File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 6/SL-paper2html
File size: 65.3 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p>The sequence \(\{ {u_n}\} \) satisfies the second-degree recurrence relation</p>
<p>\[{u_{n + 2}} = {u_{n + 1}} + 6{u_n},{\text{ }}n \in {\mathbb{Z}^ + }.\]</p>
</div>

<div class="specification">
<p>Another sequence \(\{ {v_n}\} \) is such that</p>
<p>\[{v_n} = {u_{2n}},{\text{ }}n \in {\mathbb{Z}^ + }.\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the auxiliary equation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \({u_1} = 12,{\text{ }}{u_2} = 6\), show that</p>
<p>\[{u_n} = 2 \times {3^n} - 3 \times {( - 2)^n}.\]</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of&nbsp;\(\mathop {\lim }\limits_{n \to \infty } \frac{{{u_n} + {u_{n - 1}}}}{{{u_n} - {u_{n - 1}}}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the second-degree recurrence relation satisfied by \(\{ {v_n}\} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>In 1985 , the deer population in a national park was \(330\). A year later it had increased to \(420\). To model these data the year 1985 was designated as year zero. The increase in deer population from year \(n - 1\) to year \(n\) is three times the increase from year \(n - 2\) to year \(n - 1\). The deer population in year \(n\)<em>&nbsp;</em>is denoted by \({x_n}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that for \(n \geqslant 2,{\text{ }}{x_n} = 4{x_{n - 1}} - 3{x_{n - 2}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the recurrence relation.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show using proof by strong induction that the solution is correct.</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Use Kruskal&rsquo;s algorithm to find a minimum spanning tree for the weighted graph </span><span style="font-family: times new roman,times; font-size: medium;">shown below. State the weight of the tree.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/kruskal_1.png" alt></span></p>
<div class="marks">[5]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">For the travelling salesman problem defined by this graph, find</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; an upper bound;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; a lower bound.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Given that the integers \(m\) and \(n\) are such that \(3|({m^2} + {n^2})\) , prove that \(3|m\) </span><span style="font-family: times new roman,times; font-size: medium;">and \(3|n\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Hence</strong> show that \(\sqrt 2 \) is irrational.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Consider the recurrence relation \(a{u_{n + 1}} + b{u_n} + c{u_{n - 1}} = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({u_n} = A{\lambda ^n} + B{\mu ^n}\) satisfies this relation where \(A\), \(B\) are arbitrary constants and \(\lambda \), \(\mu \) are the roots of the equation \(a{x^2} + bx + c = 0\).</span></p>
<p style="font-style: normal; font-variant: normal; font-weight: normal; font-size: 21px; line-height: normal; font-family: Helvetica; margin: 0px; text-align: center;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp;&nbsp;<br><img src="images/Schermafbeelding_2014-09-19_om_14.22.07.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A particle \(P\) executes a random walk on the line above such that when it is at point \(n\left( {1 \leqslant n \leqslant 9,{\text{ }}n \in {\mathbb{Z}^ + }} \right)\) it has a probability \(0.4\) of moving to \(n + 1\) and a probability \(0.6\) of moving to \(n - 1\). The walk terminates as soon as \(P\) reaches either \(0\) or \(10\). Let \({p_n}\) denote the probability that the walk terminates at \(0\) starting from \(n\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that \(2{p_{n + 1}} - 5{p_n} + 3{p_{n - 1}} = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; By solving this recurrence relation subject to the boundary conditions \({p_0} = 1\), \({p_{10}} = 0\) show that \({p_n} = \frac{{{{1.5}^{10}} - {{1.5}^n}}}{{{{1.5}^{10}} - 1}}\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The vertices and weights of the graph \(G\) are given in the following table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-19_om_14.03.12.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman'; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; Use Kruskal&rsquo;s algorithm to find the minimum spanning tree for \(G\), indicating clearly the order in which the edges are included.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Draw the minimum spanning tree for \(G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Consider the travelling salesman problem for \(G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; An upper bound for the problem can be found by doubling the weight of the minimum spanning tree. Use this method to find an upper bound.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Starting at \({\text{A}}\), use the nearest neighbour algorithm to find another upper bound.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; By first removing&nbsp;\({\text{A}}\), use the deleted vertex algorithm to find a lower bound for the problem.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; The travelling salesman problem is now modified so that starting at&nbsp;\({\text{A}}\), the vertices&nbsp;\({\text{B}}\)&nbsp;and&nbsp;\({\text{C}}\)&nbsp;have&nbsp;to be visited&nbsp;first in that&nbsp;order, then&nbsp;\({\text{D}}\),&nbsp;\({\text{E}}\),&nbsp;\({\text{F}}\)&nbsp;in any order before returning to&nbsp;\({\text{A}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Solve this modified problem.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Comment whether or not your answer has any effect on the upper bound to the problem considered in (b).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">The sequence \(\{ {u_n}:n \in {\mathbb{Z}^ + }\} \)&nbsp;</span>satisfies the recurrence relation \(2{u_{n + 2}} - 3{u_{n + 1}} + {u_n} = 0\), where \({u_1} = 1,{\text{ }}{u_2} = 2\).</p>
</div>

<div class="specification">
<p class="p1">The sequence \(\{ {w_n}:n \in \mathbb{N}\} \) satisfies the recurrence relation \({w_{n + 2}} - 2{w_{n + 1}} + 4{w_n} = 0\), where \({w_0} = 0,{\text{ }}{w_1} = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find an expression for \({u_n}\) in terms of \(n\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that the sequence converges, stating the limiting value.</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The sequence </span>\(\{ {v_n}:n \in {\mathbb{Z}^ + }\} \) satisfies the recurrence relation \(2{v_{n + 2}} - 3{v_{n + 1}} + {v_n} = 1\), where \({v_1} = 1,{\text{ }}{v_2} = 2\)<span class="s2">.</span></p>
<p class="p1">Without solving the recurrence relation prove that the sequence diverges.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find an expression for \({w_n}\) in terms of \(n\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Show that \({w_{3n}} = 0\) for all \(n \in \mathbb{N}\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A canal system divides a city into six land masses connected by fifteen bridges, </span><span style="font-family: times new roman,times; font-size: medium;">as shown in the diagram below.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="images/canals.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Draw a planar graph to represent this map.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Write down the adjacency matrix of the graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">List the degrees of each of the vertices.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">State with reasons whether or not this graph has</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; an Eulerian circuit;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; an Eulerian trail.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the number of walks of length \(4\) from E to F.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A group of people: Andrew, Betty, Chloe, David, Edward, Frank and Grace, has certain </span><span style="font-family: times new roman,times; font-size: medium;">mutual friendships:</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Andrew is friendly with Betty, Chloe, David and Edward;</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Frank is friendly with Betty and Grace;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">David, Chloe and Edward are friendly with one another.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Draw the planar graph \(H\) that represents these mutual friendships.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; State how many faces this graph has.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Determine, giving reasons, whether \(H\) has</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; a Hamiltonian path;</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; a Hamiltonian cycle;</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; an Eulerian circuit;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iv)&nbsp;&nbsp;&nbsp;&nbsp; an Eulerian trail.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Verify Euler&rsquo;s formula for \(H\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">State, giving a reason, whether or not \(H\) is bipartite.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Write down the adjacency matrix for \(H\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">David wishes to send a message to Grace, in a sealed envelope, through mutual friends.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">In how many different ways can this be achieved if the envelope is passed seven </span><span style="font-family: times new roman,times; font-size: medium;">times and Grace only receives it once?</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The graph \(G\) has the following cost adjacency matrix.<br><img style="display: block; margin-left: auto; margin-right: auto;" src="images/finn.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Draw \(G\) in planar form.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Given that \(ax \equiv b(\bmod p)\) where \(a,b,p,x \in {\mathbb{Z}^ + }\) , \(p\) is prime and \(a\) is not a </span><span style="font-family: times new roman,times; font-size: medium;">multiple of \(p\), use Fermat&rsquo;s little theorem to show that</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(x \equiv {a^{p - 2}}b(\bmod p)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence solve the simultaneous linear congruences\[3x \equiv 4(\bmod 5)\]\[5x \equiv 6(\bmod 7)\]giving your answer in the form \(x \equiv c(\bmod d)\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p><img src="images/watch.png" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram above shows the graph \(G\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Explain briefly why \(G\) has no Eulerian circuit.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Determine whether or not \(G\) is bipartite.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Write down the adjacency matrix of <strong><em>G</em></strong>. Hence find the number of walks of </span><span style="font-family: times new roman,times; font-size: medium;">length \(4\) beginning at A and ending at C.</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The cost adjacency matrix of a graph with vertices P, Q, R, S, T, U is given by</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="images/14k.png" alt></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Use Dijkstra&rsquo;s Algorithm to find the length of the shortest path between the </span><span style="font-family: times new roman,times; font-size: medium;">vertices P and S. Show all the steps used by the algorithm and list the order of </span><span style="font-family: times new roman,times; font-size: medium;">the vertices in the path.</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Given the linear congruence \(ax \equiv b({\rm{mod}}p)\) , where \(a\) , \(b \in \mathbb{Z} \) , \(p\) is a prime and </span><span style="font-family: times new roman,times; font-size: medium;">\({\rm{gcd}}(a,p) = 1\) , show that \(x \equiv {a^{p - 2}}b({\rm{mod}}p)\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Solve \(17x \equiv 14(\bmod 21)\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Use the solution found in part (i) to find the general solution to the </span><span style="font-family: times new roman,times; font-size: medium;">Diophantine equation \(17x + 21y = 14\) .</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The following diagram shows a weighted graph \(G\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img style="display: block; margin-left: auto; margin-right: auto;" src="images/andre.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Explain briefly what features of the graph enable you to state that \(G\) has </span><span style="font-family: times new roman,times; font-size: medium;">an Eulerian trail but does not have an Eulerian circuit.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Write down an Eulerian trail in \(G\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; Use Kruskal&rsquo;s algorithm to find and draw the minimum spanning tree for \(G\) . </span><span style="font-family: times new roman,times; font-size: medium;">Your solution should indicate the order in which the edges are added.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; State the weight of the minimum spanning tree.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Use Dijkstra&rsquo;s algorithm to find the path of minimum total weight joining </span><span style="font-family: times new roman,times; font-size: medium;">A to D, and state its weight. Your solution should indicate clearly the use of </span><span style="font-family: times new roman,times; font-size: medium;">this algorithm.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The graph \(H\) has the following adjacency matrix.</span></p>
<p><br><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/naomi.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(H\) is bipartite.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Draw \(H\) as a planar graph.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Explain what feature of \(H\) guarantees that it has an Eulerian circuit.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Write down an Eulerian circuit in \(H\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; Find the number of different walks of length five joining A to B.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Determine how many of these walks go through vertex F after passing </span><span style="font-family: times new roman,times; font-size: medium;">along two edges.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Find the maximum number of extra edges that can be added to \(H\) while keeping </span><span style="font-family: times new roman,times; font-size: medium;">it simple, planar and bipartite.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the smallest positive integer \(m\) such that \({3^m} \equiv 1(\bmod 22)\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Given that \({3^{49}} \equiv n(\bmod 22)\) where \(0 \le n \le 21\) , find the value of \(n\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Solve the equation \({3^x} \equiv 5(\bmod 22)\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.c.</div>
</div>
<br><hr><br><div class="specification">
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-18_om_11.42.18.png" alt="M17/5/FURMA/HP2/ENG/TZ0/01"></p>
<p>The diagram shows the graph \(G\) with the weights of the edges marked.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what features of the graph enable you to state that \(G\) contains an Eulerian trail but no Eulerian circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an Eulerian trail.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Dijkstra&rsquo;s algorithm to find the path of minimum total weight joining A to D, stating this total weight. Your solution should show clearly that this algorithm has been used.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following weighted graph.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2017-02-08_om_16.38.29.png" alt="M16/5/FURMA/HP2/ENG/TZ0/01"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether or not the graph is Eulerian.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether or not the graph is Hamiltonian.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use Kruskal’s algorithm to find a minimum weight spanning tree and state its weight.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce an upper bound for the total weight of a closed walk of minimum weight which <span class="s1">visits every vertex.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the result in part (b) can be used to find a different upper bound and state <span class="s1">its value.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A connected planar graph has \(e\) edges, \(f\) faces and \(v\) vertices. Prove Euler&rsquo;s </span><span style="font-family: times new roman,times; font-size: medium;">relation, that is \(v + f = e + 2\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; A simple connected planar graph with \(v\) vertices, where \(v \ge 3\) , has no </span><span style="font-family: times new roman,times; font-size: medium;">circuit of length \(3\). Deduce that \(e \ge 2f\) and therefore that \(e \le 2v - 4\).</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence show that \({\kappa _{3,3}}\) is non-planar.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The graph \(P\) has the following adjacency table, defined for vertices A to H, </span><span style="font-family: times new roman,times; font-size: medium;">where each element represents the number of edges between the respective </span><span style="font-family: times new roman,times; font-size: medium;">vertices.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><img src="images/prince.png" alt></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; Show that \(P\) is bipartite.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Show that the complement of \(P\) is connected but not planar.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>While on holiday Pauline visits the local museum. On the ground floor of the museum there are six rooms, A, B, C, D, E and F. The doorways between the rooms are indicated on the following floorplan.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are 6 museum&nbsp;s in 6 towns in the area where Pauline is on holiday. The 6 towns and the roads connecting them can be represented by a graph. Each vertex represents a town, each edge represents a road and the weight of each edge is the distance between the towns using that road. The information is shown in the adjacency table.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Pauline wants to visit each town and needs to start and finish in the same town.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a graph<em> G</em> to represent this floorplan where the rooms are represented by the vertices and an edge represents a door between two rooms.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the graph <em>G</em> has an Eulerian trail but not an Eulerian circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the consequences of having an Eulerian trail but not an Eulerian circuit, for Pauline’s visit to the ground floor of the museum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a Hamiltonian cycle for the graph <em>G</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the consequences of having a Hamiltonian cycle for Pauline’s visit to the ground floor of the museum.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the nearest-neighbour algorithm to determine a possible route and an upper bound for the length of her route starting in town Z.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By removing Z, use the deleted vertex algorithm to determine a lower bound for the length of her route.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br>