File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 17/markSceme-HL-paper1html
File size: 74.04 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>At 700 &ordm;C, the equilibrium constant, <em>K</em><sub>c</sub>, for the reaction is 1.075 &times; 10<sup>8</sup>.</p>
<p style="text-align: center;">2H<sub>2</sub> (g) + S<sub>2</sub> (g) \( \rightleftharpoons \) 2H<sub>2</sub>S (g)</p>
<p>Which relationship is always correct for the equilibrium at this temperature?</p>
<p>A. [H<sub>2</sub>S]<sup>2</sup> &lt; [H<sub>2</sub>]<sup>2</sup> [S<sub>2</sub>]</p>
<p>B. [S<sub>2</sub>] = 2[H<sub>2</sub>S]</p>
<p>C. [H<sub>2</sub>S] &lt; [S<sub>2</sub>]</p>
<p>D. [H<sub>2</sub>S]<sup>2</sup> &gt; [H<sub>2</sub>]<sup>2</sup>[S<sub>2</sub>]</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>1.0 mol of N<sub>2</sub>(g), 1.0 mol of H<sub>2</sub>(g) and 1.0 mol of NH<sub>3</sub>(g) are placed in a 1.0 dm<sup>3</sup> sealed flask and left to reach equilibrium. At equilibrium the concentration of N<sub>2</sub>(g) is 0.8 mol dm<sup>−3</sup>.</p>
<p style="text-align: center;">N<sub>2</sub>(g) + 3H<sub>2</sub>(g) \( \rightleftharpoons \) 2NH<sub>3</sub>(g)</p>
<p>What are the equilibrium concentration of H<sub>2</sub>(g) and NH<sub>3</sub>(g) in mol dm<sup>−3</sup>?</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_09.56.26.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/23"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The equation for the reaction between two gases, A and B, is:</p>
<p class="p1">\[{\text{2A(g)}} + {\text{3B(g)}} \rightleftharpoons {\text{C(g)}} + {\text{3D(g)}}\]</p>
<p class="p1">When the reaction is at equilibrium at 600 K the concentrations of A, B, C and D are 2, 1, 3 and 2 \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) respectively. What is the value of the equilibrium constant at 600 K?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{1}{6}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{9}{7}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Components X and Y are mixed together and allowed to reach equilibrium. The concentrations of X, Y, W and Z in the equilibrium mixture are 4, 1, 4 and \({\text{2 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\)&nbsp;respectively.</p>
<p style="text-align: center;">X + 2Y \( \rightleftharpoons \) 2W + Z</p>
<p>What is the value of the equilibrium constant, <em>K</em><sub>c</sub>?</p>
<p>A. &nbsp; &nbsp; \(\frac{1}{8}\)</p>
<p>B. &nbsp; &nbsp; \(\frac{1}{2}\)</p>
<p>C. &nbsp; &nbsp; 2</p>
<p>D. &nbsp; &nbsp; 8</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A mixture of 2.0 mol of \({{\text{H}}_{\text{2}}}\) and 2.0 mol of \({{\text{I}}_{\text{2}}}\) is allowed to reach equilibrium in the gaseous state at a certain temperature in a \({\text{1.0 d}}{{\text{m}}^{\text{3}}}\) flask. At equilibrium, 3.0 mol of HI are present. What is the value of \({K_{\text{c}}}\) for this reaction?</p>
<p>\[{{\text{H}}_{\text{2}}}{\text{(g)}} + {{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\]</p>
<p>A. &nbsp; &nbsp; \({K_{\text{c}}} = \frac{{{{(3.0)}^2}}}{{{{(0.5)}^2}}}\)</p>
<p>B. &nbsp; &nbsp; \({K_{\text{c}}} = \frac{{3.0}}{{{{(0.5)}^2}}}\)</p>
<p>C. &nbsp; &nbsp; \({K_{\text{c}}} = \frac{{{{(3.0)}^2}}}{{{{(2.0)}^2}}}\)</p>
<p>D. &nbsp; &nbsp; \({K_{\text{c}}} = \frac{{{{(0.5)}^2}}}{{{{(3.0)}^2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the relationship between \({\text{p}}{K_{\text{a}}}\), \({\text{p}}{K_{\text{b}}}\) and \({\text{p}}{K_{\text{w}}}\) for a conjugate acid&ndash;base pair?</p>
<p>A. &nbsp; &nbsp; \({\text{p}}{K_{\text{a}}} = {\text{p}}{K_{\text{w}}} + {\text{p}}{K_{\text{b}}}\)</p>
<p>B. &nbsp; &nbsp; \({\text{p}}{K_{\text{a}}} = {\text{p}}{K_{\text{w}}} - {\text{p}}{K_{\text{b}}}\)</p>
<p>C. &nbsp; &nbsp; \({\text{p}}{K_{\text{a}}} \times {\text{p}}{K_{\text{b}}} = {\text{p}}{K_{\text{w}}}\)</p>
<p>D. &nbsp; &nbsp; \(\frac{{{\text{p}}{K_{\text{a}}}}}{{{\text{p}}{K_{\text{b}}}}} = {\text{p}}{K_{\text{w}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The indicator, HIn is used in a titration between an acid and base. Which statement about the dissociation of the indicator, HIn is correct?</p>
<p class="p1">\[{\text{HIn(aq)}} \rightleftharpoons {{\text{H}}^ + }{\text{(aq)}} + {\text{I}}{{\text{n}}^ - }{\text{(aq)}}\]</p>
<p class="p1" style="text-align: center;">colour A <span class="Apple-converted-space">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</span>colour B</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>In a strongly alkaline solution, colour B would be observed.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>In a strongly acidic solution, colour B would be observed.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{[I}}{{\text{n}}^ - }{\text{]}}\) is greater than [HIn] at the equivalence point.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>In a weakly acidic solution colour B would be observed.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">When gaseous nitrosyl chloride, NOCl (g), decomposes, the following equilibrium is established:</p>
<p class="p1">\[{\text{2NOCl(g)}} \rightleftharpoons {\text{2NO(g)}} + {\text{C}}{{\text{l}}_2}{\text{(g)}}\]</p>
<p class="p1">2.0 mol of NOCl(g) were placed in a \({\text{1.0 d}}{{\text{m}}^{\text{3}}}\) container and allowed to reach equilibrium. At equilibrium 1.0 mol of NOCl(g) was present. What is the value of \({K_{\text{c}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>0.50</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1.0</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1.5</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2.0</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A mixture of 0.40 mol of CO (g) and 0.40 mol of H<sub><span class="s1">2 </span></sub>(g) was placed in a 1.00 dm<sup><span class="s1">3 </span></sup>vessel. The following equilibrium was established.</p>
<p class="p2" style="text-align: center;">CO (g) <span class="s2">+ </span>2H<sub><span class="s1">2 </span></sub>(g) <img src="" alt><span class="s3">&nbsp;</span>CH<sub><span class="s1">3</span></sub>OH (g)</p>
<p class="p3">At equilibrium, the mixture contained 0.25 mol of CO (g). How many moles of H<sub><span class="s1">2&nbsp;</span></sub>(g) and CH<sub><span class="s1">3</span></sub>OH (g) were present at equilibrium?</p>
<p class="p3"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">Which is correct for an isolated system in equilibrium?</div>
<div class="column">&nbsp;</div>
<div class="column"><img src="" alt></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The graph shows values of &Delta;<em>G</em> for a reaction at different temperatures.</p>
<p style="text-align: center;"><img src=""></p>
<p>Which statement is correct?</p>
<p>A. &nbsp; &nbsp; The standard entropy change of the reaction is negative.</p>
<p>B. &nbsp; &nbsp; The standard enthalpy change of the reaction is positive.</p>
<p>C. &nbsp; &nbsp; At higher temperatures, the reaction becomes less spontaneous.</p>
<p>D. &nbsp; &nbsp; The standard enthalpy change of the reaction is negative.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>