File "markSceme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 2/markSceme-SL-paper1html
File size: 367.09 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p>The vertices A, B, C of an acute angled triangle have position vectors <strong><em>a</em></strong>, <strong><em>b</em></strong>, <strong><em>c </em></strong>with respect to an origin O.</p>
</div>

<div class="specification">
<p>The mid-point of [BC] is denoted by D. The point E lies on [AD] such that \({\text{AE}} = 2{\text{DE}}\).</p>
</div>

<div class="specification">
<p>The perpendiculars from B to [AC] and C to [AB] meet at the point F.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the position vector of E is</p>
<p style="text-align: center;">\(\frac{1}{3}\) (<em><strong>a</strong></em> +&nbsp;<em><strong>b</strong></em> +&nbsp;<em><strong>c</strong></em>).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain briefly why this result shows that the three medians of a triangle are concurrent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the position vector <strong><em>f </em></strong>of F satisfies the equations</p>
<p style="text-align: center;">(<strong><em>b </em></strong>&ndash; <strong><em>f </em></strong>) \( \bullet \) (<strong><em>c </em></strong>&ndash; <strong><em>a</em></strong>) = 0</p>
<p style="text-align: center;">(<strong><em>c </em></strong>&ndash; <strong><em>f </em></strong>) \( \bullet \) (<strong><em>a </em></strong>&ndash; <strong><em>b</em></strong>) = 0.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show, by expanding these equations, that</p>
<p style="text-align: center;">(<strong><em>a</em></strong> &ndash; <strong><em>f </em></strong>) \( \bullet \) (<strong><em>c</em></strong> &ndash; <strong><em>b</em></strong>) = 0.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain briefly why this result shows that the three altitudes of a triangle are concurrent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-17_om_14.20.30.png" alt="M17/5/FURMA/HP1/ENG/TZ0/12.a.i/M"></p>
<p><strong><em>d</em></strong> = <strong><em>b</em></strong> + \(\frac{1}{2}\)(<strong><em>c</em></strong> &ndash; <strong><em>b</em></strong>) = \(\frac{1}{2}\)(<strong><em>b</em></strong> + <strong><em>c</em></strong>) &nbsp; &nbsp; <strong><em>(M1)A1</em></strong></p>
<p><strong><em>e</em></strong> = <strong><em>d</em></strong> + \(\frac{1}{3}\)(<strong><em>a</em></strong> &ndash; <strong><em>d</em></strong>) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>= \(\frac{1}{2}\)(<strong><em>b</em></strong> + <strong><em>c</em></strong>) + \(\frac{1}{3}\)(<strong><em>a</em></strong> - \(\frac{1}{2}\)(<strong><em>b</em></strong> + <strong><em>c</em></strong>)) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>= \(\frac{1}{3}\)(<strong><em>a</em></strong> + <strong><em>b</em></strong> + <strong><em>c</em></strong>) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(because of the symmetry of the result), the other two medians also pass through E. &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-08-17_om_14.32.54.png" alt="M17/5/FURMA/HP1/ENG/TZ0/12.b.i/M"></p>
<p>\(\overrightarrow {{\text{BF}}} \) = <strong><em>f</em></strong> &ndash; <strong><em>b</em></strong> and \(\overrightarrow {{\text{AC}}} \) = <strong><em>c</em></strong> &ndash; <strong><em>a</em></strong> &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>since FB is perpendicular to AC, (<strong><em>b</em></strong> &ndash; <strong><em>f</em></strong>) \( \bullet \) (<strong><em>c</em></strong> &ndash; <strong><em>a</em></strong>) = 0 &nbsp; &nbsp; <strong><em>R1AG</em></strong></p>
<p>similarly since FC is perpendicular to BA, (<strong><em>c</em></strong> &ndash; <strong><em>f</em></strong>) \( \bullet \) (<strong><em>a</em></strong> &ndash; <strong><em>b</em></strong>) = 0 &nbsp; &nbsp; <strong><em>R1AG</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>expanding these equations and adding, &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p><strong><em>b</em></strong> \( \bullet \) <strong><em>c</em></strong> &ndash; <strong><em>b</em></strong> \( \bullet \) <strong><em>a</em></strong> &ndash; <strong><em>f</em></strong> \( \bullet \) <strong><em>c</em></strong> + <strong><em>f</em></strong> \( \bullet \) <strong><em>a</em></strong> + <strong><em>c</em></strong> \( \bullet \) <strong><em>a</em></strong> &ndash; <strong><em>c</em></strong> \( \bullet \) <strong><em>b</em></strong> &ndash; <strong><em>f</em></strong> \( \bullet \) <strong><em>a</em></strong> + <strong><em>f</em></strong> \( \bullet \) <strong><em>b</em></strong> = 0 &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>&ndash; <strong><em>b</em></strong> \( \bullet \) <strong><em>a</em></strong> &ndash; <strong><em>f</em></strong> \( \bullet \) <strong><em>c</em></strong> + <strong><em>c</em></strong> \( \bullet \) <strong><em>a</em></strong> + <strong><em>f</em></strong> \( \bullet \) <strong><em>b</em></strong> = 0 &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>leading to (<strong><em>a</em></strong> &ndash; <strong><em>f</em></strong>) \( \bullet \) (<strong><em>c</em></strong> &ndash; <strong><em>b</em></strong>) = 0 &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>this result shows that AF is perpendicular to BC so that the three altitudes are concurrent (at F) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p><strong><em>[??? marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The point \({\rm{T}}(a{t^2},2at)\) lies on the parabola \({y^2} = 4ax\) . Show that the tangent to </span><span style="font-family: times new roman,times; font-size: medium;">the parabola at T has equation \(y = \frac{x}{t} + at\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The distinct points \({\rm{P}}(a{p^2}, 2ap)\) and \(Q(a{q^2}, 2aq)\) , where \(p\), \(q \ne 0\) , also lie on </span><span style="font-family: times new roman,times; font-size: medium;">the parabola \({y^2} = 4ax\) . Given that the line (PQ) passes through the focus, show </span><span style="font-family: times new roman,times; font-size: medium;">that</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; \(pq = - 1\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; the tangents to the parabola at P and Q, intersect on the directrix.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">\(2y\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = 4a\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{d}}y}}{{{\rm{d}}x}} = \frac{{2a}}{y} = \frac{1}{t}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: Accept parametric differentiation.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the equation of the tangent is</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y - 2at = \frac{1}{t}(x - a{t^2})\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = \frac{x}{t} + at\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: Accept equivalent based on \(y = mx + c\) .</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[3 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; the focus F is (\(a\), \(0\))&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><strong> <span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the gradient of (PQ) is \(\frac{{2a(p - q)}}{{a({p^2} - {q^2})}} = \frac{2}{{p + q}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the equation of (PQ) is \(y = \frac{{2x}}{{p + q}} + \frac{{2apq}}{{p + q}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">substitute \(x = a\) , \(y = 0\)&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>&nbsp;M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(pq = - 1\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>AG</em></strong></span></p>
<p><strong> <span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the condition for PFQ to be collinear is</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> \(\frac{{2a(p - q)}}{{a({p^2} - {q^2})}} = \frac{{2ap}}{{a{p^2} - a}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></em></strong></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{2}{{p + q}} = \frac{{2p}}{{{p^2} - 1}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({p^2} - 1 = {p^2} + pq\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(pq = - 1\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>AG</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: There are alternative approaches.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; the equations of the tangents at P and Q are</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = \frac{x}{p} + ap\) and \(y = \frac{x}{q} + aq\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the tangents meet where</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{x}{p} + ap = \frac{x}{q} + aq\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>M1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = apq = - a\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">the equation of the directrix is \(x = - a\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>R1</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so that the tangents meet on the directrix&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG</em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></em></strong></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">[8 marks]</span></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The normal at the point \({\text{T}}(a{t^2},{\text{ }}2at),{\text{ }}t \ne 0\), on the parabola \({y^2} = 4ax\) meets the parabola again at the point \({\text{S}}(a{s^2},{\text{ }}2as)\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({t^2} + st + 2 = 0\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that \({\rm{S\hat OT}}\) is a right-angle, where O is the origin, determine the possible values of \(t\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{{{\text{d}}y}}{{{\text{d}}t}}}}{{\frac{{{\text{d}}x}}{{{\text{d}}t}}}}\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></p>
<p>\( = \frac{{2a}}{{2at}} = \frac{1}{t}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>the gradient of the normal \( =&nbsp; - t\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>the equation of the normal at T is \(y - 2at =&nbsp; - t(x - a{t^2})\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>substituting the coordinates of S, &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\(2as - 2at =&nbsp; - t(a{s^2} - a{t^2})\)</p>
<p>\(2a(s - t) =&nbsp; - at(s - t)(s + t)\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(2 =&nbsp; - t(s + t) =&nbsp; - st - {t^2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\({t^2} + st + 2 = 0\) &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<p><strong><em>[7 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient of \({\text{OT}} = \frac{{2at}}{{a{t^2}}} = \frac{2}{t}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>gradient of \({\text{OS}} = \frac{{2as}}{{a{s^2}}} = \frac{2}{s}\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></p>
<p>the condition for perpendicularity is \(\frac{2}{t} \times \frac{2}{s} =&nbsp; - 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>\({t^2} - 4 + 2 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(t =&nbsp; \pm \sqrt 2 \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p><strong><em>[5 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The triangle ABC is isosceles and AB = BC = 5. D is the midpoint of AC and BD = 4.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Find the lengths of the tangents from A, B and D to the circle inscribed in </span><span style="font-family: times new roman,times; font-size: medium;">the triangle ABD.</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/bush.png" alt></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">AD \( = 3\) &nbsp;&nbsp;&nbsp;&nbsp;<em><strong> (A1)</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Let the lengths of the tangents be as shown.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Then,</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(x + y = 3\)</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(y + z = 4\)</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(x + z = 5\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>(M1)A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Solving,</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(x = 2\) , \(y = 1\) , \(z = 3\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>A1A1A1</em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Given that the tangents at the points P and Q on the parabola \({y^2} = 4ax\) are perpendicular, find the locus of the midpoint of PQ.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><strong>EITHER</strong></p>
<p>attempt to differentiate       <em><strong>(M1)</strong></em></p>
<p>let \(y = 2at \Rightarrow \frac{{{\text{d}}y}}{{{\text{d}}t}} = 2a\) and \(x = a{t^2} \Rightarrow \frac{{{\text{d}}x}}{{{\text{d}}t}} = 2at\)     <em><strong>A1</strong></em></p>
<p>hence \(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{{\text{d}}y}}{{{\text{d}}t}} \times \frac{{{\text{d}}t}}{{{\text{d}}x}} = \frac{{2a}}{{2at}} = \frac{1}{t}\)      <em><strong>A1</strong></em></p>
<p>let P have coordinates \(\left( {at_1^2,\,2a{t_1}} \right)\) and Q have coordinates \(\left( {at_2^2,\,2a{t_2}} \right)\)     <em><strong> (M1)</strong></em></p>
<p>therefore gradient of tangent at P is \(\frac{1}{{{t_1}}}\) and gradient of tangent at Q is \(\frac{1}{{{t_2}}}\)    <em><strong>A1</strong></em></p>
<p>since these tangents are perpendicular \(\frac{1}{{{t_1}}} \times \frac{1}{{{t_2}}} =  - 1 \Rightarrow {t_1}{t_2} =  - 1\)    <em><strong>A1</strong></em></p>
<p>mid-point of PQ is \(\left( {\frac{{a\left( {t_1^2 + t_2^2} \right)}}{2},\,\,a\left( {{t_1} + {t_2}} \right)} \right)\)      <em><strong>A1</strong></em></p>
<p>\({y^2} = {a^2}\left( {t_1^2 + 2{t_1}{t_2} + t_2^2} \right)\)     <em><strong>M1</strong></em></p>
<p>\({y^2} = {a^2}\left( {\frac{{2x}}{a} - 2} \right)\,\,\,\left( { \Rightarrow {y^2} = 2ax - 2{a^2}} \right)\)    <em><strong>A1</strong></em></p>
<p><strong>OR</strong></p>
<p>attempt to differentiate      <em><strong> (M1)</strong></em></p>
<p>\(2y\frac{{{\text{d}}y}}{{{\text{d}}x}} = 4a\)      <em><strong>A1</strong></em></p>
<p>\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{2a}}{y}\)</p>
<p>let coordinates of P be \(\left( {{x_1},\,{y_1}} \right)\) and the coordinates of Q be \(\left( {{x_2},\,{y_2}} \right)\)      <em><strong> (M1)</strong></em></p>
<p>coordinates of midpoint of PQ are \(\left( {\frac{{{x_1} + {x_2}}}{2},\,\,\frac{{{y_1} + {y_2}}}{2}} \right)\)      <em><strong>M1</strong></em></p>
<p>if the tangents are perpendicular \(\frac{{2a}}{{{y_1}}} \times \frac{{2a}}{{{y_2}}} =  - 1\)      <em><strong>A1</strong></em></p>
<p>\( \Rightarrow {y_1}{y_2} =  - 4{a^2}\)</p>
<p>\(y_1^2 + y_2^2 = 4a\left( {{x_1} + {x_2}} \right)\)      <em><strong>A1</strong></em></p>
<p>\(\frac{{y_1^2 + 2{y_1}{y_2} + y_2^2}}{4} = \frac{{4a\left( {{x_1} + {x_2}} \right) + 2{y_1}{y_2}}}{4}\)      <em><strong>M1</strong></em></p>
<p>\(\left( {\frac{{{y_1} + {y_2}}}{2}} \right) = 2a\frac{{{x_1} + {x_2}}}{2} - \frac{{8{a^2}}}{4}\)      <em><strong>A1</strong></em></p>
<p>hence equation of locus is \({y^2} = 2ax - 2{a^2}\)     <em><strong>A1</strong></em></p>
<p><em><strong>[9 marks]</strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{ABCDEF}}\) is a hexagon. A circle lies inside the hexagon and touches each of the six sides.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">Show that \({\text{AB}} + {\text{CD}} + {\text{EF}} = {\text{BC}} + {\text{DE}} + {\text{FA}}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/hex.jpg" alt>&nbsp; &nbsp; &nbsp;<strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the lengths of the two tangents from a point to a circle are equal &nbsp; &nbsp; <strong><em>(R1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{AG}} = {\text{LA}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{GB}} = {\text{BH}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{CI}} = {\text{HC}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{ID}} = {\text{DJ}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{EK}} = {\text{JE}}\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{KF}} = {\text{ FL}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">adding,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{(AG}} + {\text{GB)}} + {\text{(CI}} + {\text{ID)}} + {\text{(EK}} + {\text{KF)}} = {\text{(BH}} + {\text{HC)}} + {\text{(DJ}} + {\text{JE)}} + {\text{(FL}} + {\text{LA)}}\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{AB}} + {\text{CD}} + {\text{EF}} = {\text{BC}} + {\text{DE}} + {\text{FA}}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[5 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the curve C given by \(y = {x^3}\).</p>
<p class="p1">The tangent at a point <span class="s1">P </span>on \(C\) meets the curve again at <span class="s1">Q</span>. The tangent at <span class="s1">Q </span>meets the curve again at <span class="s1">R</span>. Denote the \(x\)-coordinates of \({\text{P, Q}}\) and <span class="s1">R</span>, by \({x_1},{\text{ }}{x_2}\) and \({x_3}\) respectively where \({x_1} \ne 0\). Show that, \({x_1},{\text{ }}{x_2},{\text{ }}{x_3}\) form the first three elements of a divergent geometric sequence.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">attempt to find the equation of the tangent at P <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p1"><span class="Apple-converted-space">\(y - x_1^3 = 3x_1^2(x - {x_1})\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p2">the tangent meets \(C\) when</p>
<p class="p2"><span class="Apple-converted-space">\({x^3} - x_1^3 = 3x_1^2(x - {x_1})\)    </span><strong><em>M1</em></strong></p>
<p class="p2">attempt to solve the cubic <span class="Apple-converted-space">    </span><strong><em>M1</em></strong></p>
<p class="p2">the \(x\)<span class="s2">-coordinate of Q </span>satisfies</p>
<p class="p2"><span class="Apple-converted-space">\({x^2} + x{x_1} - 2x_1^2 = 0\)    </span><strong><em>A1</em></strong></p>
<p class="p2">hence \({x_2} =  - 2{x_1}\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2">hence \({x_3} = 4{x_1}\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p2">hence \({x_1},{\text{ }}{x_2},{\text{ }}{x_3}\) form the first three terms of a geometric sequence with common ratio \( - 2\) so the sequence is divergent <span class="Apple-converted-space">    </span><strong><em>R1AG</em></strong></p>
<p class="p3"> </p>
<p class="p2"><strong>Note: <span class="Apple-converted-space">    </span></strong>Final <strong><em>R1 </em></strong>is not dependent on final 3 <strong><em>A1</em></strong>s providing they form a geometric sequence.</p>
<p class="p3"> </p>
<p class="p2"><strong><em>Total [8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This question caused a problem for many candidates and only a small number of fully correct answers were seen. Most candidates were able to find a generalised equation of a tangent, but were then unable to see what could be replaced in order to find a quadratic equation that could be solved.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The points <span class="s1">P, Q </span>and <span class="s1">R</span>, lie on the sides <span class="s1">[AB], [AC] </span>and <span class="s1">[BC]</span>, respectively, of the triangle <span class="s1">ABC</span>. The lines <span class="s1">(AR), (BQ) </span>and <span class="s1">(CP) </span>are concurrent.</p>
<p class="p1">Use Ceva’s theorem to prove that <span class="s1">[PQ] </span>is parallel to <span class="s1">[BC] </span>if and only if <span class="s1">R </span>is the midpoint of <span class="s1">[BC]</span>.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">suppose R is the midpoint of BC <span class="Apple-converted-space">    </span><span class="s1"><strong><em>M1</em></strong></span></p>
<p class="p2"> </p>
<p class="p3"><strong>Note: <span class="Apple-converted-space">    </span></strong>The first mark is for initiating a relevant discussion for “if” or “only if” by Ceva’s theorem.</p>
<p class="p2"> </p>
<p class="p3"><span class="Apple-converted-space">\(\frac{{{\text{AP}}}}{{{\text{PB}}}} \times \frac{{{\text{BR}}}}{{{\text{RC}}}} \times \frac{{{\text{CQ}}}}{{{\text{QA}}}} = 1\)    </span><strong><em>A1</em></strong></p>
<p class="p3"><span class="s2">\( \Rightarrow \frac{{{\text{AP}}}}{{{\text{PB}}}} = \frac{{{\text{AQ}}}}{{{\text{QC}}}}\) </span>or equivalent <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p4"><span class="Apple-converted-space">\( \Rightarrow \frac{{{\text{PB}}}}{{{\text{AP}}}} + 1 = \frac{{{\text{QC}}}}{{{\text{AQ}}}} + 1\)    </span><span class="s1"><strong><em>(M1)</em></strong></span></p>
<p class="p4">\( \Rightarrow \frac{{{\text{AP}} + {\text{PB}}}}{{{\text{AP}}}} = \frac{{{\text{AQ}} + {\text{QC}}}}{{{\text{AQ}}}}\)</p>
<p class="p4"><span class="Apple-converted-space">\( \Rightarrow \frac{{{\text{AB}}}}{{{\text{AP}}}} = \frac{{{\text{AC}}}}{{{\text{AQ}}}}\)    </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p3"><span class="s3">\( \Rightarrow \) triangles APQ and ABC </span>are similar with common base angles <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1">so PQ is parallel to BC <span class="Apple-converted-space">    </span><span class="s1"><strong><em>AG</em></strong></span></p>
<p class="p3">statement of the converse <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p3">the argument is reversible <span class="Apple-converted-space">    </span><strong><em>R1AG</em></strong></p>
<p class="p5"><strong><em>[8 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This was again a question which a significant number of students were unable to start. For those who did start only a small number understood the significance of &ldquo;if and only if&rdquo; meaning that wholly correct answers were not often seen.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The points <span class="s1">A, B </span>have coordinates \(( - 3,{\text{ }}0)\), \((5,{\text{ }}0)\) respectively. Consider the Apollonius circle \(C\) which is the locus of point <span class="s1">P </span><span class="s2">where</span></p>
<p class="p2">\[\frac{{{\text{AP}}}}{{{\text{BP}}}} = k{\text{ for }}k \ne 1.\]</p>
<p class="p1">Given that the centre of \(C\) has coordinates \((13,{\text{ }}0)\), find</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>the value of \(k\)<span class="s1">;</span></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the radius of \(C\)<span class="s1">;</span></p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>the \(x\)-intercepts of \(C\).</p>
<div class="marks">[11]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Let </span><span class="s2">M </span>be any point on \(C\) and <span class="s2">N </span>be the \(x\)-intercept of \(C\) between <span class="s2">A </span>and <span class="s2">B</span>.</p>
<p class="p1">Prove that \({\rm{A\hat MN}} = {\rm{N\hat MB}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space">    </span>let \((x,{\text{ }}y)\) </span>be a point on \(C\)</p>
<p class="p2">then \({(x + 3)^2} + {y^2} = {k^2}\left( {{{(x - 5)}^2} + {y^2}} \right)\) <span class="Apple-converted-space">    </span><span class="s2"><strong><em>M1A1A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Award <strong><em>M1 </em></strong>for form of an Apollonius circle, <strong><em>A1 </em></strong>for each side.</p>
<p class="p3"> </p>
<p class="p1">rearrange, for example,</p>
<p class="p1"><span class="Apple-converted-space">\(({k^2} - 1){x^2} - (10{k^2} + 6)x + ({k^2} - 1){y^2} + 25{k^2} - 9 = 0\)    </span><strong><em>A1</em></strong></p>
<p class="p2"><span class="s2">equate the \(x\)</span>-coordinate of the centre as given by this equation to 13<span class="s2">:</span></p>
<p class="p1"><span class="Apple-converted-space">\(\frac{{5{k^2} + 3}}{{{k^2} - 1}} = 13\)    </span><strong><em>M1A1</em></strong></p>
<p class="p1">obtain \({k^2} = 2 \Rightarrow k = \sqrt 2 \) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span><strong>METHOD 1</strong></p>
<p class="p2"><span class="s2">with this value of \(k\)</span>, the equation can be reduced to the form</p>
<p class="p2"><span class="Apple-converted-space">\({(x - 13)^2} + {y^2} = 128\)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p1">obtain the radius \(\sqrt {128} {\text{ }}\left( { = 8\sqrt 2 } \right)\) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><span class="s1">assuming N </span>is the \(x\)-intercept of \(C\) <span class="s1">between A and B</span></p>
<p class="p2"><span class="Apple-converted-space">\(\frac{{{\text{AB}}}}{{{\text{BN}}}} = \frac{{16 - r}}{{r - 8}} = \sqrt 2 \)    </span><span class="s2"><strong><em>M1A1</em></strong></span></p>
<p class="p4"><span class="Apple-converted-space">\( \Rightarrow r = 8\sqrt 2 \)    </span><span class="s2"><strong><em>A1</em></strong></span></p>
<p class="p3"> </p>
<p class="p1"><strong>Note: <span class="Apple-converted-space">    </span></strong>Accept answers given in terms of \(k\), if no value of \(k\) found in (a)(i).</p>
<p class="p3"> </p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>\(x\)-intercepts are \(13 \pm 8\sqrt 2 \) <span class="Apple-converted-space">    </span><strong><em>A1</em></strong></p>
<p class="p1"><strong><em>[11 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span class="s1">because N </span>lies on the circle it satisfies the Apollonius property</p>
<p class="p1">hence \({\text{AN}} = \sqrt 2 {\text{NB}}\) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1">but as \({\text{AM}} = \sqrt 2 {\text{MB}}\) <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p1">by the converse to the angle-bisector theorem <span class="Apple-converted-space">    </span><strong><em>R1</em></strong></p>
<p class="p2"><span class="Apple-converted-space">\({\rm{A\hat MN}} = {\rm{N\hat MB}}\)    </span><span class="s2"><strong><em>AG</em></strong></span></p>
<p class="p1"><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was the first one on the paper to cause a significant problem for the majority of candidates. Many were unable to start and a small number were unable to successfully deal with the algebraic manipulation required from the method they had embarked upon. For those who were successful at part (a), part (b) was often not fully correct, again due to the degree of formality required from the command term &ldquo;prove&rdquo;.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">This question was the first one on the paper to cause a significant problem for the majority of candidates. Many were unable to start and a small number were unable to successfully deal with the algebraic manipulation required from the method they had embarked upon. For those who were successful at part (a), part (b) was often not fully correct, again due to the degree of formality required from the command term &ldquo;prove&rdquo;.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The point \({\rm{P}}(x,y)\) moves in such a way that its distance from the point (\(1\) , \(0\)) is three </span><span style="font-family: times new roman,times; font-size: medium;">times its distance from the point (\( -1\) , \(0\)) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Find the equation of the locus of P.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Show that this equation represents a circle and state its radius and the coordinates </span><span style="font-family: times new roman,times; font-size: medium;">of its centre.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">We are given that</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\sqrt {{{(x - 1)}^2} + {y^2}}&nbsp; = 3\sqrt {{{(x + 1)}^2} + {y^2}} \)&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>&nbsp;M1A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\({x^2} - 2x + 1 + {y^2} = 9({x^2} + 2x + 1 + {y^2})\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(8{x^2} + 8{y^2} + 20x + 8 = 0\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Rewrite the equation in the form</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\({\left( {x + \frac{5}{4}} \right)^2} + {y^2} = - 1 + \frac{{25}}{{16}} = \frac{9}{{16}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">This represents a circle with radius \( = \frac{3}{4}\) ; centre \(\left( { - \frac{5}{4},0} \right)\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1A1</span></em></strong></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: Allow <em><strong>FT</strong></em> from the line above.</span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The parabola \(P\) has equation \({y^2} = 4ax\). The distinct points \({\text{U}}\left( {a{u^2},{\text{ }}2au} \right)\) and \({\text{V}}\left( {a{v^2},{\text{ }}2av} \right)\) lie on \(P\), where \(u,{\text{ }}v \ne 0\). Given that \({\rm{U\hat OV}}\) is </span><span style="font-family: 'times new roman', times; font-size: medium;">a right angle, where \({\text{O}}\) denotes the origin,</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; show that \(v =&nbsp; - \frac{4}{\mu }\);</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; find expressions for the coordinates of&nbsp;\({\text{W}}\), the midpoint of \([{\text{UV}}]\), in terms of \(a\) and \(u\);</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; show that the locus of&nbsp;\({\text{W}}\), as \(u\) varies, is the parabola \({P'}\) with equation \({y^2} = 2ax - 8{a^2}\);</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; determine the coordinates of the vertex of \({P'}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; gradient of \({\text{OU}} = \frac{{2au}}{{a{u^2}}} = \frac{2}{u}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">gradient of \({\text{OV}} = \frac{{2av}}{{a{v^2}}} = \frac{2}{v}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">since the lines are perpendicular,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\frac{2}{u} \times \frac{2}{v} =&nbsp; - 1\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so \(v =&nbsp; - \frac{4}{u}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[3 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; coordinates of&nbsp;\({\text{W}}\) are \(\left( {\frac{{a({u^2} + {v^2})}}{2},{\text{ }}\frac{{2a(u + v)}}{2}} \right)\) &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = \left( {\frac{a}{2}\left( {{u^2} + \frac{{16}}{{{u^2}}}} \right),{\text{ }}a\left( {u - \frac{4}{u}} \right)} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(c) &nbsp; &nbsp; putting</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(x = \frac{a}{2}\left( {{u^2} + \frac{{16}}{{{u^2}}}} \right);{\text{ }}y = a\left( {u - \frac{4}{u}} \right)\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">it follows that</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({y^2} = {a^2}\left( {{u^2} + \frac{{16}}{{{u^2}}} - 8} \right)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = 2ax - 8{a^2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong>Note:&nbsp;</strong>Accept verification.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica; min-height: 25.0px;">&nbsp;</p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(d) &nbsp; &nbsp; since \({y^2} = 2a(x - 4a)\) &nbsp; &nbsp; <strong><em>(M1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">the vertex is at \((4a,{\text{ }}0)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[2 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Prove the internal angle bisector theorem, namely that the internal bisector of an </span><span style="font-family: times new roman,times; font-size: medium;">angle of a triangle divides the side opposite the angle into segments proportional </span><span style="font-family: times new roman,times; font-size: medium;">to the sides adjacent to the angle.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The bisector of the exterior angle \(\widehat A\) of the triangle ABC meets (BC) at P. </span><span style="font-family: times new roman,times; font-size: medium;">The bisector of the interior angle \(\widehat B\) meets [AC] at Q. Given that (PQ) meets </span><span style="font-family: times new roman,times; font-size: medium;">[AB] at R, use Menelaus&rsquo; theorem to prove that (CR) bisects the angle \({\rm{A}}\widehat {\rm{C}}{\rm{B}}\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER</span></strong></p>
<p><br><img src="images/bella.png" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">let [AD] bisect A, draw a line through C parallel to (AD) meeting (AB) at E&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">then \({\rm{B}}\widehat {\rm{A}}{\rm{D}} = {\rm{A}}\widehat {\rm{E}}{\rm{C}}\) and \({\rm{D}}\widehat {\rm{A}}{\rm{C}} = {\rm{A}}\widehat {\rm{C}}{\rm{E}}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">since \({\rm{B}}\widehat {\rm{A}}{\rm{D}} = {\rm{D}}\widehat {\rm{A}}{\rm{C}}\) it follows that \({\rm{A}}\widehat {\rm{E}}{\rm{C}} = {\rm{A}}\widehat {\rm{C}}{\rm{E}}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">triangle AEC is therefore isosceles and \({\rm{AE}} = {\rm{AC}}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">since triangles BAD and BEC are similar</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{BD}}}}{{{\rm{DC}}}} = \frac{{{\rm{AB}}}}{{{\rm{AE}}}} = \frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>M1A1</em></strong></span></p>
<p><strong> <span style="font-family: times new roman,times; font-size: medium;">OR</span></strong></p>
<p><br><img src="images/alice2.png" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AB}}}}{{\sin \beta }} = \frac{{{\rm{BD}}}}{{\sin \alpha }}\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1</strong></em></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{AC}}}}{{\sin (180 - \beta )}} = \frac{{{\rm{DC}}}}{{\sin \alpha }}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\sin \beta&nbsp; = \sin (180 - \beta )\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"> \( \Rightarrow \frac{{{\rm{AB}}}}{{{\rm{BD}}}} = \frac{{{\rm{AC}}}}{{{\rm{DC}}}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow \frac{{{\rm{BD}}}}{{{\rm{DC}}}} = \frac{{{\rm{AB}}}}{{{\rm{AC}}}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;"> [6 marks]</span></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/half.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">using the angle bisector theorem,&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{AQ}}}}{{{\rm{QC}}}} = \frac{{{\rm{AB}}}}{{{\rm{BC}}}}\) and \(\frac{{{\rm{BP}}}}{{{\rm{PC}}}} = \frac{{{\rm{AB}}}}{{{\rm{BC}}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">using Menelaus&rsquo; theorem with (PR) as transversal to triangle ABC&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} \times \frac{{{\rm{AQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{PC}}}}{{{\rm{BP}}}} = ( - )1\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">A1</span></em></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">substituting the above results,&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} \times \frac{{{\rm{AB}}}}{{{\rm{BC}}}} \times \frac{{{\rm{AC}}}}{{{\rm{AB}}}} = ( - )1\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">giving</span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{BR}}}}{{{\rm{AR}}}} = \frac{{{\rm{BC}}}}{{{\rm{AC}}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">A1</span></strong></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">[CR] therefore bisects angle C by (the converse to) the angle bisector </span><span style="font-family: times new roman,times; font-size: medium;">theorem&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1AG</em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;"> [8 marks]</span></em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Triangle ABC has points D, E and F on sides [BC], [CA] and [AB] respectively; </span><span style="font-family: times new roman,times; font-size: medium;">[AD], [BE] and [CF] intersect at the point P. If 3BD = 2DC and CE = 4EA , </span><span style="font-family: times new roman,times; font-size: medium;">calculate the ratios</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">AF : FB .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">AP : PD</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="images/south.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">using Ceva's theorem, </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{BD}}}}{{{\rm{DC}}}} \times \frac{{{\rm{CE}}}}{{{\rm{EA}}}} \times \frac{{{\rm{AF}}}}{{{\rm{FB}}}} = 1\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1 </strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{2}{3} \times \frac{4}{1} \times \frac{{{\rm{AF}}}}{{{\rm{FB}}}} = 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AF}}}}{{{\rm{FB}}}} = \frac{3}{8}\) or AF : FB \( = 3 : 8\) &nbsp;&nbsp;&nbsp; <strong><em>A1 </em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">[4 marks] </span></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">using Menelaus' theorem in triangle ACD with BPE as transversal </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AE}}}}{{{\rm{EC}}}} \times \frac{{{\rm{CB}}}}{{{\rm{BD}}}} \times \frac{{{\rm{DP}}}}{{{\rm{PA}}}} = - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1A1</em></strong> </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{1}{4} \times&nbsp; - \frac{5}{2} \times \frac{{{\rm{DP}}}}{{{\rm{PA}}}} = - 1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{DP}}}}{{{\rm{PA}}}} = \frac{8}{5}\) or AP : PD =&nbsp;5 :&nbsp;8&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>A1</strong> </em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[4 marks] </span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">This proved difficult for many candidates and often the ratios and negative signs were "blurred". </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">This proved difficult for many candidates and often the ratios and negative signs were "blurred". </span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/energy.png" alt></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The figure shows a circle C<sub>1</sub> with centre O and diameter [PQ] and a circle C<sub>2</sub> which </span><span style="font-family: times new roman,times; font-size: medium;">intersects (PQ) at the points R and S. T is one point of intersection of the two circles </span><span style="font-family: times new roman,times; font-size: medium;">and (OT) is a tangent to C<sub>2</sub> .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that&nbsp;\(\frac{{{\rm{OR}}}}{{{\rm{OT}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i) &nbsp; &nbsp; Show that&nbsp;\({\rm{PR}} - {\rm{RQ}} = 2{\rm{OR}}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that&nbsp;\(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}}\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">by the tangent &ndash; secant theorem,&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\({\rm{O}}{{\rm{T}}^2} = {\rm{OR}} \bullet {\rm{OS}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so that \(\frac{{{\rm{OR}}}}{{{\rm{OT}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>AG </em></strong></span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">[2 marks] </span></em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; \({\rm{PR}} - {\rm{RQ}} = {\rm{PO}} + {\rm{OR}} - ({\rm{OQ}} - {\rm{OR}})\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\( = 2{\rm{OR}}\)&nbsp;&nbsp;&nbsp; </span><em><span style="font-family: times new roman,times; font-size: medium;"><strong>AG</strong> </span></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; attempt to continue the process set up in (b)(i)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(M1) </strong></em></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\({\rm{PR + RQ}} = {\rm{PO}} + {\rm{OR + OQ}} - {\rm{OR}} = 2{\rm{OT}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><span style="font-family: times new roman,times; font-size: medium;"><strong>A1</strong> </span></em></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\({\rm{PS}} - {\rm{SQ}} = {\rm{PQ}} + {\rm{QS}} - {\rm{SQ}} = 2{\rm{OT}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><span style="font-family: times new roman,times; font-size: medium;"><em>A1</em> </span></strong></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\({\rm{PS + SQ}} = {\rm{PO}} + {\rm{OS}} - {\rm{OQ}} = 2{\rm{OS}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><span style="font-family: times new roman,times; font-size: medium;"><strong>A1</strong> </span></em></p>
<p><span style="font-family: times new roman,times; font-size: medium;">it now follows that </span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{OR}}}}{{{\rm{OT}}}}\) </span><span style="font-family: times new roman,times; font-size: medium;">and \(\frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}} = \frac{{{\rm{OT}}}}{{{\rm{OS}}}}\)&nbsp;so using the result in part (a)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>R1</em> </strong></span></p>
<p><span style="font-family: Times New Roman; font-size: medium;">\(\frac{{{\rm{PR}} - {\rm{RQ}}}}{{{\rm{PR}} + {\rm{RQ}}}} = \frac{{{\rm{PS}} - {\rm{SQ}}}}{{{\rm{PS}} + {\rm{SQ}}}}\)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">AG </span></strong></em></p>
<p>&nbsp;</p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></strong></em></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks]</span></strong></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Most candidates solved (a) correctly although some used similar triangles instead of the more obvious tangent-secant theorem. </span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Although (b) and then (c) were fairly well signposted, many candidates were unable to cope with the required algebra. </span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A triangle \(T\) has sides of length \(3\), \(4\) and \(5\).</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Find the radius of the circumscribed circle of \(T\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; Find the radius of the inscribed circle of \(T\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A triangle \(U\) has sides of length \(4\), \(5\) and \(7\).</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Show that the orthocentre, H, of \(U\) lies outside the triangle.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that the foot of the perpendicular from H to the longest side divides </span><span style="font-family: times new roman,times; font-size: medium;">it in the ratio \(29:20\).</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; \(T\) is a right angled triangle \( \Rightarrow \)&nbsp;the hypotenuse is a diameter&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(M1)</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">circumradius \( = 2.5\)&nbsp;&nbsp;&nbsp; &nbsp;<em><strong>A1</strong> </em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) &nbsp; &nbsp; diagram seen with some sensible unknown(s) given&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong> </em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/windmill.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">need to solve \(3 - r + 4 - r = 5\)&nbsp;(or equivalent)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1A1</strong> </em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(r = 1\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1 </strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><em><strong>&nbsp;</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[6 marks] </span></strong></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; recognition that \({7^2} &gt; {4^2} + {5^2}\)&nbsp;&nbsp;&nbsp; &nbsp;<strong><em>M1&nbsp;</em></strong>  </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">therefore one of the angles is obtuse&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1 </strong></em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">so the orthocentre, H, of \(U\) lies outside of the triangle&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>AG </em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong><em>&nbsp;</em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; foot of perpendicular from H to longest side is the foot of the perpendicular from A to the longest side&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>(R1) </em></strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/lawrue.png" alt></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">EITHER </span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">attempt to solve \({4^2} - {x^2} = {5^2} - {(7 - x)^2}\) or \({4^2} - {(7 - y)^2} = {5^2} - {y^2}\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>M1A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">obtain \(x = \frac{{20}}{7}\) or \(y = \frac{{29}}{7}\)&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>&nbsp;A1</em> </strong></span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;">OR </span></strong></p>
<p><span style="font-family: times new roman,times; font-size: medium;">if \(\hat B\)&nbsp;is the smallest angle </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(\cos \hat B = \frac{{25 + 49 - 16}}{{2 \times 5 \times 7}}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\( = \frac{{58}}{{70}} = \frac{{29}}{{35}}\)</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(y = 5 \times \frac{{29}}{{35}} = \frac{{29}}{7}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">\(x = 7 - \frac{{29}}{7} = \frac{{20}}{7}\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em> </strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>THEN</strong> </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">ratio \(29:20\) (accept \(20:29\))&nbsp;&nbsp;&nbsp;&nbsp;<em><strong> AG</strong> </em></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: Accept the use of Stewart&rsquo;s theorem. </span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">&nbsp;</span></p>
<p><strong><span style="font-family: times new roman,times; font-size: medium;"><em>[6 marks]</em> </span></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A few fully correct answers were seen to this question, but many candidates were unable to make much progress after part a) (i) and a significant minority made no attempt at all. A few fully correct answers were seen to part a) (ii) and part b) (i). In both part a) (ii) and part b) (ii) a majority of candidates were unable to draw a meaningful diagram to enable them to start the question.</span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">A few fully correct answers were seen to this question, but many candidates were unable to make much progress after part a) (i) and a significant minority made no attempt at all. A few fully correct answers were seen to part a) (ii) and part b) (i). In both part a) (ii) and part b) (ii) a majority of candidates were unable to draw a meaningful diagram to enable them to start the question.</span></p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1"><span class="s1">A wheel of radius \(r\) </span>rolls, without slipping, along a straight path with the plane of the wheel remaining vertical. A point \({\text{A}}\)&nbsp;on the circumference of the wheel is initially at \({\text{O}}\)<span class="s1">. When the wheel is rolled, the radius rotates through an angle of \(\theta \) </span>and the point of contact is now at \({\text{B}}\), where the length of the arc \({\text{AB}}\)&nbsp;is equal to the distance \({\text{OB}}\)<span class="s1">. This is shown in the following diagram.</span></p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-15_om_09.43.46.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find the coordinates of \({\text{A}}\)&nbsp;</span>in terms of \(r\) and \(\theta \).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">As the wheel rolls, the point A </span>traces out a curve. Show that the gradient of this curve is \(\cot \left( {\frac{1}{2}\theta } \right)\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the tangent to the curve when \(\theta&nbsp; = \frac{\pi }{3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p>\({\text{OX}} = {\text{OB}} - {\text{XB}} = r\theta&nbsp; - r\sin \theta&nbsp; = x\) &nbsp; &nbsp; <em>(</em><strong><em>M1)A1</em></strong></p>
<p>\({\text{OY}} = {\text{ZB}} - {\text{ZC}} = r - r\cos \theta&nbsp; = y\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(\frac{{{\text{d}}x}}{{{\text{d}}\theta }} = r - r\cos \theta \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}\theta }} = r\sin \theta \) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{r\sin \theta }}{{r - r\cos \theta }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\( = \frac{{2\sin \frac{\theta }{2}\cos \frac{\theta }{2}}}{{2{{\sin }^2}\frac{\theta }{2}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1A1</em></strong></p>
<p class="p1">\( = \frac{{\cos \frac{\theta }{2}}}{{\sin \frac{\theta }{2}}}\)</p>
<p class="p1">\( = \cot \frac{\theta }{2}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>AG</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>when \(\theta&nbsp; = \frac{\pi }{3}\), gradient \( = \sqrt 3 \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(x = \frac{\pi }{3}r - r\frac{{\sqrt 3 }}{2},{\text{ }}y = r - \frac{r}{2} = \frac{r}{2}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(y - \frac{r}{2} = \sqrt 3 \left( {x - \frac{\pi }{3}r + r\frac{{\sqrt 3 }}{2}} \right)\;\;\;{\text{or}}\;\;\;y = \sqrt 3 x + 2r - \frac{{\pi r}}{{\sqrt 3 }}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates were unable to find the coordinates of the point A which made (b) inaccessible. Many candidates reached the halfway point in (b) but were then unable to use the half angle formulae to obtain the required result. Many of the candidates who failed to solve (b) picked up the A1 in (c) for finding the gradient.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates were unable to find the coordinates of the point A which made (b) inaccessible. Many candidates reached the halfway point in (b) but were then unable to use the half angle formulae to obtain the required result. Many of the candidates who failed to solve (b) picked up the A1 in (c) for finding the gradient.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates were unable to find the coordinates of the point A which made (b) inaccessible. Many candidates reached the halfway point in (b) but were then unable to use the half angle formulae to obtain the required result. Many of the candidates who failed to solve (b) picked up the A1 in (c) for finding the gradient.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; The function \(g\) is defined by \(g(x,{\text{ }}y) = {x^2} + {y^2} + dx + ey + f\) and the circle \({C_1}\) has equation \(g(x, y) = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that the centre of \({C_1}\) has coordinates \(\left( { - \frac{d}{2}, - \frac{e}{2}} \right)\) and the radius of \({C_1}\) is \(\sqrt {\frac{{{d^2}}}{4} + \frac{{{e^2}}}{4} - f} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; The point \({\text{P}}(a, b)\) lies outside \({C_1}\). Show that the length of the tangents from \({\text{P}}\) to \({C_1}\) is equal to \(\sqrt {g(a,{\text{ }}b)} \).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; The circle \({C_2}\) has equation \({x^2} + {y^2} - 6x - 2y + 6 = 0\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">The line \(y = mx\) meets \({C_2}\) at the points&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{R}}\) and&nbsp;\({\text{S}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Determine the quadratic equation whose roots are the <em>x</em>-coordinates of&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{R}}\) and&nbsp;\({\text{S}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; <strong>Hence</strong>, given that \(L\) denotes the length of the tangents from the origin&nbsp;</span><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{O}}\) to \({C_2}\), show that \({\text{OR}} \times {\text{OS}} = {L^2}\).</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; (i) &nbsp; &nbsp; completing the square,</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\left( {x + \frac{d}{2}} \right)^2} + {\left( {y + \frac{e}{2}} \right)^2} - \frac{{{d^2}}}{4} - \frac{{{e^2}}}{4} + f = 0\) &nbsp; &nbsp; <strong><em>M1A1</em></strong></span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">whence the centre&nbsp;\({\text{C}}\) is the point \(\left( { - \frac{d}{2}, - \frac{e}{2}} \right)\) and the radius is</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\(\sqrt {\frac{{{d^2}}}{4} + \frac{{{e^2}}}{4} - f} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({\text{C}}{{\text{P}}^2} = {\left( {a + \frac{d}{2}} \right)^2} + {\left( {b + \frac{e}{2}} \right)^2}\) &nbsp; &nbsp; (<strong><em>A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let \({\text{Q}}\) denote the point of contact of one of the tangents from</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;\({\text{P}}\) to the circle.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{C}}{{\text{Q}}^2} = \frac{{{d^2}}}{4} + \frac{{{e^2}}}{4} - f\) &nbsp; &nbsp; <strong><em>(A1)</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">using Pythagoras&rsquo; Theorem in triangle</span><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;\({\text{CPQ}}\), &nbsp; &nbsp; <em><strong>M1</strong></em></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({L^2} = {\left( {a + \frac{d}{2}} \right)^2} + {\left( {b + \frac{e}{2}} \right)^2} - \left( {\frac{{{d^2}}}{4} + \frac{{{e^2}}}{4} - f} \right)\)</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\( = {a^2} + {b^2} + da + eb + f = g(a, b)\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore \(L = \sqrt {g(a,{\text{ }}b)} \) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; (i) &nbsp; &nbsp; the <em>x</em>-coordinates </span><span style="font-family: 'times new roman', times; font-size: medium;">of&nbsp;\({\text{R, S}}\) satisfy</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({x^2} + {(mx)^2} - 6x - 2mx + 6 = 0\) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\((1 + {m^2}){x^2} - (6 + 2m)x + 6 = 0\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; \({L^2} = g(0,{\text{ }}0) = 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">let&nbsp; \({x_1},{x_2}\) denote the two roots. Then \({x_1}{x_2} = \frac{6}{{1 + {m^2}}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{OR}} = \sqrt {x_1^2 + {{(m{x_1})}^2}}&nbsp; = {x_1}\sqrt {1 + {m^2}} \) and \({\text{OS}} = {x_2}\sqrt {1 + {m^2}} \) &nbsp; &nbsp; <strong><em>M1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">therefore</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">\({\text{OR}} \times {\text{OS}} = {x_1}{x_2}(1 + {m^2}) = 6\) &nbsp; &nbsp; <strong><em>A1</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;">so that \({\text{OR}} \times {\text{OS}} = {L^2}\) &nbsp; &nbsp; <strong><em>AG</em></strong></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px Helvetica;"><span style="font-family: 'times new roman', times; font-size: medium;"><strong><em>[6 marks]</em></strong></span></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The diagram below shows a quadrilateral ABCD and a straight line which intersects </span><span style="font-family: times new roman,times; font-size: medium;">(AB), (BC), (CD), (DA) at the points P, Q, R, S respectively.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/puck.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Using Menelaus&rsquo; theorem, show that \(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{CR}}}}{{{\rm{RD}}}} \times \frac{{{\rm{DS}}}}{{{\rm{SA}}}} = 1\) .</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p align="LEFT"><br><img src="images/tesco.png" alt></p>
<p><span style="font-family: times new roman,times; font-size: medium;">join BD and let the transversal meet (BD) at T&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>(A1)</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">apply Menelaus&rsquo; theorem to triangle ABD with transversal (RS) :&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BT}}}}{{{\rm{TD}}}} \times \frac{{{\rm{DS}}}}{{{\rm{SA}}}} = ( - )1\)&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">apply Menelaus&rsquo; theorem to triangle CBD with transversal (RS) :&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{CR}}}}{{{\rm{RD}}}} \times \frac{{{\rm{DT}}}}{{{\rm{TB}}}} = ( - )1\)&nbsp;&nbsp;&nbsp;&nbsp;<strong><em> A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">multiplying these two results,</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BT}}}}{{{\rm{TD}}}} \times \frac{{{\rm{DS}}}}{{{\rm{SA}}}} \times \frac{{{\rm{BQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{CR}}}}{{{\rm{RD}}}} \times \frac{{{\rm{DT}}}}{{{\rm{TB}}}} = 1\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></em></strong></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">whence</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{CR}}}}{{{\rm{RD}}}} \times \frac{{{\rm{DS}}}}{{{\rm{SA}}}} = 1\)&nbsp;&nbsp;&nbsp;&nbsp; </span><strong><em><span style="font-family: times new roman,times; font-size: medium;">AG</span></em></strong></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><strong>Note</strong>: The question can also be solved by joining AC and letting the transversal meet </span><span style="font-family: times new roman,times; font-size: medium;">(AC) at T. Menelaus&rsquo; Theorem then has to be applied to triangles ABC and ACD.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relevant equations are \(\frac{{{\rm{AP}}}}{{{\rm{PB}}}} \times \frac{{{\rm{BQ}}}}{{{\rm{QC}}}} \times \frac{{{\rm{CT}}}}{{{\rm{TA}}}} = ( - )1\) </span><span style="font-family: times new roman,times; font-size: medium;">and \(\frac{{{\rm{CT}}}}{{{\rm{TA}}}} \times \frac{{{\rm{AS}}}}{{{\rm{SD}}}} \times \frac{{{\rm{DR}}}}{{{\rm{RC}}}} = ( - )1\) .</span></p>
<p><strong><em><span style="font-family: times new roman,times; font-size: medium;">[7 marks]</span></em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">Questions on pure geometry which require an initial construction to be made are usually either well done or not done at all and this was no exception. The obvious construction was to draw the line BD and use Menelaus&rsquo; Theorem twice although some candidates took the more difficult route by joining AC which also leads to the solution. However, many candidates did not start the question at all or tried to apply Menelaus&rsquo; Theorem to existing triangles which was not a successful approach. The examiners saw a number of candidates who produced well set out and well-explained solutions, but there were still a significant number of cases where diagrams were not fully labelled and points were referred to in the working that were not on the diagram. Candidates should realise that to ensure full marks on questions involving geometric proof that there is a certain degree of formality required in the solution. </span></p>
</div>
<br><hr><br><div class="question">
<p class="p1">A circle \({x^2} + {y^2} + dx + ey + c = 0\) and a straight line \(lx + my + n = 0\) intersect. Find the general equation of a circle which passes through the points of intersection, justifying your answer.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1">\({x^2} + {y^2} + dx + ey + c + \lambda (lx + my + n) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1 A1</em></strong></p>
<p class="p2"><em>ie</em>\(\;\;\;\)\({x^2} + {y^2} + x(d + \lambda l) + y(e + \lambda m) + c + \lambda n = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><span class="s1"><strong><em>A1</em></strong></span></p>
<p class="p1">since \({x^2}\) and \({y^2}\) have the same coefficients and there is no \(xy\) term, this is a circle <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">we know the pair of points fit the equation. <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">hence this is the required equation.</p>
<p class="p1">&nbsp;</p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1">Let the general equation be</p>
<p class="p1">\({x^2} + {y^2} + ax + by + q = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">The intersection with the given circle satisfies</p>
<p class="p1">\((a - d)x + (b - e)y + (q - c) = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1A1</em></strong></p>
<p class="p1">This must be the same line as \(lx + my + n = 0\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">Therefore</p>
<p class="p1">\(a - d = \lambda l\;\;\;{\text{giving}}\;\;\;a = d + \lambda l\)</p>
<p class="p1">\(b - e = \lambda m\;\;\;{\text{giving}}\;\;\;b = e + \lambda m\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">\(q - c = \lambda n\;\;\;{\text{giving}}\;\;\;q = c + \lambda n\)</p>
<p class="p3">leading to the required general equation</p>
<p class="p4">&nbsp;</p>
<p class="p1"><strong>Note: </strong>Award <strong><em>M1 </em></strong>to candidates who only attempt to find the points of intersection of the line and circle</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This was the worst answered question on the paper and indeed no complete solution was seen with no candidate having the required insight to write down the solution. Most candidates who attempted the question tried to find the points of intersection of the line and circle which led nowhere.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two line segments [\(\rm{AB}\)] and [\(\rm{CD}\)] meet internally at the point \(\rm{Y}\). Given that</p>
<p class="p1">\({\text{YA}} \times {\text{YB}} = {\text{YC}} \times {\text{YD }}\) show that \(\rm{A}\), \(\rm{B}\), \(\rm{C}\)&nbsp;and&nbsp;\(\rm{D}\)&nbsp;<span class="s1">all lie on the circumference of a circle.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the result also holds if the line segments meet externally at \(\rm{Y}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-15_om_10.50.57.png" alt></p>
<p class="p1">Consider the triangles \(\rm{ACY}\)<span class="s1">&nbsp;</span>and \(\rm{DBY}\)<span class="s1">&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>M1</em></strong></p>
<p class="p1">Then \({\text{YA}} \times {\text{YB}} = {\text{YC}} \times {\text{YD }}\)</p>
<p class="p1">It follows that \(\frac{{{\text{YA}}}}{{{\text{YD}}}} = \frac{{{\text{YC}}}}{{{\text{YB}}}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">Also \({\rm{A\hat YC}} = {\rm{D\hat YB}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">The triangles \(\rm{ACY}\)<span class="s1">&nbsp;</span>and \(\rm{DBY}\)<span class="s1">&nbsp;</span>are therefore similar <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">So \({\rm{A\hat CY}} = {\rm{D\hat BY}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">Therefore by the converse to the angles subtended by a chord theorem,</p>
<p class="p1">the points \(\rm{A}\), \(\rm{B}\), \(\rm{C}\), \(\rm{D}\)<span class="s1">&nbsp;</span>lie on a circle. <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">&nbsp;</p>
<p class="p1"><strong>METHOD 2</strong></p>
<p class="p1"><img src="" alt></p>
<p class="p1">consider the circle passing through \(\rm{ABC}\)<span class="s1">&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>M1</em></strong></p>
<p class="p1">the circle then cuts the line \((\rm{CD})\)&nbsp;at \(\rm{K}\)<span class="s1">&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>M1</em></strong></p>
<p class="p1"><strong>Note: </strong>May be seen on diagram</p>
<p class="p2">&nbsp;</p>
<p class="p1">since \(\rm{Y}\)<span class="s1">&nbsp;</span>lies inside the circle, \(\rm{Y}\)<span class="s1">&nbsp;</span>divides the chord \(\rm{CK}\)<span class="s1">&nbsp;</span>internally</p>
<p class="p1">hence \(\rm{K}\)<span class="s1">&nbsp;</span>and \(\rm{D}\)<span class="s1">&nbsp;</span>are on the same side of \(\rm{Y}\)<span class="s1">&nbsp;<span class="Apple-converted-space">&nbsp; &nbsp; </span></span><strong><em>(R1)</em></strong></p>
<p class="p1">\({\text{YA}} \times {\text{YB}} = {\text{YC}} \times {\text{YK}}\) since \(\rm{A}\), \(\rm{B}\), \(\rm{C}\)<span class="s1">&nbsp;</span>and \(\rm{K}\)<span class="s1">&nbsp;</span>are concyclic <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>M1</em></strong></p>
<p class="p1">\({\text{YA}} \times {\text{YB}} = {\text{YC}} \times {\text{YD }}\) given</p>
<p class="p1">\( \Rightarrow {\text{YC}} \times {\text{YK}} = {\text{YC}} \times {\text{YD }}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>A1</em></strong></p>
<p class="p1">hence \(\rm{K}\)<span class="s1">&nbsp;</span>and \(\rm{D}\)<span class="s1">&nbsp;</span>are the same point <span class="Apple-converted-space">&nbsp; &nbsp; </span><strong><em>R1</em></strong></p>
<p class="p1">the circle passes through&nbsp;\(\rm{D}\)</p>
<p class="p1"><strong>Note: </strong>Allow an argument based on similar triangles and angles in the segment</p>
<p class="p1" style="padding-left: 30px;">Do not allow the use of the converse of the intersecting chords theorem in either (a) or (b)</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><strong>METHOD 1</strong></p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-15_om_11.39.50.png" alt></p>
<p>Since the triangles \(\rm{ACY}\)&nbsp;and \(\rm{DBY}\)&nbsp;are still similar \({\rm{A\hat CY}} = {\rm{D\hat BY}}\) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>Therefore \({\rm{A\hat CY}} + {\rm{D\hat BA}} = {\rm{A\hat CY}} + 180^\circ&nbsp; - {\rm{D\hat BY}}\)</p>
<p style="padding-left: 60px;">\( = 180^\circ \) &nbsp; &nbsp; <strong><em>A1</em></strong></p>
<p>\(\rm{ACDB}\)&nbsp;is therefore a cyclic quadrilateral so the points \(\rm{A}\), \(\rm{B}\), \(\rm{C}\), \(\rm{D}\)&nbsp;lie on a circle. &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>&nbsp;</p>
<p><strong>METHOD 2</strong></p>
<p><img src="" alt></p>
<p>again consider the circle passing through \(\rm{ABC}\)&nbsp;and again let it cut the line \(\rm{CD}\)&nbsp;at \(\rm{K}\). &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>in this case \(\rm{Y}\)&nbsp;lies outside the circle \(\rm{ABC}\)&nbsp;and therefore \(\rm{Y}\)&nbsp;divides the chord \(\rm{CK}\)&nbsp;externally. &nbsp; &nbsp; <strong><em>M1</em></strong></p>
<p>by the secant-secant theorem the same working applies as in part (a) &nbsp; &nbsp; <strong><em>R1</em></strong></p>
<p>and the proof follows identically. &nbsp; &nbsp; <strong><em>AG</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates made no significant attempt at this question. It was expected that solutions would use the intersecting chords theorem but in the event, the majority of candidates who answered the question used similar triangles successfully to prove the required result.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates made no significant attempt at this question. It was expected that solutions would use the intersecting chords theorem but in the event, the majority of candidates who answered the question used similar triangles successfully to prove the required result.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths \(3\) cm </span><span style="font-family: times new roman,times; font-size: medium;">and (\9\) cm respectively. E is a point on side [AB] such that AE is \(3\) cm. Side [DE] is </span><span style="font-family: times new roman,times; font-size: medium;">produced to meet the circumcircle of ABCD at point P. Use Ptolemy&rsquo;s theorem to </span><span style="font-family: times new roman,times; font-size: medium;">calculate the length of chord [AP].</span></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">construct diagonal [DB] and the chords [AP] and [PB]&nbsp;&nbsp;&nbsp;&nbsp; <strong><em>M1</em></strong></span></p>
<p align="LEFT"><br><img src="" alt></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">since \({\rm{D}}\hat {\rm{A}}{\rm{B}} = {90^ \circ }\) , [DB] is the diameter of the circle and \({\rm{DB}} = \sqrt {{9^2} + {3^2}}&nbsp; = 3\sqrt {10} \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>R1A1</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">triangle AED is a right-angled, isosceles triangle so \({\rm{DE}} = 3\sqrt 2 \)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<em><strong>R1A1</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\({\rm{A}}\hat {\rm{E}}{\rm{D}} = {\rm{P}}\hat {\rm{E}}{\rm{B}} = {45^ \circ }\)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>M1</strong></em></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\( \Rightarrow {\rm{PB}} = {\rm{PE}} = 6\cos {\rm{P}}\hat {\rm{E}}{\rm{B}} = \frac{6}{{\sqrt 2 }} = 3\sqrt 2 \)&nbsp;&nbsp;&nbsp;&nbsp; </span><em><strong><span style="font-family: times new roman,times; font-size: medium;">M1A1</span></strong></em></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">using Ptolemy&rsquo;s theorem in quadrilateral APBD</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\({\rm{PB}} \times {\rm{AD + AP}} \times {\rm{DB = DP}} \times {\rm{AB}}\)&nbsp;&nbsp;&nbsp;&nbsp;<strong><em> M1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(3\sqrt 2&nbsp; \times 3 + {\rm{AP}} \times 3\sqrt {10}&nbsp; = \left( {3\sqrt 2&nbsp; + 3\sqrt 2 } \right) \times 9\)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\({\rm{AP}} \times 3\sqrt {10}&nbsp; = 54\sqrt 2&nbsp; - 9\sqrt 2&nbsp; = 45\sqrt 2 \)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<strong><em>A1</em></strong></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;\({\rm{AP}} = \frac{{45\sqrt 2 }}{{3\sqrt {10} }} = 3\sqrt 5 \)&nbsp;&nbsp;&nbsp;&nbsp; <em><strong>A1</strong></em></span></p>
<p><em><strong><span style="font-family: times new roman,times; font-size: medium;">[12 marks]</span></strong></em></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p><span style="font-family: times new roman,times; font-size: medium;">The diagrams that some candidates drew were not always helpful to them and sometimes served to confuse what was required and make the problem harder than it was. Candidates were asked to use Ptolemy&rsquo;s theorem but some ignored this request. Lengths of various segments were often written down without any evidence of where they came from. </span></p>
</div>
<br><hr><br>