File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 2/SL-paper2html
File size: 46.77 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="images/pig.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The diagram shows the line \(l\) meeting the sides of the triangle ABC at the points </span><span style="font-family: times new roman,times; font-size: medium;">D, E and F. The perpendiculars to \(l\) from A, B and C meet \(l\) at G, H and I.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; State why \(\frac{{{\rm{AF}}}}{{{\rm{FB}}}} = \frac{{{\rm{AG}}}}{{{\rm{HB}}}}\)</span><span style="font-family: times new roman,times; font-size: medium;">&nbsp;.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence prove Menelaus&rsquo; theorem for the triangle ABC.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; State and prove the converse of Menelaus&rsquo; theorem.</span></p>
<div class="marks">[13]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A straight line meets the sides (PQ), (QR), (RS), (SP) of a quadrilateral PQRS at </span><span style="font-family: times new roman,times; font-size: medium;">the points U, V, W, X respectively. Use Menelaus&rsquo; theorem to show that\[\frac{{{\rm{PU}}}}{{{\rm{UQ}}}} \times \frac{{{\rm{QV}}}}{{{\rm{VR}}}} \times \frac{{{\rm{RW}}}}{{{\rm{WS}}}} \times \frac{{{\rm{SX}}}}{{{\rm{XP}}}} = 1.\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The circle \(C\) has centre O. The point Q is fixed in the plane of the circle and outside </span><span style="font-family: times new roman,times; font-size: medium;">the circle. The point P is constrained to move on the circle.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the opposite angles of a cyclic quadrilateral add up to \({180^ \circ }\) .</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">A quadrilateral ABCD is inscribed in a circle \(S\) . The four tangents to \(S\) at the </span><span style="font-family: times new roman,times; font-size: medium;">vertices A, B, C and D form the edges of a quadrilateral EFGH. Given that </span><span style="font-family: times new roman,times; font-size: medium;">EFGH is cyclic, show that AC and BD intersect at right angles.</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Show that the locus of a point \({\rm{P'}}\) , which satisfies \(\overrightarrow {{\rm{QP'}}}&nbsp; = k\overrightarrow {{\rm{QP}}} \)</span><span style="font-family: times new roman,times; font-size: medium;"> , is a circle \(C'\) , </span><span style="font-family: times new roman,times; font-size: medium;">where <em><strong>k</strong></em> is a constant and \(0 &lt; k &lt; 1\) .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the two tangents to \(C\) from Q are also tangents to \({\rm{C'}}\) .</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A circle \(C\) passes through the point \((1,{\text{ }}2)\) and has the line \(3x - y = 5\) as the tangent at the point \((3,{\text{ }}4)\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of the centre of \(C\) <span class="s1">and its radius.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the equation of \(C\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Find the coordinates of the second point on \(C\) </span>on the chord through \((1,{\text{ }}2)\) parallel to the tangent at \((3,{\text{ }}4)\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The area of an equilateral triangle is \(1\) cm<sup>2</sup>. Determine the area of:</span></p>
</div>

<div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The points A, B have coordinates (\(1\), \(0\)), (\(0\), \(1\)) respectively. The point P(\(x\), \(y\)) </span><span style="font-family: times new roman,times; font-size: medium;">moves in such a way that \({\rm{AP}} = k{\rm{BP}}\) where \(k \in {\mathbb{R}^ + }\) .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">the circumscribed circle.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">the inscribed circle.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">When \(k = 1\) , show that the locus of P is a straight line.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">When \(k \ne 1\) , the locus of P is a circle.</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Find, in terms of \(k\) , the coordinates of C, the centre of this circle.</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Find the equation of the locus of C as \(k\) varies.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">In the acute angled triangle ABC, the points E, F lie on [AC], [AB] respectively such </span><span style="font-family: times new roman,times; font-size: medium;">that [BE] is perpendicular to [AC] and [CF] is perpendicular to [AB]. The lines (BE) </span><span style="font-family: times new roman,times; font-size: medium;">and (CF) meet at H. The line (BE) meets the circumcircle of the triangle ABC at P. </span><span style="font-family: times new roman,times; font-size: medium;">This is shown in the following diagram.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/slayer.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; Show that CEFB is a cyclic quadrilateral.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Show that \({\rm{HE}} = {\rm{EP}}\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The line (AH) meets [BC] at D.</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i)&nbsp;&nbsp;&nbsp;&nbsp; By considering cyclic quadrilaterals show that \({\rm{C}}\widehat {\rm{A}}{\rm{D}} = {\rm{E}}\widehat {\rm{F}}{\rm{H}} = {\rm{E}}\widehat {\rm{B}}{\rm{C}}\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii)&nbsp;&nbsp;&nbsp;&nbsp; Hence show that [AD] is perpendicular to [BC].</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Given that the elements of a \(2 \times 2\) symmetric matrix are real, show that</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i) &nbsp; &nbsp; the eigenvalues are real;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; the eigenvectors are orthogonal if the eigenvalues are distinct.</span></p>
<div class="marks">[11]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The matrix \(\boldsymbol{A}\) is given by\[\boldsymbol{A} = \left( {\begin{array}{*{20}{c}}<br>{11}&amp;{\sqrt 3 }\\<br>{\sqrt 3 }&amp;9<br>\end{array}} \right) .\]Find the eigenvalues and eigenvectors of \(\boldsymbol{A}\).</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">The ellipse \(E\) has equation \({{\boldsymbol{X}}^T}{\boldsymbol{AX}} = 24\) where \(\boldsymbol{X} = \left( \begin{array}{l}<br>x\\<br>y<br>\end{array} \right)\) and \(\boldsymbol{A}\) is as defined in </span><span style="font-family: times new roman,times; font-size: medium;">part (b).</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; Show that \(E\) can be rotated about the origin onto the ellipse \(E'\) having </span><span style="font-family: times new roman,times; font-size: medium;">equation \(2{x^2} + 3{y^2} = 6\) .</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; Find the acute angle through which \(E\) has to be rotated to coincide with \(E'\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-18_om_12.38.09.png" alt="M17/5/FURMA/HP2/ENG/TZ0/06.a"></p>
<p><strong>Figure 1 </strong>shows a tangent [PQ] at the point Q of a circle and a line [PS] meeting the circle at the points R , S and passing through the centre O of the circle.</p>
</div>

<div class="specification">
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-18_om_12.40.43.png" alt="M17/5/FURMA/HP2/ENG/TZ0/06.b"></p>
<p><strong>Figure 2 </strong>shows a triangle ABC inscribed in a circle. The tangents at the points A , B , C meet the opposite sides of the triangle externally at the points D , E , F respectively.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \({\text{P}}{{\text{Q}}^2} = {\text{PR}} \times {\text{PS}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State briefly how this result can be generalized to give the tangent-secant theorem.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that \(\frac{{{\text{A}}{{\text{D}}^2}}}{{{\text{B}}{{\text{D}}^2}}} = \frac{{{\text{CD}}}}{{{\text{BD}}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering a pair of similar triangles, show that</p>
<p style="text-align: center;">\(\frac{{{\text{AD}}}}{{{\text{BD}}}} = \frac{{{\text{AC}}}}{{{\text{AB}}}}\) and hence that&nbsp;\(\frac{{{\text{CD}}}}{{{\text{BD}}}} = \frac{{{\text{A}}{{\text{C}}^2}}}{{{\text{A}}{{\text{B}}^2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By writing down and using two further similar expressions, show that the points D, E, F are collinear.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the ellipse \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\).</p>
</div>

<div class="specification">
<p>The area enclosed by the ellipse is&nbsp;\(8\pi \) and&nbsp;\(b = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the area enclosed by the ellipse is \(\pi ab\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine which coordinate axis the major axis of the ellipse lies along.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the eccentricity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of the foci.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equations of the directrices.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The centre of another ellipse is now given as the point (2, 1). The minor and major axes are of lengths 3 and 5 and are parallel to the \(x\) and \(y\) axes respectively. Find the equation of the ellipse.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the ellipse having equation \({x^2} + 3{y^2} = 2\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the equation of the tangent to the ellipse at the point \(\left( {1,{\text{ }}\frac{1}{{\sqrt 3 }}} \right)\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Find the equation of the normal to the ellipse at the point \(\left( {1,{\text{ }}\frac{1}{{\sqrt 3 }}} \right)\).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that the tangent crosses the <span class="s1">\(x\)-axis at P </span>and the normal crosses the <span class="s1">\(y\)-axis at Q, find the equation of (PQ)</span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hence show that <span class="s1">(PQ) </span>touches the ellipse.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the coordinates of the point where <span class="s1">(PQ) </span>touches the ellipse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the coordinates of the foci of the ellipse.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the equations of the directrices of the ellipse.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The hyperbola with equation \({x^2} - 4xy - 2{y^2} = 3\) is rotated through an acute anticlockwise angle \(\alpha \) about the origin.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The point \((x,{\text{ }}y)\) is rotated through an anticlockwise angle \(\alpha \) about the origin to become the point \((X,{\text{ }}Y)\). Assume that the rotation can be represented by</p>
<p>\[\left[ {\begin{array}{*{20}{c}} X \\ Y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} a&amp;b \\ c&amp;d \end{array}} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right].\]</p>
<p>Show, by considering the images of the points \((1,{\text{ }}0)\) and \((0,{\text{ }}1)\) under this rotation that</p>
<p>\[\left[ {\begin{array}{*{20}{c}} a&amp;b \\ c&amp;d \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {\cos \alpha }&amp;{ - \sin \alpha } \\ {\sin \alpha }&amp;{\cos \alpha } \end{array}} \right].\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By expressing \((x,{\text{ }}y)\) in terms of \((X,{\text{ }}Y)\), determine the equation of the rotated hyperbola in terms of \(X\) and \(Y\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Verify that the coefficient of \(XY\) in the equation is zero when \(\tan \alpha&nbsp; = \frac{1}{2}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the equation of the rotated hyperbola in this case, giving your answer in the form&nbsp;\(\frac{{{X^2}}}{{{A^2}}} - \frac{{{Y^2}}}{{{B^2}}} = 1\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the coordinates of the foci of the hyperbola prior to rotation.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The points D, E, F lie on the sides [BC], [CA], [AB] of the triangle ABC and [AD], </span><span style="font-family: times new roman,times; font-size: medium;">[BE], [CF] intersect at the point G. You are given that CD \( = 2\)BD and AG \( = 2\)GD .</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">By considering (BE) as a transversal to the triangle ACD, show that</span></p>
<p style="text-align: center;"><span style="font-family: times new roman,times; font-size: medium;">\(\frac{{{\rm{CE}}}}{{{\rm{EA}}}} = \frac{3}{2}\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Determine the ratios</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; \(\frac{{{\rm{AF}}}}{{{\rm{FB}}}}\) ;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii)&nbsp;&nbsp;&nbsp;&nbsp; \(\frac{{{\rm{BG}}}}{{{\rm{GE}}}}\) .</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/jason.png" alt></span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The diagram shows a hexagon ABCDEF inscribed in a circle. All the sides of the </span><span style="font-family: times new roman,times; font-size: medium;">hexagon are equal in length. The point P lies on the minor arc AB of the circle. </span><span style="font-family: times new roman,times; font-size: medium;">Using Ptolemy&rsquo;s theorem, show that\[{\rm{PE}} + {\rm{PD}} = {\rm{PA}} + {\rm{PB}} + {\rm{PC}} + {\rm{PF}}\]</span></p>
<div class="marks">[7]</div>
<div class="question_part_label">B.</div>
</div>
<br><hr><br><div class="specification">
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="images/12k.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The diagram shows triangle ABC together with its inscribed circle. Show that </span><span style="font-family: times new roman,times; font-size: medium;">[AD], [BE] and [CF] are concurrent.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">PQRS is a parallelogram and T is a point inside the parallelogram such that the </span><span style="font-family: times new roman,times; font-size: medium;">sum of \({\rm{P}}\hat {\rm{T}}{\rm{Q}}\) and \({\rm{R}}\hat {\rm{T}}{\rm{S}}\) is \({180^ \circ }\) . Show that \({\rm{TP}} \times {\rm{TR}} + {\rm{ST}} \times {\rm{TQ}} = {\rm{PQ}} \times {\rm{QR}}\) .</span></p>
<div class="marks">[13]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><img src="images/9.png" alt></p>
<p>The diagram above shows a point \({\text{O}}\) inside a triangle&nbsp;\({\text{ABC}}\). The lines \({\text{(AO), (BO), (CO)}}\) meet the lines&nbsp;\({\text{(BC), (CA), (AB)}}\) at the points&nbsp;\({\text{D, E, F}}\) respectively. The lines&nbsp;\({\text{(EF), (BC)}}\) meet at the point&nbsp;\({\text{G}}\).</p>
</div>

<div class="question">
<p><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; &nbsp; Show that, with the usual convention for the signs of lengths in a triangle, \(\frac{{{\text{BD}}}}{{{\text{DC}}}} =&nbsp; - \frac{{{\text{BG}}}}{{{\text{GC}}}}\).</span></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; The lines&nbsp;\({\text{(FD), (CA)}}\) meet at the point&nbsp;\({\text{H}}\) and the lines&nbsp;\({\text{(DE), (AB)}}\) meet at the point&nbsp;\({\text{I}}\). Show that the points&nbsp;\({\text{G, H, I}}\) are collinear.</span></p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Prove that the interior bisectors of two of the angles of a non-isosceles triangle </span><span style="font-family: times new roman,times; font-size: medium;">and the exterior bisector of the third angle, meet the sides of the triangle in three </span><span style="font-family: times new roman,times; font-size: medium;">collinear points.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">A.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">An equilateral triangle QRT is inscribed in a circle. If S is any point on the </span><span style="font-family: times new roman,times; font-size: medium;">arc QR of the circle,</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (i)&nbsp;&nbsp;&nbsp;&nbsp; prove that \({\rm{ST}} = {\rm{SQ}} + {\rm{SR}}\) ;</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (ii) &nbsp; &nbsp; show that triangle RST is similar to triangle PSQ where P is the intersection </span><span style="font-family: times new roman,times; font-size: medium;">of [TS] and [QR];</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">&nbsp; (iii)&nbsp;&nbsp;&nbsp;&nbsp; using your results from parts (i) and (ii) deduce that \(\frac{1}{{{\rm{SP}}}} = \frac{1}{{{\rm{SQ}}}} + \frac{1}{{{\rm{SR}}}}\)</span><span style="font-family: times new roman,times; font-size: medium;">&nbsp;.</span></p>
<div class="marks">[10]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Perpendiculars are drawn from a point P on the circumcircle of triangle LMN to </span><span style="font-family: times new roman,times; font-size: medium;">the three sides. The perpendiculars meet the sides [LM], [MN] and [LN] at the </span><span style="font-family: times new roman,times; font-size: medium;">points E, F and G respectively.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Prove that \({\rm{PL}} \times {\rm{PF}} = {\rm{PM}} \times {\rm{PG}}\) .</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">B.b.</div>
</div>
<br><hr><br><div class="question">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">ABCD is a quadrilateral. (AD) and (BC) intersect at F and (AB) and (CD) </span><span style="font-family: times new roman,times; font-size: medium;">intersect at H. (DB) and (CA) intersect (FH) at G and E respectively. This is </span><span style="font-family: times new roman,times; font-size: medium;">shown in the diagram below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><br><img src="images/run.png" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Prove that \(\frac{{{\rm{HG}}}}{{{\rm{GF}}}} = - \frac{{{\rm{HE}}}}{{{\rm{EF}}}}\) .</span></p>
</div>
<br><hr><br><div class="specification">
<p><img src="images/7.png" alt></p>
<p><span style="font-family: 'times new roman', times; font-size: medium;">The diagram above shows the points \({\text{P}}(x,{\text{ }}y)\) and \({\rm{P'}}(x',{\text{ }}y')\) which are equidistant from the origin \({\text{O}}\). The line \(({\text{OP}})\) is inclined at an angle \(\alpha \) to the <em>x</em>-axis and \({\rm{P\hat OP'}} = \theta \).</span></p>
</div>

<div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) &nbsp; (i) &nbsp; &nbsp; By first noting that \({\text{OP}} = x\sec \alpha \), show that \(x' = x\cos \theta&nbsp; - y\sin \theta \) and find a similar expression for \(y'\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; (ii) &nbsp; &nbsp; Hence write down the \(2 \times 2\) matrix which represents the anticlockwise rotation about&nbsp;\({\text{O}}\)&nbsp;which takes&nbsp;\({\text{P}}\)&nbsp;to \({\text{P'}}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) &nbsp; &nbsp; The ellipse \(E\) has equation \(5{x^2} + 5{y^2} - 6xy = 8\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(i) &nbsp; &nbsp; Show that if \(E\) is rotated <strong>clockwise </strong>about the origin through \(45^\circ\), its equation becomes \(\frac{{{x^2}}}{4} + {y^2} = 1\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) &nbsp; &nbsp; Hence determine the coordinates of the foci of \(E\).</span></p>
</div>
<br><hr><br><div class="specification">
<p>A&nbsp;new triangle DEF is positioned within a circle radius <em>R</em> such that DF is a diameter as shown in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a triangle ABC, prove \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that the area of the triangle ABC is \(\frac{1}{2}ab\,{\text{sin}}\,{\text{C}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <em>R</em> denotes the radius of the circumscribed circle prove that \(\frac{a}{{{\text{sin}}\,A}} = \frac{b}{{{\text{sin}}\,B}} = \frac{c}{{{\text{sin}}\,C}} = 2R\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the area of the triangle ABC is \(\frac{{abc}}{{4R}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find in terms of <em>R</em>, the two values of (DE)<sup>2</sup> such that the area of the shaded region is twice the area of the triangle DEF.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using two diagrams, explain why there are two values of (DE)<sup>2</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A parallelogram is positioned inside a circle such that all four vertices lie on the circle. Prove that it is a rectangle.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>