File "markSceme-HL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 21/markSceme-HL-paper2html
File size: 416.65 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>
<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) \( \rightleftharpoons \) (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) <span class="Apple-converted-space"> </span>Δ<em>H </em>< 0</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>molar mass of urea <strong>«</strong>4 \( \times \) 1.01 + 2 \( \times \) 14.01 + 12.01 +<span class="Apple-converted-space"> </span>16.00<strong>» </strong>= 60.07 <strong>«</strong>g mol<sup><sub>-1</sub></sup><strong>»</strong></p>
<p><strong>«</strong>% nitrogen = \(\frac{{{\text{2}} \times {\text{14.01}}}}{{{\text{60.07}}}}\) \( \times \) 100 =<strong>» </strong>46.65 <strong>«</strong>%<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for final answer not to </em><em>two decimal places.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>cost<strong>»</strong> increases <strong><em>AND </em></strong>lower N%<strong> «</strong>means higher cost of transportation per unit of nitrogen<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>cost<strong>»</strong> increases <strong><em>AND </em></strong>inefficient/too much/about half mass not nitrogen</p>
<p> </p>
<p><em>Accept other reasonable explanations.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept answers referring to </em><em>safety/explosions.</em></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_11.46.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b/M"></p>
<p> </p>
<p><em>Note: Urea’s structure is more complex </em><em>than that predicted from VSEPR theory.</em></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>n</em>(KNCO) <strong>«=</strong> 0.0500 dm<sup>3</sup> \( \times \) 0.100 mol dm<sup>–3</sup><strong>» =</strong> 5.00 \( \times \) 10<sup>–3</sup> <strong>«</strong>mol<strong>»</strong></p>
<p><strong>«</strong>mass of urea = 5.00 \( \times \) 10<sup>–3</sup> mol \( \times \) 60.07 g mol<sup>–1</sup><strong>» =</strong> 0.300 <strong>«</strong>g<strong>»</strong></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({K_{\text{c}}} = \frac{{[{{({{\text{H}}_2}{\text{N}})}_2}{\text{CO}}] \times [{{\text{H}}_2}{\text{O}}]}}{{{{[{\text{N}}{{\text{H}}_3}]}^2} \times [{\text{C}}{{\text{O}}_2}]}}\)</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND </em></strong>reaction is exothermic</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND</em></strong> Δ<em>H </em>is negative</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong><em>K</em><sub>c</sub><strong>»</strong> decreases <strong><em>AND </em></strong>reverse/endothermic reaction is favoured</p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ln <em>K </em><strong>« = </strong>\(\frac{{ - \Delta {G^\Theta }}}{{RT}} = \frac{{ - 50 \times {{10}^3}{\text{ J}}}}{{8.31{\text{ J }}{{\text{K}}^{ - 1}}{\text{ mo}}{{\text{l}}^{ - 1}} \times 298{\text{ K}}}}\) <strong>»</strong> = –20</p>
<p> </p>
<p><strong>«</strong><em>K</em><sub>c</sub> =<strong>»</strong> 2 \( \times \) 10<sup>–9</sup></p>
<p><strong><em>OR</em></strong></p>
<p>1.69 \( \times \) 10<sup>–9</sup></p>
<p><strong><em>OR</em></strong></p>
<p>10<sup>–9</sup></p>
<p> </p>
<p><em>Accept range of 20-20.2 for M1.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>urea has greater molar mass</p>
<p>urea has greater electron density/greater London/dispersion</p>
<p>urea has more hydrogen bonding</p>
<p>urea is more polar/has greater dipole moment</p>
<p> </p>
<p><em>Accept “urea has larger size/greater </em><em>van der Waals forces”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “urea has greater </em><em>intermolecular forces/IMF”.</em></p>
<p> </p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_12.44.01.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.e.ii/M"></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for each correct interaction.</em></p>
<p> </p>
<p><em>If lone pairs are shown on N or O, then </em><em>the lone pair on N or one of the lone </em><em>pairs on O </em><strong><em>MUST </em></strong><em>be involved in the </em><em>H-bond.</em></p>
<p><em>Penalize solid line to represent </em><em>H-bonding only once.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>2(H<sub>2</sub>N)<sub>2</sub>CO(s) + 3O<sub>2</sub>(g) → 4H<sub>2</sub>O(l) + 2CO<sub>2</sub>(g) + 2N<sub>2</sub>(g)</p>
<p>correct coefficients on LHS</p>
<p>correct coefficients on RHS</p>
<p> </p>
<p><em>Accept (H</em><sub><em>2</em></sub><em>N)</em><sub><em>2</em></sub><em>CO(s) +</em> \(\frac{3}{2}\)<em>O</em><sub><em>2</em></sub><em>(g) → </em><em>2H</em><sub><em>2</em></sub><em>O(l) +</em> <em>CO</em><sub><em>2</em></sub><em>(g) +</em> <em>N</em><sub><em>2</em></sub><em>(g).</em></p>
<p><em>Accept any correct ratio.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>V = \(\frac{{{\text{0.600 g}}}}{{{\text{60.07 g mo}}{{\text{l}}^{ - 1}}}}\) \( \times \) 22700 cm<sup>3</sup> mol<sup>–1</sup> =<strong>» </strong>227 <strong>«</strong>cm<sup>3</sup><strong>»</strong></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lone/non-bonding electron pairs <strong>«</strong>on nitrogen/oxygen/ligand<strong>» </strong>given to/shared with metal ion</p>
<p>co-ordinate/dative/covalent bonds</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lone pairs on nitrogen atoms can be donated to/shared with C–N bond</p>
<p><strong><em>OR</em></strong></p>
<p>C–N bond partial double bond character</p>
<p><strong><em>OR</em></strong></p>
<p>delocalization <strong>«</strong>of electrons occurs across molecule<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>slight positive charge on C due to C=O polarity reduces C–N bond length</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>60</em>: CON<sub>2</sub>H<sub>4</sub><sup>+</sup></p>
<p><em>44</em>: CONH<sub>2</sub><sup>+</sup></p>
<p> </p>
<p><em>Accept “molecular ion”.</em></p>
<p> </p>
<p> </p>
<p><em><strong>[2 marks]</strong><br></em></p>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>3450 cm</em><sup><em>–</em><em>1</em></sup><em>:</em> N–H</p>
<p><em>1700 cm</em><sup><em>–</em><em>1</em></sup><em>:</em> C=O</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “O</em><em>–</em><em>H” for 3450 cm</em><sup><em>–1</em></sup><em>.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>1</p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>singlet</p>
<p> </p>
<p><em>Accept “no splitting”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acts as internal standard</p>
<p><strong><em>OR</em></strong></p>
<p>acts as reference point</p>
<p> </p>
<p>one strong signal</p>
<p><strong><em>OR</em></strong></p>
<p>12 H atoms in same environment</p>
<p><strong><em>OR</em></strong></p>
<p>signal is well away from other absorptions</p>
<p> </p>
<p><em>Accept “inert” or “readily removed” or </em><em>“non-toxic” for M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">l.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about carbon and chlorine compounds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane, \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}\), reacts with chlorine in sunlight. State the type of this reaction and the name of the mechanism by which it occurs.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_15.22.26.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.a"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate equations for the two propagation steps and one termination step in the formation of chloroethane from ethane.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_14.32.42.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.bi"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the splitting patterns in the <sup>1</sup>H NMR spectrum of C<sub>2</sub>H<sub>5</sub>Cl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why tetramethylsilane (TMS) is often used as a reference standard in <sup>1</sup>H NMR.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible product, <strong>X</strong>, of the reaction of ethane with chlorine has the following composition by mass:</p>
<p style="text-align: center;">carbon: 24.27%, hydrogen: 4.08%, chlorine: 71.65%</p>
<p>Determine the empirical formula of the product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass and <sup>1</sup>H NMR spectra of product <strong>X</strong> are shown below. Deduce, giving your reasons, its structural formula and hence the name of the compound.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the product <strong>X</strong> is reacted with NaOH in a hot alcoholic solution, C<sub>2</sub>H<sub>3</sub>Cl is formed. State the role of the reactant NaOH other than as a nucleophile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloroethene, \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{\text{Cl}}\), can undergo polymerization. Draw a section of the polymer with three repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>substitution <strong><em>AND </em></strong>«free-»radical</p>
<p><strong><em>OR</em></strong></p>
<p>substitution <strong><em>AND </em></strong>chain</p>
<p> </p>
<p><em>Award [1] for “</em><em>«</em><em>free-</em><em>»</em><em>radical substitution” </em><em>or “S</em><sub><em>R</em></sub><em>” written anywhere in the answer.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Two propagation steps:</em></p>
<p>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}} + \bullet {\text{Cl}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet + {\text{HCl}}\)</p>
<p>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet + {\text{C}}{{\text{l}}_{\text{2}}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{Cl}} + \bullet {\text{Cl}}\)</p>
<p><em>One termination step:</em></p>
<p>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet + {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet \to {{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}\)</p>
<p><strong><em>OR</em></strong></p>
<p>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} \bullet + \bullet {\text{Cl}} \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{Cl}}\)</p>
<p><strong><em>OR</em></strong></p>
<p>\( \bullet {\text{Cl}} + \bullet {\text{Cl}} \to {\text{C}}{{\text{l}}_{\text{2}}}\)</p>
<p> </p>
<p><em>Accept radical without </em>\( \bullet \)<em> if consistent </em><em>throughout.</em></p>
<p><em>Allow ECF for incorrect radicals </em><em>produced in propagation step for M3.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>triplet <em><strong>AND</strong> </em>quartet</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>chemical shift/signal outside range of common chemical shift/signal</p>
<p>strong signal/12/all H atoms in same environment<br><em><strong>OR</strong></em><br>singlet/no splitting of the signal</p>
<p>volatile/easily separated/easily removed<br><em><strong>OR</strong></em><br>inert/stabl</p>
<p>contains three common NMR nuclei/<sup>1</sup>H and <sup>13</sup>C and <sup>29</sup>Si</p>
<p> </p>
<p><em>Do <strong>not</strong> accept chemical shift = 0.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{C}} = \frac{{24.27}}{{12.01}} = 2.021\) <em><strong>AND</strong></em> \({\text{H}} = \frac{{4.08}}{{1.01}} = 4.04\) <em><strong>AND</strong></em> \({\text{Cl}} = \frac{{71.65}}{{35.45}} = 2.021\)</p>
<p>«hence» CH<sub>2</sub>Cl</p>
<p> </p>
<p><em>Accept \(\frac{{24.27}}{{12.01}}\) : \(\frac{{4.08}}{{1.01}}\) : \(\frac{{71.65}}{{35.45}}.\)</em></p>
<p><em>Do <strong>not</strong> accept C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>. </em></p>
<p><em>Award [2] for correct final answer.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>molecular ion peak(s) «about» <em>m/z</em> 100 <em><strong>AND</strong> </em>«so» C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> «isotopes of Cl»</p>
<p>two signals «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>«signals in» 3:1 ratio «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub><br><em><strong>OR</strong></em><br>one doublet and one quartet «in <sup>1</sup>H NMR spectrum» <em><strong>AND</strong> </em>«so» CH<sub>3</sub>CHCl<sub>2</sub></p>
<p>1,1-dichloroethane</p>
<p> </p>
<p><em>Accept “peaks” for “signals”.</em></p>
<p><em>Allow ECF for a correct name for M3 if an incorrect chlorohydrocarbon is identified.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>base<br><em><strong>OR</strong></em><br>proton acceptor</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-20_om_15.46.25.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.d/M"></p>
<p> </p>
<p><em>Continuation bonds must be shown.</em></p>
<p><em>Ignore square brackets and “n”.</em></p>
<p><em>Accept <img src="images/Schermafbeelding_2017-09-20_om_15.47.42.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/06.d_2/M"> .</em></p>
<p><em>Accept other versions of the polymer, </em><em>such as head to head and head to tail.</em></p>
<p><em>Accept condensed structure provided all </em><em>C to C bonds are shown (as single).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate Δ<em>H</em><sup>θ</sup>, in kJ, for this similar reaction below using \(\Delta H_{\rm{f}}^\theta \) data from section 12 of the data booklet. \(\Delta H_{\rm{f}}^\theta \) of HOCH<sub>2</sub>CH<sub>2</sub>OH(l) is –454.8kJmol<sup>-1</sup>.</p>
<p style="text-align: center;">2CO (g) + 3H<sub>2</sub> (g) \( \rightleftharpoons \) HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>(ii) Deduce why the answers to (a)(iii) and (b)(i) differ.</p>
<p>(iii) Δ<em>S</em><sup>θ</sup> for the reaction in (b)(i) is –620.1JK<sup>-1</sup>. Comment on the decrease in entropy.</p>
<p>(iv) Calculate the value of ΔG<sup>θ</sup>, in kJ, for this reaction at 298 K using your answer to (b)(i). (If you did not obtain an answer to (b)(i), use –244.0 kJ, but this is not the correct value.)</p>
<p>(v) Comment on the statement that the reaction becomes less spontaneous as temperature is increased.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the <sup>1</sup>HNMR data for ethanedioic acid and ethane-1,2-diol by completing the table.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>i<br>«ΔH = Σ Δ<em>H</em><sub>f</sub> products – ΣΔ<em>H</em><sub>f</sub> reactants = –454.8 kJ mol<sup>-1</sup> – 2(–110.5 kJ mol<sup>-1</sup>) =» –233.8 «kJ»</p>
<p> </p>
<p>ii<br>in (a)(iii) gas is formed and in (b)(i) liquid is formed<br><em><strong>OR</strong></em><br>products are in different states<br><em><strong>OR</strong></em><br>conversion of gas to liquid is exothermic<br><em><strong>OR</strong></em><br>conversion of liquid to gas is endothermic<br><em><strong>OR</strong></em><br>enthalpy of vapourisation needs to be taken into account</p>
<p><em>Accept product is «now» a liquid.</em><br><em>Accept answers referring to bond enthalpies being means/averages.</em></p>
<p> </p>
<p>iii<br>«Δ<em>S</em> is negative because five mols of» gases becomes «one mol of» liquid<br><em><strong>OR</strong></em><br>increase in complexity of product «compared to reactants»<br><em><strong>OR</strong></em><br>product more ordered «than reactants»</p>
<p><em>Accept “fewer moles of <span style="text-decoration: underline;">gas</span>” but not “fewer molecules”.</em></p>
<p><br><br>iv<br>Δ<em>S</em> = \(\left( {\frac{{ - 620.1}}{{1000}}} \right)\)«kJ K<sup>-1</sup>»<br>Δ<em>G</em> = –233.8 kJ – (298 K \(\left( {\frac{{ - 620.1}}{{1000}}} \right)\) kJ K<sup>-1</sup>) = –49.0 «kJ»</p>
<p><em>Award<strong> [2]</strong> for correct final answer.</em><br><em>Award <strong>[1 max]</strong> for «+»185 × 10<sup>3</sup>.</em></p>
<p><em>If –244.0 kJ used, answer is:</em><br>Δ<em>G</em> = –244.0 kJ – (298 K \(\left( {\frac{{ - 620.1}}{{1000}}} \right)\)kJ K<sup>-1</sup>) = –59.2 «kJ»<br><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p> </p>
<p>v<br>increasing T makes Δ<em>G</em> larger/more positive/less negative<br><em><strong>OR</strong></em><br>–TΔ<em>S</em> will increase</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" alt></p>
<p><em>Accept “none/no splitting” for singlet.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic compounds often have isomers.</p>
<p>A straight chain molecule of formula C<sub>5</sub>H<sub>10</sub>O contains a carbonyl group. The compound cannot be oxidized by acidified potassium dichromate(VI) solution.</p>
</div>
<div class="specification">
<p>A tertiary halogenoalkane with three different alkyl groups, (R<sub>1</sub>R<sub>2</sub>R<sub>3</sub>)C−X, undergoes a S<sub>N</sub>1 reaction and forms two isomers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formulas of the two possible isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Mass spectra <strong>A </strong>and <strong>B </strong>of the two isomers are given.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_16.37.09.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.a.ii_01"></p>
<p>Explain which spectrum is produced by each compound using section 28 of the data booklet.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bond fission that takes place in a S<sub>N</sub>1 reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of solvent most suitable for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of the intermediate formed stating its shape.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving a reason, the percentage of each isomer from the S<sub>N</sub>1 reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrobenzene, C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>, can be converted to phenylamine via a two-stage reaction.</p>
<p>In the first stage, nitrobenzene is reduced with tin in an acidic solution to form an intermediate ion and tin(II) ions. In the second stage, the intermediate ion is converted to phenylamine in the presence of hydroxide ions.</p>
<p>Formulate the equation for each stage of the reaction.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_16.55.28.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.a.i/M"></p>
<p> </p>
<p><em>Accept condensed formulas.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>A:</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>29 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>)<sup>+</sup>/(C<sub>2</sub>H<sub>5</sub>)<sup>+</sup>/(M – CH<sub>3</sub>CH<sub>2</sub>CO)<sup>+</sup></p>
<p><strong><em>OR</em></strong></p>
<p>CH<sub>3</sub>CH<sub>2</sub>COCH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>57 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>CO)<sup>+</sup>/(M – CH<sub>3</sub>CH<sub>2</sub>)<sup>+</sup>/(M – C<sub>2</sub>H<sub>5</sub>)<sup>+</sup></p>
<p> </p>
<p><strong><em>B:</em></strong></p>
<p>CH<sub>3</sub>COCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> <strong><em>AND </em></strong><strong>«</strong>peak at<strong>» </strong>43 due to</p>
<p>(CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>)<sup>+</sup>/(CH<sub>3</sub>CO)<sup>+</sup>/(C<sub>2</sub>H<sub>3</sub>O)<sup>+</sup>/(M – CH<sub>3</sub>CO)<sup>+</sup></p>
<p> </p>
<p><em>Penalize missing “</em><em>+</em><em>” sign once only.</em></p>
<p><em>Accept “CH</em><sub><em>3</em></sub><em>COCH</em><sub><em>2</em></sub><em>CH</em><sub><em>2</em></sub><em>CH</em><sub><em>3 </em></sub><em>by </em><em>elimination since fragment CH</em><sub><em>3</em></sub><em>CO is not </em><em>listed” for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>heterolytic/heterolysis</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>polar protic</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-08_om_16.52.34.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/09.b.ii/M"></p>
<p><em>Shape:</em> triangular/trigonal planar</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>around<strong>» </strong>50% <strong>«</strong>each<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>similar/equal percentages</p>
<p> </p>
<p>nucleophile can attack from either side <strong>«</strong>of the planar carbocation<strong>»</strong></p>
<p> </p>
<p><em>Accept “racemic mixture/racemate” for </em><em>M1.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Stage one:</em></p>
<p>C<sub>6</sub>H<sub>5</sub>NO<sub>2</sub>(l) + 3Sn(s) + 7H<sup>+</sup>(aq) → C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup>(aq) + 3Sn<sup>2+</sup>(aq) + 2H<sub>2</sub>O(l)</p>
<p> </p>
<p><em>Stage two:</em></p>
<p>C<sub>6</sub>H<sub>5</sub>NH<sub>3</sub><sup>+</sup>(aq) + OH<sup>–</sup>(aq) → C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub>(l) + H<sub>2</sub>O(l)</p>
<p> </p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A compound with a molecular formula C<sub>7</sub>H<sub>14</sub>O produced the following high resolution <sup>1</sup>H NMR spectrum.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what information can be obtained from the <sup>1</sup>H NMR spectrum.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional group that shows stretching at 1710 cm<sup>–1</sup> in the infrared spectrum of this compound using section 26 of the data booklet and the <sup>1</sup>H NMR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the structural formula of this compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the main organic product when hex-1-ene reacts with hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents and the name of the mechanism for the nitration of benzene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the bonding present, why the reaction conditions of halogenation are different for alkanes and benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are two isomers, A and B, with the molecular formula C<sub>4</sub>H<sub>9</sub>Br.</p>
<p style="text-align: left;"><img src=""></p>
<p>Explain the mechanism of the nucleophilic substitution reaction with NaOH(aq) for the isomer that reacts almost exclusively by an S<sub>N</sub>2 mechanism using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Number of hydrogen environments:</em> 3</p>
<p><em>Ratio of hydrogen environments:</em> 2:3:9</p>
<p><em>Splitting patterns:</em> «all» singlets</p>
<p> </p>
<p><em>Accept any equivalent ratios such as 9:3:2.</em></p>
<p><em>Accept “no splitting”.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>carbonyl<br><em><strong>OR</strong></em><br>C=O</p>
<p> </p>
<p><em>Accept “ketone” but not “aldehyde”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><em>Accept (CH<sub>3</sub>)<sub>3</sub>CCH<sub>2</sub>COCH<sub>3</sub>.</em></p>
<p><em>Award <strong>[1]</strong> for any aldehyde or ketone with C<sub>7</sub>H<sub>14</sub>O structural formula.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>hexane <em><strong>AND</strong> </em>hex-1-ene</p>
<p> </p>
<p><em>Accept “benzene <strong>AND</strong> hexane <strong>AND</strong> hex-1-ene”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHBrCH<sub>3</sub></p>
<p> </p>
<p><em>Accept displayed formula but <strong>not</strong> molecular formula.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Reagents:</em> «concentrated» sulfuric acid <em><strong>AND</strong></em> «concentrated» nitric acid</p>
<p><em>Name of mechanism:</em> electrophilic substitution</p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>benzene has «delocalized» \(\pi \) bonds «that are susceptible to electrophile attack» <em><strong>AND</strong></em> alkanes do not</p>
<p> </p>
<p><em>Do <strong>not</strong> accept “benzene has single and double bonds”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>curly arrow going from lone pair/negative charge on O in <sup>–</sup>OH to C</p>
<p>curly arrow showing Br leaving</p>
<p>representation of transition state showing negative charge, square brackets and partial bonds</p>
<p> </p>
<p> </p>
<p><em>Accept OH<sup>–</sup> with or without the lone pair.</em></p>
<p><em>Do not allow curly arrows originating on H in OH<sup>–</sup>.</em></p>
<p><em>Accept curly arrows in the transition state.</em></p>
<p><em>Do not penalize if HO and Br are not at 180°.</em></p>
<p><em>Do not award M3 if OH–C bond is represented.</em></p>
<p><em>Award <strong>[2 max]</strong> if wrong isomer is used.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Compound <strong>A</strong> and compound <strong>B</strong> are hydrocarbons.</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the term that is used to describe molecules that are related to each other in the same way as compound <strong>A</strong> and compound <strong>B</strong>.</p>
<p>(ii) Suggest a chemical test to distinguish between compound <strong>A</strong> and compound <strong>B</strong>, giving the observation you would expect for each.</p>
<p>Test:</p>
<p>Observation with <strong>A</strong>:</p>
<p>Observation with <strong>B</strong>:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how you could use the IR spectra of compounds <strong>A</strong> and <strong>B</strong> and section 26 of the data booklet to identify them.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two signals occur in the <sup>1</sup>H NMR spectrum of compound <strong>A</strong>. Deduce their expected chemical shift and their splitting pattern, using section 27 of the data booklet.</p>
<p><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)<br><strong>«</strong>structural/functional<strong>»</strong> isomer«s<strong>»</strong></p>
<p>(ii)<br><em>Test</em>:<br><strong>«</strong>react with<strong>»</strong> bromine/Br<sub>2</sub> <strong>«</strong>in the dark<strong>»</strong><br><em><strong>OR<br></strong></em>«react with» bromine water/Br<sub>2</sub> (aq) <strong>«</strong>in the dark<strong>»</strong></p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>A:</em> from yellow/orange/brown to colourless <em><strong>AND</strong></em> <em>B</em>: colour remains/slowly decolourized</p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept other correct reagents, such as manganate(VII) or iodine solutions, and descriptions of the corresponding changes observed.</em></p>
<p><em>Accept “decolourized” for A and “not decolourized/unchanged” for B.</em><br><em> Do <strong>not</strong> accept “clear/transparent” instead of “colourless”.</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>compound <strong>A</strong> would absorb at 1620–1680«cm<sup>−1</sup>»</p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept any value in range 1620 – 1680 cm<sup>−1</sup>.</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Signal</em> 1/2 2/1<br><em>Chemical shift/ ppm</em> 0.9 - 1.0 <em><strong>AND</strong></em> 4.5 - 6.0<br><em>Splitting pattern</em> singlet <em><strong>AND</strong></em> singlet</p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept 0.9 to 2.0 for the first signal as the C=C affects the CH<sub>3</sub> shift (actually 1.7).</em></p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept “none/no splitting” for both splitting patterns</em></p>
<div class="page" title="Page 17">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Award <strong>[1 max]</strong> for the correct deduction (both shift and splitting) of signal 1 or 2.</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>