{)}}\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from part (c).</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(\frac{1}{2} \times {\text{distance}} \times 1315.65 \ldots  = 296003\)     <strong><em>(M1)</em></strong></p>
<p>\(({\text{distance}} = ){\text{ }}450{\text{ (m)}}\;\;\;{\text{(449.971}} \ldots {\text{)}}\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from part (a) and part (d).</p>
<p> </p>
<p>\(450\) is greater than \(375\), thus the course complies with the safety regulations     <strong><em>(R1)</em></strong></p>
<p><strong>Notes:  </strong>A comparison of their area from (d) and the area resulting from the use of \(375\) as the perpendicular distance is a valid approach and should be given full credit. Similarly a comparison of angle \({\text{ACB}}\) and \({\sin ^{ - 1}}\left( {\frac{{375}}{{900}}} \right)\) should be given full credit.</p>
<p>Award <strong><em>(R0) </em></strong>for correct answer without any working seen. Award <strong><em>(R1)</em>(ft) </strong>for a justified reason consistent with their working.</p>
<p>Do not award <strong><em>(M0)(A0)(R1)</em></strong>.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\tan 15^\circ  = \frac{{{\text{AH}}}}{{700}}\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into trig formula.</p>
<p> </p>
<p>\({\text{AH}} = 188{\text{ (m)}}\;\;\;(187.564 \ldots )\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{H}}{{\text{C}}^2} = 187.564{ \ldots ^2} + 1315.65{ \ldots ^2}\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution into Pythagoras, <strong><em>(A1) </em></strong>for their \(1315.65{ \ldots}\) and their \(187.564{ \ldots}\)<span class="s1"> </span>correctly substituted in formula.</p>
<p class="p1"> </p>
<p class="p1">\({\text{HC}} = 1330 \ldots {\text{ (m)}}\;\;\;(1328.95 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their answer to parts (a) and (f).</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to recognize and use the cosine rule correctly in part (a) and then to complete part (b) &ndash; though perhaps not giving the answer to the correct level of accuracy. It is expected that candidates can use &ldquo;distance = speed x time&rdquo; without the formula being given. The work involving sine rule was less successful, though correct responses were given by the great majority and the area of the course was again successfully completed by most candidates. A common error throughout these parts was the use of the total length of the course. A more fundamental error was the halving of the angle and/or the base in calculations &ndash; this error has been seen in a number of sessions and perhaps needs more emphasis.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to recognize and use the cosine rule correctly in part (a) and then to complete part (b) &ndash; though perhaps not giving the answer to the correct level of accuracy. It is expected that candidates can use &ldquo;distance = speed x time&rdquo; without the formula being given. The work involving sine rule was less successful, though correct responses were given by the great majority and the area of the course was again successfully completed by most candidates. A common error throughout these parts was the use of the total length of the course. A more fundamental error was the halving of the angle and/or the base in calculations &ndash; this error has been seen in a number of sessions and perhaps needs more emphasis.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to recognize and use the cosine rule correctly in part (a) and then to complete part (b) &ndash; though perhaps not giving the answer to the correct level of accuracy. It is expected that candidates can use &ldquo;distance = speed x time&rdquo; without the formula being given. The work involving sine rule was less successful, though correct responses were given by the great majority and the area of the course was again successfully completed by most candidates. A common error throughout these parts was the use of the total length of the course. A more fundamental error was the halving of the angle and/or the base in calculations &ndash; this error has been seen in a number of sessions and perhaps needs more emphasis.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Most candidates were able to recognize and use the cosine rule correctly in part (a) and then to complete part (b) &ndash; though perhaps not giving the answer to the correct level of accuracy. It is expected that candidates can use &ldquo;distance = speed x time&rdquo; without the formula being given. The work involving sine rule was less successful, though correct responses were given by the great majority and the area of the course was again successfully completed by most candidates. A common error throughout these parts was the use of the total length of the course. A more fundamental error was the halving of the angle and/or the base in calculations &ndash; this error has been seen in a number of sessions and perhaps needs more emphasis.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In part (e), unless evidence was presented, reasoning marks did not accrue; the interpretative nature of this part was a significant discriminator in determining the quality of a response.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many instances of parts (f) and (g) being left blank and angle of elevation is still not well understood. Again, the interpretative nature of part (g) &ndash; even when part (f) was correct &ndash; caused difficulties</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>There were many instances of parts (f) and (g) being left blank and angle of elevation is still not well understood. Again, the interpretative nature of part (g) &ndash; even when part (f) was correct &ndash; caused difficulties</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The front view of the edge of a water tank is drawn on a set of axes shown below.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The edge is modelled by \(y = a{x^2} + c\).</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_11.23.28.png" alt><br></span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: left; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">Point \({\text{P}}\) has coordinates \((-3,&nbsp;1.8)\), point \({\text{O}}\) has coordinates \((0,&nbsp;0)\) and point \({\text{Q}}\) has coordinates \((3,&nbsp;1.8)\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(c\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of \(a\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down the equation of the quadratic function which models the edge of the water tank.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_1.png" alt></span></p>
<p><span>Calculate the value of <em>y </em>when \(x = 2.4{\text{ m}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_3.png" alt></span></p>
<p><span>State what the value of \(x\) and the value of \(y\) represent for this water tank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45.png" alt></span></p>
<p><span>Find the value of \(x\) when the height of water in the tank is \(0.9\) m.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The water tank is shown below. It is partially filled with water.</span></p>
<p><br><span><img src="images/Schermafbeelding_2014-09-02_om_10.48.45_2.png" alt></span></p>
<p> </p>
<p><span>The water tank has a length of 5 m.</span></p>
<p> </p>
<p><span>When the water tank is filled to a height of \(0.9\) m, the front cross-sectional area of the water is \({\text{2.55 }}{{\text{m}}^2}\).</span></p>
<p><span>(i)     Calculate the volume of water in the tank.</span></p>
<p><span>The total volume of the tank is \({\text{36 }}{{\text{m}}^3}\).</span></p>
<p><span>(ii)     Calculate the percentage of water in the tank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(0\)     <strong><em>(A1)(G1)</em></strong></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(1.8 = a{(3)^2} + 0\)     <strong><em>(M1)</em></strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(1.8 = a{( - 3)^2} + 0\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of \(y = 1.8\) or \(x = 3\) and their value of \(c\) into equation. \(0\) may be implied.</span></p>
<p> </p>
<p><span>\(a = 0.2\)   \(\left( {\frac{1}{5}} \right)\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answer to part (a).</span></p>
<p><span>     Award <strong><em>(G1) </em></strong>for a correct answer only.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = 0.2{x^2}\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Follow through from their answers to parts (a) and (b).</span></p>
<p><span>     Answer must be an equation.</span></p>
<p> </p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.2 \times {(2.4)^2}\)     <strong><em>(M1)</em></strong></span></p>
<p><span>\( = 1.15{\text{ (m)}}\)   \((1.152)\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for correctly substituted formula, <strong><em>(A1) </em></strong>for correct answer. Follow through from their answer </span><span>to part (c).</span></p>
<p><span>     Award <strong><em>(G1) </em></strong>for a correct answer only.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y\) is the height     <strong><em>(A1)</em></strong></span></p>
<p><span>positive value of \(x\) is half the width (<em>or equivalent</em>)     <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(0.9 = 0.2{x^2}\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for setting their equation equal to \(0.9\).</span></p>
<p> </p>
<p><span>\(x =  \pm 2.12{\text{ (m)}}\)   \(\left( { \pm \frac{3}{2}\sqrt 2 ,{\text{ }} \pm \sqrt {4.5} ,{\text{ }} \pm {\text{2.12132}} \ldots } \right)\)     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Accept \(2.12\). Award <strong><em>(G1) </em></strong>for a correct answer only.</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(2.55 \times 5\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in formula.</span></p>
<p> </p>
<p><span>\( = 12.8{\text{ (}}{{\text{m}}^3}{\text{)}}\)   \(\left( {{\text{12.75 (}}{{\text{m}}^3}{\text{)}}} \right)\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span>(ii)     \(\frac{{12.75}}{{36}} \times 100\)     <strong><em>(M1)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct quotient multiplied by \(100\).</span></p>
<p> </p>
<p><span>\( = 35.4 (\%)\)  \((35.4166 \ldots )\)     <strong><em>(A1)</em>(ft)(<em>G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note: </strong>Award <strong><em>(G2) </em></strong>for \(35.6 (\%) (35.5555… (\%))\).</span></p>
<p><span>     Follow through from their answer to part (g)(i).</span></p>
<p> </p>
<p><span><strong><em>[2 marks]</em></strong></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Tepees were traditionally used by nomadic tribes who lived on the Great Plains of North America. They are cone-shaped dwellings and can be modelled as a cone, with vertex O, shown below. The cone has radius, \(r\), height, \(h\), and slant height, \(l\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.28.13.png" alt></p>
<p class="p1">A model tepee is displayed at a Great Plains exhibition. The curved surface area of this tepee is covered by a piece of canvas that is \(39.27{\text{ }}{{\text{m}}^2}\), and has the shape of a semicircle, as shown in the following diagram.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_10.29.53.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the slant height, \(l\), is \(5\) m, correct to the nearest metre.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the circumference of the base of the cone.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the radius, \(r\), of the base.</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Find the height, \(h\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Write down an expression for the height, \(h\), in terms of the radius, \(r\), of these cone-shaped tents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Show that the volume of the tent, \(V\), can be written as</p>
<p class="p1">\[V = 3.11\pi {r^2} - \frac{2}{3}\pi {r^3}.\]</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">Find \(\frac{{{\text{d}}V}}{{{\text{d}}r}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A company designs cone-shaped tents to resemble the traditional tepees.</p>
<p class="p1">These cone-shaped tents come in a range of sizes such that the sum of the diameter and the height is equal to <strong>9.33 m</strong>.</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Determine the exact value of \(r\) for which the volume is a maximum.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the maximum volume.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{\pi {l^2}}}{2} = 39.27\) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for equating the formula for area of a semicircle to \(39.27\), award <strong><em>(A1) </em></strong>for correct substitution of \(l\) into the formula for area of a semicircle.</p>
<p class="p2"> </p>
<p class="p1">\(l = 5{\text{ (m)}}\) <span class="Apple-converted-space">    </span><strong><em>(AG)</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(5 \times \pi \) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\( = 15.7\;\;\;(15.7079...,{\text{ }}5\pi )\;{\text{(m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)(G2)</em></strong></p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(2\pi r = 15.7079…\;\;\;\)<strong>OR</strong>\(\;\;\;5\pi r = 39.27\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1">\((r = ){\text{ 2.5 (m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Follow through from part (b)(i).</p>
<p class="p2"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>\(({h^2} = ){\text{ }}{5^2} - {2.5^2}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(M1) </em></strong>for correct substitution into Pythagoras’ theorem. Follow through from part (b)(ii).</p>
<p class="p2"> </p>
<p class="p1">\((h = ){\text{ 4.33 }}(4.33012 \ldots ){\text{ (m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(9.33 - 2 \times r\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(V = \frac{{\pi {r^2}}}{3} \times (9.33 - 2r)\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution in the volume formula.</p>
<p class="p1"> </p>
<p class="p1">\(V = 3.11\pi {r^2} - \frac{2}{3}{\pi ^3}\) <span class="Apple-converted-space">    </span><strong><em>(AG)</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(6.22\pi r - 2\pi {r^2}\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p1"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for \(6.22\pi r\), <strong><em>(A1) </em></strong>for \( - 2\pi {r^2}\).</p>
<p class="p1">If extra terms present, award at most <strong><em>(A1)(A0)</em></strong><em>.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(6.22\pi r - 2\pi {r^2} = 0\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for setting their derivative from part (e) to 0.</p>
<p class="p2"> </p>
<p class="p1">\(r = 3.11{\text{ (m)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for identifying 3.11 as the answer.</p>
<p class="p1">Follow through from their answer to part (e).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(\frac{1}{3}\pi {(3.11)^3}\;\;\;\)<strong>OR</strong>\(\;\;\;3.11\pi {(3.11)^2} - \frac{2}{3}\pi {(3.11)^3}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(M1) </em></strong>for correct substitution into the correct volume formula.</p>
<p class="p2"> </p>
<p class="p1">\(31.5{\text{ (}}{{\text{m}}^3}{\text{)}}{\text{(31.4999}} \ldots {\text{)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their answer to part (f)(i).</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer makes trash cans in the form of a cylinder with a hemispherical top. The trash can has a height of 70 cm. The base radius of both the cylinder and the hemispherical top is 20 cm.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A designer is asked to produce a new trash can.</p>
<p>The new trash can will also be in the form of a cylinder with a hemispherical top.</p>
<p>This trash can will have a height of <em>H</em> cm and a base radius of <em>r</em> cm.</p>
<p style="text-align: center;"><img src=""></p>
<p>There is a design constraint such that <em>H</em> + 2<em>r</em> = 110 cm.</p>
<p>The designer has to maximize the volume of the trash can.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the height of the cylinder.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total volume of the trash can.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the <strong>cylinder</strong>, <em>h</em> , of the new trash can, in terms of <em>r</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the volume, <em>V</em> cm<sup>3</sup> , of the new trash can is given by</p>
<p>\(V = 110\pi {r^3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your graphic display calculator, find the value of <em>r</em> which maximizes the value of <em>V</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The designer claims that the new trash can has a capacity that is at least 40% greater than the capacity of the original trash can.</p>
<p>State whether the designer’s claim is correct. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>50 (cm)      <em><strong>(A1)</strong></em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\pi  \times 50 \times {20^2} + \frac{1}{2} \times \frac{4}{3} \times \pi  \times {20^3}\)     <em><strong>(M1)(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correctly substituted volume of cylinder, <em><strong>(M1)</strong></em> for correctly substituted volume of sphere formula, <em><strong>(M1)</strong></em> for halving the substituted volume of sphere formula. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> if there is no addition of the volumes.</p>
<p>\( = 79600\,\,\left( {{\text{c}}{{\text{m}}^3}} \right)\,\,\left( {79587.0 \ldots \left( {{\text{c}}{{\text{m}}^3}} \right)\,,\,\,\frac{{76000}}{3}\pi } \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>h = H − r</em> (or equivalent) <em><strong>OR</strong></em> <em>H</em> = 110 − 2<em>r</em>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for writing h in terms of <em>H</em> and <em>r</em> or for writing <em>H</em> in terms of <em>r</em>.</p>
<p>(<em>h</em> =) 110 <em>− </em>3<em>r     <strong>(A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {V = } \right)\,\,\,\,\frac{2}{3}\pi {r^3} + \pi {r^2} \times \left( {110 - 3r} \right)\)    <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for volume of hemisphere, <em><strong>(M1)</strong></em> for correct substitution of their h into the volume of a cylinder, <em><strong>(M1)</strong></em> for addition of two correctly substituted volumes leading to the given answer. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> for subsequent working that does not lead to the given answer. Award at most <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em><em><strong>(M0)</strong></em> for substituting <em>H</em> = 110 − 2<em>r</em> as their <em>h</em>.</p>
<p>\(V = 110\pi {r^2} - \frac{7}{3}\pi {r^3}\)    <em><strong>(AG)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(r =) 31.4 (cm)  (31.4285… (cm))     <em><strong>(G2)</strong></em></p>
<p><strong>OR</strong></p>
<p>\(\left( \pi  \right)\left( {220r - 7{r^2}} \right) = 0\)      <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting the correct derivative equal to zero.</p>
<p>(r =) 31.4 (cm)  (31.4285… (cm))     <em><strong>(A1)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left( {V = } \right)\,\,\,\,110\pi {\left( {31.4285 \ldots } \right)^3} - \frac{7}{3}\pi {\left( {31.4285 \ldots } \right)^3}\)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution of their 31.4285… into the given equation.</p>
<p>= 114000 (113781…)     <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note: </strong>Follow through from part (e).</p>
<p>(increase in capacity =) \(\frac{{113.781 \ldots  - 79587.0 \ldots }}{{79587.0 \ldots }} \times 100 = 43.0\,\,\left( {\text{% }} \right)\)     <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for finding the correct percentage increase from their two volumes.</p>
<p><strong>OR</strong></p>
<p>1.4 × 79587.0… = 111421.81…     <em><strong>(R1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(R1)</strong></em><strong>(ft)</strong> for finding the capacity of a trash can 40% larger than the original.</p>
<p>Claim is correct <em><strong>(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from parts (b), (e) and within part (f). The final <strong><em>(R1)(A1)</em>(ft)</strong> can be awarded for their correct reason and conclusion. Do not award <strong><em>(R0)(A1)</em>(ft)</strong>.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows an office tower of total height 126 metres. It consists of a square based pyramid VABCD on top of a cuboid ABCDPQRS.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">V is directly above the centre of the base of the office tower.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The length of the sloping edge VC is 22.5 metres and the angle that VC makes with the base ABCD (angle VCA) is 53.1&deg;.</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the length of VA in metres.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the triangle VCA showing clearly the length of VC and the size of angle VCA.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the height of the pyramid is 18.0 metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of AC in metres.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of BC is 19.1 metres correct to 3 significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the tower.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>To calculate the cost of air conditioning, engineers must estimate the weight of air in the tower. They estimate that 90 % of the volume of the tower is occupied by air and they know that 1 m<sup>3</sup> of air weighs 1.2 kg.</span></p>
<p><span>Calculate the weight of air in the tower.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>22.5 (m)   <em><strong>  (A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><img alt="onbekend.png"></span><span><span>     </span><strong><em>(A1)</em></strong></span></span></p>
<p><span><strong><em>[1 mark]</em></strong></span></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>h</em> = 22.5     sin 53.1°     <em><strong>(M1)</strong></em></span><br><span>= 17.99<em><strong>     (</strong><strong>A1)</strong></em></span><br><span>= 18.0     <em><strong>(AG)</strong></em> </span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Unrounded answer must be seen for <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span>Accept 18 as <em><strong>(AG)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{AC}} = 2\sqrt {{{22.5}^2} - {{17.99...}^2}} \)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong> </em>for multiplying by 2, <em><strong>(M1)</strong></em> for correct</span><span> substitution into formula.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>AC = 2(22.5)cos53.1°     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award<em><strong> (M1)</strong></em> for correct use of cosine trig ratio,<em><strong> (M1)</strong></em> for</span> <span>multiplying by 2.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>AC<sup>2</sup> = 22.5</span><span><span><sup>2</sup></span> + 22.5</span><span><span><sup>2</sup></span> – 2(22.5)(22.5) cos73.8°     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award<em><strong> (M1)</strong> </em>for substituted cosine formula, <strong><em>(A1)</em></strong> for</span> <span>correct substitutions.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\(\frac{{{\text{AC}}}}{{\sin (73.8^\circ )}} = \frac{{22.5}}{{\sin (53.1^\circ )}}\)     </span><em><strong><span>(M1)(A1)</span></strong></em></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award<em><strong> (M1)</strong> </em>for substituted sine formula, <em><strong>(A1)</strong></em> for correct</span> <span>substitutions.</span></p>
<p><br><span>AC = 27.0     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{BC}} = \sqrt {{{13.5}^2} + {{13.5}^2}} \)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 19.09     <em><strong>(A1)</strong></em></span></p>
<p><span>= 19.1    <em><strong> (AG)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span><em>x</em><sup>2</sup> + <em>x</em><sup>2</sup> = 27<sup>2</sup>    <em><strong> (M1)</strong></em></span></p>
<p><span>2<em>x</em><sup>2</sup> = 27<sup>2</sup>    <em><strong> (A1)</strong></em></span></p>
<p><span>BC = 19.09…     <em><strong>(A1)</strong></em></span></p>
<p><span>= 19.1    <em><strong> (AG)</strong></em></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong>Notes:</strong> Unrounded answer must be seen for<em><strong> (A1)</strong></em> to be awarded.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Volume = Pyramid + Cuboid</span></p>
<p><span>\( = \frac{1}{3}(18)({19.1^2}) + (108)({19.1^2})\)    <em><strong> (A1)(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award<em><strong> (A1)</strong></em> for 108, the height of the cuboid seen. Award <em><strong>(M1)</strong></em> for correctly substituted volume of cuboid and <em><strong>(M1)</strong></em> for correctly substituted volume of pyramid.</span></p>
<p><br><span>= \(41\,588\)     <em>(41\(\,\)553 if</em> 2(13.5<sup>2</sup>) <em>is used)</em></span></p>
<p><span>= \(41\,600\) m<sup>3</sup>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Weight of air = \(41\,600 \times 1.2 \times 0.9\)    <em><strong> (M1)(M1)</strong></em></span></p>
<p><span>= \(44\,900{\text{ kg}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their part (e) × 1.2,<em><strong> (M1)</strong></em> for × 0.9.</span></p>
<p><span>Award at most <em><strong>(M1)(M1)(A0)</strong> </em>if the volume of the cuboid</span> <span>is used.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">This question also caused many problems for the candidature. There seems to be a lack of ability in visualising a problem in three dimensions &ndash; clearly, further exposure to such problems is needed by the students. Further, as in question 2, the final two parts of the question were independent of those preceding them; many candidates did not reach these parts, though for some, these were the only parts of the question attempted. There is also a lack of awareness of the appropriate volume formula on the formula sheet to use.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = 2<sup><em>x</em></sup> for \( - 2 \leqslant x \leqslant 3\). Indicate clearly where the curve intersects the <em>y</em>-axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the asymptote of the graph of <em>y</em> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On the same axes sketch the graph of <em>y</em> = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>. Indicate clearly where this curve intersects the <em>x</em> and <em>y</em> axes.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, solve the equation 3 + 2<em>x</em> − <em>x</em><sup>2</sup> = 2<sup><em>x</em></sup>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the maximum value of the function <em>f</em> (<em>x</em>) = 3 + 2<em>x</em> − <em>x</em><sup>2</sup>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use Differential Calculus to verify that your answer to (e) is correct.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The curve <em>y</em> = <em>px</em><sup>2</sup> + <em>qx</em> − 4 passes through the point (2, –10).</span></p>
<p><span>Use the above information to write down an equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Find \(\frac{{{\text{d}}y}}{{{\text{d}}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Hence, find a second equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The gradient of the curve \(y = p{x^2} + qx - 4\) at the point (2, –10) is 1.</span></p>
<p><span>Solve the equations to find the value of <em>p</em> and of <em>q</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B, c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for correct domain, <em><strong>(A1)</strong></em> for smooth curve,</span> <span><em><strong>(A1)</strong></em> for <em>y</em>-intercept clearly indicated.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>y</em> = 0     <strong><em>(A1)(A1)</em></strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>y</em> = constant, <em><strong>(A1)</strong></em> for 0.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for smooth parabola,</span></p>
<p><span><em><strong>(A1)</strong></em> for vertex (maximum) in correct quadrant.</span></p>
<p><span><em><strong>(A1)</strong></em> for all clearly indicated intercepts <em>x</em> = −1, <em>x</em> = 3 and <em>y</em> = 3.</span></p>
<p><span>The final mark is to be applied very strictly.     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>x</em> = −0.857   <em>x</em> = 1.77     <em><strong>(G1)(G1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award a maximum of <em><strong>(G1)</strong></em> if <em>x</em> and <em>y</em> coordinates are both given.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4     <em><strong>(G1)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(G0)</strong></em> for (1, 4).</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 2 - 2x\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span>Award at most <em><strong>(A1)(A0)</strong></em> if any extra terms seen.</span></p>
<p><br><span>\(2 - 2x = 0\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for equating their gradient function to zero.</span></p>
<p><br><span>\(x = 1\)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>\(f (1) = 3 + 2(1) - (1)^2 = 4\)     <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> The final <em><strong>(A1)</strong></em> is for substitution of <em>x</em> = 1 into \(f (x)\) and subsequent correct </span><span>answer. Working must be seen for final <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span> </span></p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>2<sup>2</sup> × <em>p</em> + 2<em>q</em> − 4 = </span><span><span>−</span>10     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the equation.</span></p>
<p><br><span>4<em>p</em> + 2<em>q</em> = </span><span><span>−</span>6     or     2<em>p</em> + <em>q</em> = </span><span><span>−</span>3     <em><strong>(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Accept equivalent simplified forms.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2px + q\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span>Award at most <em><strong>(A1)(A0)</strong></em> if any extra terms seen.<br></span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4<em>p </em>+<em> q</em> = 1     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4<em>p</em> + 2<em>q</em> = −6<br></span></p>
<p><span>4<em>p</em> + <em>q</em> = 1     <em><strong>(M1)</strong></em></span></p>
<p><span><br><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for sensible attempt to solve the equations.</span></p>
<p><span><br><em>p</em> = 2, <em>q</em> = </span><span><span>−</span>7     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">B, c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The most common error was using the incorrect domain.</span></p>
<div class="question_part_label">A, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Many had little idea of asymptotes. Others did not write their answer as an equation.</span></p>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The intercepts being inexact or unlabelled was the most frequent cause of loss of marks.</span></p>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Often, only one solution to the equation was given. Elsewhere, a lack of appreciation that the solutions were the <em>x</em> coordinates was a common mistake.</span></p>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The maximum is the<em> y</em> coordinate only; again a common misapprehension was the answer &ldquo;(1, 4)&rdquo;.</span></p>
<div class="question_part_label">A, e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">This was a major discriminator in the paper. Many candidates were unable to follow the analytic approach to finding a maximum point.</span></p>
<div class="question_part_label">A, f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, b, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</p>
<div class="question_part_label">B, b, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Undoubtedly, this question caused the most difficulty in terms of its content. Where there was no alternative to using the calculus, the majority of candidates struggled. However, for those with a sound grasp of the topic, there were many very successful attempts.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This part was challenging to the majority, with a large number not attempting the question at all. However, there were a pleasing number of correct attempts that showed a fine understanding of the calculus.</span></p>
<div class="question_part_label">B, c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A shipping container is to be made with six rectangular faces, as shown in the diagram.</span></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The dimensions of the container are</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">length 2<em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">width <em>x</em></span><br><span style="font-size: medium; font-family: times new roman,times;">height <em>y</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">All of the measurements are in metres. The total length of all twelve edges is 48 metres.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that <em>y</em> =12 − 3<em>x </em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume <em>V</em> m<sup>3</sup> of the container is given by</span></p>
<p><span><em>V</em> = 24<em>x</em><sup>2</sup> − 6<em>x</em><sup>3</sup></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \( \frac{{\text{d}V}}{{\text{d}x}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>x</em> for which <em>V</em> is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the maximum volume of the container.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length and height of the container for which the volume is a maximum.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The shipping container is to be painted. One litre of paint covers an area of 15 m<sup>2</sup> .</span> <span>Paint comes in tins containing four litres.</span></p>
<p><span>Calculate the number of tins required to paint the shipping container.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(4(2x) + 4y + 4x = 48\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting up the equation.</span></p>
<p><br><span>\(12x + 4y = 48\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for simplifying (can be implied).</span></p>
<p><br><span>\(y = \frac{{48 - 12x}}{{4}}\)</span> <span> </span><span> <strong>OR</strong>   \(3x + y =12\)     <em><strong>(A1)</strong></em></span></p>
<p><span>\(y =12 - 3x\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The last line must be seen for the <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(V = 2x \times x \times (12 - 3x)\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into volume equation, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\(= 24x^2 - 6x^3\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The last line must be seen for the <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{\text{d}V}}{{\text{d}x}} = 48x - 18x^2\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(48x -18x^2 = 0\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for using their derivative, <em><strong>(M1)</strong></em> for equating their answer to part (c) to 0.</span></p>
<p><br><span><strong>OR</strong></span></p>
<p><span><em><strong>(M1)</strong></em> for sketch of \(V = 24x^2 - 6x^3\), <em><strong>(M1)</strong></em> for the maximum point indicated     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span><em><strong>(M1)</strong></em> for sketch of \(\frac{{\text{d}V}}{{\text{d}x}} = 48x - 18x^2\), <em><strong>(M1)</strong></em> for the positive root indicated     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span>\(2.67\left( {\frac{{24}}{9},{\text{ }}\frac{8}{3},{\text{ }}2.66666...} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their part (c).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(V = 24 \times {\left( {\frac{8}{3}} \right)^2} - 6 \times {\left( {\frac{8}{3}} \right)^3}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of their value from part (d) into volume equation.</span></p>
<p><br><span>\(56.9({{\text{m}}^3})\left( {\frac{{512}}{9},{\text{ }}56.8888...} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (d).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{length} = \frac{{16}}{{3}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (d). Accept 5.34 from use of 2.67</span></p>
<p><br><span>\(\text{height} = 12 - 3 \times \left( {\frac{{8}}{{3}}} \right) = 4\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution of their answer to part (d), <em><strong>(A1)</strong></em><strong>(ft)</strong> for answer. Accept 3.99 from use of 2.67.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{SA} = 2 \times \frac{{16}}{{3}} \times 4 + 2 \times \frac{{8}}{{3}} \times 4 + 2 \times \frac{{16}}{{3}} \times \frac{{8}}{{3}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\text{SA} = 4 \left( {\frac{{8}}{{3}}}\right)^2 + 6 \times \frac{{8}}{{3}} \times 4\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of their values from parts (d) and (f) into formula for surface area.</span></p>
<p><br><span>92.4 (m<sup>2</sup>) (92.4444...(m<sup>2</sup>))     <em><strong>(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept 92.5 (92.4622...) from use of 3 sf answers.</span></p>
<p><span><br>\(\text{Number of tins} = \frac{{92.4444...}}{{15 \times 4}}( = 1.54)\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for division of their surface area by 60.</span></p>
<p><br><span>2 tins required     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their answers to parts (d) and (f).</span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(a) This was very poorly done. Most candidates had no idea what they were supposed to </span><span style="font-size: medium; font-family: times new roman,times;">do here. Many tried to find values for <em>x</em>.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(a) This was very poorly done. Most candidates had no idea what they were supposed to </span><span style="font-size: medium; font-family: times new roman,times;">do here. Many tried to find values for <em>x</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(b) Similar comment as for part (a) although more candidates made an attempt at finding </span><span style="font-size: medium; font-family: times new roman,times;">the Volume.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(c) This part was very well done.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(d) Not many correct answers seen. Many candidates graphed the wrong equation and </span><span style="font-size: medium; font-family: times new roman,times;">found 1.333 as their answer.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(e) Some managed to gain follow through marks for this part.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(f) Again here follow through marks were gained by those who attempted it.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates did not answer this question at all and others did not get past part (c). It was</span> <span style="font-size: medium; font-family: times new roman,times;">unclear if this was because they could not do the question or they ran out of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">(g) Very few correct answers for the surface area were seen. Most candidates thought </span><span style="font-size: medium; font-family: times new roman,times;">that there were 4 equal faces 2 <em>xy</em> and 2 faces <em>xy</em>. Some managed to get follow</span> <span style="font-size: medium; font-family: times new roman,times;">through marks for the last part if they divided by 60.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Beartown has three local newspapers: <em>The Art Journal</em>, <em>The Beartown News</em>, and <em>The Currier</em>.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">A survey shows that</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">32 % of the town&rsquo;s population read <em>The Art Journal</em>,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">46 % read <em>The Beartown News</em>,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">54 % read <em>The Currier</em>,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">3 % read <em>The Art Journal</em> and <em>The Beartown News</em> <strong>only</strong>,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">8 % read <em>The Art Journal</em> and <em>The Currier</em> <strong>only</strong>,</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">12 % read <em>The Beartown News</em> and <em>The Currier</em> <strong>only</strong>, and</span></p>
<p style="margin-left: 30px;"><span style="font-size: medium; font-family: times new roman,times;">5 % of the population reads <strong>all</strong> three newspapers.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a Venn diagram to represent this information. Label<em> A</em> the set that represents <em>The Art Journal</em> readers, <em>B</em> the set that represents <em>The Beartown News</em> readers, and <em>C</em> the set that represents <em>The Currier</em> readers.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage of the population that does not read any of the three newspapers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage of the population that reads exactly one newspaper.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage of the population that reads <em>The Art Journal</em> or <em>The Beartown News</em> but not <em>The Currier</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A local radio station states that 83 % of the population reads either <em>The Beartown News</em> or <em>The Currier</em>.</span></p>
<p><span>Use your Venn diagram to decide whether the statement is true. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The population of Beartown is 120 000. The local radio station claimed that 34 000 of the town’s citizens read at least two of the local newspapers.</span></p>
<p><span>Find the percentage error in this claim.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for three circles and a rectangle (<em>U</em> need not be seen)</span></p>
<p><span><em><strong>(A1)</strong></em> for 5</span></p>
<p><span><em><strong>(A1)</strong></em> for 3, 8 and 12</span></p>
<p><span><em><strong>(A1)</strong></em> for 16, 26 and 29 <strong>OR</strong> 32, 46, 54 placed outside the circles.     <em><strong>(A4)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept answers given as decimals or fractions.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>100 – (16 + 26 + 29) – (8 + 5 + 3 + 12)     <em><strong>(M1)</strong></em></span></p>
<p><span>100 – 71 – 28</span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct expression. Accept equivalent expressions, for example 100 – 71 – 28 or 100 – (71 + 28).</span></p>
<p> </p>
<p><span>= 1     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><span><strong>Note:</strong> Follow through from their Venn diagram but only if working is seen.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>16 + 26 + 29     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 16, 26, 29 seen.</span></p>
<p> </p>
<p><span>= 71     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><span><strong>Note:</strong> Follow through from their Venn diagram but only if working is seen.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>16 + 3 + 26     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their 16, 3, 26 seen.</span></p>
<p><br><span>= 45     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their Venn diagram but only if working is seen.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>True     <em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span>100 – (1 –16) = 83     <em><strong>(R1)</strong></em><strong>(ft)</strong></span></p>
<p><strong><span>OR</span></strong></p>
<p><span>46 + 54 – 17 = 83     <em><strong>(R1)</strong></em><strong>(ft)</strong> </span></p>
<p><span><strong>Note:</strong> Do not award <em><strong>(A1)(R0)</strong></em>. Follow through from their Venn diagram.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>28% of 120000     <em><strong>(M1)</strong></em></span></p>
<p><span>= 33600     <em><strong>(A1)</strong></em></span></p>
<p><span>\({\text{%  error}} = \frac{{(34000 - 33600)}}{{33600}} \times 100\)</span><span>    </span><span> <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 28 seen (may be implied by 33600 seen),</span> <span>award <em><strong>(M1)</strong></em> for correct substitution of <strong>their</strong> 33600 in the percentage </span><span>error formula. If an error is made in calculating 33600 award a</span> <span>maximum of <em><strong>(M1)(A0)(M1)(A0)</strong></em>, the final accuracy mark is lost.</span></p>
<p><span> </span></p>
<p><strong><span>OR</span></strong></p>
<p><span>\(\frac{{34000}}{{120000}} \times 100\)</span>    <span> <em><strong>(M1)</strong></em></span></p>
<p><span>= 28.3(28.3333…)     <em><strong>(A1)</strong></em></span></p>
<p><span>\({\text{%  error}} = \frac{{(28.3333... - 28)}}{{28}} \times 100\)</span>    <span> <em><strong>(M1)</strong></em></span></p>
<p><span>= 1.19% (1.19047...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> % sign not required. Accept 1.07 (1.0714…) with use of 28.3.</span> <span>1.18 with use of 28.33 and 1.19 with use of 28.333.</span> <span>Award <em><strong>(G3)</strong></em> for 1.07, 1.18 or 1.19 seen without working.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and</span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was accessible to the great majority of candidates. The common errors were:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of a bounding rectangle in (a);</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the lack of subtraction for the entries in the disjoint regions of the type \(A' \cap B' \cap C\) </span><span style="font-size: medium; font-family: times new roman,times;">and the subsequent total exceeding 100%;</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">the <strong>incorrect</strong> interpretation of &ldquo;either ...or&rdquo; as &ldquo;exclusive or&rdquo;. It is of the utmost </span><span style="font-size: medium; font-family: times new roman,times;">importance to note that the ambiguity of the &ldquo;or&rdquo; statement will be removed and</span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;exclusive or&rdquo; signalled by the phrase &ldquo;either ...or....<strong>but not both</strong>&rdquo;. Otherwise, </span><span style="font-size: medium; font-family: times new roman,times;">&ldquo;inclusive or&rdquo; must always be assumed.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">A number of candidates were unable to interpret the percentage error question correctly and </span><span style="font-size: medium; font-family: times new roman,times;">scored 0/4. This was somewhat disappointing.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A chocolate bar has the shape of a triangular right prism ABCDEF as shown in the diagram. The ends are equilateral triangles of side 6 cm and the length of the chocolate bar is 23 cm.</span></p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the size of angle BAF.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence or otherwise find the area of the triangular end of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>It is known that 1 cm<sup>3</sup> of this chocolate weighs 1.5 g. Calculate the weight of the chocolate bar.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A different chocolate bar made with the same mixture also has the shape of a triangular prism. The ends are triangles with sides of length 4 cm, 6 cm and 7 cm.</span></p>
<p><span>Show that the size of the angle between the sides of 6 cm and 4 cm is 86.4° correct to 3 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The weight of this chocolate bar is 500 g. Find its length.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>60°     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>Unit penalty (UP) applies in this part</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span>\({\text{Area}} = \frac{{6 \times 6 \times \sin 60^\circ }}{2}\)     <strong><em>(M1)(A1)</em></strong></span></p>
<p><span><strong><em>(UP)</em></strong>     = 15.6 cm<sup><span>2</span></sup>   \((9 \sqrt{3})\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span><strong>Note:</strong> Award <strong><em>(M1)</em></strong> for substitution into correct formula, <strong><em>(A1)</em></strong> for correct values. Accept alternative correct methods.</span></p>
<p><span> </span></p>
<p><span><strong><em>[3 marks]</em></strong></span></p>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>Unit penalty (UP) applies in this part</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span>\({\text{Surface Area}} =15.58 \times 2 + 23 \times 6 \times 3\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for two terms with 2 and 3 respectively, <em><strong>(M1)</strong></em> for \(23 \times 6\) (138).</span></p>
<p><br><span><em><strong>(UP)</strong></em>     Surface Area = 445 cm<sup>2</sup>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>Unit penalty (UP) applies in this part</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span>\({\text{weight}} = 1.5 \times 15.59 \times 23\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for finding the volume, <em><strong>(M1)</strong></em> for multiplying their volume by 1.5.</span></p>
<p><br><span><em><strong>(UP)</strong></em>     weight = 538 g     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\cos \alpha  = \frac{{{4^2} + {6^2} - {7^2}}}{{2 \times 4 \times 6}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for using cosine rule with values from the problem,</span> <span><em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p><br><span>\(\alpha = 86.41…\)     <em><strong>(A1)</strong></em></span></p>
<p><span><span>\(\alpha = 86.4^{\circ}\)    </span> <em><strong>(AG)</strong></em> </span></p>
<p><strong><em> </em></strong></p>
<p><span><strong>Note:</strong> 86.41… must be seen for final <em><strong>(A1)</strong></em> to be awarded.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong><em>Unit penalty (UP) applies in this part</em></strong></span></p>
<p><span><strong><em> </em></strong></span></p>
<p><span>\(l \times \frac{{4 \times 6 \times \sin 86.4^\circ }}{2} \times 1.5 = 500\)     <em><strong>(M1)(A1)(M1)</strong></em></span></p>
<p><br><span><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for finding an expression for the volume, <em><strong>(A1)</strong></em> for correct substitution, <em><strong>(M1)</strong></em> for multiplying the volume by 1.5 and equating to 500, or for equating the volume to \(\frac{500}{1.5}\).</span></span></p>
<p><span><span>If formula for volume is not correct but consistent with that in</span> <span>(c) award at most <em><strong>(M1)(A0)</strong></em><strong>(ft)</strong><em><strong>(M1)(A0)</strong></em>.</span></span></p>
<p><br><span><em><strong>(UP)    </strong></em> <em>l</em> = 27.8 cm     <em><strong>(A1)(G3)</strong></em></span></p>
<p><span><em><strong>[4 marks]</strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to show candidate working throughout this question. Follow through marks </span><span style="font-size: medium; font-family: times new roman,times;">could be awarded when incorrect answers were given. Many candidates incorrectly calculated </span><span style="font-size: medium; font-family: times new roman,times;">the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number </span><span style="font-size: medium; font-family: times new roman,times;">of students incorrectly used the formula for the volume of a pyramid rather than for a prism.</span> <span style="font-size: medium; font-family: times new roman,times;">Most candidates were successful in their use of the cosine rule but did not give the answer </span><span style="font-size: medium; font-family: times new roman,times;">before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as </span><span style="font-size: medium; font-family: times new roman,times;">a clear discriminator, very few students were able to find the correct length of the new </span><span style="font-size: medium; font-family: times new roman,times;">chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">a, i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">It was pleasing to show candidate working throughout this question. Follow through marks could be awarded when incorrect answers were given. Many candidates incorrectly calculated the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number of students incorrectly used the formula for the volume of a pyramid rather than for a prism.Most candidates were successful in their use of the cosine rule but did not give the answer before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as a clear discriminator, very few students were able to find the correct length of the new chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">a, ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to show candidate working throughout this question. Follow through marks </span><span style="font-size: medium; font-family: times new roman,times;">could be awarded when incorrect answers were given. Many candidates incorrectly calculated </span><span style="font-size: medium; font-family: times new roman,times;">the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number </span><span style="font-size: medium; font-family: times new roman,times;">of students incorrectly used the formula for the volume of a pyramid rather than for a prism.</span> <span style="font-size: medium; font-family: times new roman,times;">Most candidates were successful in their use of the cosine rule but did not give the answer </span><span style="font-size: medium; font-family: times new roman,times;">before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as </span><span style="font-size: medium; font-family: times new roman,times;">a clear discriminator, very few students were able to find the correct length of the new </span><span style="font-size: medium; font-family: times new roman,times;">chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to show candidate working throughout this question. Follow through marks </span><span style="font-size: medium; font-family: times new roman,times;">could be awarded when incorrect answers were given. Many candidates incorrectly calculated </span><span style="font-size: medium; font-family: times new roman,times;">the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number </span><span style="font-size: medium; font-family: times new roman,times;">of students incorrectly used the formula for the volume of a pyramid rather than for a prism.</span> <span style="font-size: medium; font-family: times new roman,times;">Most candidates were successful in their use of the cosine rule but did not give the answer </span><span style="font-size: medium; font-family: times new roman,times;">before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as </span><span style="font-size: medium; font-family: times new roman,times;">a clear discriminator, very few students were able to find the correct length of the new </span><span style="font-size: medium; font-family: times new roman,times;">chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to show candidate working throughout this question. Follow through marks </span><span style="font-size: medium; font-family: times new roman,times;">could be awarded when incorrect answers were given. Many candidates incorrectly calculated </span><span style="font-size: medium; font-family: times new roman,times;">the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number </span><span style="font-size: medium; font-family: times new roman,times;">of students incorrectly used the formula for the volume of a pyramid rather than for a prism.</span> <span style="font-size: medium; font-family: times new roman,times;">Most candidates were successful in their use of the cosine rule but did not give the answer </span><span style="font-size: medium; font-family: times new roman,times;">before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as </span><span style="font-size: medium; font-family: times new roman,times;">a clear discriminator, very few students were able to find the correct length of the new </span><span style="font-size: medium; font-family: times new roman,times;">chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to show candidate working throughout this question. Follow through marks </span><span style="font-size: medium; font-family: times new roman,times;">could be awarded when incorrect answers were given. Many candidates incorrectly calculated </span><span style="font-size: medium; font-family: times new roman,times;">the weight of the chocolate bar by multiplying the surface area by 1.5<em>g</em>. Also a large number </span><span style="font-size: medium; font-family: times new roman,times;">of students incorrectly used the formula for the volume of a pyramid rather than for a prism.</span> <span style="font-size: medium; font-family: times new roman,times;">Most candidates were successful in their use of the cosine rule but did not give the answer </span><span style="font-size: medium; font-family: times new roman,times;">before it was rounded to 86.4, resulting in the loss of the final <em>A</em> mark. The last part acted as </span><span style="font-size: medium; font-family: times new roman,times;">a clear discriminator, very few students were able to find the correct length of the new </span><span style="font-size: medium; font-family: times new roman,times;">chocolate bar. Most students used units correctly.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Pauline owns a piece of land ABCD in the shape of a quadrilateral. The length of BC is \(190{\text{ m}}\) , the length of CD is </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(120{\text{ m}}\)</span> , the length of AD is </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(70{\text{ m}}\)</span> , the size of angle BCD is \({75^ \circ }\) and the size of angle BAD is \({115^ \circ }\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Pauline decides to sell the triangular portion of land ABD . She first builds a straight fence from B to D .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the length of the fence.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The fence costs \(17\) USD per metre to build. </span></p>
<p><span>Calculate the cost of building the fence. Give your answer correct to the </span><span>nearest USD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the size of angle ABD is \({18.8^ \circ }\) , correct to three significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of triangle ABD .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>She sells the land for \(120\) USD per square metre. </span></p>
<p><span>Calculate the value of the land that Pauline sells. Give your answer correct </span><span>to the nearest USD.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Pauline invests \(300 000\) USD from the sale of the land in a bank that pays compound interest compounded annually. </span></p>
<p><span>Find the interest rate that the bank pays so that the investment will double in value in 15 years.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{B}}{{\text{D}}^2} = {190^2} + {120^2} - 2(190)(120)\cos {75^ \circ }\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted cosine formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span>\(= 197\) m     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> If radians are used award a maximum of <em><strong>(M1)(A1)(A0)</strong></em>.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{cost}} = 196.717 \ldots  \times 17\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = 3344{\text{ USD}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept \(3349\) from \(197\).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{\sin ({\text{ABD}})}}{{70}} = \frac{{\sin ({{115}^ \circ })}}{{196.7}}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted sine formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span>\( = {18.81^ \circ } \ldots \)     <strong><em>(A1)</em>(ft)</strong></span><br><span>\( = {18.8^ \circ } \)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Notes:</strong> Both the unrounded and rounded answers must be seen for the final <em><strong>(A1)</strong></em> to be awarded. Follow through from their (a). If 197 is used the unrounded answer is </span><span>\( = {18.78^ \circ } \ldots \)</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{angle BDA}} = {46.2^ \circ }\)     <em><strong>(A1)</strong></em></span><br><span>\({\text{Area}} = \frac{{70 \times (196.717 \ldots ) \times \sin ({{46.2}^ \circ })}}{2}\)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituted area formula, <em><strong>(A1)</strong></em> for correct substitution.</span></p>
<p> </p>
<p><span>\({\text{Area ABD}} = 4970{\text{ }}{{\text{m}}^2}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> If \(197\) used answer is \(4980\).</span></p>
<p><span><strong>Notes:</strong> Follow through from (a) only. Award <em><strong>(G2)</strong></em> if there is no working shown and \({46.2^ \circ }\) not seen. If \({46.2^ \circ }\) seen without subsequent working, award <em><strong>(A1)(G2)</strong></em>.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(4969.38 \ldots  \times 120\)     <em><strong>(M1)</strong></em></span><br><span>\( = 596 327{\text{ USD}}\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Follow through from their (d).</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(300000{\left( {1 + \frac{r}{{100}}} \right)^{15}} = 600000\) or equivalent     <em><strong>(A1)(M1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(600 000\) seen or implied by alternative formula, <em><strong>(M1)</strong></em> for substituted CI formula, <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p> </p>
<p><span>\(r = 4.73\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(G3)</strong></em> for \(4.73\) with no working. Award <em><strong>(G2)</strong></em> for \(4.7\) with no working.</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognise cosine rule, and substitute correctly. Where the final answer was not attained, this was mainly due to further unnecessary manipulation; the GDC should be used efficiently in such a case. Some students used the answer given and sine rule &ndash; this gained no credit.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognise cosine rule, and substitute correctly. Where the final answer was not attained, this was mainly due to further unnecessary manipulation; the GDC should be used efficiently in such a case. Some students used the answer given and sine rule &ndash; this gained no credit.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to recognise cosine rule, and substitute correctly. Where the final answer was not attained, this was mainly due to further unnecessary manipulation; the GDC should be used efficiently in such a case. Some students used the answer given and sine rule &ndash; this gained no credit.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Again, most candidates used the appropriate area formula &ndash; however, some did not appreciate the purpose of the given answer and were unable to complete the question accurately.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Again, most candidates used the appropriate area formula &ndash; however, some did not appreciate the purpose of the given answer and were unable to complete the question accurately.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The final part, in which compound interest was again asked for, tested most candidates but there were many successful attempts using either the GDC's finance package or correct use of the formula. Care must be taken with the former to show some indication of the values to be used in the context of the question. With the latter approach marks were again lost due to a lack of appreciation of the difference between interest and value.</span></p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">ABCDV is a solid glass pyramid. The base of the pyramid is a square of side 3.2 cm. The vertical height is 2.8 cm. The vertex V is directly above the centre O of the base.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the volume of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The glass weighs 9.3 grams per cm<sup>3</sup>. Calculate the weight of the pyramid.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the length of the sloping edge VC of the pyramid is 3.6 cm.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the angle at the vertex, \({\text{B}}{\operatorname {\hat V}}{\text{C}}\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total surface area of the pyramid.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in question parts (a), (b) and (e) <strong>only</strong>.</em><br></span></p>
<p><span>\({\text{V}} = \frac{1}{3} \times {3.2^2} \times 2.8\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(M1) </strong>for substituting in correct formula</em></span></p>
<p><span><em><strong>(UP)</strong></em> = 9.56 cm<sup>3</sup><em><strong>     (A1)(G2)<br></strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in question parts (a), (b) and (e) <strong>only</strong>.</em></span></p>
<p><span>\(9.56 \times 9.3\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em><strong>(UP)</strong></em> = 88.9 grams     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{2} {\text{base}} = 1.6 {\text{ seen}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em>award <strong>(M1)</strong> for halving base</em></span></p>
<p><span>\({\text{OC}}^2 = 1.6^2 + 1.6^2 = 5.12\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em>award <strong>(A1)</strong> for one correct use of Pythagoras</em></span></p>
<p><span>\(5.12 + 2.8^2 = 12.96 = {\text{VC}}^2\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em>award <strong>(M1)</strong> for using Pythagoras again to find VC<sup>2</sup></em></span></p>
<p><span>VC = 3.6 <strong>AG</strong></span></p>
<p><em><span>award <strong>(A1)</strong> for</span></em><span> 3</span><span>.6</span><em><span> obtained from</span></em><span> 1</span><span>2.96</span><em><span> only (not</span></em><span> 1</span><span>2.95…<em>)</em></span><em><span>     <strong>(A1)</strong></span></em></p>
<p><span><strong>OR</strong><br></span></p>
<p><span>\({\text{AC}}^2 = 3.2^2 + 3.2^2 = 20.48\)     <em><strong>(A1)</strong></em></span></p>
<p><em><span>award <strong>(A1)</strong> for one correct use of Pythagoras</span></em></p>
<p><span>({\text{OC}} = \frac{1}{2} \sqrt{20.48}\) ( = 2.26...)     <em><strong>(M1)</strong></em></span></p>
<p><span><em>award <strong>(M1)</strong> for halving AC</em></span></p>
<p><span>\(2.8^2 + (2.26...)^2 = {\text{VC}}^2 = 12.96\)     <em><strong>(M1)</strong></em></span></p>
<p><span><em>award <strong>(M1)</strong> for using Pythagoras again to find VC<sup>2</sup></em></span></p>
<p><span>VC = 3.6 <strong>AG     <em>(A1)</em></strong></span></p>
<p><span><em>award <strong>(A1)</strong> for</em> 3.6<em> obtained from</em> 12.96<em> only (not</em> 12.95…<em>)</em></span><span><strong><br></strong></span></p>
<p><span><strong><em>[4 marks]</em><br></strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(3.2^2 = 3.6^2 + 3.6^2 - 2 \times (3.6) (3.6) \cos\) </span><span>\({\text{B}}{\operatorname {\hat V}}{\text{C}}\)</span><span>     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\({\text{B}}{\operatorname {\hat V}}{\text{C}}\)</span><span><span> \( = {52.8^\circ }\) </span><em>(no</em> <strong>(ft)</strong> <em>here)</em>     <em><strong>(A1)(G2)</strong></em></span></p>
<p><em><span>award <strong>(M1)</strong> for substituting in correct formula, <strong>(A1)</strong> for correct</span> <span>substitution</span></em></p>
<p><strong><span>OR</span></strong></p>
<p><span>\(\sin\) </span><span>\({\text{B}}{\operatorname {\hat V}}{\text{M}}\)</span><span><span> \( = \frac{{1.6}}{{3.6}}\)</span> </span><span>where <em>M</em> is the midpoint of BC     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\({\text{B}}{\operatorname {\hat V}}{\text{C}}\)</span><span><span><span> \( = {52.8^\circ}\)</span></span> <em>(no</em> <strong>(ft)</strong> <em>here)</em>     <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[3 marks]<br></em></strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in question parts (a), (b) and (e) <strong>only</strong>.</em></span></p>
<p><span>\(4 \times \frac{1}{2}{(3.6)^2} \times \sin (52.8^\circ ) + {(3.2)^2}\)     <em><strong>(M1)(M1)(M1)</strong></em></span></p>
<p><span><em>award <strong>(M1)</strong> for</em> \( \times 4\)<em>, <strong>(M1)</strong> for substitution in relevant triangle area,</em> (\(\frac{1}{2}(3.2)(2.8)\) <em>gets</em> <strong><em>(M0)</em></strong><em>)</em></span></p>
<p><span><em><strong>(M1)</strong> for</em> \(+ {(3.2)^2}\)</span></p>
<p><span><em><strong>(UP)</strong></em> = 30.9 cm<sup>2</sup> <em>(</em><strong>(ft)</strong> <em>from their</em> <em>(d))</em>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The volume of the pyramid and the weight were well done. Many candidates lost their unit penalty here. They had trouble showing that the sloping edge was 3.6 cm. The angle BVC was done well but not the total surface area. They knew that they needed four sides and the base, but finding the area of the triangle proved difficult for the less able candidates.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The volume of the pyramid and the weight were well done. Many candidates lost their unit penalty here. They had trouble showing that the sloping edge was 3.6 cm. The angle BVC was done well but not the total surface area. They knew that they needed four sides and the base, but finding the area of the triangle proved difficult for the less able candidates.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The volume of the pyramid and the weight were well done. Many candidates lost their unit penalty here. They had trouble showing that the sloping edge was 3.6 cm. The angle BVC was done well but not the total surface area. They knew that they needed four sides and the base, but finding the area of the triangle proved difficult for the less able candidates.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The volume of the pyramid and the weight were well done. Many candidates lost their unit penalty here. They had trouble showing that the sloping edge was 3.6 cm. The angle BVC was done well but not the total surface area. They knew that they needed four sides and the base, but finding the area of the triangle proved difficult for the less able candidates.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The volume of the pyramid and the weight were well done. Many candidates lost their unit penalty here. They had trouble showing that the sloping edge was 3.6 cm. The angle BVC was done well but not the total surface area. They knew that they needed four sides and the base, but finding the area of the triangle proved difficult for the less able candidates.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows part of the graph of \(f(x) = {x^2} - 2x + \frac{9}{x}\) , where \(x \ne 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the equation of the vertical asymptote to the graph of \(y = f (x)\) ;</span></p>
<p><span>(ii)    the solution to the equation \(f (x) = 0\) ;</span></p>
<p><span>(iii)   the coordinates of the local minimum point.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find  \(f'(x)\) . </span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'(x)\) can be written as \(f'(x) = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the gradient of the tangent to \(y = f (x)\) at the point \({\text{A}}(1{\text{, }}8)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\), passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Write down the gradient of \(L\) .</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></p>
<p><span>Find the equation of \(L\) . Give your answer in the form \(y = mx + c\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The line, \(L\) , passes through the point A and is perpendicular to the tangent at A. </span></span></p>
<p><span>\(L\) also intersects the graph of \(y = f (x)\) at points B and C . Write down the <strong><em>x</em>-coordinate</strong> of B and of C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(x = 0\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(x = \) a constant, <em><strong>(A1)</strong></em> for the constant in their equation being \(0\).</span></p>
<p> </p>
<p><span>(ii)    \( - 1.58\) (\( - 1.58454 \ldots \))     <em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept \( - 1.6\), do not accept \( - 2\) or \( - 1.59\).</span></p>
<p> </p>
<p><span>(iii)   \((2.06{\text{, }}4.49)\) \((2.06020 \ldots {\text{, }}4.49253 \ldots )\)     <em><strong>(G1)(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award at most <em><strong>(G1)(G0)</strong></em> if brackets not used. Award <strong><em>(G0)(G1)</em>(ft)</strong> if coordinates are reversed.</span></p>
<p><span><strong>Note:</strong> Accept \(x = 2.06\), \(y = 4.49\) .</span></p>
<p><span><strong>Note:</strong> Accept \(2.1\), do not accept \(2.0\) or \(2\). Accept \(4.5\), do not accept \(5\) or \(4.50\).</span></p>
<p> </p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) = 2x - 2 - \frac{9}{{{x^2}}}\)     <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for \(2x\), <em><strong>(A1)</strong></em> for \( - 2\), <em><strong>(A1)</strong></em> for \( - 9\), <em><strong>(A1)</strong></em> for \({x^{ - 2}}\) . Award a maximum of <em><strong>(A1)(A1)(A1)(A0)</strong></em> if there are extra terms present.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><strong></strong>\(f'(x) = \frac{{{x^2}(2x - 2)}}{{{x^2}}} - \frac{9}{{{x^2}}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for taking the correct common denominator.</span></p>
<p> </p>
<p><span>\( = \frac{{(2{x^3} - 2{x^2})}}{{{x^2}}} - \frac{9}{{{x^2}}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for multiplying brackets or equivalent.</span></p>
<p><span> </span></p>
<p><span>\( = \frac{{2{x^3} - 2{x^2} - 9}}{{{x^2}}}\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> The final <em><strong>(M1)</strong></em> is not awarded if the given answer is not seen.</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(1) = \frac{{2{{(1)}^3} - 2(1) - 9}}{{{{(1)}^2}}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = - 9\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into <strong>given</strong> (or their correct) </span><span><span>\(f'(x)\)</span> . There is no follow through for use of their incorrect derivative.</span></span></p>
<p><em><strong><span><span>[2 marks]</span></span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{9}\)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from part (d).</span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y - 8 = \frac{1}{9}(x - 1)\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution of their gradient from (e), <em><strong>(M1)</strong></em> for substitution of given point. Accept all forms of straight line.</span></p>
<p> </p>
<p><span>\(y = \frac{1}{9}x + \frac{{71}}{9}\) (\(y = 0.111111 \ldots x + 7.88888 \ldots \))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Award the final <strong><em>(A1)</em>(ft)</strong> for a correctly rearranged formula of <strong>their</strong> straight line in (f). Accept \(0.11x\), do not accept \(0.1x\). Accept \(7.9\), do not accept \(7.88\), do not accept \(7.8\).</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\( - 2.50\), \(3.61\) (\( - 2.49545 \ldots \), \(3.60656 \ldots \))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Follow through from their line \(L\) from part (f) even if no working shown. Award at most <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong> if their correct coordinate pairs given.</span></p>
<p><span><strong>Note:</strong> Accept \( - 2.5\), do not accept \( - 2.49\). Accept \(3.6\), do not accept \(3.60\).</span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case<strong> very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">As usual, the content in this question caused difficulty for many candidates. However, for those with a sound grasp of the topic, there were many very successful attempts. The curve was given so that a comparison could be made to a GDC version and the correct form of the derivative was also given to permit weaker candidates to progress to the latter stages. Unfortunately, some decided to proceed with their own incorrect versions, in which case <strong>very limited follow through accrued</strong>. It should be emphasized to candidates that when an answer is given in this way it should be used in subsequent parts of the question.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">As in previous years, much of the question could have been answered successfully by using the GDC. However, it was also clear that a large number of candidates did not attempt either to verify their work with their GDC or to use it in place of an algebraic approach.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Differentiation of terms with negative indices remains a testing process for the majority; it will continue to be tested. Some centres still do not teach the differential calculus.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A solid metal <strong>cylinder</strong> has a base radius of 4 cm and a height of 8 cm.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the area of the base of the cylinder.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the volume of the metal used in the cylinder is 402 cm<sup>3</sup>, given correct to three significant figures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total surface area of the cylinder.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the height, OC, of the cone.</span></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the size of angle BCO.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the slant height, CB.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cylinder was melted and recast into a solid cone, shown in the following diagram. The base radius OB is 6 cm.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Find the total surface area of the cone.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\( \pi \times 4^2\)     <em><strong>(M1)</strong></em></span></p>
<p><span>= 50.3 (16\(\pi\)) cm<sup>2  </sup>(50.2654...)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in area formula. The answer is 50.3 cm<sup>2</sup>, the units are required.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>50.265...× 8     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the volume formula.</span></p>
<p><br><span>= 402.123...     <em><strong>(A1)</strong></em></span><br><span><em><strong>=</strong></em> 402 (cm<sup>3</sup>)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> Both the unrounded and the rounded answer must be seen for the <em><strong>(A1)</strong></em> to be awarded. The units are <strong>not</strong> required</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(2 \times \pi \times 4 \times 8 + 2 \times \pi \times 4^2\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the curved surface area formula, <em><strong>(M1)</strong></em> for adding the area of their two bases.</span><br><br></p>
<p><span>= 302 cm<sup>2</sup> (96π cm<sup>2</sup>) (301.592...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> The answer is 302 cm<sup>2</sup>, the units are required. Do not penalise for missing or incorrect units if penalised in part (a). Follow through from their answer to part (a).</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{1}{3} \pi \times 6^2 \times \text{OC} = 402\)     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted volume formula, <em><strong>(M1)</strong></em> for equating to 402 (402.123…).</span></p>
<p><br><span>\({\text{OC}} = 10.7{\text{ (cm)}}\left( {{\text{10}}\frac{2}{3},{\text{ }}10.6666...} \right)\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\tan \text{BCO} = \frac{6}{10.66...}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for use of correct tangent ratio.</span></p>
<p><br><span>\({\text{B}}{\operatorname{\hat C}}{\text{O}} = 29.4^\circ \) (29.3577...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Accept 29.3° (29.2814...) if 10.7 is used. An acceptable alternative method is to calculate CB first and then angle BCO.</span> <span>Allow follow through from parts (d) and (f). Answers range from 29.2° to 29.5°.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{CB} = \sqrt{{6^2} + {(10.66...)^2}}\)     <em><strong>(M1)</strong></em></span></p>
<p><em><strong><span>OR</span></strong></em></p>
<p><span>\(\sin 29.35...^\circ = \frac{6}{\text{CB}}\)     <em><strong>(M1)</strong></em></span></p>
<p><em><strong><span>OR</span></strong></em></p>
<p><span>\(\cos 29.35...^\circ = \frac{10.66...}{\text{CB}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>CB = 12.2 (cm) (12.2383...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept 12.3 (12.2674...) if 10.7 (and/or 29.3) used. Follow through from part (d) or part (e) as appropriate.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\pi \times 6 \times 12.2383... + \pi \times 6^2\)     <em><strong>(M1)(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in curved surface area formula, <em><strong>(M1)</strong></em> for correct substitution in area of circle formula, <em><strong>(M1)</strong></em> for addition of the two areas.</span></p>
<p><br><span>= 344 cm<sup>2</sup> (343.785...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> The answer is 344 cm<sup>2</sup>, the units are required. Do not penalise for missing or incorrect units if already penalised in either part (a) or (c). Accept 345 cm<sup>2</sup> if 12.3 is used and 343 cm<sup>2</sup> if 12.2 is used. Follow through from their part (f).</span></p>
<p><span><em><strong>[4 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was either very well done &ndash; by the majority &ndash; or very poorly (but not both). Many incomplete attempts were seen. This would perhaps indicate a lack of preparation in this area of the syllabus from some centres, since it was that the formulas for cones were not well understood. Further, the idea of &ldquo;total surface area&rdquo; was a mystery to many &ndash; a slavish reliance of formulas, irrespective of context, led to many errors and a consequent loss of marks.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The invariance of volume for solids and liquids that provided the link in this question was not understood by many, but was felt to be an appropriate subject for an examination.</span></p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Alex and Kris are riding their bicycles together along a bicycle trail and note the following distance markers at the given times.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram of the data. Use 1 cm to represent 1 hour and 1 cm to represent 10 km.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data </span><span>the mean time, \(\bar t\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data the mean distance, \(\bar d\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Mark and label the point \(M(\bar t,{\text{ }}\bar d)\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your graph</strong>, estimate the time when Alex and Kris pass the 85 km distance marker. Give your answer correct to <strong>one decimal place</strong>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line for the data given.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your equation</strong> calculate the distance marker passed by the cyclists at 10.3 hours.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Is this estimate of the distance reliable? Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A2)</strong></em></span></span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em> for axes labelled with d and t and correct scale, <em><strong>(A2)</strong></em> for 6 or 7 points correctly plotted, <em><strong>(A1)</strong></em> for 4 or 5 points, <em><strong>(A0)</strong></em> for 3 or less points correctly plotted. Award at most <em><strong>(A1)(A1)</strong></em> if points are joined up. If axes are reversed award at most <em><strong>(A0)(A2)</strong></em></span></p>
<p><span> </span></p>
<p><span><em><strong>[3 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\bar t = 4\)     <em><strong>(G1)<br></strong></em></span></p>
<p><span><em><strong>[1 mark]</strong></em></span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span>\(\bar d = 81.1\left( {\frac{{568}}{7}} \right)\)     <strong><em>(G1)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> If answers are the wrong way around award in (i) <strong><em>(G0)</em></strong> and in (ii) <strong><em>(G1)</em>(ft)</strong>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<p> </p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Point marked and labelled with M or \(\bar t\), \(\bar d\) on their graph     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><em><span><strong>[2 marks]</strong></span></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>Line of best fit drawn that passes through their M and (0, 48)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong> </span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for straight line that passes through their M, <em><strong>(A1)</strong></em> for line (extrapolated if necessary) that passes through (0, 48).</span></p>
<p><span>Accept error of ±3. If ruler not used award a maximum of <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>4.5h (their answer ±0.2)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p> </p>
<p><span><strong>Note:</strong> Follow through from their graph. If method shown by some indication on graph of point but answer is incorrect, award <em><strong>(M1)(A0)</strong></em>.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>d</em> = 8.25<em>t</em> + 48.1     <em><strong>(G1)(G1)</strong></em> </span></p>
<p> </p>
<p><span><strong>Notes:</strong> Award <em><strong>(G1)</strong></em> for 8.25, <em><strong>(G1)</strong></em> for 48.1.</span></p>
<p><span>Award at most <em><strong>(G1)(G0)</strong></em> if <em>d</em> = (<em>or y</em> =) is not seen.</span></p>
<p><span>Accept <em>d</em> – 81.1 = 8.25(<em>t </em></span><span><span>– </span>4) or equivalent.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>d</em> = 8.25 × 10.3 + 48.1     <em><strong>(M1)</strong></em></span></p>
<p><span><em>d</em> = 133 km     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)<br></strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>No     <strong><em>(A1)</em></strong></p>
<p>Outside the set of values of <em>t</em> or equivalent.     <strong><em>(R1)</em></strong></p>
<p><strong>Note:</strong> Do not award <strong><em>(A1)(R0)</em></strong>.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">g.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">This question was well answered by most of the candidates. Diagrams were in general well drawn except for some students that reversed the axes or did not use the stated scales. They were able to use the GDC to find the means and the equation of the regression line. Very few students could take the correct decision in (g) (ii) by stating that the value was outside the range of the data set. The majority inclined their answers towards the context of the question and forgot what they had been taught about how wrong extrapolation can be.</span></p>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">A gardener has to pave a rectangular area 15.4 metres long and 5.5 metres wide using rectangular bricks. The bricks are 22 cm long and 11 cm wide.</span></p>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The gardener decides to have a triangular lawn ABC, instead of paving, in the middle of the rectangular area, as shown in the diagram below.</span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 12.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="onbekend.html" alt="onbekend.png"></span></p>
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The distance AB is 4 metres, AC is 6 metres and angle BAC is 40&deg;.</span></p>
</div>

<div class="specification">
<div style="color: #3f3f3f; font: normal normal normal 14px/1.5em 'Lucida Grande', Helvetica, Arial, sans-serif; padding-top: 40px; padding-right: 10px !important; padding-bottom: 10px !important; padding-left: 10px !important; background-image: url('body-bg.html'); background-attachment: initial; background-origin: initial; background-clip: initial; background-color: #f7f7f7; height: 94% !important; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif; font-size: 14px; line-height: 20px; display: inline; float: none; background-position: 50% 0%; background-repeat: no-repeat repeat; margin: 0px;">
<p style="margin-top: 0px; margin-right: 0px; margin-bottom: 10px; margin-left: 0px; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"><span style="font-family: times new roman,times; font-size: medium;">In another garden, twelve of the same rectangular bricks are to be used to make an edge around a small garden bed as shown in the diagrams below. FH is the length of a brick and C is the centre of the garden bed. M and N are the midpoints of the long edges of the bricks on opposite sides of the garden bed.</span></p>
<p style="margin-top: 0px; margin-right: 0px; margin-bottom: 10px; margin-left: 0px; font-family: 'Helvetica Neue', Arial, 'Lucida Grande', 'Lucida Sans Unicode', sans-serif;"><span style="font-family: times new roman,times; font-size: medium;"><img style="border-style: initial; border-color: initial; max-width: 100%; vertical-align: middle; border-width: 0px;" src="" alt></span></p>
</div>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The garden bed has an area of 5419 cm<sup>2</sup>. It is covered with soil to a depth of 2.5 cm.</span></p>
</div>

<div class="specification">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">It is estimated that 1 kilogram of soil occupies 514 cm<sup>3</sup>.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the total area to be paved. Give your answer in cm<sup>2</sup>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the area of each brick.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find how many bricks are required to pave the total area.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of BC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hence write down the perimeter of the triangular lawn.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the area of the lawn.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage of the rectangular area which is to be lawn.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the angle FCH.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Calculate the distance MN from one side of the garden bed to the other, passing through C.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the volume of soil used.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of kilograms of soil required for this garden bed.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>15.4 × 5.5     <em><strong>(M1)</strong></em></span></p>
<p><span>84.7 m<sup>2</sup>     <em><strong>(A1)</strong></em></span></p>
<p><span>= 847000 cm</span><span><span><sup>2</sup>    </span> <em><strong>(A1)(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(G2)</strong></em> if 84.7 m</span><span><span><sup>2</sup></span> seen with no working.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>1540 </span><span><span>× </span>550     <em><strong>(A1)(M1)</strong></em></span></p>
<p><span>= 847000 cm</span><span><span><sup>2</sup></span>     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for both dimensions converted correctly to cm,</span> <span><strong><em>(M1)</em></strong> for multiplication of both dimensions. <strong><em>(A1)</em>(ft)</strong> for</span> <span>correct product of their sides in cm.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>242 cm<sup>2</sup> (0.0242 m<sup>2</sup>)     <strong><em>(A1)</em></strong></span></p>
<p><span><strong><em>[1 marks}</em></strong></span></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac {15.4}{0.22} = 70\)     <strong><em>(M1)</em></strong></span></p>
<p><span>\(\frac{5.5}{0.11} = 50\)</span></p>
<p><span>\(70 \times 50 = 3500\)     <strong><em>(A1)(G2)</em></strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\frac {847000}{242} = 3500\)     <strong><em>(M1)(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p> </p>
<p><span><strong>Note:</strong> Follow through from parts (a) (i) and (ii).</span></p>
<p> </p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\({\text{B}}{{\text{C}}^2} = {4^2} + {6^2}-2 \times 4 \times 6 \times \cos 40^\circ \)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span>\({\text{BC}} = 3.90{\text{ m}}\)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span> </span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substituted formula, <em><strong>(A1)</strong></em> for correct substitutions, <em><strong>(A1)</strong></em> for correct answer.</span></p>
<p><span> </span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>perimeter = 13.9 m     <strong><em>(A1)</em>(ft)<em>(G1)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Follow through from part (b) (i).</span></p>
<p><span> </span></p>
<p><em><strong><span>[1 mark]</span></strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p> </p>
<p><span>\({\text{Area}} = \frac{1}{2} \times 4 \times 6 \times \sin 40^\circ \)     <strong><em>(M1)</em></strong></span></p>
<p><span>= 7.71 m<sup>2</sup>     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(M1)</em></strong> for correct formula and correct substitution, <strong><em>(A1)</em>(ft)</strong> for correct answer.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<p> </p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{7.713}}{{84.7}} \times 100{\text{ }}\%  = 9.11{\text{ }}\% \)     <strong><em>(A1)(M1)(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Accept 9.10 %.</span></p>
<p><span>Award <strong><em>(A1)</em></strong> for both measurements correctly written in the same unit, <strong><em>(M1)</em></strong> for correct method, <strong><em>(A1)</em>(ft)</strong> for correct answer.</span></p>
<p><span>Follow through from (b) (iii) and from consistent error in conversion of units throughout the question.</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{360^\circ }}{{12}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\( = 30^\circ\)     <em><strong>(A1)(G2)<br></strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\text{MN} = 2 \times \frac{11}{\tan 15} \)     <strong><em>(A1)</em>(ft)<em>(M1)</em></strong></span></p>
<p><span><strong>OR</strong></span></p>
<p><span>\(\text{MN} = 2 \times 11 \tan 75^\circ \)</span></p>
<p><span>\({\text{MN}} = 82.1{\text{ cm}}\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></span></p>
<p><span> </span></p>
<p><span><strong>Notes:</strong> Award <strong><em>(A1)</em></strong> for 11 and 2 seen (implied by 22 seen), <strong><em>(M1)</em></strong> for dividing by tan15 (or multiplying by tan 75).</span></p>
<p><span>Follow through from their angle in part (c) (i).</span></p>
<p><span> </span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>volume = 5419 × 2.5     <em><strong>(M1)</strong></em></span></p>
<p><span>= 13500 cm<sup>3</sup>     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{13547.34 \ldots }}{{514}} = 26.4\)</span>     <span><em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em> </span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing their part (d) by 514.</span></p>
<p><span>Accept 26.3.</span></p>
<p><span> </span></p>
<p><em><strong><span>[2 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Part (a) was well done except for the fact that very few students were able to convert correctly from m<sup>2</sup> to cm</span><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;"><sup>2</sup></span> and this was very disappointing.</span></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (a) was well done except for the fact that very few students were able to convert correctly from m<sup>2</sup>&nbsp;to cm<sup>2</sup>&nbsp;and this was very disappointing.</span></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;">Part (a) was well done except for the fact that very few students were able to convert correctly from m<sup>2</sup>&nbsp;to m<sup>2</sup>&nbsp;and this was very disappointing.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">In part (b) the cosine rule and the area of a triangle were well done. In some cases units were </span><span style="font-size: medium; font-family: times new roman,times;">missing and therefore a unit penalty was applied.</span></span></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) the cosine rule and the area of a triangle were well done. In some cases units were missing and therefore a unit penalty was applied.</span></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) the cosine rule and the area of a triangle were well done. In some cases units were missing and therefore a unit penalty was applied.</span></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">In part (b) the cosine rule and the area of a triangle were well done. In some cases units were missing and therefore a unit penalty was applied.</span></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">Part (c) was clearly the most difficult one for the students. The general impression was that </span><span style="font-size: medium; font-family: times new roman,times;">they did not read the diagram in detail. A number of candidates could not distinguish the </span><span style="font-size: medium; font-family: times new roman,times;">circle from the triangle and hence used an incorrect method to find the radius.</span></span></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p style="margin: 0.0px 0.0px 10.0px 0.0px; font: 16.0px Times; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">Part (c) was clearly the most difficult one for the students. The general impression was that they did not read the diagram in detail. A number of candidates could not distinguish the circle from the triangle and hence used an incorrect method to find the radius.</span></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to see candidates recovering well to get full marks for the last two parts.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">It was pleasing to see candidates recovering well to get full marks for the last two parts.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a Ferris wheel that moves with constant speed and completes a rotation every 40 seconds. The wheel has a radius of \(12\) m and its lowest point is \(2\) m above the ground.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p>&nbsp;</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Initially, a seat C is vertically below the centre of the wheel, O. It then rotates in an anticlockwise (counterclockwise) direction.</span></p>
<p><span>Write down</span></p>
<p><span>(i)     the height of O above the ground;</span></p>
<p><span>(ii)    the maximum height above the ground reached by C .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>In a revolution, C reaches points A and B , which are at the same height above the ground as the centre of the wheel. Write down the number of seconds taken for C to first reach A and then B .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The sketch below shows the graph of the function, \(h(t)\) , for the height above ground of C, where \(h\) is measured in metres and \(t\) is the time in seconds, \(0 \leqslant t \leqslant 40\) .</span></p>
<p><span><img src="" alt></span></p>
<p><span><strong>Copy</strong> the sketch and show the results of part (a) and part (b) on your diagram. Label the points clearly with their coordinates.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i)     \(14\) m     <em><strong>(A1)</strong></em></span></p>
<p> </p>
<p><span>(ii)    \(26\) m     <em><strong>(A1)</strong></em></span></p>
<p> </p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>A:\(10\), B:\(30\)     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><em><strong>[2 marks]</strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt width="771" height="217"><span>     <strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></span></span></p>
<p><br><span><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for coordinates of each point clearly indicated either by scale or by coordinate pairs. Points need not be labelled A and B in the second diagram. Award a maximum of <strong><em>(A1)(A0)(A1)</em>(ft)<em>(A1)</em>(ft)</strong> if coordinates are reversed. Do not penalise reversed coordinates if this has already been penalised in Q4(a)(iii).</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to start this question. Those of an average ability completed it to the end of part (c) and the best gained good success in the latter parts. Its purpose was to discriminate at the highest level and this it did.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Some concerns were raised on the G2 forms as to the appropriateness of this question. However, the MSSL course tries in part to link areas of the syllabus to &ldquo;real-life&rdquo; situations and address these. A look back to past years&rsquo; examination papers, and to the syllabus documentation, should yield similar examples.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to start this question. Those of an average ability completed it to the end of part (c) and the best gained good success in the latter parts. Its purpose was to discriminate at the highest level and this it did.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Some concerns were raised on the G2 forms as to the appropriateness of this question. However, the MSSL course tries in part to link areas of the syllabus to &ldquo;real-life&rdquo; situations and address these. A look back to past years&rsquo; examination papers, and to the syllabus documentation, should yield similar examples.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates were able to start this question. Those of an average ability completed it to the end of part (c) and the best gained good success in the latter parts. Its purpose was to discriminate at the highest level and this it did.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Some concerns were raised on the G2 forms as to the appropriateness of this question. However, the MSSL course tries in part to link areas of the syllabus to &ldquo;real-life&rdquo; situations and address these. A look back to past years&rsquo; examination papers, and to the syllabus documentation, should yield similar examples.</span></p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Farmer Brown has built a new barn, on horizontal ground, on his farm. The barn has a cuboid base and a triangular prism roof, as shown in the diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The cuboid has a width of 10 m, a length of 16 m and a height of 5 m.<br>The roof has two sloping faces and two vertical and identical sides, ADE and GLF.<br>The face DEFL slopes at an angle of 15&deg; to the horizontal and ED = 7 m .</p>
</div>

<div class="specification">
<p>The roof was built using metal supports. Each support is made from <strong>five</strong> lengths of metal AE, ED, AD, EM and MN, and the design is shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">ED = 7 m , AD = 10 m and angle ADE = 15&deg; .<br>M is the midpoint of AD.<br>N is the point on ED such that MN is at right angles to ED.</p>
</div>

<div class="specification">
<p>Farmer Brown believes that N is the midpoint of ED.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the area of triangle EAD.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> volume of the barn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of MN.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the length of AE.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Farmer Brown is incorrect.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the <strong>total</strong> length of metal required for one support.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(Area of EAD =) \(\frac{1}{2} \times 10 \times 7 \times {\text{sin}}15\)    <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into area of a triangle formula, <strong>(A1)</strong> for correct substitution. Award <em><strong>(M0)(A0)(A0)</strong></em> if EAD or AED is considered to be a right-angled triangle.</p>
<p>= 9.06 m<sup>2</sup>  (9.05866… m<sup>2</sup>)     <em><strong>(A1)   (G3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(10 × 5 × 16) + (9.05866… × 16)     <em><strong>(M1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into volume of a cuboid, <em><strong>(M1)</strong></em> for adding the correctly substituted volume of their triangular prism.</p>
<p>= 945 m<sup>3</sup>  (944.938… m<sup>3</sup>)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>  (G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a).</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{MN}}}}{5} = \,\,\,{\text{sin}}15\)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into trigonometric equation.</p>
<p>(MN =) 1.29(m) (1.29409… (m))     <em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(AE<sup>2</sup> =) 10<sup>2</sup> + 7<sup>2</sup> − 2 × 10 × 7 × cos 15     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into cosine rule formula, and <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>(AE =) 3.71(m)  (3.71084… (m))     <em><strong>(A1) (G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ND<sup>2</sup> = 5<sup>2</sup> − (1.29409…)<sup>2</sup>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into Pythagoras theorem.</p>
<p>(ND =) 4.83  (4.82962…)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c).</p>
<p><strong>OR</strong></p>
<p>\(\frac{{1.29409 \ldots }}{{{\text{ND}}}} = {\text{tan}}\,15^\circ \)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into tangent.</p>
<p>(ND =) 4.83  (4.82962…)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note: </strong>Follow through from part (c).<strong><br></strong></p>
<p><strong>OR</strong></p>
<p>\(\frac{{{\text{ND}}}}{5} = {\text{cos }}15^\circ \)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into cosine.</p>
<p>(ND =) 4.83  (4.82962…)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c).</p>
<p><strong>OR</strong></p>
<p>ND<sup>2</sup> = 1.29409…<sup>2</sup> + 5<sup>2</sup> − 2 × 1.29409… × 5 × cos 75°     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into cosine rule.</p>
<p>(ND =) 4.83  (4.82962…)     <strong><em>(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from part (c).</p>
<p>4.82962… ≠ 3.5   (ND ≠ 3.5)     <strong><em>(R1)</em>(ft)</strong></p>
<p><strong>OR</strong></p>
<p>4.82962… ≠ 2.17038…   (ND ≠ NE)     <strong><em>(R1)</em>(ft)</strong></p>
<p>(hence Farmer Brown is incorrect)</p>
<p><strong>Note:</strong> Do not award <strong><em>(M0)(A0)(R1)</em>(ft)</strong>. Award <em><strong>(M0)(A0)(R0)</strong></em> for a correct conclusion without any working seen.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(EM<sup>2</sup> =) 1.29409…<sup>2</sup> + (7 − 4.82962…)<sup>2</sup>     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution into Pythagoras theorem.</p>
<p><strong>OR</strong></p>
<p>(EM<sup>2</sup> =) 5<sup>2</sup> + 7<sup>2</sup> − 2 × 5 × 7 × cos 15     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into cosine rule formula.</p>
<p>(EM =) 2.53(m) (2.52689...(m))     <strong><em>(A1)(</em>ft) <em>(G2)</em>(ft)</strong></p>
<p><strong>Note:</strong> Follow through from parts (c), (d) and (e).</p>
<p>(Total length =) 2.52689… + 3.71084… + 1.29409… +10 + 7     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for adding their EM, their parts (c) and (d), and 10 and 7.</p>
<p>= 24.5 (m)    (24.5318… (m))     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong> (G4)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (c) and (d).</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Great Pyramid of Giza in Egypt is a right pyramid with a square base. The pyramid is made of solid stone. The sides of the base are \(230\,{\text{m}}\) long. The diagram below represents this pyramid, labelled \({\text{VABCD}}\).</p>
<p>\({\text{V}}\) is the vertex of the pyramid. \({\text{O}}\) is the centre of the base, \({\text{ABCD}}\) . \({\text{M}}\) is the midpoint of \({\text{AB}}\). Angle \({\text{ABV}} = 58.3^\circ \) .</p>
<p><img src="" alt></p>
<p>Show that the length of \({\text{VM}}\) is \(186\) metres, correct to three significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the height of the pyramid, \({\text{VO}}\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the pyramid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down your answer to part (c) in the form \(a \times {10^k}\)  where \(1 \leqslant a &lt; 10\) and \(k \in \mathbb{Z}\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ahmad is a tour guide at the Great Pyramid of Giza. He claims that the amount of stone used to build the pyramid could build a wall \(5\) metres high and \(1\) metre wide stretching from Paris to Amsterdam, which are \(430\,{\text{km}}\) apart.</p>
<p>Determine whether Ahmad’s claim is correct. Give a reason.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ahmad and his friends like to sit in the pyramid’s shadow, \({\text{ABW}}\), to cool down.<br>At mid-afternoon, \({\text{BW}} = 160\,{\text{m}}\)  and angle \({\text{ABW}} = 15^\circ .\)</p>
<p><img src="" alt></p>
<p>i)     Calculate the length of \({\text{AW}}\) at mid-afternoon.</p>
<p>ii)    Calculate the area of the shadow, \({\text{ABW}}\), at mid-afternoon.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\tan \,(58.3) = \frac{{{\text{VM}}}}{{115}}\)   <strong>OR</strong> \(115 \times \tan \,(58.3^\circ )\)              <em><strong>(A1)(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(115\,\,\left( {ie\,\frac{{230}}{2}} \right)\)   seen, <em><strong>(M1)</strong></em> for correct substitution into trig formula.</p>
<p>\(\left( {{\text{VM}} = } \right)\,\,186.200\,({\text{m}})\)        <em><strong>(A1)</strong></em></p>
<p>\(\left( {{\text{VM}} = } \right)\,\,186\,({\text{m}})\)           <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> Both the rounded and unrounded answer must be seen for the final <em><strong>(A1)</strong></em> to be awarded.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{V}}{{\text{O}}^2} + {115^2} = {186^2}\)  <strong>OR</strong> \(\sqrt {{{186}^2} - {{115}^2}} \)       <strong>(M1)</strong></p>
<p>Note: Award <em><strong>(M1)</strong></em> for correct substitution into Pythagoras formula. Accept alternative methods.</p>
<p>\({\text{(VO}} = )\,\,146\,({\text{m}})\,\,(146.188...)\)       <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Use of full calculator display for \({\text{VM}}\) gives \(146.443...\,{\text{(m)}}\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in part (c)</strong></p>
<p>\(\frac{1}{3}({230^2} \times 146.188...)\)      <em><strong> (M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in volume formula. Follow through from part (b).</p>
<p>\( = 2\,580\,000\,{{\text{m}}^3}\,\,(2\,577\,785...\,{{\text{m}}^3})\)       <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> The answer is \(2\,580\,000\,{{\text{m}}^3}\) , the units are required. Use of \({\text{OV}} = 146.442\) gives  \(2582271...\,{{\text{m}}^3}\)</p>
<p>Use of \({\text{OV}} = 146\) gives  \(2574466...\,{{\text{m}}^3}.\)</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(2.58 \times {10^6}\,({{\text{m}}^3})\)       <em><strong>(A1)</strong></em><strong>(ft)<em>(A1)</em><strong>(ft)</strong></strong></p>
<p><strong>Note:</strong> Award <strong><em>(A1)</em>(ft)</strong> for \(2.58\) and <strong><em>(A1)</em>(ft)</strong> for \( \times {10^6}.\,\)</p>
<p>Award <em><strong>(A0)(A0)</strong></em> for answers of the type: \(2.58 \times {10^5}\,({{\text{m}}^3}).\)</p>
<p>Follow through from part (c).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>the volume of a wall would be \(430\,000 \times 5 \times 1\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into volume formula.</p>
<p>\(2150000\,({{\text{m}}^3})\)       <em><strong>(A1)(G2)</strong></em></p>
<p>which is less than the volume of the pyramid       <em><strong>(R1)(ft)</strong></em></p>
<p>Ahmad is correct.       <em><strong>(A1)(ft)</strong></em></p>
<p><strong>OR</strong></p>
<p>the length of the wall would be \(\frac{{{\text{their part (c)}}}}{{5 \times 1 \times 1000}}\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for dividing their part (c) by \(5000.\)</p>
<p>\(516\,({\text{km}})\)          <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p>which is more than the distance from Paris to Amsterdam       <em><strong>(R1)(ft)</strong></em></p>
<p>Ahmad is correct.       <em><strong>(A1)(ft)</strong></em></p>
<p><strong>Note:</strong> Do not award final <em><strong>(A1)</strong></em> without an explicit comparison. Follow through from part (c) or part (d). Award <em><strong>(R1)</strong></em> for reasoning that is consistent with their working in part (e); comparing two volumes, or comparing two lengths.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>Units are required in part (f)(ii).</strong></p>
<p> </p>
<p>i)     \({\text{A}}{{\text{W}}^2} = {160^2} + {230^2} - 2 \times 160 \times 230 \times \cos \,(15^\circ )\)       <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into cosine rule formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>\({\text{AW}} = 86.1\,({\text{m}})\,\,\,(86.0689...)\)       <em><strong>(A1)(G2)</strong></em></p>
<p>Note: Award <em><strong>(M0)(A0)(A0)</strong></em> if \({\text{BAW}}\) or \({\text{AWB}}\)  is considered to be a right angled triangle.</p>
<p> </p>
<p>ii)    \({\text{area}} = \frac{1}{2} \times 230 \times 160 \times \sin \,(15^\circ )\)         <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into area formula, <em><strong>(A1)</strong></em> for correct substitutions.</p>
<p>\( = 4760\,{{\text{m}}^2}\,\,\,(4762.27...\,{{\text{m}}^2})\)       <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> The answer is \(4760\,{{\text{m}}^2}\) , the units are required.</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 4: Trigonometry, volume and area.<br>Many were able to write a correct trig ratio for part (a). The most common error was not to write the unrounded or the rounded answer. Some incorrectly used the given value of 186 in their proof. Part (b) was mostly answered correctly, with only a few candidates using Pythagoras&rsquo; Theorem incorrectly. Most candidates used the correct formula to calculate the volume of the pyramid, but some did not find the correct area for the base of the pyramid. Some lost a mark for missing or for incorrect units. Even with an incorrect answer for part (c), candidates did very well on part (d). In part (e) some excellent justifications were given. However, many struggled to convert kilometres to metres, others were confused and compared surface area instead of volume. Some thought the volumes needed to be the same. For part (f) candidates often assumed a right angle at BAW or BWA. When they used the sine and cosine rule, this was mostly done correctly.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A contractor is building a house. He first marks out three points A , B and C on the ground such that AB = 5 m , AC = 7 m and angle BAC = 112&deg;.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the length of BC.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span>Find the size of angle DBC .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p><img src="images/3c.png" alt> </p>
<p><span>Find the area of the quadrilateral ABDC.</span></p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span> </span></p>
<p><span>The contractor digs up and removes the soil under the quadrilateral ABDC to a depth of 50 cm for the foundation of the house.</span></p>
<p><span>Find the volume of the soil removed. Give your answer in <strong>m<sup>3</sup></strong> .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>He next marks a fourth point, D, on the ground at a distance of 6 m from B , such that angle BDC is 40° .</span></p>
<p> </p>
<p><span><img src="" alt></span></p>
<p><span> </span></p>
<p><span>The contractor digs up and removes the soil under the quadrilateral ABDC to a depth of 50 cm for the foundation of the house.</span></p>
<p><span>To transport the soil removed, the contractor uses cylindrical drums with a diameter of 30 cm and a height of 40 cm.</span> </p>
<p><span>(i) Find the volume of a drum. Give your answer in <strong>m<sup>3</sup> </strong>.</span></p>
<p><span>(ii) Find the minimum number of drums required to transport the soil removed.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>Units are required in part (c) only.</span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>BC<sup>2</sup> = 5<sup>2</sup> + 7<sup>2</sup> − 2(5)(7)cos112°     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in cosine formula, <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p> </p>
<p><span>BC = 10.0 (m) (10.0111...)     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> If radians are used, award at most <em><strong>(M1)(A1)(A0)</strong></em>.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em><strong><span>Units are required in part (c) only.</span></strong></em></p>
<p><em><strong><span><br></span></strong></em><span>\(\frac{{\sin 40^\circ }}{{10.0111...}} = \frac{{\sin {\text{D}}{\operatorname{\hat C}}{\text{B}}}}{6}\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution in sine formula, <strong><em>(A1)</em>(ft)</strong> for their correct substitutions. Follow through from their part (a).</span></p>
<p> </p>
<p><span>\({\text{D}}{\operatorname {\hat C}}{\text{B}}\) = 22.7° (22.6589...)     <em><strong>(A1)</strong></em><strong>(ft)</strong></span><span> </span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(A2)</strong></em> for 22.7° seen without working. Use of radians results in unrealistic answer. Award a maximum of <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(A0)</strong></em><strong>(ft)</strong>. Follow through from their part (a).<br></span></p>
<p><span> </span></p>
<p><span><span>\({\text{D}}{\operatorname {\hat C}}{\text{B}}\) = </span>117° (117.341...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span><span> </span></p>
<p><span><strong>Notes:</strong> Do not penalize if use of radians was already penalized in part (a). Follow through from their answer to part (a).</span></p>
<p> </p>
<p><span><strong>OR</strong></span></p>
<p><span>From use of cosine formula </span></p>
<p><span>DC = 13.8(m)   (13.8346…)     (<em><strong>A</strong><strong>1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their answer to part (a).</span></p>
<p><span> </span></p>
<p><span>\(\frac{{\sin \alpha }}{{13.8346...}} = \frac{{\sin 40^\circ }}{{10.0111...}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the correct sine formula.</span></p>
<p> </p>
<p><span><span>α = </span>62.7°  (62.6589)     <strong><em>(A1)</em>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Accept 62.5</span><span><span>°</span> from use of 3sf.</span></p>
<p> </p>
<p><span><span><span>\({\text{D}}{\operatorname {\hat B}}{\text{C}}\) = </span></span>117(117.341...)     <strong><em>(A1)</em>(ft)</strong> </span></p>
<p><span><strong>Note:</strong> Follow through from their part (a). Use of radians results in unrealistic answer, award a maximum of <em><strong>(A1)(M1)(A0)(A0)</strong></em>.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<p> </p>
<p> </p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><strong><em>Units are required in part (c) only.</em></strong></span></span></p>
<p> </p>
<p><span>\({\text{ABDC}} = \frac{1}{2}(5)(7)\sin 112^\circ  + \frac{1}{2}(6)(10.0111...)\sin 117.341...^\circ \)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></span><span><strong>N</strong></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution in both <strong>triangle</strong> area formulae, <strong><em>(A1)</em>(ft)</strong> for their correct substitutions, <em><strong>(M1)</strong></em> for seen or implied addition of their two <strong>triangle</strong> areas. Follow through from their answer to part (a) and (b).</span></p>
<p> </p>
<p><span>= 42.9 m<sup>2</sup> (42.9039...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Notes:</strong> Answer is 42.9 m<sup>2</sup> <em>i.e.</em> <strong>the units are required</strong> for the final <strong><em>(A1)</em>(ft)</strong> to be awarded. Accept 43.0 m<sup>2</sup> from using 3sf answers to parts (a) and (b). Do not penalize if use of radians was previously penalized.</span></p>
<p><em><strong><span>[4 marks]</span></strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><strong><em>Units are required in part (c) only.</em></strong></span></span></p>
<p> </p>
<p><span>42.9039... × 0.5     <em><strong>(M1)(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for 0.5 seen (or equivalent), <em><strong>(M1)</strong></em> for multiplication of their answer in part (c) with their value for depth.</span></p>
<p> </p>
<p><span>= 21.5 (m<sup>3</sup>) (21.4519...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></span></p>
<p><span><strong>Note:</strong> Follow through from their part (c) only if working is seen. Do not penalize if use of radians was previously penalized. Award at most <em><strong>(A0)(M1)(A0)</strong></em><strong>(ft)</strong> for multiplying by 50.</span></p>
<p><em><strong><span>[3 marks]</span></strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><span><strong><em>Units are required in part (c) only.</em></strong></span></span></p>
<p> </p>
<p><span>(i) π(0.15)<sup>2</sup>(0.4)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>OR</strong> </span></p>
<p><span><span>π </span></span><span><span><span>× </span></span>15<sup>2 </sup></span><span><span>×</span> 40  (28274.3...)     <em><strong>(M1)(A1)</strong></em></span></p>
<p><span><strong>Notes:</strong> Award <em><strong>(M1)</strong></em> for substitution in the correct volume formula. <em><strong>(A1)</strong></em> for correct substitutions.</span></p>
<p><span> </span></p>
<p><span>= 0.0283 (m<sup>3</sup>) (0.0282743..., 0.09</span><span><span>π</span>)</span></p>
<p> </p>
<p><span>(ii) \(\frac{{21.4519...}}{{0.0282743...}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct division of their volumes.</span></p>
<p><br><span>= 759     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><strong>Notes:</strong> Follow through from their parts (d) and (e)(i). Accept 760 from use of 3sf answers.</span> <span>Answer must be a positive integer for the final <em><strong>(A1)</strong></em><strong>(ft)</strong> mark to be awarded.</span></p>
<p> </p>
<p><em><strong><span>[5 marks]</span></strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to this question showed appropriate use of sine and cosine formulae for the most part. A few students still used the Pythagorean formula incorrectly, although the given triangles were not right ones. There was an occasional use of GDC set to radians, and very few students lost marks for giving their answers in radians. In part (d), converting from cm<sup>3</sup> to m<sup>3</sup> was largely problematic for the great majority of students. Part (e) also was difficult for some students, as it requires some interpretation before the volume formula is used.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to this question showed appropriate use of sine and cosine formulae for the most part. A few students still used the Pythagorean formula incorrectly, although the given triangles were not right ones. There was an occasional use of GDC set to radians, and very few students lost marks for giving their answers in radians. In part (d), converting from cm<sup>3</sup> to m<sup>3</sup> was largely problematic for the great majority of students. Part (e) also was difficult for some students, as it requires some interpretation before the volume formula is used.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to this question showed appropriate use of sine and cosine formulae for the most part. A few students still used the Pythagorean formula incorrectly, although the given triangles were not right ones. There was an occasional use of GDC set to radians, and very few students lost marks for giving their answers in radians. In part (d), converting from cm<sup>3</sup> to m<sup>3</sup> was largely problematic for the great majority of students. Part (e) also was difficult for some students, as it requires some interpretation before the volume formula is used.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to this question showed appropriate use of sine and cosine formulae for the most part. A few students still used the Pythagorean formula incorrectly, although the given triangles were not right ones. There was an occasional use of GDC set to radians, and very few students lost marks for giving their answers in radians. In part (d), converting from cm<sup>3</sup> to m<sup>3</sup> was largely problematic for the great majority of students. Part (e) also was difficult for some students, as it requires some interpretation before the volume formula is used.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to this question showed appropriate use of sine and cosine formulae for the most part. A few students still used the Pythagorean formula incorrectly, although the given triangles were not right ones. There was an occasional use of GDC set to radians, and very few students lost marks for giving their answers in radians. In part (d), converting from cm<sup>3</sup> to m<sup>3</sup> was largely problematic for the great majority of students. Part (e) also was difficult for some students, as it requires some interpretation before the volume formula is used.</span></p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A random sample of 167 people who own mobile phones was used to collect data on the amount of time they spent per day using their phones. The results are displayed in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel conducts a survey on a random sample of 751 people to see which television programme type they watch most from the following: Drama, Comedy, Film, News. The results are as follows.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel decides to ignore the ages and to test at the 5 % level of significance whether the most watched programme type is independent of <strong>gender.</strong></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to calculate approximate values of the mean and standard deviation of the time spent per day on these mobile phones.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On graph paper, draw a fully labelled histogram to represent the data.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a table with 2 rows and 4 columns of data so that Manuel can perform a chi-squared test.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State Manuel’s null hypothesis and alternative hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the number of females who had ‘Comedy’ as their most-watched programme type. Give your answer to the nearest whole number.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, or otherwise, find the chi-squared statistic for Manuel’s data.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) State the number of degrees of freedom available for this calculation.</span></p>
<p><span>(ii) State his conclusion.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>\(45 \leqslant t &lt; 60\)     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>Unit penalty <strong>(UP)</strong> is applicable in question part (i)(b) <strong>only</strong>.</em><br></span></p>
<p><span><em><strong>(UP)</strong></em> 42.4 minutes     <em><strong>(G2)</strong></em></span></p>
<p><span>21.6 minutes     <em><strong>(G1)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt>     <span><em><strong>(A4)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(M1)(M1)(A1)</strong></em></span></span></p>
<p><span><span><em><strong>[3 marks]<br></strong></em></span></span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>H<sub>0</sub>: favourite TV programme is independent of gender or no association between favourite TV programme and gender</span></p>
<p><span>H<sub>1</sub>: favourite TV programme is dependent on gender<em> (must have both)</em>     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{365 \times 217}}{{751}}\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(= 105\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>12.6 <em>(accept</em> 12.558<em>)</em>     <em><strong>(G3)</strong></em></span></p>
<p><span><em><strong>[3 marks]<br></strong></em></span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 3     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong> </strong></em></span></p>
<p><span>(ii) reject H<sub>0</sub> <em>or equivalent statement (e.g. accept H<sub>1</sub>)     <strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong> </strong></span></p>
<p><span><strong><em>[3 marks]</em><br></strong></span></p>
<div class="question_part_label">ii.e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had survived the previous two unit penalties, fell here with omission of units for the mean and standard deviation. The modal group was answered well. Part (b), finding the mean and standard deviation by GDC, was answered very poorly. Most did put the midpoints in one list and the frequencies in a second list but then either used the 2-Var stats button or 1-var stats button but only named L1 instead of L1, L2. Candidates who showed midpoints in their working did at least score a method mark.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had survived the previous two unit penalties, fell here with omission of units for the mean and standard deviation. The modal group was answered well. Part (b), finding the mean and standard deviation by GDC, was answered very poorly. Most did put the midpoints in one list and the frequencies in a second list but then either used the 2-Var stats button or 1-var stats button but only named L1 instead of L1, L2. Candidates who showed midpoints in their working did at least score a method mark.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">Many candidates who had survived the previous two unit penalties, fell here with omission of units for the mean and standard deviation. The modal group was answered well. Part (b), finding the mean and standard deviation by GDC, was answered very poorly. Most did put the midpoints in one list and the frequencies in a second list but then either used the 2-Var stats button or 1-var stats button but only named L1 instead of L1, L2. Candidates who showed midpoints in their working did at least score a method mark.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The chi-squared question was answered well by the majority of candidates and almost all found the chi-squared statistic correctly by GDC, though many could not look up the correct critical value.</span></p>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The chi-squared question was answered well by the majority of candidates and almost all found the chi-squared statistic correctly by GDC, though many could not look up the correct critical value.</span></p>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The chi-squared question was answered well by the majority of candidates and almost all found the chi-squared statistic correctly by GDC, though many could not look up the correct critical value.</span></p>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The chi-squared question was answered well by the majority of candidates and almost all found the chi-squared statistic correctly by GDC, though many could not look up the correct critical value.</span></p>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">The chi-squared question was answered well by the majority of candidates and almost all found the chi-squared statistic correctly by GDC, though many could not look up the correct critical value.</span></p>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A group of <span class="s1">100 </span>customers in a restaurant are asked which fruits they like from a choice of mangoes, bananas and kiwi fruits. The results are as follows.</p>
<p class="p1"><span class="s1">&nbsp; &nbsp; &nbsp;15 </span>like all three fruits</p>
<p class="p1"><span class="s1">&nbsp; &nbsp; &nbsp;22 </span>like mangoes and bananas</p>
<p class="p1"><span class="s1">&nbsp; &nbsp; &nbsp;33 </span>like mangoes and kiwi fruits</p>
<p class="p1"><span class="s1">&nbsp; &nbsp; &nbsp;27 </span>like bananas and kiwi fruits</p>
<p class="p1"><span class="s1">&nbsp; &nbsp; &nbsp;8 </span>like none of these three fruits</p>
<p class="p1">&nbsp; &nbsp; &nbsp;\(x\)&nbsp;like <strong>only </strong>mangoes</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><strong>Copy </strong>the following Venn diagram and correctly insert all values from the above information.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_06.31.28.png" alt></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The number of customers that like <strong>only </strong>mangoes is equal to the number of customers that like <strong>only </strong>kiwi fruits. This number is half of the number of customers that like <strong>only </strong>bananas.</p>
<p class="p1">Complete your Venn diagram from part (a) with this additional information <strong>in terms </strong><strong>of</strong> \(x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The number of customers that like <strong>only </strong>mangoes is equal to the number of customers that like <strong>only </strong>kiwi fruits. This number is half of the number of customers that like <strong>only </strong>bananas.</p>
<p class="p1">Find the value of \(x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The number of customers that like <strong>only </strong>mangoes is equal to the number of customers that like <strong>only </strong>kiwi fruits. This number is half of the number of customers that like <strong>only </strong>bananas.</p>
<p class="p1">Write down the number of customers who like</p>
<p class="p1">(i)     mangoes;</p>
<p class="p1">(ii)     mangoes or bananas.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The number of customers that like <strong>only </strong>mangoes is equal to the number of customers that like <strong>only </strong>kiwi fruits. This number is half of the number of customers that like <strong>only </strong>bananas.</p>
<p class="p1">A customer is chosen at random from the <span class="s1">100 </span>customers. Find the probability that this customer</p>
<p class="p1">(i)     likes none of the three fruits;</p>
<p class="p1">(ii)     likes only two of the fruits;</p>
<p class="p1">(iii)     likes all three fruits given that the customer likes mangoes and bananas.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The number of customers that like <strong>only </strong>mangoes is equal to the number of customers that like <strong>only </strong>kiwi fruits. This number is half of the number of customers that like <strong>only </strong>bananas.</p>
<p class="p1">Two customers are chosen at random from the <span class="s1">100 </span>customers. Find the probability that the two customers like none of the three fruits.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="" alt> <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for <span class="s1">15 </span>in the correct place.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for <span class="s1">7, 18 </span>and <span class="s1">12 </span>seen in the correct places.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for <span class="s1">8 </span>in the correct place.</p>
<p class="p1">Award at most <strong><em>(A0)(A1)(A1) </em></strong>if diagram is missing the rectangle.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="" alt> <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em></strong></p>
<p class="p2"> </p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for \(x\) seen in the correct places.</p>
<p class="p1">Award <strong><em>(A1) </em></strong>for \(2x\) seen in the correct place.</p>
<p class="p1">Award <strong><em>(A0)(A1)</em>(ft) </strong>if \(x\) and \(2x\) are replaced by <span class="s1">10 </span>and <span class="s1">20 </span>respectively.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(2x + x + x + 15 + 8 + 7 + 18 + 12 = 100\;\;\;(4x + 60 = 100{\text{ or equivalent)}}\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for equating the sum of the elements of their Venn diagram to \(100\). Equating to \(100\)<span class="s1"> </span>may be implied.</p>
<p class="p2"> </p>
<p class="p1">\((x = ){\text{ }}10\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their Venn diagram. The answer must be a positive integer.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    \(50\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    \(82\)</span> <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their answer to part (c) and their Venn diagram.</p>
<p class="p1">Award <strong><em>(A0)</em>(ft)<em>(A1)</em>(ft) </strong>if answer is \(\frac{{50}}{{100}}\) and \(\frac{{82}}{{100}}\).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(\frac{8}{{100}}\;\;\;\left( {\frac{2}{{25}};{\text{ }}0.08;{\text{ }}8\% } \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Correct answer only. There is no follow through.</p>
<p class="p1"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\(\frac{{37}}{{100}}\;\;\;(0.37,{\text{ }}37\% )\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Follow through from their Venn diagram.</p>
<p class="p2"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>\(\frac{{15}}{{22}}\;\;\;(0.681;{\text{ }}0.682;{\text{ }}68.2\% )\;\;\;(0.681818 \ldots )\) <span class="Apple-converted-space">    </span><strong><em>(A1)(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for numerator, <strong><em>(A1)</em>(ft) </strong>for denominator, follow through from their Venn diagram. Award <strong><em>(A0)(A0) </em></strong>if answer is given as incorrect reduced fraction without working.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{8}{{100}} \times \frac{7}{{99}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(A1)</em>(ft) </strong>for correct fractions, follow through from their answer to part (e)(i), <strong><em>(M1) </em></strong>for multiplying their fractions.</p>
<p class="p2"> </p>
<p class="p1">\( = \frac{{56}}{{9900}}\;\;\;\left( {\frac{{14}}{{2477}},{\text{ }}0.00565656 \ldots ,{\text{ }}0.00566,{\text{ }}0.0056,{\text{ }}0.566\% } \right)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A new caf&eacute; opened and during the first week their profit was $60.</p>
<p>The caf&eacute;&rsquo;s profit increases by $10 every week.</p>
</div>

<div class="specification">
<p>A new tea-shop opened at the same time as the caf&eacute;. During the first week their profit was also $60.</p>
<p>The tea-shop&rsquo;s profit increases by 10 % every week.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the café’s profit during the 11th week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the café’s <strong>total</strong> profit for the first 12 weeks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the tea-shop’s profit during the 11th week.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the tea-shop’s <strong>total</strong> profit for the first 12 weeks.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the <em>m</em>th week the tea-shop’s <strong>total</strong> profit exceeds the café’s <strong>total</strong> profit, for the first time since they both opened.</p>
<p>Find the value of <em>m</em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>60 + 10 × 10     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution into the arithmetic sequence formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>= ($) 160     <em><strong>(A1)(G3)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{12}}{2}\left( {2 \times 60 + 11 \times 10} \right)\)     <em><strong>(M1)(A1)</strong></em><strong>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting the arithmetic series formula, <em><strong>(A1)</strong></em><strong>(ft)</strong> for correct substitution. Follow through from their first term and common difference in part (a).</p>
<p>= ($) 1380     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>60 × 1.1<sup>10</sup>     <em><strong>(M1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting the geometric progression <em>n</em>th term formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>= ($) 156  (155.624…)     <em><strong>(A1)(G3)</strong></em></p>
<p><strong>Note:</strong> Accept the answer if it rounds correctly to 3 sf, as per the accuracy instructions.</p>
<p><em><strong>[3 marks]</strong></em></p>
<p> </p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{60\left( {{{1.1}^{12}} - 1} \right)}}{{1.1 - 1}}\)     <strong><em>(M1)(A1)</em>(ft)</strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting the geometric series formula, <strong><em>(A1)</em>(ft)</strong> for correct substitution. Follow through from part (c) for their first term and common ratio.</p>
<p>= ($)1280  (1283.05…)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{60\left( {{{1.1}^n} - 1} \right)}}{{1.1 - 1}} &gt; \frac{n}{2}\left( {2 \times 60 + \left( {n - 1} \right) \times 10} \right)\)    <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correctly substituted geometric and arithmetic series formula with <em>n</em> (accept other variable for “<em>n</em>”), <em><strong>(M1)</strong></em> for comparing their expressions consistent with their part (b) and part (d).</p>
<p><strong>OR</strong></p>
<p><img src="">     <em><strong>(M1)</strong></em><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for two curves with approximately correct shape drawn in the first quadrant, <em><strong>(M1)</strong></em> for one point of intersection with approximate correct position.</p>
<p>Accept alternative correct sketches, such as</p>
<p><img src=""></p>
<p>Award <em><strong>(M1)</strong></em> for a curve with approximate correct shape drawn in the 1<sup>st</sup> (or 4<sup>th</sup>) quadrant and all above (or below) the <em>x</em>-axis, <em><strong>(M1)</strong></em> for one point of intersection with the x-axis with approximate correct position.</p>
<p>17      <em><strong>(A2)</strong></em><strong>(ft)</strong><em><strong>(G3)</strong></em></p>
<p><strong>Note:</strong> Follow through from parts (b) and (d).<br>An answer of 16 is incorrect. Award at most <em><strong>(M1)(M1)(A0)(A0)</strong></em> with working seen. Award <em><strong>(G0)</strong></em> if final answer is 16 without working seen.</p>
<p><em><strong>[4 marks]</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The Tower of Pisa is well known worldwide for how it leans.</p>
<p>Giovanni visits the Tower and wants to investigate how much it is leaning. He draws a diagram&nbsp;showing a non-right triangle, ABC.</p>
<p>On Giovanni&rsquo;s diagram the length of AB is 56 m, the length of BC is 37 m, and angle ACB is 60&deg;.&nbsp;AX is the perpendicular height from A to BC.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Giovanni&rsquo;s tourist guidebook says that the actual horizontal displacement of the Tower,&nbsp;BX, is 3.9 metres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni’s diagram to show that angle ABC, the angle at which the Tower is leaning relative to the<br>horizontal, is 85° to the nearest degree.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to calculate the length of AX.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Giovanni's diagram to find the length of BX, the horizontal displacement of the Tower.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error on Giovanni’s diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Giovanni adds a point D to his diagram, such that BD = 45 m, and another triangle is formed.</p>
<p><img src=""></p>
<p>Find the angle of elevation of A from D.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{sin BAC}}}}{{37}} = \frac{{{\text{sin 60}}}}{{56}}\)    <em><strong>(M1)</strong></em><em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substituting the sine rule formula, <em><strong>(A1)</strong></em> for correct substitution.</p>
<p>angle \({\text{B}}\mathop {\text{A}}\limits^ \wedge  {\text{C}}\) = 34.9034…°    <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if unrounded answer does not round to 35. Award <em><strong>(G2)</strong></em> if 34.9034… seen without working.</p>
<p>angle \({\text{A}}\mathop {\text{B}}\limits^ \wedge  {\text{C}}\) = 180 − (34.9034… + 60)     <em><strong>(M1)</strong></em></p>
<p>Note: Award <em><strong>(M1)</strong></em> for subtracting their angle BAC + 60 from 180.</p>
<p>85.0965…°    <em><strong>(A1)</strong></em></p>
<p>85°     <em><strong>(AG)</strong></em></p>
<p><strong>Note:</strong> Both the unrounded and rounded value must be seen for the final <em><strong>(A1)</strong></em> to be awarded. If the candidate rounds 34.9034...° to 35° while substituting to find angle \({\text{A}}\mathop {\text{B}}\limits^ \wedge  {\text{C}}\), the final <em><strong>(A1)</strong></em> can be awarded but <strong>only</strong> if both 34.9034...° and 35° are seen.<br>If 85 is used as part of the workings, award at most <em><strong>(M1)(A0)(A0)(M0)(A0)(AG)</strong></em>. This is the reverse process and not accepted.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>sin 85… × 56     <em><strong>(M1)</strong></em></p>
<p>= 55.8 (55.7869…) (m)     <em><strong>(A1)</strong></em><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in trigonometric ratio.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\sqrt {{{56}^2} - 55.7869{ \ldots ^2}} \)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in the Pythagoras theorem formula. Follow through from part (a)(ii).</p>
<p><strong>OR</strong></p>
<p>cos(85) × 56     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in trigonometric ratio.</p>
<p>= 4.88 (4.88072…) (m)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Accept 4.73 (4.72863…) (m) from using their 3 s.f answer. Accept equivalent methods.</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\left| {\frac{{4.88 - 3.9}}{{3.9}}} \right| \times 100\)     <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution into the percentage error formula.</p>
<p>= 25.1  (25.1282) (%)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></p>
<p><strong>Note:</strong> Follow through from part (a)(iii).</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{ta}}{{\text{n}}^{ - 1}}\left( {\frac{{55.7869 \ldots }}{{40.11927 \ldots }}} \right)\)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their 40.11927… seen. Award <em><strong>(M1)</strong></em> for correct substitution into trigonometric ratio.</p>
<p><strong>OR</strong></p>
<p>(37 − 4.88072…)<sup>2</sup> + 55.7869…<sup>2</sup></p>
<p>(AC =) 64.3725…</p>
<p>64.3726…<sup>2</sup> + 8<sup>2</sup> − 2 × 8 × 64.3726… × cos120</p>
<p>(AD =) 68.7226…</p>
<p>\(\frac{{{\text{sin 120}}}}{{68.7226 \ldots }} = \frac{{{\text{sin A}}\mathop {\text{D}}\limits^ \wedge  {\text{C}}}}{{64.3725 \ldots }}\)    <em><strong>(A1)</strong></em><strong>(ft)<em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em><strong>(ft)</strong> for their correct values seen, <em><strong>(M1)</strong></em> for correct substitution into the sine formula.</p>
<p>= 54.3°  (54.2781…°)     <em><strong>(A1)</strong></em><strong>(ft)<em>(G2)</em></strong></p>
<p><strong>Note:</strong> Follow through from part (a). Accept equivalent methods.</p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A distress flare is fired into the air from a ship at sea. The height, \(h\) , in metres, of the flare above sea level is modelled by the quadratic function</p>
<p>\[h\,(t) =  - 0.2{t^2} + 16t + 12\,,\,t \geqslant 0\,,\]</p>
<p>where \(t\) is the time, in seconds, and \(t = 0\,\) at the moment the flare was fired.</p>
<p>Write down the height from which the flare was fired.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of the flare \(15\) seconds after it was fired.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The flare fell into the sea \(k\) seconds after it was fired.</p>
<p>Find the value of \(k\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \(h'\,(t)\,.\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>i)     Show that the flare reached its maximum height \(40\) seconds after being fired.</p>
<p>ii)    Calculate the maximum height reached by the flare.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nearest coastguard can see the flare when its height is more than \(40\) metres above sea level.</p>
<p>Determine the total length of time the flare can be seen by the coastguard.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(12\,({\text{m}})\)       <em><strong>(A1)</strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((h\,(15) = ) - 0.2 \times {15^2} + 16 \times 15 + 12\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(15\) in expression for \(h\).</p>
<p>\( = 207\,({\text{m}})\)       <em><strong>(A1)(G2)</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h\,(k) = 0\)       <strong><em>(M1)</em></strong></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting \(h\) to zero.</p>
<p>\((k = )\,\,\,80.7\,({\text{s}})\,\,\,(80.7430)\)       <strong><em>(A1)(G2)</em></strong></p>
<p><strong>Note:</strong> Award at most <strong><em>(M1)(A0)</em></strong> for an answer including \(K =  - 0.743\) .<br> Award <strong><em>(A0)</em></strong> for an answer of \(80\) without working.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h'\,(t) =  - 0.4t + 16\)        <em><strong>(A1)(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \( - 0.4t\), (<em><strong>A1)</strong></em> for \(16\). Award at most <em><strong>(A1)(A0)</strong></em> if extra terms seen. Do not accept \(x\) for \(t\).</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i)     \( - 0.4t + 16 = 0\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting their derivative, from part (d), to zero, provided the correct conclusion is stated and consistent with their \(h'\,(t)\).</p>
<p><strong>OR</strong></p>
<p>\(t = \frac{{ - 16}}{{2 \times ( - 0.2)}}\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award (<em><strong>M1)</strong></em> for correct substitution into axis of symmetry formula, provided the correct conclusion is stated.</p>
<p>\(t = \,\,40\,({\text{s}})\)       <em><strong>(AG)</strong></em></p>
<p> </p>
<p> </p>
<p>ii)    \( - 0.2 \times {40^2} + 16 \times 40 + 12\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of \(40\) in expression for \(h\).</p>
<p>\( = 332\,({\text{m}})\)       <em><strong>(A1)(G2)</strong></em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(h\,(t) = 40\)       <em><strong>(M1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for setting \(h\) to \(40\). Accept inequality sign.</p>
<p><strong>OR</strong></p>
<p><img src="" alt></p>
<p><em><strong>M1</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct sketch. Indication of scale is not required.</p>
<p>\(78.2 - 1.17\,\,(78.2099...\,\, - 1.79005...)\)       <em><strong>(A1)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for \(1.79\) and \(78.2\) seen.</p>
<p>(total time \( = \)) \(76.4\,({\text{s}})\,\,\,(76.4198...)\)       <em><strong>(A1)(G2)</strong></em></p>
<p><strong>Note:</strong> Award <em><strong>(G1)</strong></em> if the two endpoints are given as the final answer with no working.</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.<br>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used \(x\)&nbsp;instead of \(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for \(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as \(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used&nbsp;\(x\)&nbsp;instead of&nbsp;\(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for&nbsp;\(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as&nbsp;\(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used&nbsp;\(x\)&nbsp;instead of&nbsp;\(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for&nbsp;\(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as&nbsp;\(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used&nbsp;\(x\)&nbsp;instead of&nbsp;\(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for&nbsp;\(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as&nbsp;\(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used&nbsp;\(x\)&nbsp;instead of&nbsp;\(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for&nbsp;\(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as&nbsp;\(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Question 3: Quadratic function, problem solving.</p>
<p>Parts (a) (finding the initial height) and (b) (finding the height after 15 seconds), were done very well by the majority of candidates. Many struggled to translate question (c) to find the (positive) zeros of the function, or did not write that down, losing a possible method mark. The derivative in part (d) was no problem for most; only very few used&nbsp;\(x\)&nbsp;instead of&nbsp;\(t\). The maximum height reached was calculated correctly by the majority of candidates, but many lost the mark in part (e)(i) as they simply substituted 40 into their derivative or calculated the height at points close to 40. Only a few candidates showed correct method for part (f). Several were still able to obtain 2 marks as a result of &ldquo;trial and error&rdquo; of integer values for&nbsp;\(t\). Some candidate seem to have a problem with the notation &ldquo;\(h\,(t) = \,...\)&rdquo;, where this is interpreted as&nbsp;\(h \times t\), resulting in incorrect answers throughout.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">George leaves a cup of hot coffee to cool and measures its temperature every minute. His results are shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the decrease in the temperature of the coffee</span></p>
<p><span>(i) during the first minute (between <em>t</em> = 0 and <em>t</em> =1) ;</span></p>
<p><span>(ii) during the second minute;</span></p>
<p><span>(iii) during the third minute.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Assuming the pattern in the answers to part (a) continues, show that \(k = 19\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the <strong>seven</strong> results in the table to draw a graph that shows how the temperature of the coffee changes during the first six minutes.</span></p>
<p><span>Use a scale of 2 cm to represent 1 minute on the horizontal axis and 1 cm to represent 10 °C on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The function that models the change in temperature of the coffee is <em>y</em> = <em>p</em> (2<sup>−<em>t</em></sup> )+ <em>q</em>.</span></span></p>
<p><span>(i) Use the values <em>t</em> = 0 and <em>y</em> = 94 to form an equation in <em>p</em> and <em>q</em>.</span></p>
<p><span>(ii) Use the values <em>t</em> =1 and <em>y</em> = 54 to form a second equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equations found in part (d) to find the value of <em>p</em> and the value of <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of this function has a horizontal asymptote.</span></p>
<p><span>Write down the equation of this asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>George decides to model the change in temperature of the coffee with a linear function using correlation and linear regression.</span></p>
<p><span>Use the <strong>seven</strong> results in the table to write down</span></p>
<p><span>(i) the correlation coefficient;</span></p>
<p><span>(ii) the equation of the regression line <em>y</em> on <em>t</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the equation of the regression line to estimate the temperature of the coffee at <em>t</em> = 3.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage error in this estimate of the temperature of the coffee at <em>t</em> = 3.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span>(i) 40</span></p>
<p><span>(ii) 20</span></p>
<p><span>(iii) 10     <em><strong>(A3)</strong></em></span></p>
<p><br><span><strong>Notes:</strong> Award <em><strong>(A0)(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong> for −40, </span><span><span>−</span>20, </span><span><span>−</span>10.</span></p>
<p><span>    Award <em><strong>(A1)(A0)(A1)</strong></em><strong>(ft)</strong> for 40, 60, 70 seen.</span></p>
<p><span>    Award <em><strong>(A0)(A0)(A1)</strong></em><strong>(ft)</strong> for </span><span><span>−</span>40, </span><span><span>−</span>60, </span><span><span>−</span>70 seen.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(24 - k = 5\) or equivalent     <em><strong>(A1)(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for 5 seen, <em><strong>(M1)</strong></em> for difference from 24 indicated.</span></p>
<p><br><span>\(k = 19\)     <em><strong>(AG)</strong></em></span></p>
<p><br><span><strong>Note:</strong> If 19 is not seen award at most <em><strong>(A1)(M0)</strong></em>.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt><span>     <em><strong>(A1)(A1)(A1)(A1)</strong></em></span></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for scales and labelled axes (<em>t</em> or “time” and <em>y</em> or “temperature”).</span></p>
<p><span>   Accept the use of <em>x</em> on the horizontal axis only if “time” is also seen as the label. </span></p>
<p><span>   Award <em><strong>(A2)</strong></em> for all seven points accurately plotted, award <em><strong>(A1)</strong></em> for <strong>5 or 6</strong> points accurately plotted, award <em><strong>(A0)</strong></em> for 4 points or fewer accurately plotted.</span></p>
<p><span>   Award <em><strong>(A1)</strong></em> for smooth curve that passes through all points on domain [0, 6]. </span></p>
<p><span>   If graph paper is not used or one or more scales is missing, award a maximum of <em><strong>(A0)(A0)(A0)(A1)</strong></em>.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(94 = p + q\)     <em><strong>(A1)</strong></em></span></p>
<p><span>(ii) \(54 = 0.5p + q\)     <em><strong>(A1)<br><br></strong></em></span></p>
<p><span><strong>Note:</strong> The equations need not be simplified; accept, for example \(94 = p(2^{-0}) + q\).</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>p</em> = 80, <em>q</em> = 14     <em><strong>(G1)(G1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> If the equations have been incorrectly simplified, follow through even if no working is shown.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>y</em> = 14     <em><strong>(A1)(A1)</strong></em><strong>(ft)</strong></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for <em>y</em> = a constant, <em><strong>(A1)</strong></em> for their 14. Follow through from part (e) only if their <em>q</em> lies between 0 and 15.25 inclusive.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) </span><span><span>–</span>0.878 (</span><span><span>–</span>0.87787...)     <em><strong>(G2)</strong></em><br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(G1)</strong></em> if –0.877 seen only. If negative sign omitted award a maximum of <em><strong>(A1)(A0)</strong></em>.<br></span></p>
<p><span> </span></p>
<p><span>(ii) y = </span><span><span>–</span>11.7<em>t</em> + 71.6 (y = </span><span><span>–</span>11.6517...<em>t</em> + 71.6336...)     <em><strong>(G1)(G1)</strong></em> <br></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(G1)</strong></em> for </span><span><span>–</span>11.7<em>t</em>, <em><strong>(G1)</strong></em> for 71.6. </span></p>
<p><span>   If <em>y</em> = is omitted award at most <em><strong>(G0)(G1)</strong></em>.</span></p>
<p><span>   If the use of <em>x</em> in part (c) has <strong>not</strong> been penalized (the axis has been labelled “time”) then award at most <em><strong>(G0)(G1)</strong></em>.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>−11.6517...(3) + 71.6339...     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for correct substitution in their part (g)(ii).</span></p>
<p><br><span>= 36.7 (36.6785...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from part (g). Accept 36.5 for use of the 3sf answers from part (g).</span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(\frac{{36.6785... - 24}}{{24}} \times 100\)     <em><strong>(M1)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for their correct substitution in percentage error formula.</span></p>
<p><br><span>= 52.8% (52.82738...)     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(G2)</strong></em></span></p>
<p><br><span><strong>Note:</strong> Follow through from part (h). Accept 52.1% for use of 36.5. </span></p>
<p><span>   Accept 52.9 % for use of 36.7. If partial working (\(\times 100\) omitted) is followed by their correct answer award <em><strong>(M1)(A1)</strong></em>. If partial working is followed by an incorrect answer award <em><strong>(M0)(A0)</strong></em>. The percentage sign is not required.</span></p>
<div class="question_part_label">i.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Almost all candidates were able to score on the first parts of this question; errors occurring only when insufficient care was taken in reading what the question was asking for. The graph was usually well drawn, other than for those who have no idea what centimetres are.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The majority were able to determine the simultaneous equations, if only in unsimplified form; there was less success in solving these &ndash; though this is easily done via the GDC (the preferred approach) and the equation of the asymptote proved a discriminating task. The final parts, involving correlation and regression were largely independent of the previous parts and were accessible to most. Hopefully, contrasting the large percentage error with the value of the correlation coefficient will be valuable in class discussions. Given the many scripts that gave the value of the coefficient of determination as that of \(r\) , it seems better that the former is simply not taught.</span></p>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the function \(f(x) =&nbsp; - \frac{1}{3}{x^3} + \frac{5}{3}{x^2} - x - 3\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the graph of <em>y</em> = <em>f</em> (<em>x</em>) for −3 ≤ <em>x</em> </span><span><span>≤</span> 6 and −10 </span><span><span>≤</span> <em>y</em> </span><span><span>≤ </span>10 showing clearly the axes intercepts and local maximum and minimum points. Use a scale of 2 cm to represent 1 unit on the <em>x</em>-axis, and a scale of 1 cm to represent 1 unit on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the value of <em>f</em> (−1).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the <em>y</em>-intercept of the graph of <em>f</em> (<em>x</em>).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find <em>f '</em>(<em>x</em>).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that \(f'( - 1) =  - \frac{{16}}{3}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Explain what <em>f</em> <em>'</em>(−1) represents.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the equation of the tangent to the graph of <em>f</em> (<em>x</em>) at the point where <em>x</em> is –1.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch the tangent to the graph of <em>f</em> (<em>x</em>) at <em>x</em> = −1 on your diagram for (a).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> &gt; <em>a</em>.</span></p>
<p><span>Write down the value of</span></p>
<p><span>(i) <em>a</em> ;</span></p>
<p><span>(ii) <em>b</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>P and Q are points on the curve such that the tangents to the curve at these points are horizontal. The <em>x</em>-coordinate of P is <em>a</em>, and the <em>x</em>-coordinate of Q is <em>b</em>, <em>b</em> &gt; <em>a</em>.</span></span></p>
<p><span>Describe the behaviour of <em>f</em> (<em>x</em>) for <em>a</em> &lt; <em>x</em> &lt; <em>b</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span><img src="" alt></span></p>
<p><span><em><strong>(A1)</strong></em> for indication of window and labels. <em><strong>(A1)</strong></em> for smooth curve that does not </span><span>enter the first quadrant, the curve must consist of one line only.</span></p>
<p><span><em><strong>(A1)</strong></em> for <em>x</em> and <em>y</em> intercepts in approximately correct positions (allow ±0.5).</span></p>
<p><span><em><strong>(A1)</strong></em> for local maximum and minimum in approximately correct position.</span> <span>(minimum should be 0 ≤ <em>x</em> ≤ 1 and –2 ≤ <em>y</em> ≤ –4 ), the <em>y</em>-coordinate of the </span><span>maximum should be 0 ± 0.5.     <em><strong>(A4)</strong></em></span></p>
<p><span><em><strong>[4 marks]<br></strong></em></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(-\frac{1}{3}(-1)^3 + \frac{5}{3}(-1)^2 - (-1) - 3 \)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of –1 into <em>f</em> (<em>x</em>)</span></p>
<p><br><span>= 0     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><em><strong>[2 marks]<br></strong></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(0, –3)     <em><strong>(A1)</strong></em></span></p>
<p><strong><span>OR</span></strong></p>
<p><span><em>x</em> = 0, <em>y</em> = –3     <em><strong>(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A0)</strong></em> if brackets are omitted.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'(x) =  - {x^2} + \frac{{10}}{3}x - 1\)     <em><strong>(A1)(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for each correct term. Award <em><strong>(A1)(A1)(A0)</strong></em> at most if there are extra terms.</span></p>
<p><span><em><strong>[3 marks]</strong></em><br></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(f'( - 1) =  - {( - 1)^2} + \frac{{10}}{3}( - 1) - 1\)     <em><strong>(M1)</strong></em></span></p>
<p><span>\(= -\frac{16}{3}\)     <em><strong>(AG)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for substitution of <em>x</em> = –1 into correct derivative only. The final answer must be seen.</span></p>
<p><span><em><strong>[1 mark]</strong></em><br></span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> <em>'</em>(–1) gives the gradient of the tangent to the curve at the point with <em>x</em> = –1.     <em><strong>(A1)(A1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(A1)</strong></em> for “gradient (of curve)”, <em><strong>(A1)</strong></em> for “at the point with <em>x</em> = –1”. Accept “the instantaneous rate of change of <em>y</em>” or “the (first) derivative”.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>\(y = - \frac{16}{3} x + c\)     <em><strong>(M1)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for \(-\frac{16}{3}\) substituted in equation.</span><br><br></p>
<p><span>\(0 = - \frac{16}{3} \times (-1) + c \)</span></p>
<p><span>\(c = - \frac{16}{3}\)</span></p>
<p><span>\(y =  - \frac{{16}}{3}x - \frac{{16}}{3}\)</span><span>     <em><strong>(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Accept <em>y</em> = –5.33<em>x</em> – 5.33.</span></p>
<p><br><strong><span>OR</span></strong></p>
<p><span>\((y - 0) = \frac{{-16}}{3}(x + 1)\)     <em><strong>(M1)(A1)(G2)</strong></em></span></p>
<p><span><strong>Note:</strong> Award <em><strong>(M1)</strong></em> for</span> <span>\( - \frac{{16}}{3}\)</span><span> substituted in equation, <em><strong>(A1)</strong></em> for correct equation. Follow through from their answer to part (b). Accept <em>y </em></span><span><span>= –</span>5.33 (<em>x</em> +1). Accept equivalent equations.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em><strong>(A1)</strong></em><strong>(ft)</strong> for a tangent to their curve drawn.</span></p>
<p><span><em><strong>(A1)</strong></em><strong>(ft)</strong> for their tangent drawn at the point <em>x</em> = –1.     <em><strong>(A1)</strong></em><strong>(ft)</strong><em><strong>(A1)</strong></em><strong>(ft)</strong></span></p>
<p><span><strong>Note:</strong> Follow through from their graph. The tangent must be a straight line otherwise award at most <em><strong>(A0)(A1)</strong></em>.</span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span>(i) \(a = \frac{1}{3}\)</span>     <em><strong><span>(G1)</span></strong></em></p>
<p><em><strong><span> </span></strong></em></p>
<p><span>(ii) \(b = 3\)     <em><strong>(G1)</strong></em></span></p>
<p><span><strong>Note:</strong> If <em>a</em> and <em>b</em> are reversed award <em><strong>(A0)(A1)</strong></em>.</span></p>
<p><span> </span></p>
<p><span><em><strong>[2 marks]</strong></em><br></span></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span><em>f</em> (<em>x</em>) is increasing     <em><strong>(A1)</strong></em></span></p>
<p><span><em><strong>[1 mark]<br></strong></em></span></p>
<div class="question_part_label">j.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><em><strong></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">In part (b) the answer could have been checked using the table on the GDC.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">In part (c) <strong>coordinates</strong> were required.</span></p>
<p>&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The responses to part (d) were generally correct.</span></p>
<p>&nbsp;</p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The &ldquo;show that&rdquo; nature of part (e) meant that the final answer had to be stated.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">The interpretive nature of part (f) was not understood by the majority.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">&nbsp;</span></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p>&nbsp;</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p>&nbsp;</p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (i) and (j) had many candidates floundering; there were few good responses to these parts.</span></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-size: medium; font-family: times new roman,times;">This question caused the most difficulty to candidates for two reasons; its content and perhaps lack of time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Drawing/sketching graphs is perhaps the area of the course that results in the poorest responses. It is also the area of the course that results in the best. It is therefore the area of the course that good teaching can influence the most.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Candidates should:</span></p>
<ul>
<li><span style="font-size: medium; font-family: times new roman,times;">Use the correct scale and window. Label the axes.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Enter the formula into the GDC and use the table function to determine the points to be plotted.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Refer to the graph on the GDC when drawing the curve.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Draw a curve rather than line segments; ensure that the curve is smooth.</span></li>
<li><span style="font-size: medium; font-family: times new roman,times;">Use a pencil rather than a pen so that required changes once further information has been gathered (the turning points, for example) can be made.</span></li>
</ul>
<p><span style="font-size: medium; font-family: times new roman,times;">Parts (i) and (j) had many candidates floundering; there were few good responses to these parts.</span></p>
<div class="question_part_label">j.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A biologist is studying the relationship between the number of chirps of the Snowy Tree cricket and the air temperature. He records the chirp rate, \(x\), of a cricket, and the corresponding air temperature, \(T\), in degrees Celsius.</p>
<p class="p1">The following table gives the recorded values.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_08.39.25.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the scatter diagram for the above data. Use a scale of 2 cm for 20 chirps on the horizontal axis and 2 cm for 4<span class="s1"><strong>°</strong></span>C on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to write down the Pearson’s product–moment correlation <span class="s1">coefficient, \(r\)</span>, between \(x\) and \(T\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Interpret the relationship between \(x\) and \(T\) using your value of \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to write down the equation of the regression line \(T\) on \(x\). Give the equation in the form \(T = ax + b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the air temperature when the cricket’s chirp rate is \(70\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(\bar x = 70\), draw the regression line \(T\) on \(x\) on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A forest ranger uses her own formula for estimating the air temperature. She counts the number of chirps in 15 seconds, \(z\), multiplies this number by \(0.45\) and then she adds \(10\).</p>
<p class="p1">Write down the formula that the forest ranger uses for estimating the temperature, \(T\).</p>
<p class="p1">Give the equation in the form \(T = mz + n\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A cricket makes 20 chirps in <strong>15</strong> seconds.</p>
<p class="p1">For this chirp rate</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>calculate an estimate for the temperature, \(T\), <strong>using the forest ranger’s formula</strong>;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>determine the actual temperature recorded by the biologist, <strong>using the table above</strong>;</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>calculate the percentage error in the forest ranger’s estimate for the temperature, compared to the actual temperature recorded by the biologist.</p>
<div class="marks">[6]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="" alt></p>
<p class="p2"><strong><em><span class="Apple-converted-space">     </span>(A4)</em></strong></p>
<p class="p2"><strong>Notes:<span class="Apple-converted-space"> </span></strong>Award <strong><em>(A1) </em></strong>for correct scales and labels.</p>
<p class="p2">Award <strong><em>(A3) </em></strong>for all six points correctly plotted,</p>
<p class="p2"><strong><em>   (A2) </em></strong>for four or five points correctly plotted,</p>
<p class="p2"><strong><em>   (A1) </em></strong>for two or three points correctly plotted.</p>
<p class="p2">Award at most <strong><em>(A0)(A3) </em></strong>if axes reversed.</p>
<p class="p2">Accept tolerance for \(T\)-axis.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{0.977}}\;\;\;{\text{(0.977324}} \ldots {\text{)}}\) <span class="Apple-converted-space">    </span><strong><em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(G1) </em></strong>for \(0.97\).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(Very) strong positive correlation <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(A1) </em></strong>for (very) strong, <strong><em>(A1) </em></strong>for positive.</p>
<p class="p1">Follow through from part (b).</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(T = 0.129x + 6.82\) <span class="Apple-converted-space">    </span><strong><em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Award <strong><em>(G1) </em></strong>for \(0.129x\), <strong><em>(G1) </em></strong>for \( + 6.82\).</p>
<p class="p1">Award a maximum of <strong><em>(G0)(G1) </em></strong>if the answer is not an equation.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.129 \times 70 + 6.82\)     <strong><em>(M1)</em></strong></p>
<p><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution of 70 into their equation of regression line.</p>
<p> </p>
<p><strong>OR</strong></p>
<p>\(\frac{{8 + 12.8 +  \ldots  + 21.1}}{6}\)     <strong><em>(M1)</em></strong></p>
<p>\( = 15.9{\text{ }}(15.85)\)     <strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p><strong>Note: </strong>Follow through from part (d) without working.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">regression line through \((70,{\text{ }}15.9)\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Accept \(15.9 \pm 0.2\).</p>
<p class="p1">Follow through from part (e).</p>
<p class="p2"> </p>
<p class="p1">with \(T\)-intercept, \(6.82\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Follow through from part (d). Accept \(6.82 \pm 0.2\).</p>
<p class="p1">In case the regression line is not straight (ruler not used), award <strong><em>(A0)(A1)</em>(ft) </strong>if line passes through both their \((70,{\text{ }}15.9)\) and \((0,{\text{ }}6.82)\), otherwise award <strong><em>(A0)(A0)</em></strong>.</p>
<p class="p1">Do not penalize if line does not intersect the \(T\)-axis.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(T = 0.45z + 10\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>\(0.45(20) + 10\) <span class="Apple-converted-space">    </span><strong><em>(M1)</em></strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for correct substitution of \(20\) into their formula from part (g).</p>
<p class="p2"> </p>
<p class="p1">\( = 19\;\;\;(^\circ {\text{C}})\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Note: </strong>Follow through from part (g).</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>\( = 18.2\;\;\;(^\circ {\text{C}})\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em></strong></p>
<p class="p1"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>\(\left| {\frac{{19 - 18.2}}{{18.2}}} \right| \times 100\% \) <span class="Apple-converted-space">    </span><strong><em>(M1)(A1)</em>(ft)</strong></p>
<p class="p1"><strong>Note: </strong>Award <strong><em>(M1) </em></strong>for substitution in the percentage error formula, <strong><em>(A1) </em></strong>for correct substitution.</p>
<p class="p2"> </p>
<p class="p1">\({\text{4.40% }}\;\;\;{\text{(4.39560}} \ldots {\text{)}}\) <span class="Apple-converted-space">    </span><strong><em>(A1)</em>(ft)<em>(G2)</em></strong></p>
<p class="p1"><strong>Notes: </strong>Follow through from parts (h)(i) and (h)(ii).</p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<br><hr><br>