File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 14/markSceme-HL-paper1html
File size: 215.37 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p class="p1">What is the hybridization of the carbon atom, and the number of \(\sigma \) and \(\pi \) bonds in the methanal molecule?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-17_om_13.36.36.png" alt="M09/4/CHEMI/HPM/ENG/TZ2/15_1"></p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-10-17_om_13.37.15.png" alt="M09/4/CHEMI/HPM/ENG/TZ2/15_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which species has bond angles of 90&deg;?</p>
<p class="p2">A. A<span class="s1">l</span>C<span class="s1">l</span><sub><span class="s2">4</span></sub><sup><span class="s3">- </span></sup></p>
<p class="p2">B. \({\text{I}}\)C<span class="s1">l</span><sub><span class="s2">4</span></sub><sup><span class="s3">- </span></sup></p>
<p class="p2">C. NH<sub><span class="s2">4</span></sub><sup><span class="s3">+ </span></sup></p>
<p class="p2">D. SiC<span class="s1">l</span><sub><span class="s2">4</span></sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which molecule has an expanded octet?</p>
<p>A.     CO</p>
<p>B.     CO<sub>2</sub></p>
<p>C.     SF<sub>2</sub></p>
<p>D.     SF<sub>4</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which species contain delocalized electrons?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_06.41.46.png" alt="M14/4/CHEMI/HPM/ENG/TZ1/13"></p>
<p>A. &nbsp; &nbsp; I and II only</p>
<p>B. &nbsp; &nbsp; I and III only</p>
<p>C. &nbsp; &nbsp; II and III only</p>
<p>D. &nbsp; &nbsp; I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement is correct?</p>
<p>A. &nbsp; &nbsp; Sigma bonds are formed only by the combination of s atomic orbitals.</p>
<p>B. &nbsp; &nbsp; Pi bonds can be formed in the absence of sigma bonds.</p>
<p>C. &nbsp; &nbsp; Pi bonds are formed parallel to the axis between atoms.</p>
<p>D. &nbsp; &nbsp; Pi bonds are formed only by the combination of hybrid orbitals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following best describes the formation of \(\pi \) bonds?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>They are formed by the sideways overlap of parallel orbitals.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>They are formed by the axial overlap of orbitals.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>They are formed by the sideways overlap of an s and p orbital.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>They are formed by the axial overlap of either s or p orbitals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Two respondents suggested that the terms axial and sideways overlap are confusing. However, these terms are also clearly mentioned in the teachers note corresponding to as 14.2.1 and have also been used previously on examination papers.</p>
</div>
<br><hr><br><div class="question">
<p>Which molecules have at least one sp<sup>2</sup> hybridized atom?</p>
<p>        I.     CH<sub>3</sub>COOH</p>
<p>        II.     CH<sub>3</sub>COCH<sub>3</sub></p>
<p>        III.     CH<sub>2</sub>CHCH<sub>2</sub>OH</p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which species have delocalized \(\pi \) electrons?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{NO}}_{\text{2}}^ - \)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CO}}_{\text{3}}^{2 - }\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Although 70% of the candidates gave the expected answer, C, there is <em>minimal </em>delocalization in ethanoic acid, so both C and D were accepted (giving an 86% success rate on the question).</p>
</div>
<br><hr><br><div class="question">
<p class="p1">How many \(\sigma \) and \(\pi \) bonds are present in a molecule of propyne, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CCH}}\)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-21_om_08.21.39.png" alt="M11/4/CHEMI/HPM/ENG/TZ1/10"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">In this question candidates were asked to state the number of sigma and pi bonds in propyne. One respondent stated that as alkynes are not on the syllabus why the name was necessary. However, this question involved candidates drawing out the full structural formula using valency rules and hence counting the number of sigma and pi bonds. Knowledge of the alkyne functional group was not necessary but candidates did have to realise that a carbon to carbon triple bond was present. Often in questions the style of IB papers is to also include both the name and the associated structural formula.</p>
</div>
<br><hr><br><div class="question">
<p>How many sigma \((\sigma )\) and pi \((\pi )\) bonds are there in \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CCC}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)?</p>
<p>A. 13\(\sigma \) and 5\(\pi \)</p>
<p>B. 15\(\sigma \) and 2\(\pi \)</p>
<p>C. 15\(\sigma \) and 3\(\pi \)</p>
<p>D. 15\(\sigma \) only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was thought to be a hard example &ldquo;to test student understanding of hybridization and bond types&rdquo;. This type of question is not new and was answered correctly by 79% of the candidates. All a candidate needs to do is to count the number of \(\pi \)-bonds.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">How many bonding pairs and lone pairs of electrons surround the sulfur atom in the \({\text{S}}{{\text{F}}_{\text{4}}}\) molecule?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-17_om_13.17.25.png" alt="M09/4/CHEMI/HPM/ENG/TZ2/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated that the structure of \({\text{S}}{{\text{F}}_{\text{4}}}\) is not specified in the teachers note corresponding to AS 14.1.1. This is a comment that has been made at length in previous subject reports. The AS states that candidates should be able to determine the shape and bond angles of species with five or six negative charge centres using VSEPR Theory. In the teaching programme, examples such as \({\text{PC}}{{\text{l}}_{\text{5}}}\), \({\text{S}}{{\text{F}}_{\text{6}}}\), \({\text{Xe}}{{\text{F}}_{\text{4}}}\) and \({\text{PF}}_6^ - \) should be definitely included. However, any species with five or six negative charge centres could be asked in a question and hence examples are not restricted to these latter four examples.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The Lewis structure of \({\text{S}}{{\text{O}}_{\text{2}}}\) is given below.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-21_om_08.30.47.png" alt="M11/4/CHEMI/HPM/ENG/TZ1/14"></p>
<p class="p1">What is the shape of the \({\text{S}}{{\text{O}}_{\text{2}}}\) molecule?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Bent (V-shaped)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Linear</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>T-shaped</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Triangular planar</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">There were two G2 comments on this question. One respondent stated that D. should be trigonal planar instead of triangular planar. Both terms are widely used in fact, though of course the correct answer is A. bent or V-shaped. Another respondent stated that it would have been better to represent the Lewis structure of \({\text{S}}{{\text{O}}_{\text{2}}}\) with valence expansion. It is true that \({\text{S}}{{\text{O}}_{\text{2}}}\) could be represented as an alternate Lewis structure. However, the question did not state what the best Lewis structure representation of \({\text{S}}{{\text{O}}_{\text{2}}}\) was and hence was not basing the representation at any distinction centred on formal charge differences versus expanded octets. Candidates simply had to look at the three negative charge centres present which equates to a triangular planar electron-domain geometry and hence a bent molecular geometry as the final shape giving A as the correct answer.</p>
</div>
<br><hr><br><div class="question">
<p>Which species have resonance structures?</p>
<p style="padding-left: 90px;">I. &nbsp; &nbsp; Ozone, O<sub>3</sub><br>II. &nbsp; &nbsp; Carbon dioxide, CO<sub>2</sub><br>III. &nbsp; &nbsp; Benzene, C<sub>6</sub>H<sub>6</sub></p>
<p>A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p>B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p>C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p>D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Retinol (vitamin A) contains a total of <strong>5 </strong>double bonds and <strong>46 </strong>single bonds.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-01_om_05.44.31.png" alt="M12/4/CHEMI/HPM/ENG/TZ2/13"></p>
<p class="p1">Which statements are correct?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>There are 51 \(\sigma \) and 5 \(\pi \) bonds.</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The oxygen atom is \({\text{s}}{{\text{p}}^{\text{3}}}\) hybridized.</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Retinol is a primary alcohol.</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which statements about hybridization are correct?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The hybridization of carbon in diamond is \({\text{s}}{{\text{p}}^{\text{3}}}\).</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The hybridization of carbon in graphite is \({\text{s}}{{\text{p}}^{\text{2}}}\).</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The hybridization of carbon in \({{\text{C}}_{{\text{60}}}}\) fullerene is \({\text{s}}{{\text{p}}^{\text{3}}}\).</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">In which compound are all the carbon atoms \({\text{s}}{{\text{p}}^{\text{2}}}\)hybridized?</p>
<p class="p1">A. &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-10-26_om_15.04.42.png" alt="M11/4/CHEMI/HPM/ENG/TZ2/15_A"></p>
<p class="p1">B. &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-10-26_om_15.05.25.png" alt="M11/4/CHEMI/HPM/ENG/TZ2/15_B"></p>
<p class="p1">C. &nbsp; &nbsp;&nbsp;\({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. &nbsp; &nbsp;&nbsp;\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHCHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent claimed that this question was too difficult. However, Topic 14.2 on hybridization is firmly on the syllabus and candidates should be expected to be able to answer this type of question. The question itself was correctly answered by 79.08% of candidates, and was the thirteenth easiest question on the paper.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which species does <span class="s1"><strong>not </strong></span>have delocalized electrons?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{NO}}_3^ - \)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{NO}}_2^ - \)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{O}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent mentioned the fact that there is some debate in the literature in relation to possible sigma delocalization in cyclopropane which is a valid comment and although 63.98% of candidates chose D. \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}\) as the correct answer, it is fair to state that a different example might have been selected where there is no evidence of delocalization.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the hybridization of the numbered atoms in ethanoic acid?</p>
<p class="p1" style="text-align: center;"><img src="" alt></p>
<p class="p1" style="text-align: left;"><img src="" alt></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which does <strong>not</strong> show resonance?</p>
<p>A. &nbsp; &nbsp; PO<sub>4</sub><sup>3&ndash;</sup></p>
<p>B. &nbsp; &nbsp; C<sub>6</sub>H<sub>6</sub></p>
<p>C. &nbsp; &nbsp; C<sub>6</sub>H<sub>12</sub></p>
<p>D. &nbsp; &nbsp; O<sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<p>In which group do both compounds contain delocalized electrons?</p>
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">A. &nbsp;C<sub>6</sub>H<sub>10</sub>, C<sub>5</sub>H<sub>10</sub><br>B. &nbsp;Na<sub>2</sub>CO<sub>3</sub>, NaOH<br>C. &nbsp;NaHCO<sub>3</sub>, C<sub>6</sub>H<sub>6</sub><br>D. &nbsp;NaHCO<sub>3</sub>, C<sub>6</sub>H<sub>12</sub></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination best describes the type of bonding present and the melting point of silicon and silicon dioxide?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-12_om_12.20.07.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What are the hybridizations of the atoms labelled <strong>1</strong>, <strong>2 </strong>and <strong>3 </strong>in the molecule below?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-12_om_12.22.06.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/13_01"></p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-09-12_om_12.23.22.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/13_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which allotropes of carbon show&nbsp;\(s{p^2}\) hybridization?</p>
<p>I.&nbsp; &nbsp; &nbsp;Diamond</p>
<p>II.&nbsp;&nbsp;&nbsp; Graphite</p>
<p>III.&nbsp; &nbsp; \({C_{60}}\) fullerene</p>
<p>&nbsp;</p>
<p>A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p>B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p>C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p>D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which combination describes the bonding and structure in benzoic acid, C<sub>6</sub>H<sub>5</sub>COOH?</p>
<p style="text-align: center;"><img src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the hybridization of atoms <strong>X</strong>, <strong>Y</strong> and <strong>Z</strong> in epinephrine?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-24_om_13.23.56.png" alt="N13/4/CHEMI/HPM/ENG/TZ0/14_01"></p>
<p style="text-align: left;"><img src="images/Schermafbeelding_2016-08-24_om_13.25.01.png" alt="N13/4/CHEMI/HPM/ENG/TZ0/14_02"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was thought to be tricky for those who had not studied Option G for paper 3 as they might have less idea about hybridization in a benzene ring. This should be covered in topics 14.2.2 and 14.3.1. It was one of the harder questions but, even so, 68.20% gave the correct answer. &ldquo;B&rdquo; was the next most common answer, presumably because candidates had forgotten the hydrogen atom on carbon X.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which species have delocalized electrons?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_11.33.36.png" alt="N10/4/CHEMI/HPM/ENG/TZ0/13"></p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which structure has delocalized \(\pi \) electrons?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{O}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>CO</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>HCN</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{O}}_{\text{2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is correct for \({\text{PC}}{{\text{l}}_{\text{5}}}\)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-01_om_17.54.17.png" alt="M15/4/CHEMI/HPM/ENG/TZ1/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination of shape and bond angle is correct for a molecule of xenon tetrafluoride, \({\text{Xe}}{{\text{F}}_{\text{4}}}\)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-02_om_07.20.32.png" alt="M15/4/CHEMI/HPM/ENG/TZ2/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Whilst 70% gave the correct answer, a significant number (17%) missed the axial lone pairs and thought the molecule to be tetrahedral.</p>
</div>
<br><hr><br><div class="question">
<p>Which overlap of atomic orbitals leads to the formation of only a sigma (σ) bond?</p>
<p>       I.     s − p</p>
<p>       II.     p − p</p>
<p>       III.     s − s</p>
<p>A.     I and II only</p>
<p>B.     I and III only</p>
<p>C.     II and III only</p>
<p>D.     I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">How many sigma and pi bonds are there in propyne, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CCH}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2 sigma and 2 pi</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>7 sigma and 1 pi</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>6 sigma and 2 pi</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>5 sigma and 3 pi</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which can be represented with only one Lewis structure?</p>
<p>A.     CH<sub>2</sub>O</p>
<p>B.     C<sub>6</sub>H<sub>6</sub></p>
<p>C.     O<sub>3</sub></p>
<p>D.     NO<sub>3</sub><sup>−</sup></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which molecules have \({\text{s}}{{\text{p}}^{\text{2}}}\) hybridization?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\)</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}\)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{6}}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column" style="text-align: left;">Which of the following is correct?</div>
<div class="column" style="text-align: center;"><img src="" alt></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which species does <strong>not </strong>contain delocalized electrons?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{{\text{O}}^ - }\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CO}}_2^ - \)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{O}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{NO}}_3^ - \)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">How many sigma (\(\sigma \)) and pi (\(\pi \)) bonds are there in the following molecule?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-15_om_13.05.55.png" alt="M13/4/CHEMI/HPM/ENG/TZ2/12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">Which species breaks the octet rule?</div>
<div class="column">&nbsp;</div>
<div class="column">A. &nbsp;PCl<sub>3</sub><br>B. &nbsp;BF<sub>4</sub><sup>&minus;</sup><br>C. &nbsp;SCl<sub>4</sub><br>D. &nbsp;NH<sub>4</sub><sup>+</sup></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Identify the hybridization of carbon atoms in this molecule</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-13_om_17.29.41.png" alt="M09/4/CHEMI/HPM/ENG/TZ1/12_1"></p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-10-13_om_17.30.33.png" alt="M09/4/CHEMI/HPM/ENG/TZ1/12_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the type of hybridization of the silicon and oxygen atoms in silicon dioxide?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-30_om_13.22.45.png" alt="N09/4/CHEMI/HPM/ENG/TZ0/14"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This question on hybridization was particularly badly answered (Difficulty Index 29%), though it was not clear as to whether this arose from a lack of comprehension of the concept itself or the structure of silicon dioxide.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination correctly describes the types of hybridization shown by the two carbon atoms labelled \(\alpha \) and \(\beta \) and the oxygen atom labelled \(\gamma \) <span class="s1">in the molecule of paracetamol shown below?</span></p>
<p class="p1" style="text-align: center;"><span class="s1"><img src="images/Schermafbeelding_2016-08-02_om_07.24.41.png" alt="M15/4/CHEMI/HPM/ENG/TZ2/13.1"></span></p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-08-02_om_07.26.02.png" alt="M15/4/CHEMI/HPM/ENG/TZ2/13.2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Although delocalization in amide is not covered in the syllabus, answer C was also accepted here as there is significant double bond character in the nitrogen to carbon (of the carboxamide group) bond. The question will be amended before publication.</p>
</div>
<br><hr><br><div class="question">
<p>Which molecule is trigonal bipyramidal in shape?</p>
<p>A. &nbsp; &nbsp; \({\text{PC}}{{\text{l}}_{\text{3}}}\)</p>
<p>B. &nbsp; &nbsp; \({\text{SiC}}{{\text{l}}_{\text{4}}}\)</p>
<p>C. &nbsp; &nbsp; \({\text{PC}}{{\text{l}}_{\text{5}}}\)</p>
<p>D. &nbsp; &nbsp; \({\text{S}}{{\text{F}}_{\text{6}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The diagrams below show \(s\) and \(p\) orbitals in different positions. Which combinations can form a \(\sigma \)-bond?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_06.39.20.png" alt="M14/4/CHEMI/HPM/ENG/TZ1/12"></p>
<p>A. &nbsp; &nbsp; I and II only</p>
<p>B. &nbsp; &nbsp; I and III only</p>
<p>C. &nbsp; &nbsp; II and III only</p>
<p>D. &nbsp; &nbsp; I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the correct number of sigma \({\text{(}}\sigma {\text{)}}\) and pi \({\text{(}}\pi {\text{)}}\) bonds in prop-2-enenitrile, \({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHCN}}\)?</p>
<p><img src="images/Schermafbeelding_2016-08-21_om_07.24.38.png" alt="N14/4/CHEMI/HPM/ENG/TZ0/X12"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many sigma (&sigma;) and pi (&pi;) bonds are present in this molecule?</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the hybridization state and electron domain geometry around the circled C, N and O&nbsp;atoms?</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which combination describes the PH<sub>4</sub><sup>+</sup> ion?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>