File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 5/SL-paper2html
File size: 59.97 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(\frac{{\rm{d}}}{{{\rm{d}}\theta }}(\sec \theta \tan \theta&nbsp; + \ln (\sec \theta&nbsp; + \tan \theta )) = 2{\sec ^3}\theta \) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> (ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence write down \(\int {{{\sec }^3}\theta {\rm{d}}\theta } \) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Consider the differential equation \((1 + {x^2})\frac{{{\rm{d}}y}}{{{\rm{d}}x}} + xy = 1 + {x^2}\) </span><span style="font-family: times new roman,times; font-size: medium;">given that \(y = 1\) </span><span style="font-family: times new roman,times; font-size: medium;">when \(x = 0\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Use Euler&rsquo;s method with a step length of \(0.1\) to find an approximate value </span><span style="font-family: times new roman,times; font-size: medium;">for <strong><em>y</em></strong> when \(x = 0.3\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Find an integrating factor for determining the exact solution of the </span><span style="font-family: times new roman,times; font-size: medium;">differential equation.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii) &nbsp; &nbsp; Find the solution of the equation in the form \(y = f(x)\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iv)&nbsp;&nbsp;&nbsp;&nbsp; To how many significant figures does the approximation found in part (i) </span><span style="font-family: times new roman,times; font-size: medium;">agree with the exact value of \(y\) when \(x = 0.3\) ?</span></p>
<div class="marks">[24]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that the improper integral \(\int_0^\infty&nbsp; {\frac{1}{{{x^2} + 1}}} {\rm{d}}x\)</span><span style="font-family: times new roman,times; font-size: medium;"> is convergent.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; Use the integral test to deduce that the series \(\sum\limits_{n = 0}^\infty&nbsp; {\frac{1}{{{n^2} + 1}}} \)</span><span style="font-family: times new roman,times; font-size: medium;"> is convergent, </span><span style="font-family: times new roman,times; font-size: medium;">giving reasons why this test can be applied.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that the series \(\sum\limits_{n = 0}^\infty&nbsp; {\frac{{{{( - 1)}^n}}}{{{n^2} + 1}}} \) is convergent.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> (ii)&nbsp;&nbsp;&nbsp;&nbsp; If the sum of the above series is \(S\), show that \(\frac{3}{5} &lt; S &lt; \frac{2}{3}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">For the series \(\sum\limits_{n = 0}^\infty&nbsp; {\frac{{{x^n}}}{{{n^2} + 1}}} \)</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; determine the radius of convergence;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; determine the interval of convergence using your answers to (b) and (c).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the differential equation</p>
<p style="text-align: center;">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\sec ^2}x,{\text{ }}0 \leqslant x &lt; \frac{\pi }{2}\), given that \(y = 1\) when \(x = 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering integration as the reverse of differentiation, show that for</p>
<p>\(0 \leqslant x &lt; \frac{\pi }{2}\)</p>
<p>\[\int {\sec x{\text{d}}x = \ln (\sec x + \tan x) + C.} \]</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, using integration by parts, show that</p>
<p>\[\int {{{\sec }^3}x{\text{d}}x = \frac{1}{2}\left( {\sec x\tan x + \ln (\sec x + \tan x)} \right) + C.} \]</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an integrating factor and hence solve the differential equation, giving your answer in the form \(y = f(x)\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting with the differential equation, show that</p>
<p>\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y = 2{\sec ^2}x\tan x.\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, by using your calculator to draw two appropriate graphs or otherwise, find the \(x\)-coordinate of the point of inflection on the graph of \(y = f(x)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2x + y - 1\) <span class="s1">with boundary condition \(y = 1\) when \(x = 0\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Using Euler&rsquo;s method with increments of \(0.2\)</span>, find an approximate value for \(y\) when \(x = 1\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how Euler&rsquo;s method could be improved to provide a better approximation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Solve the differential equation to find an exact value for \(y\) when \(x = 1\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the first three non-zero terms of the Maclaurin series for \(y\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Hence find an approximate value for \(y\) when \(x = 1\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f(x)\) is defined by the series \(f(x) = 1 + \frac{{(x + 2)}}{{3 \times 1}} + \frac{{{{(x + 2)}^2}}}{{{3^2} \times 2}} + \frac{{{{(x + 2)}^3}}}{{{3^3} \times 3}} +&nbsp; \ldots \) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Write down the general term.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the interval of convergence.</span></p>
<div class="marks">[13]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Solve the differential equation \((u + 3{v^3})\frac{{{\rm{d}}v}}{{{\rm{d}}u}} = 2v\) </span><span style="font-family: times new roman,times; font-size: medium;">, giving your answer in the form \(u = f(v)\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">B.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The function \(f\) is defined by \(f(x) = \ln (1 + \sin x)\) .</span></p>
</div>

<div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">When a scientist measures the concentration \(\mu \) of a solution, the measurement </span><span style="font-family: times new roman,times; font-size: medium;">obtained may be assumed to be a normally distributed random variable with mean </span><span style="font-family: times new roman,times; font-size: medium;">\(\mu \) and standard deviation \(1.6\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that&nbsp;\(f''(x) = \frac{{ - 1}}{{1 + \sin x}}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Determine the Maclaurin series for \(f(x)\) as far as the term in \({x^4}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Deduce the Maclaurin series for \(\ln (1 - \sin x)\) as far as the term in \({x^4}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">By combining your two series, show that \(\ln \sec x = \frac{{{x^2}}}{2} + \frac{{{x^4}}}{{12}} +&nbsp; \ldots \) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence, or otherwise, find \(\mathop {\lim }\limits_{x \to 0} \frac{{\ln \sec x}}{{x\sqrt x }}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">He makes 5 independent measurements of the concentration of a particular </span><span style="font-family: times new roman,times; font-size: medium;">solution and correctly calculates the following confidence interval for \(\mu \) .</span></p>
<p style="text-align: center;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">[\(22.7\) , \(26.1\)]</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Determine the confidence level of this interval.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">He is now given a different solution and is asked to determine a \(95\%\) confidence </span><span style="font-family: times new roman,times; font-size: medium;">interval for its concentration. The confidence interval is required to have a width </span><span style="font-family: times new roman,times; font-size: medium;">less than \(2\). Find the minimum number of independent measurements required.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Let&nbsp;\({S_n} = \sum\limits_{k = 1}^n {\frac{1}{k}} \) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that, for&nbsp;\(n \ge 2\) , \({S_{2n}} &gt; {S_n} + \frac{1}{2}\)&nbsp;.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Deduce that&nbsp;\({S_{2m + 1}} &gt; {S_2} + \frac{m}{2}\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Hence show that the sequence \(\left\{ {{S_n}} \right\}\) is divergent.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{x}{y}\), where \(y \ne 0\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the general solution of the differential equation, expressing your answer in the <span class="s1">form \(f(x,{\text{ }}y) = c\), where \(c\) is a constant.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space">    </span></span>Hence find the particular solution passing through the points \((1,{\rm{  \pm }}\sqrt 2 )\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Sketch the graph of your solution and name the type of curve represented.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Write down the particular solution passing through the points \((1,{\text{ }} \pm 1)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Give a geometrical interpretation of this solution in relation to part (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the general solution of the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{x}{y} + \frac{y}{x}\), where \(xy \ne 0\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Find the particular solution passing through the point \((1,{\text{ }}\sqrt 2 )\).</p>
<p class="p2">(iii) <span class="Apple-converted-space">    </span>Sketch the particular solution.</p>
<p class="p1">(iv) <span class="Apple-converted-space">    </span>The graph of the solution only contains points with \(\left| x \right| &gt; a\).</p>
<p class="p1">Find the exact value of \(a,{\text{ }}a &gt; 0\).</p>
<div class="marks">[12]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using a Taylor series, find a quadratic approximation for \(f(x) = \sin x\) centred about \(x = \frac{{3\pi }}{4}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When using this approximation to find angles between \(130^\circ\)&nbsp;and \(140^\circ\)<span class="s1">, find the maximum value of the Lagrange form of the error term.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence find the largest number of decimal places to which \(\sin x\) can be estimated for angles between \(130^\circ\)&nbsp;and \(140^\circ\)<span class="s1">.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Explain briefly why the same maximum value of error term occurs for \(g(x) = \cos x\) </span>centred around \(\frac{\pi }{4}\) when finding approximations for angles between \(40^\circ\) and \(50^\circ\)<span class="s1">.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A machine fills containers with grass seed. Each container is supposed to weigh \(28\) kg. </span><span style="font-family: times new roman,times; font-size: medium;">However the weights vary with a standard deviation of \(0.54\) kg. A random sample of </span><span style="font-family: times new roman,times; font-size: medium;">\(24\)</span><span style="font-family: times new roman,times; font-size: medium;"> bags is taken to check that the mean weight is \(28\) kg.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Assuming the series for \({{\rm{e}}^x}\) , find the first five terms of the Maclaurin series for\[\frac{1}{{\sqrt {2\pi } }}{{\rm{e}}^{\frac{{ - {x^2}}}{2}}} {\rm{&nbsp; .}}\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Use your answer to (a) to find an approximate expression for the cumulative distributive </span><span style="font-family: times new roman,times; font-size: medium;">function of \({\rm{N}}(0,1)\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; <strong>Hence</strong> find an approximate value for \({\rm{P}}( - 0.5 \le Z \le 0.5)\) , where </span><span style="font-family: times new roman,times; font-size: medium;">\(Z \sim {\rm{N}}(0,1)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">State and justify an appropriate test procedure giving the null and alternate </span><span style="font-family: times new roman,times; font-size: medium;">hypotheses.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">What is the critical region for the sample mean if the probability of a Type I error </span><span style="font-family: times new roman,times; font-size: medium;">is to be \(3.5\%\)?</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">If the mean weight of the bags is actually \(28\).1 kg, what would be the probability </span><span style="font-family: times new roman,times; font-size: medium;">of a Type II error?</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a sketch of the graph of \(y = {x^{ - 4}}\) for \(x &gt; 0\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/bully.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">By considering this sketch, show that, for \(n \in {\mathbb{Z}^ + }\) ,\[\sum\limits_{r = n + 1}^\infty&nbsp; {\frac{1}{{{r^4}}}}&nbsp; &lt; \int_n^\infty&nbsp; {\frac{{{\rm{d}}x}}{{{x^4}}}}&nbsp; &lt; \sum\limits_{r = n}^\infty&nbsp; {\frac{1}{{{r^4}}}} .\]</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Let&nbsp;\(S = \sum\limits_{r = 1}^\infty&nbsp; {\frac{1}{{{r^4}}}} \) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Use the result in (a) to show that, for \(n \ge 2\) , the value of \(S\) lies between</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(\sum\limits_{r = 1}^{n - 1} {\frac{1}{{{r^4}}}}&nbsp; + \frac{1}{{3{n^3}}}\) and \(\sum\limits_{r = 1}^n {\frac{1}{{{r^4}}}}&nbsp; + \frac{1}{{3{n^3}}}\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that, by taking \(n = 8\) , the value of \(S\) can be deduced correct to three </span><span style="font-family: times new roman,times; font-size: medium;">decimal places and state this value.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; The exact value of \(S\) is known to be \(\frac{{{\pi ^4}}}{N}\)</span><span style="font-family: times new roman,times; font-size: medium;">where \(N \in {\mathbb{Z}^ + }\) . Determine the </span><span style="font-family: times new roman,times; font-size: medium;">value of \(N\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Now let&nbsp;\(T = \sum\limits_{r = 1}^\infty&nbsp; {\frac{{{{( - 1)}^{r + 1}}}}{{{r^4}}}} \) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Find the value of \(T\) correct to three decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the functions \({f_n}(x) = {\sec ^n}(x),{\text{ }}\left| x \right| &lt; \frac{\pi }{2}\) and \({g_n}(x) = {f_n}(x)\tan x\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that</p>
<p>(i)     \(\frac{{{\text{d}}{f_n}(x)}}{{{\text{d}}x}} = n{g_n}(x)\);</p>
<p>(ii)     \(\frac{{{\text{d}}{g_n}(x)}}{{{\text{d}}x}} = (n + 1){f_{n + 2}}(x) - n{f_n}(x)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space">    </span></span>Use these results to show that the Maclaurin series for the function \({f_5}(x)\) up to and including the term in \({x^4}\) is \(1 + \frac{5}{2}{x^2} + \frac{{85}}{{24}}{x^4}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>By considering the general form of its higher derivatives explain briefly why all coefficients in the Maclaurin series for the function \({f_5}(x)\) <span class="s1">are either positive or zero.</span></p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>Hence show that \({\sec ^5}(0.1) &gt; 1.02535\).</p>
<div class="marks">[14]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the differential equation\[\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\sec x = x(\sec x - \tan x),{\text{ where }}y = 3{\text{ when }}x = 0.\]</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Use Euler&rsquo;s method with a step length of \(0.1\) to find an approximate value for \(y\) </span><span style="font-family: times new roman,times; font-size: medium;">when \(x = 0.3\) .</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; By differentiating the above differential equation, obtain an expression </span><span style="font-family: times new roman,times; font-size: medium;">involving \(\frac{{{{\rm{d}}^{\rm{2}}}y}}{{{\rm{d}}{x^2}}}\)</span><span style="font-family: times new roman,times; font-size: medium;">&nbsp;.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence determine the Maclaurin series for \(y\) up to the term in \({{x^2}}\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Use the result in part (ii) to obtain an approximate value for \(y\) when </span><span style="font-family: times new roman,times; font-size: medium;">\(x = 0.3\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(\sec x + \tan x\) is an integrating factor for solving this differential </span><span style="font-family: times new roman,times; font-size: medium;">equation.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Solve the differential equation, giving your answer in the form \(y = f(x)\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Hence determine which of the two approximate values for <strong><em>y</em></strong> when \(x = 0.3\) , </span><span style="font-family: times new roman,times; font-size: medium;">obtained in parts (a) and (b), is closer to the true value.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The function \(f\) is defined by \(f(x) = \frac{{{{\rm{e}}^x} + {{\rm{e}}^{ - x}}}}{2}\) </span><span style="font-family: times new roman,times; font-size: medium;">.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Obtain an expression for \({f^{(n)}}(x)\) , the <strong><em>n</em></strong>th derivative of \(f(x)\) with </span><span style="font-family: times new roman,times; font-size: medium;">respect to \(x\).</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence derive the Maclaurin series for \(f(x)\) up to and including the </span><span style="font-family: times new roman,times; font-size: medium;">term in \({x^4}\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; Use your result to find a rational approximation to \(f\left( {\frac{1}{2}} \right)\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iv)&nbsp;&nbsp;&nbsp;&nbsp; Use the Lagrange error term to determine an upper bound to the error in </span><span style="font-family: times new roman,times; font-size: medium;">this approximation.</span></p>
<div class="marks">[13]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Use the integral test to determine whether the series&nbsp;\(\sum\limits_{n = 1}^\infty&nbsp; {\frac{{\ln n}}{{{n^2}}}} \) </span><span style="font-family: times new roman,times; font-size: medium;">is convergent </span><span style="font-family: times new roman,times; font-size: medium;">or divergent.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The random variable \(X\) has probability density function given by</p>
<p class="p1">\[f(x) = \left\{ {\begin{array}{*{20}{l}}<br> {x{{\text{e}}^{ - x}},}&amp;{{\text{for }}x \geqslant 0,} \\ <br> {0,}&amp;{{\text{otherwise}}} <br>\end{array}} \right..\]</p>
</div>

<div class="specification">
<p class="p1">A sample of size <span class="s1">50 </span>is taken from the distribution of \(X\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use l’Hôpital’s rule to show that \(\mathop {\lim }\limits_{x \to \infty } \frac{{{x^3}}}{{{{\text{e}}^x}}} = 0\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find \({\text{E}}({X^2})\)<span class="s1">.</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Show that \({\text{Var}}(X) = 2\).</p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the central limit theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the probability that the sample mean is less than <span class="s1">2.3</span><span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>It is given that&nbsp;\(\left( {5x + y} \right)\frac{{{\text{d}}y}}{{{\text{d}}x}} = \left( {x + 5y} \right)\) and that when \(x = 0,\,\,y = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with step length 0.1 to find an approximate value of \(y\) when \(x = 0.4\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} = 1 - {\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)^2}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\left( {5x + y} \right)\frac{{{{\text{d}}^3}y}}{{{\text{d}}{x^3}}} =  - 5\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} - 3\left( {\frac{{{\text{d}}y}}{{{\text{d}}x}}} \right)\left( {\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}}} \right)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the Maclaurin expansion for \(y\) up to and including the term in \({{x^3}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the value of&nbsp;\(\mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{x} - \cot x} \right)\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the interval of convergence of the infinite series\[\frac{{(x + 2)}}{{3 \times 1}} + \frac{{{{(x + 2)}^2}}}{{{3^2} \times 2}} + \frac{{{{(x + 2)}^3}}}{{{3^3} \times 3}} +&nbsp; \ldots \]</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Find the Maclaurin series for \(\ln (1 + \sin x)\) up to and including the term </span><span style="font-family: times new roman,times; font-size: medium;">in \({x^3}\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; <strong>Hence</strong> find a series for \(\ln (1 - \sin x)\) up to and including the term in \({x^3}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(iii)&nbsp;&nbsp;&nbsp;&nbsp; Deduce, by considering the difference of the two series, that \(\ln 3 \simeq \frac{\pi }{3}\left( {1 + \frac{{{\pi ^2}}}{{216}}} \right)\) .</span></p>
<div class="marks">[12]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Consider the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} + y\tan x = 2{\cos ^4}x\) given that \(y = 1\) when \(x = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Solve the differential equation, giving your answer in the form \(y = f(x)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; By differentiating both sides of the differential equation, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\[\frac{{{{\text{d}}^2}y}}{{{\text{d}}{x^2}}} + y =&nbsp; - 10\sin x{\cos ^3}x\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence find the first four terms of the Maclaurin series for \(y\).</span></p>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; Using l&rsquo;H&ocirc;pital&rsquo;s rule, show that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\mathop {\lim }\limits_{x \to \infty } \frac{{{x^n}}}{{{{\text{e}}^{\lambda x}}}} = 0;{\text{ }}n \in {\mathbb{Z}^ + },{\text{ }}\lambda&nbsp; \in {\mathbb{R}^ + }\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Using mathematical induction on \(n\), prove that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[\int_0^\infty&nbsp; {{x^n}{{\text{e}}^{ - \lambda x}}{\text{d}}x = \frac{{n!}}{{{\lambda ^{n + 1}}}};{\text{ }}} n \in \mathbb{N},{\text{ }}\lambda&nbsp; \in {\mathbb{R}^ + }\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; The random variable \(X\) has probability density function</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\[f(x) = \left\{ \begin{array}{l}\frac{{{\lambda ^{n + 1}}{x^n}{{\rm{e}}^{ - \lambda x}}}}{{n!}}x \ge 0,n \in {\mathbb{Z}^ + },\lambda &nbsp;\in {\mathbb{R}^ + }\\{\rm{otherwise}}\end{array} \right.\]</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">Giving your answers in terms of \(n\) and \(\lambda \), determine</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; \({\text{E}}(X)\);</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; the mode of \(X\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Customers arrive at a shop such that the number of arrivals in any interval of duration \(d\) hours follows a Poisson distribution with mean \(8d\). The third customer on a particular day arrives \(T\) hours after the shop opens.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that \({\text{P}}(T &gt; t) = {{\text{e}}^{ - 8t}}\left( {1 + 8t + 32{t^2}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Find an expression for the probability density function of \(T\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(iii) &nbsp; &nbsp; Deduce the mean and the mode of \(T\).</span></p>
</div>
<br><hr><br><div class="specification">
<p>Draw slope fields for the following cases for&nbsp;\( - 2 \leqslant x \leqslant 2,\,\, - 2 \leqslant y \leqslant 2\)</p>
</div>

<div class="specification">
<p>Explain what isoclines tell you about the slope field in the following case:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = 2\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x - 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \) constant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = f\left( x \right)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The slope field for the differential equation \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = x + y\) for \( - 4 \leqslant x \leqslant 4,\,\, - 4 \leqslant y \leqslant 4\) is shown in the following diagram.</p>
<p><img src=""></p>
<p>Explain why the slope field indicates that the only linear solution is \(y =  - x - 1\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that all the isoclines from a slope field of a differential equation are straight lines through the origin, find two examples of the differential equation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>