File "SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 4/SL-paper1html
File size: 41.33 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p>Let&nbsp;\(f\,{\text{:}}\,\mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}\)&nbsp;be defined by&nbsp;\(f\left( {x,\,y} \right) = \left( {x + 3y,\,2x - y} \right)\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>A</em> is the interval \(\left\{ {x\,{\text{:}}\,0 \leqslant x \leqslant 3} \right\}\) and <em>B</em> is the interval \(\left\{ {y\,{\text{:}}\,0 \leqslant x \leqslant 4} \right\}\) then describe <em>A</em> × <em>B</em> in geometric form.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the function \(f\) is a bijection.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the inverse function \({f^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The group \(\left\{ {G,\left.&nbsp; *&nbsp; \right\}} \right.\) is defined on the set \(G = \left\{ {1,2,3,4,5,\left. 6 \right\}} \right.\) where \( * \) denotes </span><span style="font-family: times new roman,times; font-size: medium;">multiplication modulo \(7\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Draw the Cayley table for \(\left\{ {G,\left.&nbsp; *&nbsp; \right\}} \right.\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Determine the order of each element of \(\left\{ {G,\left.&nbsp; *&nbsp; \right\}} \right.\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Find all the proper subgroups of \(\left\{ {G,\left.&nbsp; *&nbsp; \right\}} \right.\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Solve the equation \(x * 6 * x = 3\) where \(x \in G\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let \(G\) denote the set of \(2 \times 2\) matrices whose elements belong to \(\mathbb{R}\) and whose determinant is equal to 1. Let \( * \) denote matrix multiplication which may be assumed to be associative.</p>
</div>

<div class="specification">
<p>Let \(H\) denote the set of \(2 \times 2\) matrices whose elements belong to \(\mathbb{Z}\) and whose determinant is equal to 1.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\{ G,{\text{ }} * \} \) is a group.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether or not \(\{ H,{\text{ }} * \} \)&nbsp; is a subgroup of \(\{ G,{\text{ }} * \} \).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The relations \({\rho _1}\) and \({\rho _2}\) are defined on the Cartesian plane as follows</p>
<p>\(({x_1},{\text{ }}{y_1}){\rho _1}({x_2},{\text{ }}{y_2}) \Leftrightarrow x_1^2 - x_2^2 = y_1^2 - y_2^2\)</p>
<p>\(({x_1},{\text{ }}{y_1}){\rho _2}({x_2},{\text{ }}{y_2}) \Leftrightarrow \sqrt {x_1^2 + x_2^2}&nbsp; \leqslant \sqrt {y_1^2 + y_2^2} \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For \({\rho _1}\) and \({\rho _2}\) determine whether or not each is reflexive, symmetric and transitive.</p>
<div class="marks">[11]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For each of \({\rho _1}\) and \({\rho _2}\) which is an equivalence relation, describe the equivalence classes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The permutation \(P\) is given by</p>
<p>\[P = \left( {\begin{array}{*{20}{c}} 1&amp;2&amp;3&amp;4&amp;5&amp;6 \\ 3&amp;4&amp;5&amp;6&amp;2&amp;1 \end{array}} \right).\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the order of \(P\), justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find \({P^2}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The permutation group \(G\) is generated by \(P\). Determine the element of \(G\) that is of order 2, giving your answer in cycle notation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The set \(P\) contains all prime numbers less than 2500.</p>
<p class="p1">The set \(Q\) is the set of all subsets of \(P\).</p>
</div>

<div class="specification">
<p class="p1">The set \(S\) contains all positive integers less than <span class="s1">2500</span>.</p>
<p class="p1">The function \(f:{\text{ }}S \to Q\) is defined by \(f(s)\) as the set of primes exactly dividing \(s\), for \(s \in S\).</p>
<p class="p1">For example \(f(4) = \{ 2\} ,{\text{ }}f(45) = \{ 3,{\text{ }}5\} \).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why only one of the following statements is true</p>
<p class="p2">(i) <span class="Apple-converted-space">    \(17 \subset P\)</span><span class="s1">;</span></p>
<p class="p2">(ii) <span class="Apple-converted-space">    \(\{ 7,{\text{ }}17,{\text{ }}37,{\text{ }}47,{\text{ }}57\}  \in Q\)</span><span class="s1">;</span></p>
<p class="p2">(iii) <span class="Apple-converted-space">    \(\phi  \subset Q\)</span> and \(\phi  \in Q\), where \(\phi \) is the empty set.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space">    </span>State the value of \(f(1)\), </span>giving a reason for your answer.</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Find \(n\left( {f(2310)} \right)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine whether or not \(f\) <span class="s1">is</span></p>
<p class="p2">(i) <span class="Apple-converted-space">    </span>injective;</p>
<p class="p3">(ii) <span class="Apple-converted-space">   </span>surjective.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The group \(\{ G,{\text{ }} * \} \) has a subgroup \(\{ H,{\text{ }} * \} \). The relation \(R\) is defined, for \(x,{\text{ }}y \in G\), by \(xRy\) if and only if \({x^{ - 1}} * y \in H\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that \(R\) is an equivalence relation.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Given that \(G = \{ 0,{\text{ }} \pm 1,{\text{ }} \pm 2,{\text{ }} \ldots \} \), \(H = \{ 0,{\text{ }} \pm 4,{\text{ }} \pm 8,{\text{ }} \ldots \} \) and \( * \) denotes addition, find the equivalence class containing the number \(3\).</span></p>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(G\) is a group. The elements \(a,b \in G\) , satisfy \({a^3} = {b^2} = e\) and \(ba = {a^2}b\) , where \(e\) is the </span><span style="font-family: times new roman,times; font-size: medium;">identity element of \(G\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that&nbsp;\({(ba)^2} = e\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Express \({(bab)^{ - 1}}\) in its simplest form.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Given that \(a \ne e\) ,</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i) &nbsp; &nbsp; show that \(b \ne e\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; show that \(G\) is not Abelian.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The set \({{\rm{S}}_1} = \left\{ {2,4,6,8} \right\}\) and \({ \times _{10}}\) denotes multiplication modulo \(10\).</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Write down the Cayley table for \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) is a group.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; Show that this group is cyclic.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Now consider the group \(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) where \({{\rm{S}}_2} = \left\{ {1,9,11,19} \right\}\) and \({{ \times _{20}}}\) denotes </span><span style="font-family: times new roman,times; font-size: medium;">multiplication modulo \(20\). Giving a reason, state whether or not \(\left\{ {{{\rm{S}}_1},{ \times _{10}}} \right\}\) and </span><span style="font-family: times new roman,times; font-size: medium;">\(\left\{ {{{\rm{S}}_1},{ \times _{20}}} \right\}\) are isomorphic.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Let <em><strong>S</strong></em> be the set of matrices given by</span></p>
<p style="text-align: center;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\left[ \begin{array}{l}<br>a\\<br>c<br>\end{array} \right.\left. \begin{array}{l}<br>b\\<br>d<br>\end{array} \right]\) ; \(a,b,c,d \in \mathbb{R}\), \(ad - bc = 1\)</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relation \(R\) is defined on \(S\) as follows. Given \(\boldsymbol{A}\) , </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{B} \in S\)</span> , \(\boldsymbol{ARB}\) if and only if there </span><span style="font-size: medium;"><span style="font-family: times new roman,times;">exists </span></span><span style="font-size: medium;"><span style="font-family: times new roman,times;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{X} \in S\)</span></span> </span></span><span style="font-size: medium;"><span style="font-family: times new roman,times;">such that </span></span><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{A} = \boldsymbol{BX}\)</span><span style="font-size: medium;"><span style="font-family: times new roman,times;"> .<br></span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that \(R\) is an equivalence relation.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relationship between \(a\) , \(b\) , \(c\) and \(d\) is changed to \(ad - bc = n\) . State, with </span><span style="font-family: times new roman,times; font-size: medium;">a reason, whether or not there are any non-zero values of \(n\) , other than \(1\), </span><span style="font-family: times new roman,times; font-size: medium;">for which \(R\) is an equivalence relation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the set \(S = \{ 0,{\text{ }}1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5\} \) <span class="s1">under the operation of addition modulo \(6\)</span>, denoted by \({ + _6}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Construct the Cayley table for \(\{ S,{\text{ }}{ + _6}\} \).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that \(\{ S,{\text{ }}{ + _6}\} \) forms an Abelian group.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the order of each element.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain whether or not the group is cyclic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Prove that the function \(f:\mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}\) defined by \(f(x,{\text{ }}y) = (2x + y,{\text{ }}x + y)\) is a bijection.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Show that the set \(S\) of numbers of the form \({2^m} \times {3^n}\) , where \(m,n \in \mathbb{Z}\) , forms a </span><span style="font-family: times new roman,times; font-size: medium;">group \(\left\{ {S, \times } \right\}\) under multiplication.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Show that \(\left\{ {S, \times } \right\}\) is isomorphic to the group of complex numbers \(m + n{\rm{i}}\) under </span><span style="font-family: times new roman,times; font-size: medium;">addition, where \(m\), \(n \in \mathbb{Z}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relation \(R\) is defined on the set </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\mathbb{Z}\)</span> by \(aRb\) if and only if \(4a + b = 5n\) , </span><span style="font-family: times new roman,times; font-size: medium;">where \(a,b,n \in \mathbb{Z}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that \(R\) is an equivalence relation.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">State the equivalence classes of \(R\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The function \(f:{\mathbb{R}^ + } \times {\mathbb{R}^ + } \to {\mathbb{R}^ + } \times {\mathbb{R}^ + }\) is defined by \(f(x,{\text{ }}y) = \left( {xy,{\text{ }}\frac{x}{y}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Prove that \(f\) is a bijection.</span></p>
</div>
<br><hr><br><div class="specification">
<p>The transformations <em>T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub>, in the plane are defined as follows:</p>
<p><em>T</em><sub>1</sub> : A rotation of 360&deg; about the origin<br><em>T</em><sub>2</sub> : An anticlockwise rotation of 270&deg; about the origin<br><em>T</em><sub>3</sub> : A rotation of 180&deg; about the origin<br><em>T</em><sub>4</sub> : An anticlockwise rotation of 90&deg; about the origin.</p>
</div>

<div class="specification">
<p>The transformation <em>T</em><sub>5</sub> is defined as a reflection in the \(x\)-axis.</p>
</div>

<div class="specification">
<p>The transformation <em>T</em> is defined as the composition of <em>T</em><sub>3</sub> followed by <em>T</em><sub>5</sub> followed by <em>T</em><sub>4</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copy and complete the following Cayley table for the transformations of <em>T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub>, under the operation of composition of transformations.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><em>Show that T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4 </sub>under the operation of composition of transformations form a group. Associativity may be assumed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that this group is cyclic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the 2 × 2 matrices representing <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub> and <em>T</em><sub>5</sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the 2 × 2 matrix representing <em>T</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give a geometric description of the transformation <em>T</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\{ G,{\text{ }} * \} \) is a group of order \(N\) and \(\{ H,{\text{ }} * \} \) is a proper subgroup of \(\{ G,{\text{ }} * \} \) of order \(n\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Define the right coset of \(\{ H,{\text{ }} * \} \) containing the element \(a \in G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; Show that each right coset of \(\{ H,{\text{ }} * \} \) contains \(n\) elements.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; Show that the union of the right cosets of \(\{ H,{\text{ }} * \} \) is equal to \(G\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; Show that any two right cosets of \(\{ H,{\text{ }} * \} \) are either equal or disjoint.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(e) &nbsp; &nbsp; Give a reason why the above results can be used to prove that \(N\) is a multiple of \(n\).</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}<br>a&amp;0&amp;0\\<br>0&amp;b&amp;0\\<br>0&amp;0&amp;c<br>\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( - 1\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that any matrix of this form is its own inverse.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that \(S\) forms an Abelian group under matrix multiplication.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Giving a reason, state whether or not this group is cyclic.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Prove that the number \(14 641\) is the fourth power of an integer in any base greater </span><span style="font-family: times new roman,times; font-size: medium;">than \(6\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">For \(a,b \in \mathbb{Z}\)</span><span style="font-family: times new roman,times; font-size: medium;"> the relation \(aRb\) is defined if and only if \(\frac{a}{b} = {2^k}\) </span><span style="font-family: times new roman,times; font-size: medium;">, \(k \in \mathbb{Z}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Prove that \(R\) is an equivalence relation.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; List the equivalence classes of \(R\) on the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The group \(\left\{ {G, + } \right\}\) is defined by the operation of addition on the set \(G = \left\{ {2n|n \in \mathbb{Z}} \right\}\) .</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The group \(\left\{ {H, + } \right\}\) is defined by the operation of addition on the set \(H = \left\{ {4n|n \in \mathbb{Z}} \right\}\)&nbsp; </span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Prove that \(\left\{ {G, + } \right\}\) and \(\left\{ {H, + } \right\}\) are isomorphic.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the Euclidean algorithm to find \(\gcd (162,{\text{ }}5982)\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The relation \(R\) </span>is defined on \({\mathbb{Z}^ + }\) by \(nRm\) if and only if \(\gcd (n,{\text{ }}m) = 2\).</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>By finding counterexamples show that \(R\) is neither reflexive nor transitive.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Write down the set of solutions of \(nR6\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of size 100 is taken from a normal population with unknown mean <em>&mu;</em> and known variance 36.</p>
</div>

<div class="specification">
<p>Another investigator decides to use the same data to test the hypotheses&nbsp;<em>H</em><sub>0</sub>&thinsp;: <em>&mu;</em> = 65 , <em>H<span style="font-size: 11.6667px;">1</span></em>&thinsp;: <em>&mu;</em> = 67.9.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An investigator wishes to test the hypotheses <em>H</em><sub>0</sub> : <em>μ</em> = 65, <em>H</em><sub>1</sub> : <em>μ</em> &gt; 65.</p>
<p>He decides on the following acceptance criteria:</p>
<p>Accept <em>H</em><sub>0</sub> if the sample mean \(\bar x\) ≤ 66.5</p>
<p>Accept <em>H</em><sub>1</sub> if \(\bar x\) &gt; 66.5</p>
<p>Find the probability of a Type I error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>She decides to use the same acceptance criteria as the previous investigator. Find the probability of a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the critical value for \({\bar x}\) if she wants the probabilities of a Type I error and a Type II error to be equal.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br>