File "SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Further Mathematics/Topic 1/SL-paper1html
File size: 39.55 KB
MIME-type: text/x-tex
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-212ef6a30de2a281f3295db168f85ac1c6eb97815f52f785535f1adfaee1ef4f.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-13d27c3a5846e837c0ce48b604dc257852658574909702fa21f9891f7bb643ed.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p>Consider the simultaneous linear equations</p>
<p style="padding-left: 180px;">\(x + z = - 1\)<br>\(3x + y + 2z = 1\)<br>\(2x + ay - z = b\)</p>
<p>where \(a\) and \(b\) are constants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using row reduction, find the solutions in terms of \(a\) and \(b\) when \(a\) ≠ 3 .</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the equations have no unique solution when \(a\) = 3.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find all the solutions to the equations when \(a\) = 3, \(b\) = 10 in the form <em><strong>r</strong></em> = <em><strong>s</strong></em> + \(\lambda \)<em><strong>t</strong></em>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the matrix <em><strong>M</strong></em> = \(\left[ {\begin{array}{*{20}{c}}<br> 2 \\ <br> { - 1} <br>\end{array}\,\,\,\begin{array}{*{20}{c}}<br> { - 4} \\ <br> { - 1} <br>\end{array}} \right]\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the linear transformation represented by <em><strong>M</strong></em> transforms any point on the line \(y = x\) to a point on the same line.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain what happens to points on the line \(4y + x = 0\) when they are transformed by <strong><em>M</em></strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the two eigenvalues of <strong><em>M</em></strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State two eigenvectors of <em><strong>M</strong></em> which correspond to the two eigenvalues.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A matrix <span class="s1"><strong><em>M </em></strong></span>is called idempotent if <span class="s1"><strong><em>M</em></strong></span><span class="s2">\(^2 = \) </span><span class="s1"><strong><em>M</em></strong></span>.</p>
</div>
<div class="specification">
<p class="p1">The idempotent matrix <span class="s1"><strong><em>N </em></strong></span>has the form</p>
<p class="p1" style="text-align: center;"><strong><em>N</em></strong> \( = \left( {\begin{array}{*{20}{c}} a&{ - 2a} \\ a&{ - 2a} \end{array}} \right)\)</p>
<p class="p1" style="text-align: left;">where \(a \ne 0\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Explain why <span class="s1"><strong><em>M </em></strong></span>is a square matrix.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the set of possible values of <span class="s1">det(<strong><em>M</em></strong>).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the value of \(a\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the eigenvalues of <span class="s1"><strong><em>N</em></strong></span><span class="s2">.</span></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Find corresponding eigenvectors.</p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <em><strong>A</strong></em><sup>2</sup> = 2<em><strong>A</strong></em> + <em><strong>I</strong></em> where <em><strong>A</strong></em> is a 2 × 2 matrix.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em><strong>A</strong></em><sup>4</sup> = 12<em><strong>A</strong></em> + 5<em><strong>I</strong></em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <em><strong>B</strong></em> = \(\left[ {\begin{array}{*{20}{c}}<br> 4&2 \\ <br> 1&{ - 3} <br>\end{array}} \right]\).</p>
<p>Given that <em><strong>B</strong></em><sup>2</sup> – <em><strong>B</strong></em> – 4<em><strong>I</strong></em> = \(\left[ {\begin{array}{*{20}{c}}<br> k&0 \\ <br> 0&k <br>\end{array}} \right]\), find the value of \(k\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the system of equations</p>
<p>\[\left[ {\begin{array}{*{20}{l}} 1&2&1&3 \\ 2&1&3&1 \\ 5&1&8&0 \\ 3&3&4&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{x_1}} \\ {{x_2}} \\ {{x_3}} \\ {{x_4}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2 \\ 3 \\ \lambda \\ \mu \end{array}} \right]\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of \(\lambda \) and the value of \(\mu \) for which the equations are consistent.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these values of \(\lambda \) and \(\mu \), solve the equations.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the rank of the matrix of coefficients, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The non-zero vectors <strong><em>v</em></strong><sub>1</sub>, <strong><em>v</em></strong><sub>2</sub>, <strong><em>v</em></strong><sub>3</sub> form an orthogonal set of vectors in \({\mathbb{R}^3}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering \({\alpha _1}\)<strong><em>v</em></strong>\(_1 + {\alpha _2}\)<strong><em>v</em></strong>\(_2 + {\alpha _3}\)<strong><em>v</em></strong>\(_3 = 0\), show that <strong><em>v</em></strong>\(_1\), <strong><em>v</em></strong>\(_2\), <strong><em>v</em></strong>\(_3\) are linearly independent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain briefly why <strong><em>v</em></strong>\(_1\), <strong><em>v</em></strong>\(_2\), <strong><em>v</em></strong>\(_3\) form a basis for vectors in \({\mathbb{R}^3}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the vectors</p>
<p>\[\left[ {\begin{array}{*{20}{c}} 1 \\ 0 \\ 1 \end{array}} \right];{\text{ }}\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \\ 1 \end{array}} \right];{\text{ }}\left[ {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right]\]</p>
<p>form an orthogonal basis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express the vector</p>
<p>\[\left[ {\begin{array}{*{20}{c}} 2 \\ 8 \\ 0 \end{array}} \right]\]</p>
<p>as a linear combination of these vectors.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In this question, \(x\)<span class="s1">, </span>\(y\) and \(z\) denote the coordinates of a point in three-dimensional Euclidean space with respect to fixed rectangular axes with origin O. The vector space of position vectors relative to <span class="s1">O </span>is denoted by \({\mathbb{R}^3}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the set of position vectors of points whose coordinates satisfy \(x - y - z = 1\) <span class="s1">does not form a vector subspace of \({\mathbb{R}^3}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Show that the set of position vectors of points whose coordinates satisfy \(x - y - z = 0\) forms a vector subspace, \(V\), of \({\mathbb{R}^3}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine an orthogonal basis for \(V\) <span class="s1">of which one member is \(\left( {\begin{array}{*{20}{c}} 1 \\ 2 \\ { - 1} \end{array}} \right)\).</span></p>
<p class="p2">(iii) <span class="Apple-converted-space"> </span>Augment this basis with an orthogonal vector to form a basis for \({\mathbb{R}^3}\).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Express the position vector of the point with coordinates \((4,{\text{ }}0,{\text{ }} - 2)\) as a linear combination of these basis vectors.</p>
<div class="marks">[13]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The matrix <strong><em>A</em></strong> is given by <strong><em>A</em></strong> = \(\left( {\begin{array}{*{20}{c}}1&2&1\\1&1&2\\2&3&1\end{array}} \right)\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Given that <strong><em>A</em></strong>\(^3\) can be expressed in the form <strong><em>A</em></strong>\(^3 = a\)<strong><em>A</em></strong>\(^2 = b\)<strong><em>A</em></strong> \( + c\)<strong><em>I</em></strong>, determine the values of the constants \(a\), \(b\), \(c\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) (i) Hence express <strong><em>A</em></strong>\(^{ - 1}\) in the form <strong><em>A</em></strong>\(^{ - 1} = d\)<strong><em>A</em></strong>\(^2 = e\)<strong><em>A</em></strong> \( + f\)<strong><em>I</em></strong> where \(d,{\text{ }}e,{\text{ }}f \in \mathbb{Q}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(ii) Use this result to determine <strong><em>A</em></strong>\(^{ - 1}\).</span></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">A transformation \(T\) is a linear mapping from \({\mathbb{R}^3}\) to \({\mathbb{R}^4}\), represented by the matrix</p>
<p class="p1">\[M = \left( {\begin{array}{*{20}{c}} 1&2&1 \\ 2&7&5 \\ { - 3}&1&4 \\ 1&5&4 \end{array}} \right)\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Find the row rank of \(M\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Hence or otherwise find the kernel of \(T\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the column rank of \(M\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Find the basis for the range of this transformation.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">Let <em><strong>S</strong></em> be the set of matrices given by</span></p>
<p style="text-align: center;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">\(\left[ \begin{array}{l}<br>a\\<br>c<br>\end{array} \right.\left. \begin{array}{l}<br>b\\<br>d<br>\end{array} \right]\) ; \(a,b,c,d \in \mathbb{R}\), \(ad - bc = 1\)</span></p>
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relation \(R\) is defined on \(S\) as follows. Given \(\boldsymbol{A}\) , </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{B} \in S\)</span> , \(\boldsymbol{ARB}\) if and only if there </span><span style="font-size: medium;"><span style="font-family: times new roman,times;">exists </span></span><span style="font-size: medium;"><span style="font-family: times new roman,times;"><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{X} \in S\)</span></span> </span></span><span style="font-size: medium;"><span style="font-family: times new roman,times;">such that </span></span><span style="font-family: times new roman,times; font-size: medium;">\(\boldsymbol{A} = \boldsymbol{BX}\)</span><span style="font-size: medium;"><span style="font-family: times new roman,times;"> .<br></span></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that \(R\) is an equivalence relation.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">The relationship between \(a\) , \(b\) , \(c\) and \(d\) is changed to \(ad - bc = n\) . State, with </span><span style="font-family: times new roman,times; font-size: medium;">a reason, whether or not there are any non-zero values of \(n\) , other than \(1\), </span><span style="font-family: times new roman,times; font-size: medium;">for which \(R\) is an equivalence relation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The matrix <strong><em>M </em></strong>is defined by <strong><em>M</em></strong> = \(\left( {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right)\).</span><span style="background-color: #f7f7f7; line-height: normal;"><span style="font-family: 'times new roman', times; font-size: medium;"><br></span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="background-color: #f7f7f7; line-height: normal;"><span style="font-family: 'times new roman', times; font-size: medium;"> </span></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The eigenvalues of <strong><em>M </em></strong>are denoted by \({\lambda _1},{\text{ }}{\lambda _2}\).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(a) Show that \({\lambda _1} + {\lambda _2} = a + d\) and \({\lambda _1}{\lambda _2} = \det \)(<strong><em>M</em></strong>).</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(b) Given that \(a + b = c + d = 1\), show that 1 is an eigenvalue of <strong><em>M</em></strong>.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">(c) Find eigenvectors for the matrix \(\left( {\begin{array}{*{20}{c}}2&{ - 1}\\3&{ - 2}\end{array}} \right)\).</span></p>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The matrix \(\boldsymbol{A}\) is given by \[\boldsymbol{A} = \left( {\begin{array}{*{20}{c}}<br>0&1&0\\<br>2&4&1\\<br>4&{ - 11}&{ - 2}<br>\end{array}} \right) .\]<br></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i) Find the matrices \({\boldsymbol{A}^2}\) and </span><span style="font-family: times new roman,times; font-size: medium;">\({\boldsymbol{A}^3}\)</span><span style="font-family: times new roman,times; font-size: medium;"> , and verify that \({{\boldsymbol{A}}^3} = 2{{\boldsymbol{A}}^2} - {\boldsymbol{A}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) Deduce that \({{\boldsymbol{A}}^4} = 3{{\boldsymbol{A}}^2} - 2{\boldsymbol{A}}\)</span><span style="font-family: times new roman,times; font-size: medium;"> .</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">(i) Suggest a similar expression for </span><span style="font-family: times new roman,times; font-size: medium;">\({\boldsymbol{A}^n}\)</span><span style="font-family: times new roman,times; font-size: medium;"> in terms of \(\boldsymbol{A}\) and </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\({\boldsymbol{A}^2}\)</span> , valid for \(n \ge 3\) .</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">(ii) Use mathematical induction to prove the validity of your suggestion.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the system of equations \[\left( {\begin{array}{*{20}{c}}<br>1&{ - 1}&2\\<br>2&2&{ - 1}\\<br>3&5&{ - 4}\\<br>3&1&1<br>\end{array}} \right)\left( \begin{array}{l}<br>x\\<br>y\\<br>z<br>\end{array} \right) = \left( \begin{array}{l}<br>5\\<br>3\\<br>1\\<br>k<br>\end{array} \right) .\]<br></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p align="LEFT"><span style="font-family: times new roman,times; font-size: medium;">By reducing the augmented matrix to row echelon form,</span></p>
<p style="margin-left: 30px;" align="LEFT"><span style="font-family: times new roman,times; font-size: medium;"> (i) find the rank of the coefficient matrix;</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;"> (ii) find the value of \(k\) for which the system has a solution.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">For this value of \(k\) , determine the solution.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that the following vectors form a basis for the vector space \({\mathbb{R}^3}\) .\[\left( \begin{array}{l}<br>1\\<br>2\\<br>3<br>\end{array} \right);\left( \begin{array}{l}<br>2\\<br>3\\<br>1<br>\end{array} \right);\left( \begin{array}{l}<br>5\\<br>2\\<br>5<br>\end{array} \right)\]</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Express the following vector as a linear combination of the above vectors.\[\left( \begin{array}{l}<br>12\\<br>14\\<br>16<br>\end{array} \right)\]</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The set \(S\) contains the eight matrices of the form\[\left( {\begin{array}{*{20}{c}}<br>a&0&0\\<br>0&b&0\\<br>0&0&c<br>\end{array}} \right)\]where \(a\), \(b\), \(c\) can each take one of the values \( + 1\) or \( - 1\) .</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that any matrix of this form is its own inverse.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Show that \(S\) forms an Abelian group under matrix multiplication.</span></p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="font-family: times new roman,times; font-size: medium;">Giving a reason, state whether or not this group is cyclic.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>By considering the images of the points (1, 0) and (0, 1),</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the 2 × 2 matrix <em><strong>P</strong></em> which represents a reflection in the line \(y = \left( {{\text{tan}}\,\theta } \right)x\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>determine the 2 × 2 matrix <em><strong>Q</strong></em> which represents an anticlockwise rotation of <em>θ</em> about the origin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the transformation represented by the matrix <em><strong>PQ</strong></em>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A matrix <em>M</em> is said to be orthogonal if <strong><em>M </em></strong><em><sup>T</sup></em><strong><em>M</em></strong> = <strong><em>I</em></strong> where <strong><em>I</em></strong> is the identity. Show that <em><strong>Q</strong></em> is orthogonal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The transformations <em>T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub>, in the plane are defined as follows:</p>
<p><em>T</em><sub>1</sub> : A rotation of 360° about the origin<br><em>T</em><sub>2</sub> : An anticlockwise rotation of 270° about the origin<br><em>T</em><sub>3</sub> : A rotation of 180° about the origin<br><em>T</em><sub>4</sub> : An anticlockwise rotation of 90° about the origin.</p>
</div>
<div class="specification">
<p>The transformation <em>T</em><sub>5</sub> is defined as a reflection in the \(x\)-axis.</p>
</div>
<div class="specification">
<p>The transformation <em>T</em> is defined as the composition of <em>T</em><sub>3</sub> followed by <em>T</em><sub>5</sub> followed by <em>T</em><sub>4</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copy and complete the following Cayley table for the transformations of <em>T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub>, under the operation of composition of transformations.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><em>Show that T</em><sub>1</sub>, <em>T</em><sub>2</sub>, <em>T</em><sub>3</sub>, <em>T</em><sub>4 </sub>under the operation of composition of transformations form a group. Associativity may be assumed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that this group is cyclic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the 2 × 2 matrices representing <em>T</em><sub>3</sub>, <em>T</em><sub>4</sub> and <em>T</em><sub>5</sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the 2 × 2 matrix representing <em>T</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give a geometric description of the transformation <em>T</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br>